1
|
Posarelli M, Romano D, Tucci D, Giannaccare G, Scorcia V, Taloni A, Pagano L, Borgia A. Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art. BIOTECH 2023; 12:48. [PMID: 37366796 DOI: 10.3390/biotech12020048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The ocular surface is a complex structure that includes cornea, conjunctiva, limbus, and tear film, and is critical for maintaining visual function. When the ocular-surface integrity is altered by a disease, conventional therapies usually rely on topical drops or tissue replacement with more invasive procedures, such as corneal transplants. However, in the last years, regeneration therapies have emerged as a promising approach to repair the damaged ocular surface by stimulating cell proliferation and restoring the eye homeostasis and function. This article reviews the different strategies employed in ocular-surface regeneration, including cell-based therapies, growth-factor-based therapies, and tissue-engineering approaches. Dry eye and neurotrophic keratopathy diseases can be treated with nerve-growth factors to stimulate the limbal stem-cell proliferation and the corneal nerve regeneration, whereas conjunctival autograft or amniotic membrane are used in subjects with corneal limbus dysfunction, such as limbal stem-cell deficiency or pterygium. Further, new therapies are available for patients with corneal endothelium diseases to promote the expansion and migration of cells without the need of corneal keratoplasty. Finally, gene therapy is a promising new frontier of regeneration medicine that can modify the gene expression and, potentially, restore the corneal transparency by reducing fibrosis and neovascularization, as well as by stimulating stem-cell proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Matteo Posarelli
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Davide Romano
- Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, 25123 Brescia, Italy
- Eye Unit, University Hospitals of Leicester, NHS Trust, Leicester LE1 5WW, UK
| | - Davide Tucci
- Department of Biomedical and Surgical Sciences, Section of Ophthalmology, S. Maria Della Misericordia Hospital, University of Perugia, 06123 Perugia, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Taloni
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Pagano
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Alfredo Borgia
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
- Eye Unit, Humanitas-Gradenigo Hospital, 10153 Turin, Italy
| |
Collapse
|
2
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
3
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma. Sci Rep 2020; 10:14819. [PMID: 32908231 PMCID: PMC7481206 DOI: 10.1038/s41598-020-71799-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Previous data suggest that apparent diffusion coefficient (ADC) imaging phenotypes predict survival response to anti-VEGF monotherapy in glioblastoma. However, the mechanism by which imaging may predict clinical response is unknown. We hypothesize that decorin (DCN), a proteoglycan implicated in the modulation of the extracellular microenvironment and sequestration of pro-angiogenic signaling, may connect ADC phenotypes to survival benefit to anti-VEGF therapy. Patients undergoing resection for glioblastoma as well as patients included in The Cancer Genome Atlas (TCGA) and IVY Glioblastoma Atlas Project (IVY GAP) databases had pre-operative imaging analyzed to calculate pre-operative ADCL values, the average ADC in the lower distribution using a double Gaussian mixed model. ADCL values were correlated to available RNA expression from these databases as well as from RNA sequencing from patient derived mouse orthotopic xenograft samples. Targeted biopsies were selected based on ADC values and prospectively collected during resection. Surgical specimens were used to evaluate for DCN RNA and protein expression by ADC value. The IVY Glioblastoma Atlas Project Database was used to evaluate DCN localization and relationship with VEGF pathway via in situ hybridization maps and RNA sequencing data. In a cohort of 35 patients with pre-operative ADC imaging and surgical specimens, DCN RNA expression levels were significantly larger in high ADCL tumors (41.6 vs. 1.5; P = 0.0081). In a cohort of 17 patients with prospectively targeted biopsies there was a positive linear correlation between ADCL levels and DCN protein expression between tumors (Pearson R2 = 0.3977; P = 0.0066) and when evaluating different targets within the same tumor (Pearson R2 = 0.3068; P = 0.0139). In situ hybridization data localized DCN expression to areas of microvascular proliferation and immunohistochemical studies localized DCN protein expression to the tunica adventitia of blood vessels within the tumor. DCN expression positively correlated with VEGFR1 & 2 expression and localized to similar areas of tumor. Increased ADCL on diffusion MR imaging is associated with high DCN expression as well as increased survival with anti-VEGF therapy in glioblastoma. DCN may play an important role linking the imaging features on diffusion MR and anti-VEGF treatment efficacy. DCN may serve as a target for further investigation and modulation of anti-angiogenic therapy in GBM.
