1
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
5
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
7
|
Heterogeneity of the NIH3T3 Fibroblast Cell Line. Cells 2022; 11:cells11172677. [PMID: 36078083 PMCID: PMC9455036 DOI: 10.3390/cells11172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The embryonic mouse fibroblast cell line NIH3T3 is widely used in life science research, including the study of cell cycle control and primary cilia. Fibroblasts are the most important cell type in connective tissue, as they produce components of the extracellular matrix and determine tissue architecture. However, they are very heterogeneous and consist of subtypes specific to their organ of residence, among others. The NIH3T3 cell line was derived from whole mouse embryos that developed to pre-birth and is therefore most likely composed of different fibroblast subtypes. Furthermore, prolonged proliferation may have influenced their cellular composition. A heterogeneous cell population is unsuitable for any sophisticated research project. We found that the proportion of ciliated cells in the total NIH3T3 cell population was highly variable and asked whether this was a consequence of cellular heterogeneity and what molecular signatures were associated with it. We have established sub-cell lines by clonal expansion of single cells and characterized them morphologically and molecularly. Eventually, a myofibroblast-like and a fibroblast-like cell line were generated that differ in ciliation and proliferation. These homogeneous cell lines are valuable for a more detailed study of their molecular signatures, not least to uncover further the molecular pathways that contribute to the formation of the primary cilium.
Collapse
|
8
|
Jung SW, Kim S, Kim A, Park SH, Moon J, Lee S. Midbody plays an active role in fibroblast‐myofibroblast transition by mediating TGF‐β signaling. FASEB J 2022; 36:e22272. [DOI: 10.1096/fj.202101613r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Su Woong Jung
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| | - Su‐Mi Kim
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| | - Arum Kim
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| | - Seon Hwa Park
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| | - Ju‐Young Moon
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| | - Sang‐Ho Lee
- Division of Nephrology Department of Internal Medicine Kyung Hee University Hospital at Gangdong Seoul Republic of Korea
| |
Collapse
|
9
|
Arjona M, Goshayeshi A, Rodriguez-Mateo C, Brett JO, Both P, Ishak H, Rando TA. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Reports 2022; 17:82-95. [PMID: 35021050 PMCID: PMC8758944 DOI: 10.1016/j.stemcr.2021.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.
Collapse
Affiliation(s)
- Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Rodriguez-Mateo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather Ishak
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
10
|
Modarage K, Malik SA, Goggolidou P. Molecular Diagnostics of Ciliopathies and Insights Into Novel Developments in Diagnosing Rare Diseases. Br J Biomed Sci 2022; 79:10221. [PMID: 35996505 PMCID: PMC8915726 DOI: 10.3389/bjbs.2021.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
The definition of a rare disease in the European Union describes genetic disorders that affect less than 1 in 2,000 people per individual disease; collectively these numbers amount to millions of individuals globally, who usually manifest a rare disease early on in life. At present, there are at least 8,000 known rare conditions, of which only some are clearly molecularly defined. Over the recent years, the use of genetic diagnosis is gaining ground into informing clinical practice, particularly in the field of rare diseases, where diagnosis is difficult. To demonstrate the complexity of genetic diagnosis for rare diseases, we focus on Ciliopathies as an example of a group of rare diseases where an accurate diagnosis has proven a challenge and novel practices driven by scientists are needed to help bridge the gap between clinical and molecular diagnosis. Current diagnostic difficulties lie with the vast multitude of genes associated with Ciliopathies and trouble in distinguishing between Ciliopathies presenting with similar phenotypes. Moreover, Ciliopathies such as Autosomal Recessive Polycystic Kidney Disease (ARPKD) and Meckel-Gruber syndrome (MKS) present with early phenotypes and may require the analysis of samples from foetuses with a suspected Ciliopathy. Advancements in Next Generation Sequencing (NGS) have now enabled assessing a larger number of target genes, to ensure an accurate diagnosis. The aim of this review is to provide an overview of current diagnostic techniques relevant to Ciliopathies and discuss the applications and limitations associated with these techniques.
Collapse
|
11
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
12
|
Insights into the Regulation of Ciliary Disassembly. Cells 2021; 10:cells10112977. [PMID: 34831200 PMCID: PMC8616418 DOI: 10.3390/cells10112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly.
