1
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
2
|
Choi KM, Cho DH, Joo MS, Choi HS, Kim MS, Han HJ, Cho MY, Hwang SD, Kim DH, Park CI. Functional characterization and gene expression profile of perforin-2 in starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:511-518. [PMID: 33217563 DOI: 10.1016/j.fsi.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of multifunctional proteins that form pores on the membrane surface of microorganisms to induce their death and have various immune-related functions. PFN2 is a perforin-like protein with an MACPF domain, and humans with deficient PFN2 levels have increased susceptibility to bacterial infection, which can lead to fatal consequences for some patients. Therefore, in this study, we confirmed the antimicrobial function of PFN2 in starry flounder (Platichthys stellatus). The molecular properties were confirmed based on the verified amino acid sequence of PsPFN2. In addition, the expression characteristics of tissue-specific and pathogen-specific PsPFN2 mRNA were also confirmed. The recombinant protein was produced using Escherichia coli, and the antimicrobial activity was then confirmed. The coding sequence of PFN2 (PsPFN2) in P. stellatus consists of 710 residues. The MACPF domain was conserved throughout evolution, as shown by multiple sequence alignment and phylogenetic analysis. PsPFN2 mRNA is abundantly distributed in immune-related organs such as the spleen and gills of healthy starry flounder, and significant expression changes were confirmed after artificial infection by bacteria or viruses. We cloned the MACPF domain region of PFN2 to produce a recombinant protein (rPFN2) and confirmed its antibacterial effect against a wide range of bacterial species and the parasite (Miamiensis avidus).
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
3
|
Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 2019; 39:BSR20180992. [PMID: 30530866 PMCID: PMC6340950 DOI: 10.1042/bsr20180992] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is widely known as programmed cell death eliciting no inflammatory responses. The intricacy of apoptosis has been a focus of an array of researches, accumulating a wealth of knowledge which led to not only a better understanding of the fundamental process, but also potent therapies of diseases. The classic intrinsic and extrinsic signaling pathways of apoptosis, along with regulatory factors have been well delineated. Drugs and therapeutic measures designed based on current understanding of apoptosis have long been employed. Small-molecule apoptosis inducers have been clinically used for eliminating morbid cells and therefore treating diseases, such as cancer. Biologics with improved apoptotic efficacy and selectivity, such as recombinant proteins and antibodies, are being extensively researched and some have been approved by the FDA. Apoptosis also produces membrane-bound vesicles derived from disassembly of apoptotic cells, now known as apoptotic bodies (ApoBDs). These little sealed sacs containing information as well as substances from dying cells were previously regarded as garbage bags until they were discovered to be capable of delivering useful materials to healthy recipient cells (e.g., autoantigens). In this review, current understandings and knowledge of apoptosis were summarized and discussed with a focus on apoptosis-related therapeutic applications and ApoBDs.
Collapse
|
4
|
|
5
|
Räsänen K, Itkonen O, Koistinen H, Stenman UH. Emerging Roles of SPINK1 in Cancer. Clin Chem 2015; 62:449-57. [PMID: 26656134 DOI: 10.1373/clinchem.2015.241513] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tumor-associated trypsin inhibitor (TATI) was originally isolated from the urine of a patient with ovarian cancer. It was later shown to be produced by many other tumors and several normal tissues. It had earlier been isolated from the pancreas and was hence called pancreatic secretory trypsin inhibitor (PSTI). It belongs to a family of protease inhibitors presently called serine peptidase inhibitor Kazal type (SPINK). In the SPINK family TATI/PSTI is SPINK1, which is the name used in this review. CONTENT In addition to being a protease inhibitor, SPINK1 also acts as an acute-phase reactant and a growth factor. Furthermore, it has been shown to modulate apoptosis. Overexpression of SPINK1 predicts an unfavorable outcome in several cancers and determination of SPINK1 in serum can be used to identify patients at increased risk of aggressive disease. Thus serum SPINK1 can be used as a prognostic tumor marker. Because SPINK1 acts as a growth factor and an inhibitor of apoptosis in some cancers, it has also been suggested that it can be a therapeutic target in cancer. However, because SPINK1 is the major physiological inhibitor of trypsin, inhibition of SPINK1 may increase the risk of pancreatitis. SUMMARY Taking into account the many functions of SPINK1, assessing the role of SPINK1 in cancer has several potentially important clinical applications ranging from a biomarker to a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Kati Räsänen
- Department of Clinical Chemistry, University of Helsinki, Finland
| | - Outi Itkonen
- Department of Clinical Chemistry, University of Helsinki, Finland, Laboratory Division (HUSLAB), Helsinki University Central Hospital, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki, Finland, Laboratory Division (HUSLAB), Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
6
|
McCormack RM, de Armas LR, Shiratsuchi M, Fiorentino DG, Olsson ML, Lichtenheld MG, Morales A, Lyapichev K, Gonzalez LE, Strbo N, Sukumar N, Stojadinovic O, Plano GV, Munson GP, Tomic-Canic M, Kirsner RS, Russell DG, Podack ER. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. eLife 2015; 4. [PMID: 26402460 PMCID: PMC4626811 DOI: 10.7554/elife.06508] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system.