Collapse
|
6
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
7
|
VanOpstall C, Perike S, Brechka H, Gillard M, Lamperis S, Zhu B, Brown R, Bhanvadia R, Vander Griend DJ. MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. eLife 2020; 9:e53600. [PMID: 32553107 PMCID: PMC7371429 DOI: 10.7554/elife.53600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.
Collapse
Affiliation(s)
- Calvin VanOpstall
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Srikanth Perike
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Hannah Brechka
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Marc Gillard
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Sophia Lamperis
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Baizhen Zhu
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Ryan Brown
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Raj Bhanvadia
- Department of Urology, UT SouthwesternDallasUnited States
| | | |
Collapse
|
8
|
Aberer E, Surtov-Pudar M, Wilfinger D, Deutsch A, Leitinger G, Schaider H. Co-culture of human fibroblasts and Borrelia burgdorferi enhances collagen and growth factor mRNA. Arch Dermatol Res 2018; 310:117-126. [PMID: 29214350 PMCID: PMC5811584 DOI: 10.1007/s00403-017-1797-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/02/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022]
Abstract
Skin fibrosis has been reported in Borrelia burgdorferi infection in Europe, but has been questioned by several authors. The objective of the present study was to examine the interaction of skin fibroblasts with B. burgdorferi sensu stricto B31 (BB) and B. afzelii (BA) in vitro by electron microscopy. We also determined the expression of collagen type I, TGF-β, FGF-1, calreticulin (CALR), decorin (DCN), and PDGF-α at the mRNA level in Borrelia/fibroblast co-cultures. Intact Borrelia attach to and transmigrate fibroblasts, and undergo cystic transformation outside the fibroblasts. Fibroblasts preserve their vitality and express a prominent granular endoplasmic reticulum, suggesting activated protein synthesis. On two different semi-quantitative real-time PCR assays, BB- and BA/fibroblast co-cultures showed a significant induction of type I collagen mRNA after 2 days compared to fibroblasts (fourfold for BA and 1.8-fold for BB; p < 0.02). In addition, there was a significant upregulation of mRNA expression of TGF-β, CALR, PDGF-α, and DCN in BA and BB co-cultures compared to control fibroblasts in monolayer cultures after 2 days (p < 0.01). The BA/fibroblast co-culture induced a considerably greater upregulation of collagen and growth factor mRNA compared to BB/fibroblast co-culture. In contrast, a significant down-regulation of FGF-1 (20-fold for BA and 4.5-fold for BB) mRNA expression was detected in co-cultures compared to controls (p < 0.01). The results of the study support the hypothesis that BB sensu lato, and BA in particular, enhances collagen mRNA expression and can stimulate growth factors responsible for increased collagen production.
Collapse
Affiliation(s)
- Elisabeth Aberer
- Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, 8036, Graz, Austria.
| | - Milana Surtov-Pudar
- Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, 8036, Graz, Austria
| | - Daniel Wilfinger
- Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, 8036, Graz, Austria
| | - Alexander Deutsch
- Division of Haematology, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Research Unit Electron-Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Helmut Schaider
- Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, 8036, Graz, Austria
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget 2018; 9:5480-5491. [PMID: 29435195 PMCID: PMC5797066 DOI: 10.18632/oncotarget.23869] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 12/02/2022] Open
Abstract
Decorin (DCN), an extracellular matrix (ECM) protein, belongs to the small leucine-rich proteoglycan family. As a pluripotent molecule, DCN regulates the bioactivities of cell growth factors and participates in ECM assembly. Accumulating evidence has shown that DCN acts as a ligand of various cytokines and growth factors by directly or indirectly interacting with the corresponding signalling molecules involved in cell growth, differentiation, proliferation, adhesion and metastasis and that DCN especially plays vital roles in cancer cell proliferation, spread, pro-inflammatory processes and anti-fibrillogenesis. The multifunctional nature of DCN thus enables it to be a potential therapeutic agent for a variety of diseases and shows good prospects for clinical and research applications. DCN, an extracellular matrix (ECM) protein that belongs to the small leucine-rich proteoglycan family, is widely distributed and plays multifunctional roles in the stroma and epithelial cells. Originally, DCN was known as an effective collagen-binding partner for fibrillogenesis [1] and to modulate key biomechanical parameters of tissue integrity in the tendon, skin and cornea [2]; thus, it was named decorin (DCN). Since being initially cloned in 1986, DCN was discovered to be a structural constituent of the ECM [3]. However, the paradigm has been shifted; it has become increasingly evident that in addition to being a matrix structural protein, DCN affects a wide range of biological processes, including cell growth, differentiation, proliferation, adhesion, spread and migration, and regulates inflammation and fibrillogenesis [4–7]. Two main themes for DCN functions have emerged: maintenance of cellular structure and regulation of signal transduction pathways, culminating in anti-tumourigenic effects. Here, we review the interaction network of DCN and emphasize the biological correlations between these interactions, some of which are expected to be therapeutic intervention targets.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update 2014; 21:155-73. [PMID: 25406186 DOI: 10.1093/humupd/dmu056] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key cellular signaling pathways required for growth. In contrast, progesterone via PR activation appears to increase leiomyoma growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysiology of RPL and the use of progesterone for therapeutic benefit remains uncertain. CONCLUSIONS PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying mechanisms of PR isoform action in the uterus is required, as this knowledge will afford the opportunity to create progestin/PR-based therapeutics to treat various uterine pathologies.