Collapse
|
13
|
Kasahara K, Inagaki M. Primary ciliary signaling: links with the cell cycle. Trends Cell Biol 2021; 31:954-964. [PMID: 34420822 DOI: 10.1016/j.tcb.2021.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Primary cilia are solitary, microtubule-based structures emanating from the surface of most vertebrate cells. Although it is understood that ciliary assembly and disassembly both depend upon and impact cell cycle progression, critical mechanistic details of these links remain unresolved. Accumulating evidence shows that the signaling pathways downstream of receptor tyrosine kinases and lysophosphatidic acid receptors control the dynamics of primary cilia. It has also become clear that primary cilia not only serve as signaling hubs but also regulate the composition of the surrounding membrane, which is likely to affect the response to growth factors. Here, we overview recent advances in understanding the interplay between primary cilia and the cell cycle, with a focus on growth factor signaling pathways.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
14
|
Van Kerckvoorde M, Ford MJ, Yeyati PL, Mill P, Mort RL. Live Imaging and Analysis of Cilia and Cell Cycle Dynamics with the Arl13bCerulean-Fucci2a Biosensor and Fucci Tools. Methods Mol Biol 2021; 2329:291-309. [PMID: 34085231 DOI: 10.1007/978-1-0716-1538-6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cell and cilia cycles are inextricably linked through the dual functions of the centrioles at both the basal body of cilia and at mitotic centrosomes. How cilia assembly and disassembly, either through slow resorption or rapid deciliation, are coordinated with cell cycle progression remains unclear in many cell types and developmental paradigms. Moreover, little is known about how additional cilia parameters including changes in ciliary length or frequency of distal tip shedding change with cell cycle stage. In order to explore these questions, we have developed the Arl13bCerulean-Fucci2a tricistronic cilia and cell cycle biosensor (Ford et al., Dev Cell 47:509-523.e7, 2018). This reporter allowed us to document the heterogeneity in ciliary behaviors during the cell cycle at a population level. Without the need for external stimuli, it revealed that in several cell types and in the developing embryo cilia persist beyond the G1/S checkpoint. Here, we describe the generation of stable cell lines expressing Arl13bCerulean-Fucci2a and open-source software to aid morphometric profiling of the primary cilium with cell cycle phases, including changes in cilium length. This resource will allow the investigation of multiple morphometric questions relating to cilia and cell cycle biology.
Collapse
Affiliation(s)
- Melinda Van Kerckvoorde
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Matthew J Ford
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
15
|
Shao L, El-Jouni W, Kong F, Ramesh J, Kumar RS, Shen X, Ren J, Devendra S, Dorschel A, Wu M, Barrera I, Tabari A, Hu K, Haque N, Yambayev I, Li S, Kumar A, Behera TR, McDonough G, Furuichi M, Xifaras M, Lu T, Alhayaza RM, Miyabayashi K, Fan Q, Ajay AK, Zhou J. Genetic reduction of cilium length by targeting intraflagellar transport 88 protein impedes kidney and liver cyst formation in mouse models of autosomal polycystic kidney disease. Kidney Int 2020; 98:1225-1241. [DOI: 10.1016/j.kint.2020.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
|
16
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
17
|
Zhao Q, Li S, Shao S, Wang Z, Pan J. FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLoS Genet 2020; 16:e1008561. [PMID: 32134924 PMCID: PMC7077844 DOI: 10.1371/journal.pgen.1008561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Intraflagellar transport (IFT) is required for ciliary assembly and maintenance. While disruption of IFT may trigger ciliary disassembly, we show here that IFT mediated transport of a CDK-like kinase ensures proper ciliary disassembly. Mutations in flagellar shortening 2 (FLS2), encoding a CDK-like kinase, lead to retardation of cilia resorption and delay of cell cycle progression. Stimulation for ciliary disassembly induces gradual dephosphorylation of FLS2 accompanied with gradual inactivation. Loss of FLS2 or its kinase activity induces early onset of kinesin13 phosphorylation in cilia. FLS2 is predominantly localized in the cell body, however, it is transported to cilia upon induction of ciliary disassembly. FLS2 directly interacts with IFT70 and loss of this interaction inhibits its ciliary transport, leading to dysregulation of kinesin13 phosphorylation and retardation of ciliary disassembly. Thus, this work demonstrates that IFT plays active roles in controlling proper ciliary disassembly by transporting a protein kinase to cilia to regulate a microtubule depolymerizer. Cilia or eukaryotic flagella are cellular surface protrusions that function in cell motility as well as sensing. They are dynamic structures that undergo assembly and disassembly. Cilia are resorbed during cell cycle progression. Dysregulation of cilia resorption may cause delay of cell cycle progression, which underlies aberrant cell differentiation and even cancer. Ciliary resorption requires depolmerization of axonemal microtubules that is mediated by kinesin13. Using the unicellular green alga, Chlamydomonas, we have identified a CDK-like kinase FLS2 that when mutated retards cilia resorption, leading to delay of cell cycle progression. FLS2, a cell body protein, is transported to cilia via intraflagellar transport upon induction of cilia resorption. FLS2 directly interacts with IFT70 and loss of this interaction inhibits transport of FLS2 to cilia and fails to regulate proper phosphorylation of kinesin13 in cilia.