Collapse
Affiliation(s)
- Ryan M McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Lesley R de Armas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Motoaki Shiratsuchi
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Desiree G Fiorentino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Melissa L Olsson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Mathias G Lichtenheld
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Alejo Morales
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Kirill Lyapichev
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Louis E Gonzalez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Neelima Sukumar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| |
Collapse
|
7
|
McCormack R, Podack ER. Perforin-2/Mpeg1 and other pore-forming proteins throughout evolution. J Leukoc Biol 2015; 98:761-8. [PMID: 26307549 DOI: 10.1189/jlb.4mr1114-523rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 07/15/2015] [Indexed: 11/24/2022] Open
Abstract
Development of the ancient innate immune system required not only a mechanism to recognize foreign organisms from self but also to destroy them. Pore-forming proteins containing the membrane attack complex Perforin domain were one of the first triumphs of an innate immune system needing to eliminate microbes and virally infected cells. Membrane attack complex of complement and Perforin domain proteins is unique from other immune effector molecules in that the mechanism of attack is strictly physical and unspecific. The large water-filled holes created by membrane attack complex of complement and Perforin domain pore formation allow access for additional effectors to complete the destruction of the foreign organism via chemical or enzymatic attack. Perforin-2/macrophage-expressed protein 1 is one of the oldest membrane attack complexes of complement and Perforin domain protein involved in immune defense, and it is still functional today in vertebrates. Here, we trace the impact of Perforin-2/macrophage-expressed protein 1 from the earliest multicellular organisms to modern vertebrates, as well as review the development of other membrane attack complexes of complement and Perforin domain member proteins.
Collapse
Affiliation(s)
- Ryan McCormack
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eckhard R Podack
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
|
9
|
Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta 2014; 431:260-9. [DOI: 10.1016/j.cca.2014.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
|
10
|
Voskoboinik I, Trapani JA. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front Immunol 2013; 4:441. [PMID: 24376445 PMCID: PMC3860100 DOI: 10.3389/fimmu.2013.00441] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Congenital perforin deficiency is considered a rare cause of human immunopathology and immune dysregulation, and classically presents as a fatal illness early in infancy. However, we propose that a group of related disorders in which killer lymphocytes deliver only partially active perforin or a reduced quantum of wild-type perforin to the immune synapse should be considered part of an extended syndrome with overlapping but more variable clinical features. Apart from the many rare mutations scattered over the coding sequences, up to 10% of Caucasians carry the severely hypomorphic PRF1 allele C272 > T (leading to A91V mutation) and the overall prevalence of the homozygous state for A91V is around 1 in 600 individuals. We therefore postulate that the partial loss of perforin function and its clinical consequences may be more common then currently suspected. An acute clinical presentation is infrequent in A91V heterozygous individuals, but we postulate that the partial loss of perforin function may potentially be manifested in childhood or early adulthood as “idiopathic” inflammatory disease, or through increased cancer susceptibility – either hematological malignancy or multiple, independent primary cancers. We suggest the new term “perforinopathy” to signify the common functional endpoints of all the known consequences of perforin deficiency and failure to deliver fully functional perforin.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Sir Peter MacCallum Department of Oncology, The University of Melbourne , Melbourne, VIC , Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne , Melbourne, VIC , Australia ; Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia
| |
Collapse
|
11
|
Tim-3 negatively regulates cytotoxicity in exhausted CD8+ T cells in HIV infection. PLoS One 2012; 7:e40146. [PMID: 22792231 PMCID: PMC3390352 DOI: 10.1371/journal.pone.0040146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/01/2012] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic CD8+ T cells (CTLs) contain virus infections through the release of granules containing both perforin and granzymes. T cell ‘exhaustion’ is a hallmark of chronic persistent viral infections including HIV. The inhibitory regulatory molecule, T cell Immunoglobulin and Mucin domain containing 3 (Tim-3) is induced on HIV-specific T cells in chronic progressive infection. These Tim-3 expressing T cells are dysfunctional in terms of their capacities to proliferate or to produce cytokines. In this study, we evaluated the effect of Tim-3 expression on the cytotoxic capabilities of CD8+ T cells in the context of HIV infection. We investigated the cytotoxic capacity of Tim-3 expressing T cells by examining 1) the ability of Tim-3+ CD8+ T cells to make perforin and 2) the direct ability of Tim-3+ CD8+ T cells to kill autologous HIV infected CD4+ target cells. Surprisingly, Tim-3+ CD8+ T cells maintain higher levels of perforin, which was mainly in a granule-associated (stored) conformation, as well as express high levels of T-bet. However, these cells were also defective in their ability to degranulate. Blocking the Tim-3 signalling pathway enhanced the cytotoxic capabilities of HIV specific CD8+ T cells from chronic progressors by increasing; a) their degranulation capacity, b) their ability to release perforin, c) their ability to target activated granzyme B to HIV antigen expressing CD4+ T cells and d) their ability to suppress HIV infection of CD4+ T cells. In this latter effect, blocking the Tim-3 pathway enhances the cytotoxcity of CD8+ T cells from chronic progressors to the level very close to that of T cells from viral controllers. Thus, the Tim-3 receptor, in addition to acting as a terminator for cytokine producing and proliferative functions of CTLs, can also down-regulate the CD8+ T cell cytotoxic function through inhibition of degranulation and perforin and granzyme secretion.
Collapse
|
12
|
Tian J, Zeng G, Pang X, Liang M, Zhou J, Fang D, Liu Y, Li D, Jiang L. Identification and immunogenicity of two new HLA-A*0201-restricted CD8+ T-cell epitopes on dengue NS1 protein. Int Immunol 2012; 24:207-18. [PMID: 22298881 DOI: 10.1093/intimm/dxr115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immunopathogenesis of dengue virus (DEN) infection remains poorly studied. Identification and characterization of human CD8(+) T-cell epitopes on DEN are necessary for a better understanding of the immunopathogenesis of dengue infection and would facilitate the development of immunotherapy and vaccines to protect from dengue infection. Here, we identified two new HLA-A*0201-restricted CD8(+) T-cell epitopes, DEN-4 NS1(990)(-998) and DEN-4 NS1(997)(-1005) that are conserved in three or four major DEN serotypes, respectively. Unexpectedly, we found that immunization of HLA-A*0201 transgenic mice with DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005) epitope peptide induced de novo synthesis of tumor necrosis factor (TNF)-α and IFN-γ, two important pro-inflammatory molecules that are hard to be detected directly without in vitro antigenic re-stimulation. Importantly, we demonstrated that CD8(+) T cells specifically activated by DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005) epitope peptide induced de novo synthesis of perforin. Furthermore, we observed that DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005)-specific CD8(+) T cells capable of producing large amounts of perforin, TNF-α and IFN-γ preferentially displayed CD27(+)CD45RA(-), but not CD27(-)CD45RA(+), phenotypes. This study, therefore, suggested the importance of synergistic effects of pro-inflammatory cytokines and cytotoxic molecules which were produced by dengue-specific CD8(+) T cells in immunopathogenesis or anti-dengue immunity during dengue infection.