Collapse
Affiliation(s)
- Bansari Patel
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sonia Elguero
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suruchi Thakore
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wissam Dahoud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohamed Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sam Mesiano
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Proteoglycans of uterine fibroids and keloid scars: similarity in their proteoglycan composition. Biochem J 2012; 443:361-8. [PMID: 22257180 DOI: 10.1042/bj20111996] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibrosis is the formation of excess and abnormal fibrous connective tissue as a result of either a reparative or reactive process. A defining feature of connective tissue is its extracellular matrix, which provides structural support and also influences cellular activity. Two common human conditions that result from fibrosis are uterine fibroids (leiomyomas) and keloid scars. Because these conditions share a number of similarities and because their growth is due primarily to excessive extracellular matrix deposition, we compared the proteoglycans of uterine fibroids and keloid scars with corresponding normal tissues. Our analysis indicates that uterine fibroids and keloid scars contain higher amounts of glycosaminoglycans relative to normal myometrium and normal adult skin respectively. Proteoglycan composition is also different in the fibrotic tissues. Compared with unaffected tissues, uterine fibroids and keloid scars contain higher relative amounts of versican and lower relative amounts of decorin. There is also evidence for a higher level of versican catabolism in the fibrotic tissues compared with unaffected tissues. These qualitative and quantitative proteoglycan differences may play a role in the expansion of these fibroses and in their excessive matrix deposition and matrix disorganization, due to effects on cell proliferation, TGF (transforming growth factor)-β signalling and/or collagen fibril formation.
Collapse
|
12
|
Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 2007; 15:1616-22. [PMID: 17609657 DOI: 10.1038/sj.mt.6300250] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have shown that decorin, a small leucine-rich proteoglycan, can inhibit transforming growth factor (TGF)-beta1 to prevent fibrous scar formation and improve muscle healing after injury. In the decorin-treated muscle, an enhancement of muscle regeneration is observed through histological examination. In this article, we report our determination of whether decorin has a direct effect on myogenic cells' differentiation. Our results indicate that myoblasts genetically engineered to express decorin (CD cells) differentiated into myotubes at a significantly higher rate than did control myoblasts (C2C12). This enhanced differentiation led to the up-regulation of myogenic genes (Myf5, Myf6, MyoD, and myogenin) in CD cells in vitro. We speculate that the higher rate of differentiation exhibited by the CD cells is due to the up-regulation of follistatin, peroxisome-proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha), p21, and the myogenic genes, and the down-regulation of TGF-beta1 and myostatin. Decorin gene transfer in vivo promoted skeletal muscle regeneration and accelerated muscle healing after injury. These results suggest that decorin not only prevents fibrosis but also improves muscle regeneration and repair.