Collapse
Affiliation(s)
- Qin Zhao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shufen Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shangjin Shao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhengmao Wang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
- * E-mail:
| |
Collapse
|
18
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
19
|
King CR, A A Quadros AR, Chazeau A, Saarloos I, van der Graaf AJ, Verhage M, Toonen RF. Fbxo41 Promotes Disassembly of Neuronal Primary Cilia. Sci Rep 2019; 9:8179. [PMID: 31160656 PMCID: PMC6546786 DOI: 10.1038/s41598-019-44589-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
Neuronal primary cilia are signaling organelles with crucial roles in brain development and disease. Cilia structure is decisive for their signaling capacities but the mechanisms regulating it are poorly understood. We identify Fbxo41 as a novel Skp1/Cullin1/F-box (SCF) E3-ligase complex subunit that targets to neuronal centrioles where its accumulation promotes disassembly of primary cilia, and affects sonic hedgehog signaling, a canonical ciliary pathway. Fbxo41 targeting to centrioles requires its Coiled-coil and F-box domains. Levels of Fbxo41 at the centrioles inversely correlate with neuronal cilia length, and mutations that disrupt Fbxo41 targeting or assembly into SCF-complexes also disturb its function in cilia disassembly and signaling. Fbxo41 dependent cilia disassembly in mitotic and post-mitotic cells requires rearrangements of the actin-cytoskeleton, but requires Aurora A kinase activation only in mitotic cells, highlighting important mechanistical differences controlling cilia size between mitotic and post-mitotic cells. Phorbol esters induce recruitment of overexpressed Fbxo41 to centrioles and cilia disassembly in neurons, but disassembly can also occur in absence of Fbxo41. We propose that Fbxo41 targeting to centrosomes regulates neuronal cilia structure and signaling capacity in addition to Fbxo41-independent pathways controlling cilia size.
Collapse
Affiliation(s)
- Cillian R King
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ana R A A Quadros
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anaël Chazeau
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Anne Jolien van der Graaf
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
21
|
Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary Cilia as Signaling Hubs in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801138. [PMID: 30643718 PMCID: PMC6325590 DOI: 10.1002/advs.201801138] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Takashi Shiromizu
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncologic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
22
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
23
|
Hoang-Minh LB, Dutra-Clarke M, Breunig JJ, Sarkisian MR. Glioma cell proliferation is enhanced in the presence of tumor-derived cilia vesicles. Cilia 2018; 7:6. [PMID: 30410731 PMCID: PMC6219037 DOI: 10.1186/s13630-018-0060-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms by which primary cilia affect glioma pathogenesis are unclear. Depending on the glioma cell line, primary cilia can promote or inhibit tumor development. Here, we used piggyBac-mediated transgenesis to generate patient-derived glioblastoma (GBM) cell lines that stably express Arl13b:GFP in their cilia. This allowed us to visualize and analyze the behavior of cilia and ciliated cells during live GBM cell proliferation. Results Time-lapse imaging of Arl13b:GFP+ cilia revealed their dynamic behaviors, including distal tip excision into the extracellular milieu. Recent studies of non-cancerous cells indicate that this process occurs during the G0 phase, prior to cilia resorption and cell cycle re-entry, and requires ciliary recruitment of F-actin and actin regulators. Similarly, we observed ciliary buds associated with Ki67- cells as well as scattered F-actin+ cilia, suggesting that quiescent GBM cells may also utilize an actin network-based mechanism for ciliary tip excision. Notably, we found that the proliferation of ciliated GBM cells was promoted by exposing them to conditioned media obtained from ciliated cell cultures when compared to conditioned media collected from cilia-defective cell cultures (depleted in either KIF3A or IFT88 using CRISPR/Cas9). These results suggest that GBM cilia may release mitogenic vesicles carrying factors that promote tumor cell proliferation. Although Arl13b is implicated in tumor growth, our data suggest that Arl13b released from GBM cilia does not mediate tumor cell proliferation. Conclusion Collectively, our results indicate that ciliary vesicles may represent a novel mode of intercellular communication within tumors that contributes to GBM pathogenesis. The mitogenic capacity of GBM ciliary vesicles and the molecular mediators of this phenomenon requires further investigation.