Collapse
Affiliation(s)
- Jiang Tian
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Trapani JA. Granzymes, cytotoxic granules and cell death: the early work of Dr. Jurg Tschopp. Cell Death Differ 2011; 19:21-7. [PMID: 22095283 DOI: 10.1038/cdd.2011.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the powerful legacy left by Jurg Tschopp, we should not forget his early work that helped to elucidate the molecular pathways responsible for the clearance of virus-infected and transformed cells by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. Jurg's skilful biochemical approach formed a firm platform upon which the work of so many other biochemists, cell biologists and immunologists would come to rely. Jurg coined the shorthand term 'granzyme' to denote the individual members of a family of serine proteases sequestered in and secreted from the cytotoxic granules of CTL/NK cells. He was also one of the first to describe the lytic properties of purified perforin and to postulate the synergy of perforin and granzymes, which we now know to underpin target cell apoptosis. Jurg was a major protagonist in the debate that raged throughout the 1980's and early 1990's on the physiological relevance of the 'granule exocytosis' pathway. Ultimately, resolving this issue led Jurg and his colleagues to even greater and impactful discoveries in the broader field of apoptosis research. Jurg Tschopp ranks with other pioneers, particularly Gideon Berke, Chris Bleackley, Pierre Golstein, Pierre Henkart and Eckhard Podack for making seminal discoveries on our understanding of how the immune system eliminates dangerous cells.
Collapse
Affiliation(s)
- J A Trapani
- Cancer Cell Death Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Elstak E, de Jong A, van der Sluijs P. A platform for complementation and characterization of familial haemophagocytic lymphohistiocytosis 3 mutations. J Immunol Methods 2011; 365:58-66. [DOI: 10.1016/j.jim.2010.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
15
|
Abstract
Granzyme B (GzmB) is used by cytotoxic lymphocytes as a molecular weapon for the defense against virus-infected and malignantly transformed host cells. It belongs to a family of small serine proteases that are stored in secretory vesicles of killer cells. After secretion of these cytolytic granules during killer cell attack, GzmB is translocated into the cytosol of target cells with the help of the pore-forming protein perforin. GzmB has adopted similar protease specificity as caspase-8, and once delivered, it activates major executioner apoptosis pathways. Since GzmB is very effective in killing human tumor cell lines that are otherwise resistant against many cytotoxic drugs and since GzmB of human origin can be recombinantly expressed, its use as part of a 'magic bullet' in tumor therapy is a very tempting idea. In this review, we emphasize the peculiar characteristics of GzmB that make it suited for use as an effector domain in potential immunoconjugates. We discuss what is known about its uptake into target cells and the trials performed with GzmB-armed immunoconjugates, and we assess the prospects of its potential therapeutic value.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
16
|
Anthony DA, Andrews DM, Chow M, Watt SV, House C, Akira S, Bird PI, Trapani JA, Smyth MJ. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:1794-803. [PMID: 20585036 DOI: 10.4049/jimmunol.1000430] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte perforin and serine protease granzymes are well-recognized extrinsic mediators of apoptosis. We now demonstrate that cytotoxic lymphocyte granule components profoundly augment the myeloid cell inflammatory cytokine cascade in response to TLR4 ligation. Whereas caspase-1-deficient mice were completely resistant to LPS, reduced serum cytokine production and resistance to lethal endotoxicosis were also obtained with perforin-deficient mice, indicating a role for granzymes. Consistently, a lack of granzyme M (GrzM) resulted in reduced serum IL-1alpha, IL-1beta, TNF, and IFN-gamma levels and significantly reduced susceptibility to lethal endotoxicosis. These altered responses were also observed in granzyme A-deficient but not granzyme B-deficient mice. A role for APC-NK cell cross-talk in the inflammatory cascade was highlighted, as GrzM was exclusively expressed by NK cells and resistance to LPS was also observed on a RAG-1/GrzM-double deficient background. Collectively, the data suggest that NK cell GrzM augments the inflammatory cascade downstream of LPS-TLR4 signaling, which ultimately results in lethal endotoxicosis. Most importantly, these data demonstrate that granzymes should no longer be considered solely as mediators of apoptosis, but additionally as potential key regulators of inflammation.