Collapse
Affiliation(s)
- Yong Li
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Solomon A, Wajngarten M, Alviano F, Anteby I, Elchalal U, Pe'er J, Levi-Schaffer F. Suppression of inflammatory and fibrotic responses in allergic inflammation by the amniotic membrane stromal matrix. Clin Exp Allergy 2006; 35:941-8. [PMID: 16008682 DOI: 10.1111/j.1365-2222.2005.02285.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amniotic membrane (AM), which is the innermost layer of the placenta, was shown to possess anti-inflammatory and anti-fibrotic properties in various in vitro and clinical studies. PURPOSE To evaluate the anti-fibrotic and anti-inflammatory effects of the AM matrix (AMM) on human conjunctival and lung fibroblasts in an in vitro system that tests fibrotic and inflammatory responses at the effector stages of allergic inflammation. METHODS Human conjunctival or lung fibroblasts were seeded on plastic or on the stromal aspect of the AM, which was mounted on plastic inserts. Sonicates of human peripheral blood eosinophils activated with lipopolysaccharide (LPS), or human mast cell (HMC-1) leukaemia cell sonicates, were added to sub-confluent fibroblast monolayers. Proliferation of the sub-confluent fibroblasts was assessed using the [3H]-thymidine incorporation assay. The production of transforming growth factor (TGF)-beta1, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-8 in conjunctival or lung fibroblasts was measured in conditioned media from these cultures by ELISA. RESULTS After 4 days in culture, the [3H]-thymidine incorporation assay indicated a reduced proliferation of activated conjunctival and lung fibroblasts when cultured directly on the AMM. The production of both TGF-beta1 and IL-8 was significantly suppressed in activated conjunctival fibroblasts cultured on the AMM compared with those cultured on plastic, while the production of both TGF-beta1 and GM-CSF was decreased in human lung fibroblast cultured on the AMM. CONCLUSIONS The AMM is capable of suppressing fibrotic responses in an in vitro system of effector stages of ocular allergic inflammation. These data may provide a basis for exploring matrix components in the AM for the treatment of allergic eye disease.
Collapse
Affiliation(s)
- A Solomon
- Department of Ophthalmology, Hadassah University Hospital, The Hebrew University--Hadassah Faculty of Medicine, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rodgers K, McMahon B, Mitchell D, Sadlier D, Godson C. Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:683-94. [PMID: 16127149 PMCID: PMC1698722 DOI: 10.1016/s0002-9440(10)62043-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipoxins (LXs), endogenously produced eicosanoids, possess potent anti-inflammatory, pro-resolution bioactivities. We investigated the potential of LXA(4) (1 to 10 nmol/L) to modify the effects of platelet-derived growth factor (PDGF)-induced gene expression in human renal mesangial cells (hMCs). Using oligonucleotide microarray analysis we profiled pro-fibrotic cytokines and matrix-associated genes induced in response to PDGF. LXA(4) modulated the expression of many PDGF-induced genes, including transforming growth factor-beta1, fibronectin, thrombospondin, matrix metalloproteinase 1, and several collagens. Analysis of both transcript and protein levels confirmed these findings. Because the activated glomerulus is frequently a source of injurious mediators that contribute to tubulointerstitial damage, we investigated the effect of hMC-secreted products on the integrity of renal proximal tubular epithelial cells using an in vitro model of progressive renal disease. Cell supernatant from PDGF-stimulated hMCs caused morphological and genetic changes in proximal tubular epithelial cells, consistent with a pro-fibrotic phenotype. Interestingly, supernatant from cells pre-exposed to LXA(4) and PDGF did not induce these effects. These results suggest a novel role for LXA(4) as a potent modulator of matrix accumulation and pro-fibrotic change and suggest a potential protective role in progressive renal disease.
Collapse
Affiliation(s)
- Karen Rodgers
- Department of Medicine and Therapeutics, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
15
|
Suzuki K, Wang R, Kubota H, Shibuya H, Saegusa J, Sato T. Kinetics of biglycan, decorin and thrombospondin-1 in mercuric chloride-induced renal tubulointerstitial fibrosis. Exp Mol Pathol 2005; 79:68-73. [PMID: 16005714 DOI: 10.1016/j.yexmp.2005.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
We investigated the kinetics of decorin, biglycan and thrombospondin-1 in mercuric chloride-treated Brown Norway (BN) rats. BN rats were injected subcutaneously with 1 mg/kg b.w. of mercuric chloride one or three times. The kidney was examined histopathologically and the kinetics of decorin, biglycan and thrombospondin-1 was also examined using immunohistochemistry and real time RT-PCR. As a result, mercuric chloride induced tubular injury and subsequent tubulointerstitial fibrosis. In this lesion, the expression of thrombospondin-1 mRNA was most prominently elevated. The expression of decorin mRNA was next, but biglycan mRNA expression was not elevated. Moreover, decorin and thrombospondin-1 proteins were localized in tubular epithelial cells and peritubular interstitium. Moreover, kinetics of their mRNA expressions was relatively similar to the kinetics of TGF-beta1 mRNA expression previously reported. The present findings suggest that decorin and thrombospondin-1 may participate in the development of tubulointerstitial fibrosis and may have some relation with TGF-beta1 in mercuric chloride-treated BN rats.