Collapse
Affiliation(s)
- Lan B Hoang-Minh
- 1Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA.,2Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA
| | - Marina Dutra-Clarke
- 3Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,4Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,5Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Joshua J Breunig
- 3Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,4Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,5Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Matthew R Sarkisian
- 1Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA.,2Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA
| |
Collapse
|
24
|
Wang Z, Ma Z, Cao J. Effects of Repeated Aurora-A siRNA Transfection on Cilia Generation and Proliferation of SK-MES-1 or A549 Cells. Cancer Biother Radiopharm 2018; 33:110-117. [PMID: 29641257 DOI: 10.1089/cbr.2017.2297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Suppression of Aurora kinase A (Aurora-A, AURKA) by siRNA of Aurora-A (siAurora-A, siA) has been used in lung tumor treatment. However, the dose and frequency of gene transfection still need to be confirmed further. We imitated multiple administration of solid tumor and attempted to make out the effects of thrice transfection of siAurora-A on cilia generation and apoptosis of SK-MES-1 cells (SK) or A549 cells. METHODS The Aurora-A mRNA levels of cells cultured with serum for 6 d or without serum for 2, 4, or 6 d were examined with real-time quantitative PCR; Cells were transfected single or repeatedly with siAurora-A or siControl (siC), their Aurora-A mRNA levels were determined with PCR; Their cilia were examined with immunohistochemistry. Cell viability was measured with the MTT assay. Protein expression was analyzed with western blot. RESULTS Cell viability showed a downward trend along with the prolongation of starvation time to the second, fourth, and even to the sixth day in both types of cells. But, the expression level of Aurora-A mRNA flipped to rise at the sixth day instead of decreasing at the fourth day. Protein expression trend of total Aurora-A in the two groups was consistent with Aurora-A mRNA expression trend. Compared with siC-3 group (transfected three times with siControl), siAurora-A significantly reduced the Aurora-A mRNA expression in siA-3 group (transfected three times with siAurora-A). Similarly, the cell viability of siA-3 group was lower than that of siC-3 group. The cell viability of siC-3 group was higher than that of serum-free-6d group, but, levels of Aurora-A mRNA expression of siC-3 group had no difference with serum-free-6d group. Finally, among groups transfected once or three times or starved for 6 d, there was no significant difference of ciliated cell proportions in both types of cells respectively. CONCLUSIONS Repeated siAurora-A transfection decreased Aurora-A expression that resulted in effective suppression proliferation of SK-MES-1 or A549 cells, but did not affect cilia generation.
Collapse
Affiliation(s)
- Zhonghua Wang
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China .,2 Department of Histology and Embryology, Shenyang Medical , Shenyang, China
| | - Zhuang Ma
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China
| | - Jianping Cao
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China
| |
Collapse
|
25
|
Abstract
The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
26
|
Abstract
Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Jiangsu, China
| | - Anna A Kiseleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
27
|
EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat Commun 2018; 9:758. [PMID: 29472535 PMCID: PMC5823934 DOI: 10.1038/s41467-018-03117-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Ciliogenesis is generally inhibited in dividing cells, however, it has been unclear which signaling cascades regulate the phenomenon. Here, we report that epidermal growth factor receptor (EGFR) kinase suppresses ciliogenesis by directly phosphorylating the deubiquitinase USP8 on Tyr-717 and Tyr-810 in RPE1 cells. These phosphorylations elevate the deubiquitinase activity, which then stabilizes the trichoplein-Aurora A pathway, an inhibitory mechanism of ciliogenesis. EGFR knockdown and serum starvation result in ciliogenesis through downregulation of the USP8-trichoplein-Aurora A signal. Moreover, primary cilia abrogation, which is induced upon IFT20 or Cep164 depletion, ameliorates the cell cycle arrest of EGFR knockdown cells. The present data reveal that the EGFR-USP8-trichoplein-Aurora A axis is a critical signaling cascade that restricts ciliogenesis in dividing cells, and functions to facilitate cell proliferation. We further show that usp8 knockout zebrafish develops ciliopathy-related phenotypes including cystic kidney, suggesting that USP8 is a regulator of ciliogenesis in vertebrates.