Collapse
Affiliation(s)
- Kazuhiko Suzuki
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-8510, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Figueiredo CC, De Lima OC, De Carvalho L, Lopes-Bezerra LM, Morandi V. The in vitro interaction of Sporothrix schenckii with human endothelial cells is modulated by cytokines and involves endothelial surface molecules. Microb Pathog 2004; 36:177-88. [PMID: 15001223 DOI: 10.1016/j.micpath.2003.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 11/02/2003] [Accepted: 11/06/2003] [Indexed: 11/16/2022]
Abstract
Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis that can evolve to systemic complications in immunocompromised patients. Interactions with endothelium are thought to be essential for systemic infections. In the present work, we studied the interaction between S. schenckii and human umbilical vein endothelial cells (HUVECs). S. schenckii interacts with HUVECs in a time-dependent manner. Morphological analysis showed that yeasts locate to interendothelial junctions. Ultrastructural studies showed that internalized yeasts were found inside endocytic vacuoles as early as 2 h, without causing any detectable damage to HUVECs after 24 h of infection. The viability of infected HUVECs was confirmed by the MTT assay. When HUVECs were treated with different concentrations of Interleukin-1beta or transforming growth factor-beta, a significant dose-dependent increase in cell-associated yeasts was observed. The preliminary analysis of the endothelial surface ligands for S. schenckii cells revealed two major molecules, with Mr of approximately 90 and 135 kDa. The interaction of endothelial cell surface molecules with S. schenckii yeast cells was modulated by divalent cations. This is the first demonstration that S. schenckii is able to adhere and invade endothelial cells without significantly affect cellular integrity. Our results suggest the contribution of cytokine-modulated calcium-dependent molecules to this process.
Collapse
Affiliation(s)
- Camila Castro Figueiredo
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua Sao Francisco Xavier, 524, PHLC sala 205, Maracana, Rio De Janeiro, RJ, 20550-013, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Fibrous and interstitial proteins compose the extracellular matrix of the vocal fold lamina propria and account for its biomechanic properties. Vocal fold scarring is characterized by altered biomechanical properties, which create dysphonia. Although alterations of the fibrous proteins have been confirmed in the rabbit vocal fold scar, interstitial proteins, which are known to be important in wound repair, have not been investigated to date. Using a rabbit model, interstitial proteins decorin, fibromodulin, and fibronectin were examined immunohistologically, two months postinduction of vocal fold scar by means of forcep biopsy. Significantly decreased decorin and fibromodulin with significantly increased fibronectin characterized scarred vocal fold tissue. The implications of altered interstitial proteins levels and their affect on the fibrous proteins will be discussed in relation to increased vocal fold stiffness and viscosity, which characterizes vocal fold scar.
Collapse
Affiliation(s)
- Susan L Thibeault
- Division of Otolaryngology, Head and Neck Surgery, Department of Communicative Disorders, University of Utah, Salt Lake City 84132, USA.
| | | | | |
Collapse
|
18
|
Chan TM, Leung JKH, Tsang RCW, Liu ZH, Li LS, Yung S. Emodin ameliorates glucose-induced matrix synthesis in human peritoneal mesothelial cells. Kidney Int 2003; 64:519-33. [PMID: 12846747 DOI: 10.1046/j.1523-1755.2003.00113.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Emodin ameliorates glucose-induced matrix synthesis in human peritoneal mesothelial cells. Prolonged exposure of human peritoneal mesothelial cells (HPMC) to high glucose concentrations in peritoneal dialysate is the principal factor leading to matrix accumulation and thickening of the peritoneal membrane, accompanied by progressive deterioration of transport functions. These changes are mediated in part through protein kinase C (PKC) activation and the induction of transforming growth factor-beta 1 (TGF-beta 1). Emodin (3-methyl-1,6,8 trihydroxyanthraquinone) has previously been demonstrated to reduce cell proliferation and fibronectin synthesis in cultured mesangial cells. How emodin modulates glucose-induced abnormalities in HPMC has not been elucidated and thus constitutes the theme of this study. METHODS We investigated the effects of emodin on the expression of PKC alpha, TGF-beta 1, fibronectin, and collagen type I in HPMC, and its effects on HPMC proliferation under physiologic (5 mmol) or high (30 mmol) glucose concentrations. RESULTS Exposure of HPMC cultured with 5 mmol or 30 mmol D-glucose to emodin (20 microg/mL) resulted in an initial lag of proliferation by 2.3 to 2.7 days, but did not affect cell viability or morphology at confluence. D-glucose (30 mmol) induced TGF-beta 1 secretion in a time-dependent manner (3.72 +/- 0.29 and 4.30 +/- 0.50 pg/microg cellular protein at 24 hours and 48 hours respectively, compared to 2.13 +/- 0.23 and 2.65 +/- 0.32 pg/microg cellular protein at 24 hours and 48 hours, respectively for 5 mmol glucose; P < 0.001 at both time points). Such induction was ameliorated by emodin (20 microg/mL) (TGF-beta 1 concentration 2.25 +/- 0.15 and 2.96 +/- 0.33 pg/microg cellular protein at 24 hours and 48 hours, respectively, in the presence of emodin and 30 mmol D-glucose; P < 0.001 compared to 30 mmol D-glucose alone at both time points). Induction of TGF-beta 1 synthesis by 30 mmol D-glucose was associated with induction of PKC alpha, phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor-1 (ATF-1), and increased fibronectin and type I collagen translation. Emodin abrogated all these effects of concentrated glucose. Immunohistochemical staining showed that 30 mmol D-glucose induced cytoplasmic, perinuclear, and extracellular fibronectin and type I collagen expression by HPMC. Emodin reduced 30 mmol D-glucose-induced cytoplasmic and extracellular matrix synthesis to near basal levels. CONCLUSION Our findings demonstrate that emodin ameliorates the undesirable effects of concentrated glucose on HPMC via suppression of PKC activation and CREB phosphorylation, and suggest that emodin may have a therapeutic potential in the prevention or treatment of glucose-induced structural and functional abnormalities in the peritoneal membrane.