Collapse
|
28
|
Wu Q, Gao K, Zheng S, Zhu X, Liang Y, Pan J. Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in
Chlamydomonas. FASEB J 2018; 32:3689-3699. [DOI: 10.1096/fj.201701396rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Wu
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Kang Gao
- Hebei Key Laboratory of Molecular and Cellular BiologyCollege of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Shuzhi Zheng
- Hebei Key Laboratory of Molecular and Cellular BiologyCollege of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Xin Zhu
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Yinwen Liang
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Junmin Pan
- Ministry of Education (MOE) Key Laboratory of Protein SciencesTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
29
|
Abstract
The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Irma Sánchez
- Department of Pathology, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, New York 10016, USA
| | - Brian David Dynlacht
- Department of Pathology, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, New York 10016, USA
| |
Collapse
|
30
|
Abstract
This is a history of cilia research before and after the discovery of intraflagellar transport (IFT) and the link between primary cilia ciliogenesis and polycystic kidney disease (PKD). Before IFT, ca. the beginning of the new millennium, although sensory and primary cilia were well described, research was largely focused on motile cilia, their structure, movement, and biogenesis. After IFT and the link to PKD, although work on motile cilia has continued to progress, research on primary cilia has exploded, leading to new insights into the role of cilia in cell signaling and development. Genomics, proteomics, and new imaging techniques have unified the field and pointed out the critical role of cilia as a restricted cell organellar compartment, functionally integrated with other cell organelles including the autophagosome and the nucleus.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
31
|
Shen HQ, Xiao YX, She ZY, Tan FQ, Yang WX. A novel role of KIF3b in the seminoma cell cycle. Exp Cell Res 2017; 352:95-103. [PMID: 28161539 DOI: 10.1016/j.yexcr.2017.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed that the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division.
Collapse
Affiliation(s)
- Hao-Qing Shen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
32
|
Goto H, Inaba H, Inagaki M. Mechanisms of ciliogenesis suppression in dividing cells. Cell Mol Life Sci 2016; 74:881-890. [PMID: 27669693 PMCID: PMC5306231 DOI: 10.1007/s00018-016-2369-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 12/26/2022]
Abstract
The primary cilium is a non-motile and microtubule-enriched protrusion ensheathed by plasma membrane. Primary cilia function as mechano/chemosensors and signaling hubs and their disorders predispose to a wide spectrum of human diseases. Most types of cells assemble their primary cilia in response to cellular quiescence, whereas they start to retract the primary cilia upon cell-cycle reentry. The retardation of ciliary resorption process has been shown to delay cell-cycle progression to the S or M phase after cell-cycle reentry. Apart from this conventional concept of ciliary disassembly linked to cell-cycle reentry, recent studies have led to a novel concept, suggesting that cells can suppress primary cilia assembly during cell proliferation. Accumulating evidence has also demonstrated the importance of Aurora-A (a protein originally identified as one of mitotic kinases) not only in ciliary resorption after cell-cycle reentry but also in the suppression of ciliogenesis in proliferating cells, whereas Aurora-A activators are clearly distinct in both phenomena. Here, we summarize the current knowledge of how cycling cells suppress ciliogenesis and compare it with mechanisms underlying ciliary resorption after cell-cycle reentry. We also discuss a reciprocal relationship between primary cilia and cell proliferation.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan. .,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan.
| | - Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
33
|
Xu Q, Liu W, Liu X, Liu W, Wang H, Yao G, Zang L, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells. Mol Cell Biochem 2016; 420:53-63. [DOI: 10.1007/s11010-016-2766-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/09/2016] [Indexed: 12/27/2022]
|
34
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
35
|
Sánchez A, Urrego D, Pardo LA. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep 2016; 17:708-23. [PMID: 27113750 PMCID: PMC5341513 DOI: 10.15252/embr.201541082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage-gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly. Interference with KV10.1 ciliary localization abolishes not only the effects on ciliary disassembly, but also KV10.1-induced tumor progression in vivo Conversely, upon knockdown of KV10.1, ciliary disassembly is impaired, proliferation is delayed, and proliferating cells show prominent primary cilia. Thus, modulation of ciliogenesis by KV10.1 can explain the influence of KV10.1 expression on the proliferation of normal cells and is likely to be a major mechanism underlying its tumorigenic effects.
Collapse
Affiliation(s)
- Araceli Sánchez
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Diana Urrego
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW In the past decade a wealth of publications have established the central role of cilia and centrosomes in the pathogenesis of cystic kidney diseases, associated or not with extrarenal symptoms. This review outlines recent findings that have unexpectedly linked ciliary and centrosomal proteins to DNA damage and repair and have opened new perspectives for the comprehension of the pathogenesis of these diseases. RECENT FINDINGS Several ciliopathy proteins that contribute to the pathogenesis of cystic kidney diseases and ciliopathy-related phenotypes have been recently reported to participate in the elaborated pathways that control DNA replication and repair, suggesting that malfunction of these biological processes may be a common denominator of some ciliopathy-related diseases. SUMMARY In this review, the author briefly describes the established connections existing between cilia, centrosome, and cell cycle and provides basic information about DNA damage and repair. The author then examines more closely the single ciliopathy genes that have been associated with DNA repair pathways and their known biological functions.
Collapse
|
37
|
Abstract
Cancer cells are distinguished from normal cells by increased proliferation and metabolism, loss of polarity control, and the potential to invade other tissues of the body. As hubs of signaling transduction, primary cilia have been linked to diverse developmental and degenerative disorders. Interestingly, loss of cilia has been observed in multiple malignant tumors, suggesting a potential suppressive role of cilia in cancer development. More recently, emerging studies began to unveil the bidirectional interaction of cilia and autophagy, a basic cellular clearance and recycling mechanism to regulate cell homeostasis. Here, we summarize the interplay between cilia and autophagy and discuss the roles of cilia in both autophagy and cancer.
Collapse
Affiliation(s)
- Muqing Cao
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Qing Zhong
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
38
|
Cellular Mechanisms of Ciliary Length Control. Cells 2016; 5:cells5010006. [PMID: 26840332 PMCID: PMC4810091 DOI: 10.3390/cells5010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT) system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Collapse
|
39
|
Izawa I, Goto H, Kasahara K, Inagaki M. Current topics of functional links between primary cilia and cell cycle. Cilia 2015; 4:12. [PMID: 26719793 PMCID: PMC4696186 DOI: 10.1186/s13630-015-0021-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022] Open
Abstract
Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin–proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCFFbw7 in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.
Collapse
Affiliation(s)
- Ichiro Izawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603 Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| |
Collapse
|
40
|
Kowal TJ, Falk MM. Primary cilia found on HeLa and other cancer cells. Cell Biol Int 2015; 39:1341-7. [PMID: 26074404 PMCID: PMC4609269 DOI: 10.1002/cbin.10500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/30/2015] [Indexed: 11/09/2022]
Abstract
For many years now, researchers have known of a sensory appendage on the surface of most differentiated cell types called primary cilium. Primary cilia are both chemo- and mechano-sensory in function and have an obvious role in cell cycle control. Because of this, it has been thought that primary cilia are not found on rapidly proliferating cells, for example, cancer cells. Here we report using immunofluorescent staining for the ciliary protein Arl13b that primary cilia are frequently found on HeLa (human epithelial adenocarcinoma) and other cancer cell lines such as MG63 (human osteosarcoma) commonly used for cell culture studies and that the ciliated population is significantly higher (ave. 28.6% and 46.5%, respectively in starved and 15.7-18.6% in un-starved cells) than previously anticipated. Our finding impacts the current perception of primary cilia formed in highly proliferative cells.
Collapse
Affiliation(s)
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, 18015, Pennsylvania
| |
Collapse
|
41
|
Hu Z, Liang Y, He W, Pan J. Cilia disassembly with two distinct phases of regulation. Cell Rep 2015; 10:1803-10. [PMID: 25801021 DOI: 10.1016/j.celrep.2015.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/30/2014] [Accepted: 02/17/2015] [Indexed: 01/23/2023] Open
Abstract
Cilia and flagella are dynamic organelles that undergo assembly and disassembly during each cell cycle. They are structurally polarized, and the mechanisms by which these organelles are disassembled are incompletely understood. Here, we show that flagellar resorption occurs in two distinct phases of length-dependent regulation. A CDK-like kinase, encoded by flagellar shortening 1 (FLS1), is required for the normal rate of disassembly of only the distal part of the flagellum. Mechanistically, loss of function of FLS1 prevents the initial phosphorylation of CALK, an aurora-like kinase that regulates flagellar shortening, and induces the earlier onset of the inhibitory phosphorylation of CrKinesin13, a microtubule depolymerase, which is involved in flagellar shortening. In addition, CALK and CrKinesin13 phosphorylation can also be induced by the process of flagellar shortening itself, demonstrating an example of cilia-generated signaling not requiring the binding of a ligand or the stimulation of an ion channel.
Collapse
|
42
|
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci 2015; 128:3543-9. [PMID: 26290382 DOI: 10.1242/jcs.173559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRβ promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRβ and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.