Collapse
Affiliation(s)
- Tak Mao Chan
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Schaefer L, Raslik I, Grone HJ, Schonherr E, Macakova K, Ugorcakova J, Budny S, Schaefer RM, Kresse H. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. FASEB J 2001; 15:559-61. [PMID: 11259366 DOI: 10.1096/fj.00-0493fje] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small leucine-rich proteoglycans (SLRPs), for example, decorin, biglycan, fibromodulin, and lumican, are extracellular matrix organizers and binding partners of TGF-b. Decorin is also involved in growth control and angiogenesis. Hence, these proteoglycans are likely of importance in the pathogenesis of diabetic glomerulosclerosis. In normal kidney, SLRPs were preferentially expressed in the tubulointerstitium. Weak expression occurred in the mesangial matrix. Biglycan was expressed by glomerular endothelial cells and, together with fibromodulin, by distal tubular cells and in collecting ducts. In all stages of diabetic nephropathy, there was a marked up-regulation of the proteoglycans in tubulointerstitium and glomeruli. Decorin and lumican became expressed in tubuli. However, in glomeruli, overexpression was not mirrored by local proteoglycan accumulation except in advanced nephropathy. In severe glomerulosclerosis, increased decorin concentrations were found in plasma and urine, and urinary TGF-b/decorin complexes could be demonstrated indirectly. The failure to detect an increased glomerular proteoglycan quantity during the development of nephropathy could be explained by assuming that they are secreted into the mesangial matrix, but cleared via the vasculature or the urinary tract, in part as complexes with TGF-b. They could thereby counteract the vicious circle being characterized by increased TGF-b production and increased matrix deposition in diabetic nephropathy.
Collapse
Affiliation(s)
- L Schaefer
- Department of Internal Medicine, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Melrose J, Ghosh P, Taylor TK. A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 2001; 198:3-15. [PMID: 11215765 PMCID: PMC1468186 DOI: 10.1046/j.1469-7580.2001.19810003.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study provides a comparative analysis of the temporal and spatial distribution of 5 intervertebral disc (IVD) proteoglycans (PGs) in sheep. The main PGs in the 2 and 10 y old sheep groups were polydisperse chondroitin sulphate and keratan sulphate substituted species. Their proportions did not differ markedly either with spinal level or disc zone. In contrast, the fetal discs contained 2 slow migrating (by composite agarose polyacrylamide gel electrophoresis, CAPAGE), relatively monodisperse chondroitin sulphate-rich aggrecan species which were also identified by monoclonal antibody 7-D-4 to an atypical chondroitin sulphate isomer presentation previously found in chick limb bud, and shark cartilage. The main small PG detectable in the fetal discs was biglycan, whereas decorin predominated in the 2 and 10 y old IVD samples; its levels were highest in the outer annulus fibrosus (AF). Versican was most abundant in the AF of the fetal sheep group; it was significantly less abundant in the 2 and 10 y old groups. Furthermore, versican was immunolocalised between adjacent layers of annular lamellae suggesting that it may have some role in the provision of the viscoelastic properties to this tissue. Versican was also diffusely distributed throughout the nucleus pulposus of fetal IVDs, and its levels were significantly lower in adult IVD specimens. This is the first study to identify versican in ovine IVD tissue sections and confirmed an earlier study which demonstrated that ovine IVD cells synthesised versican in culture (Melrose et al. 2000). The variable distribution of the PGs identified in this study provides further evidence of differences in phenotypic expression of IVD cell populations during growth and development and further demonstrates the complexity of the PGs in this heterogeneous but intricately organised connective tissue.