Collapse
Affiliation(s)
- Brian S Nielsen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Raj R Malinda
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Fabian M Schmid
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Stine F Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Lotte B Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| |
Collapse
|
43
|
Werner-Peterson R, Sloboda RD. Methylation of Structural Components of the Axoneme Occurs During Flagellar Disassembly. Biochemistry 2013; 52:8501-9. [DOI: 10.1021/bi4011623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rita Werner-Peterson
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Roger D. Sloboda
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
44
|
Spalluto C, Wilson DI, Hearn T. Evidence for reciliation of RPE1 cells in late G1 phase, and ciliary localisation of cyclin B1. FEBS Open Bio 2013; 3:334-40. [PMID: 24251092 PMCID: PMC3821022 DOI: 10.1016/j.fob.2013.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 01/23/2023] Open
Abstract
The primary cilium, an organelle that transduces extracellular signals important for development and tissue homeostasis, is typically assembled upon cell cycle exit and disassembled upon cell cycle re-entry. Cilium assembly is thought to be suppressed in cycling cells, however the extent of suppression is not clear. For example, primary cilia are present in certain proliferating cells during development, and a period of reciliation has been reported to occur in late G1 in murine 3T3 cells released from serum starvation-induced quiescence. Human retinal pigmented epithelial (hTERT-RPE1; herein, RPE1) cells are commonly used to investigate pathways regulating cilium disassembly, however the ciliary disassembly profile of these cells remains uncertain. A period of reciliation has not been observed. Here, we analyse the ciliary disassembly profile of RPE1 cells by immunofluorescence microscopy. The results suggest a profile similar to 3T3 cells, including a period of reciliation in late G1 and a second wave of deciliation in S phase. We present evidence that arresting cells in early S phase with hydroxyurea or excess thymidine prevents the second wave of deciliation, and that deciliation is initiated shortly after release from a thymidine block, consistent with coupling to DNA replication. These findings support the often overlooked notion that cilium formation can occur in late G1, and suggest that RPE1 cells could serve as a model system for studying the molecular pathways that direct this process, in addition to those that stimulate cilium disassembly. We also present immunofluorescence data indicating that cyclin B1 localises to primary cilia.
Collapse
Key Words
- AurA, Aurora kinase A
- Aurora A
- BrdU, bromodeoxyuridine
- CDK, cyclin-dependent kinase
- CDK1
- Cilium disassembly
- Cyclin B1
- DAPI, 4’,6-diamidino-2-phenylindole
- DNA replication
- FBS, fetal bovine serum
- HU, hydroxyurea
- Mim, mimosine
- Primary cilia
- SS, serum-starved
- Thy, thymidine
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Cosma Spalluto
- Human Development and Health, University of Southampton, UK
| | | | | |
Collapse
|
45
|
Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 2013; 70:3893-905. [PMID: 23475109 PMCID: PMC3781298 DOI: 10.1007/s00018-013-1302-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/24/2023]
Abstract
In most cell types, primary cilia protrude from the cell surface and act as major hubs for cell signaling, cell differentiation, and cell polarity. With the exception of some cells ciliated during cell proliferation, most cells begin to disassemble their primary cilia at cell cycle re-entry. Although the role of primary cilia disassembly on cell cycle progression is still under debate, recent data have emerged to support the idea that primary cilia exert influence on cell cycle progression. In this review, we emphasize a non-mitotic role of Aurora-A not only in the ciliary resorption at cell cycle re-entry but also in continuous suppression of cilia regeneration during cell proliferation. We also summarize recent new findings indicating that forced induction/suppression of primary cilia can affect cell cycle progression, in particular the transition from G0/G1 to S phase. In addition, we speculate how (de)ciliation affects cell cycle progression.
Collapse
|
46
|
Willaredt MA, Tasouri E, Tucker KL. Primary cilia and forebrain development. Mech Dev 2012; 130:373-80. [PMID: 23085524 DOI: 10.1016/j.mod.2012.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 11/17/2022]
Abstract
With a microtubule-based axoneme supporting its plasma membrane-ensheathed projection from the basal body of almost all cell types in the human body, and present in only one copy per cell, the primary cilium can be considered an organelle sui generis. Although it was first observed and recorded in histological studies from the late 19th century, the tiny structure was essentially forgotten for many decades. In the past ten years, however, scientists have turned their eyes once again upon primary cilia and realized that they are very important for the development of almost all organs in the mammalian body, especially those dependent upon the signaling from members Hedgehog family, such as Indian and Sonic hedgehog. In this review, we outline the roles that primary cilia play in forebrain development, not just in the crucial transduction of Sonic hedgehog signaling, but also new results showing that cilia are important for cell cycle progression in proliferating neural precursors. We will focus upon cerebral cortex development but will also discuss the importance of cilia for the embryonic hippocampus, olfactory bulb, and diencephalon.
Collapse
Affiliation(s)
- Marc August Willaredt
- Interdisciplinary Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. Proc Natl Acad Sci U S A 2012; 109:15817-22. [PMID: 23019366 DOI: 10.1073/pnas.1205669109] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the adult intestine, an organized array of finger-like projections, called villi, provide an enormous epithelial surface area for absorptive function. Villi first emerge at embryonic day (E) 14.5 from a previously flat luminal surface. Here, we analyze the cell biology of villus formation and examine the role of paracrine epithelial Hedgehog (Hh) signals in this process. We find that, before villus emergence, tight clusters of Hh-responsive mesenchymal cells form just beneath the epithelium. Cluster formation is dynamic; clusters first form dorsally and anteriorly and spread circumferentially and posteriorly. Statistical analysis of cluster distribution reveals a patterned array; with time, new clusters form in spaces between existing clusters, promoting approximately four rounds of villus emergence by E18.5. Cells within mesenchymal clusters express Patched1 and Gli1, as well as Pdgfrα, a receptor previously shown to participate in villus development. BrdU-labeling experiments show that clusters form by migration and aggregation of Hh-responsive cells. Inhibition of Hh signaling prevents cluster formation and villus development, but does not prevent emergence of villi in areas where clusters have already formed. Conversely, increasing Hh signaling increases the size of villus clusters and results in exceptionally wide villi. We conclude that Hh signals dictate the initial aspects of the formation of each villus by controlling mesenchymal cluster aggregation and regulating cluster size.