Collapse
Affiliation(s)
- J Melrose
- Institute of Bone and Joint Research, Royal North Shore Hospital, University of Sydney (Department of Surgery), St Leonards, NSW, Australia.
| | | | | |
Collapse
|
22
|
Hart DA, Nakamura N, Marchuk L, Hiraoka H, Boorman R, Kaneda Y, Shrive NG, Frank CB. Complexity of determining cause and effect in vivo after antisense gene therapy. Clin Orthop Relat Res 2000:S242-51. [PMID: 11039776 DOI: 10.1097/00003086-200010001-00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Injuries to joint tissues are major clinical problems occurring with significant frequency and resulting in the formation of scar tissue or in some tissues with no healing at all. Such scar tissue has compromised biomechanical integrity, which leads to impaired function, increased risk of reinjury, induction of remodeling in other joint tissues and increases the risk of diseases such as ostheoarthritis. Development of new therapies, such as gene therapy, to enhance repair could have a significant impact on quality of life for patients. The well-characterized rabbit medial collateral ligament injury model was used to transiently modulate the expression of specific molecules during early stages of healing. The small matrix proteoglycan decorin, known to influence matrix assembly and to bind and growth factors, was targeted in vivo using decorin-specific antisense oligodeoxynucleotides and Hemagglutinating Virus of Japan-Liposome method. After 4 weeks of healing, scar tissue was assessed after antisense exposure by reverse transcription polymerase chain reaction, Western Blot analysis, light and transmission electron microscopy, and biomechanically for low and high load behavior. Ligament scar messenger ribonucleic acid and protein levels for decorin decreased and collagen fibril diameter size increased after antisense treatment. Creep and stress at failure improved after antisense treatment indicating a functional improvement in the scar tissue. However, messenger ribonucleic acid levels for multiple genes were affected by the decorin-specific antisense treatment and therefore all of the observed improvements in the scar tissue cannot be directly ascribed to depressing decorin levels.
Collapse
Affiliation(s)
- D A Hart
- McCaig Centre for Joint Injury and Arthritis Research, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Research during the past few years has contributed vastly to a better understanding of fibrosis and angiogenesis. Although studies to understand the molecular processes associated with fibrosis and angiogenesis were performed independently of each other, some common parallels have emerged. Translation of these observations into potential therapeutic possibilities needs further exploration.
Collapse
Affiliation(s)
- R Kalluri
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
24
|
Parkes JG, Liu Y, Sirna JB, Templeton DM. Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts. J Mol Cell Cardiol 2000; 32:233-46. [PMID: 10722800 DOI: 10.1006/jmcc.1999.1068] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron overload is associated with long-term cardiac iron accumulation and tissue changes such as fibrosis. To determine short-term iron-dependent changes in expression of genes associated with iron homeostasis and fibrosis we measured mRNA on Northern blots prepared from cultured rat neonatal cardiomyocytes and non-myocytes (fibroblasts) as a function of iron loading and chelation. Transferrin receptor mRNA was reduced in myocytes exposed to various concentrations of iron for 3 days and this decline was associated with a 63% decline in iron-response element (IRE) binding of iron regulatory protein-1, indicating that myocytes utilize IRE-dependent mechanisms to modulate gene expression. In myocytes iron caused a dose-dependent decline in mRNAs coding for transforming growth factor- beta(1)(TGF- beta(1)), biglycan, and collagen type I while plasminogen activator inhibitor-1 mRNA was unaffected by iron loading and decorin mRNA doubled. Total TGF- beta bioactivity was also decreased by iron loading. Thus, the effects of iron loading on genes related to cardiac fibrosis are gene-specific. Addition of deferoxamine for 1 day did not have any significant effect on any of these genes. Parallel changes in gene expression were exhibited by non-myocytes (fibroblasts), where chelation also decreased TGF- beta(1)mRNA and activity, and mRNA for collagen type I and biglycan, and collagen synthesis. In addition to these changes in transcripts associated with matrix formation the mRNA of the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase was unaffected by iron loading but doubled in both cell types upon treatment with deferoxamine. These findings suggest that in both cardiac myocytes and non-myocyte fibroblasts gene expression is coupled to intracellular iron pools by gene-specific and IRE-dependent and idependent mechanisms. This linkage may influence matrix deposition, a significant component of cardiac injury.
Collapse
Affiliation(s)
- J G Parkes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 100 College St, Toronto, M5G 1L5, Canada
| | | | | | | |
Collapse
|
25
|
Krishnan P, Hocking AM, Scholtz JM, Pace CN, Holik KK, McQuillan DJ. Distinct secondary structures of the leucine-rich repeat proteoglycans decorin and biglycan. Glycosylation-dependent conformational stability. J Biol Chem 1999; 274:10945-50. [PMID: 10196174 DOI: 10.1074/jbc.274.16.10945] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biglycan and decorin have been overexpressed in eukaryotic cells and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans (Hocking, A. M., Strugnell, R. A., Ramamurthy, P., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19571-19577; Ramamurthy, P., Hocking, A. M., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19578-19584). Far-UV CD spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the final form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that in this specific domain the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provide further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1 and 2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1 and 6 M urea, probably indicating the presence of stable unfolding intermediates.
Collapse
Affiliation(s)
- P Krishnan
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Houston Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
26
|
Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H. Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys 1998; 355:241-8. [PMID: 9675033 DOI: 10.1006/abbi.1998.0720] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that small proteoglycans containing leucine-rich repeats in their core proteins can form complexes with TGF-beta. Decorin, a ubiquitously found molecule of the extracellular matrix, is the best-studied example. Therefore, binding domains on its core protein were investigated using recombinant decorin fragments generated as fusion proteins in prokaryotes. The peptide Leu155-Val260 immobilized by the polyhistidine tag on a nickel chelate column bound TGF-beta1 and -beta2 almost as effectively as the largest fragment (Asp45-Lys359) studied. Other peptides were less effective. For the two peptides Asp45-Lys359 and Leu155-Val260 dissociation constants in the nanomolar range for high-affinity binding sites were calculated in a solid-phase assay with immobilized TGF-beta2. Peptide Asp45-Lys359 also contained a lower affinity binding site. Domains with lower affinity were also found in peptides Asp45-Leu155 and Arg63-Gly190. Peptide Leu155-Val260 also formed complexes with TGF-beta in the liquid phase as determined by equilibrium gel filtration. Furthermore, F(ab') fragments of polyclonal antibodies against peptide Leu155-Val260 interfered with TGF-beta binding to peptide Asp45-Lys359 in a dose-dependent manner. Peptide Leu155-Val260, however, is only a weak competitor of the binding of wild-type decorin to reconstituted type I collagen fibrils. Therefore, independent binding sites of decorin for TGF-beta and type I collagen should exist. In support of this hypothesis saturable binding of TGF-beta1 and TGF-beta2 to collagen-bound native decorin could be demonstrated. The bound cytokine could be released in a biologically active form by collagenase treatment. Thus, decorin may play a biological role in storing this cytokine temporarily in the extracellular matrix and in thereby modulating an interaction of TGF-beta with its signaling receptors.
Collapse
Affiliation(s)
- E Schönherr
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, Münster, D-48149, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
The extracellular matrix plays an integral role in the pivotal processes of development, tissue repair, and metastasis by regulating cell proliferation, differentiation, adhesion, and migration. This review is focused on a family of related glycoproteins represented by at least one member in all specialized extracellular matrices. This family currently comprises nine members grouped together on the basis of their presence in the extracellular matrix and by virtue of a leucine-rich repeat motif that dominates the structure of the core protein. It is likely that most, if not all the members of this group exist as proteoglycans in some tissues, and thus have been termed the Small Leucine-Rich Proteoglycan family, or SLRPs. The leucine-rich repeat (LRR) is usually present in tandem array and has been described in an increasing number of proteins, giving rise to a LRR-superfamily. The LRR domain of the SLRP family is unique within the superfamily in that it is flanked by cysteine clusters, and the 24 amino acid consensus for SLRP members is x-x-I/V/L-x-x-x-x-F/P/L-x-x-L/P-x-x-L-x-x-L/I-x-L-x-x-N-x-I/L, where x is any amino acid. Enormous progress has been made in describing the membership, structure and localization of this family, and recently new insight has emerged into the putative function of these molecules not just as modulators of matrix assembly but also on their intriguing role in regulating cell growth, adhesion, and migration. Determination of membership, structure and putative function of this fascinating class of molecules is summarized in this review.
Collapse
Affiliation(s)
- A M Hocking
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University, Houston 77030-3303, USA
| | | | | |
Collapse
|