Collapse
|
48
|
Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol Life Sci 2012; 70:1849-74. [PMID: 22782110 DOI: 10.1007/s00018-012-1052-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/08/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
The primary cilium protrudes from the cell surface and acts as a sensor for chemical and mechanical growth cues, with receptors for a number of growth factors (PDGFα, Hedgehog, Wnt, Notch) concentrated within the ciliary membrane. In normal tissues, the cilium assembles after cells exit mitosis and is resorbed as part of cell cycle re-entry. Although regulation of the cilium by cell cycle transitions has been appreciated for over 100 years, only recently have data emerged to indicate the cilium also exerts influence on the cell cycle. The resorption/protrusion cycle, regulated by proteins including Aurora-A, VHL, and GSK-3β, influences cell responsiveness to growth cues involving cilia-linked receptors; further, resorption liberates the ciliary basal body to differentiate into the centrosome, which performs discrete functions in S-, G2-, and M-phase. Besides these roles, the cilium provides a positional cue that regulates polarity of cell division, and thus directs cells towards fates of differentiation versus proliferation. In this review, we summarize the specific mechanisms mediating the cilia-cell cycle dialog. We then emphasize the examples of polycystic kidney disease (PKD), nephronopthisis (NPHP), and VHL-linked renal cysts as cases in which defects of ciliary function influence disease pathology, and may also condition response to treatment.
Collapse
Affiliation(s)
- Junmin Pan
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | | | | |
Collapse
|
49
|
Arellano JI, Guadiana SM, Breunig JJ, Rakic P, Sarkisian MR. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol 2012; 520:848-73. [PMID: 22020803 DOI: 10.1002/cne.22793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal primary cilia are not generally recognized, but they are considered to extend from most, if not all, neurons in the neocortex. However, when and how cilia develop in neurons are not known. This study used immunohistochemistry for adenylyl cyclase III (ACIII), a marker of primary cilia, and electron microscopic analysis to describe the development and maturation of cilia in mouse neocortical neurons. Our results indicate that ciliogenesis is initiated in late fetal stages after neuroblast migration, when the mother centriole docks with the plasma membrane, becomes a basal body, and grows a cilia bud that we call a procilium. This procilium consists of a membranous protrusion extending from the basal body but lacking axonemal structure and remains undifferentiated until development of the axoneme and cilia elongation starts at about postnatal day 4. Neuronal cilia elongation and final cilia length depend on layer position, and the process extends for a long time, lasting 8-12 weeks. We show that, in addition to pyramidal neurons, inhibitory interneurons also grow cilia of comparable length, suggesting that cilia are indeed present in all neocortical neuron subtypes. Furthermore, the study of mice with defective ciliogenesis suggested that failed elongation of cilia is not essential for proper neuronal migration and laminar organization or establishment of neuronal polarity. Thus, the function of this organelle in neocortical neurons remains elusive.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
With the exception of the final stages of spermatogenesis in butterfly and some unicellular ciliates and flagellates, ciliated cells undergo cell division without cilia. This reciprocal relationship between cilia formation and cell division has prompted investigators to propose that ciliogenesis and cell cycle progression are mutually exclusive processes. Early work in fibroblasts showed that deciliation occurs in two waves, as cells depart from quiescence. The first wave of deciliation occurs before entry into S, while the second wave occurs between S and mitosis. Since then, it has remained a mystery whether and how (de)ciliation is coupled to the cell cycle and further, whether ciliation can affect cell cycle progression. Several recent publications provide evidence for a causative role of ciliary resorption in influencing the duration of the G1 phase of the cell cycle impacting on several developmental processes, including left-right patterning, kidney, skeletal and brain development. This body of work argues for the existence of a molecular crosstalk between ciliary factors and regulators of the cell cycle. Here, we review the evidence connecting primary cilia and the cell cycle and evaluate the idea that the primary cilium may function as a physical checkpoint in cell cycle re-entry.
Collapse
Affiliation(s)
- Sehyun Kim
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|