Collapse
Affiliation(s)
- Desiree A Anthony
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, 8006, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, Shin LY, Kovacs CM, Rodriguez B, Sieg SF, Teixeira-Johnson L, Gudonis D, Goepfert PA, Lederman MM, Frank I, Makedonas G, Kaul R, Walker BD, Betts MR. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog 2010; 6:e1000917. [PMID: 20523897 PMCID: PMC2877741 DOI: 10.1371/journal.ppat.1000917] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/22/2010] [Indexed: 01/01/2023] Open
Abstract
Many immune correlates of CD8+ T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability, and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability of human CD8+ T-cells to rapidly upregulate perforin—an essential molecule for cell-mediated cytotoxicity—following antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically HIV-infected individuals with varying levels of viral load: elite controllers (n = 35), viremic controllers (n = 29), chronic progressors (n = 27), and viremic nonprogressors (n = 6). Using polychromatic flow cytometry and standard intracellular cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8+ T-cells from elite controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors, is not restored by HAART, and primarily originates from effector CD8+ T-cells with otherwise limited functional capability. Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of HIV-specific CD8+ T-cells to rapidly express perforin defines a novel correlate of control in HIV infection. While the majority HIV-infected individuals progress to AIDS, a fraction of these individuals—for reasons not completely understood—do not develop AIDS and also display sustained control over viral replication; these subjects are sometimes referred to as elite controllers (EC). Prior evidence has shown that HIV-specific CD8+ T-cells, a component of adaptive immunity against intracellular pathogens, from EC exhibit enhanced functionality compared to individuals with progressive disease. Therefore, HIV-specific CD8+ T-cells likely play an important role in the favorable clinical outcomes witnessed in EC. We show in this study that the ability to control HIV replication in EC is associated with the expression of a protein called perforin, a critical molecule that enables CD8+ T-cells to directly kill infected cells - thereby preventing the spread of HIV to previously uninfected cells. In infected subjects with nonprogressive disease, we show that HIV-specific CD8+ T-cells demonstrate a superior ability to express perforin upon antigen-specific stimulation, whereas in progressors this property is diminished. Thus, we identify a functional capability of CD8+ T-cells, readily measured by standard intracellular cytokine staining assays, that potentially has a direct impact on HIV replication in vivo. These findings may, therefore, provide an important qualifier for future HIV vaccine research.
Collapse
Affiliation(s)
- Adam R. Hersperger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| | - Martha Nason
- Biostatistics Research Branch, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Korey Demers
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prameet Sheth
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Y. Shin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colin M. Kovacs
- Canadian Immunodeficiency Research Collaborative, Toronto, Ontario, Canada
| | - Benigno Rodriguez
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Scott F. Sieg
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Leia Teixeira-Johnson
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Debbie Gudonis
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael M. Lederman
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Ian Frank
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George Makedonas
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Granzyme A (GzmA) is the most abundant serine protease in killer cell cytotoxic granules. GzmA activates a novel programed cell death pathway that begins in the mitochondrion, where cleavage of NDUFS3 in electron transport complex I disrupts mitochondrial metabolism and generates reactive oxygen species (ROS). ROS drives the endoplasmic reticulum-associated SET complex into the nucleus, where it activates single-stranded DNA damage. GzmA also targets other important nuclear proteins for degradation, including histones, the lamins that maintain the nuclear envelope, and several key DNA damage repair proteins (Ku70, PARP-1). Cells that are resistant to the caspases or GzmB by overexpressing bcl-2 family anti-apoptotic proteins or caspase or GzmB protease inhibitors are sensitive to GzmA. By activating multiple cell death pathways, killer cells provide better protection against a variety of intracellular pathogens and tumors. GzmA also has proinflammatory activity; it activates pro-interleukin-1beta and may also have other proinflammatory effects that remain to be elucidated.
Collapse
Affiliation(s)
- Judy Lieberman
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Meyer VS, Drews O, Günder M, Hennenlotter J, Rammensee HG, Stevanovic S. Identification of Natural MHC Class II Presented Phosphopeptides and Tumor-Derived MHC Class I Phospholigands. J Proteome Res 2009; 8:3666-74. [DOI: 10.1021/pr800937k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Verena S. Meyer
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| | - Oliver Drews
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| | - Marc Günder
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| | - Stefan Stevanovic
- Department of Immunology, Institute for Cell Biology, University of Tübingen, D-72076 Tübingen, Germany, and Department of Urology, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Makedonas G, Banerjee PP, Pandey R, Hersperger AR, Sanborn KB, Hardy GA, Orange JS, Betts MR. Rapid up-regulation and granule-independent transport of perforin to the immunological synapse define a novel mechanism of antigen-specific CD8+ T cell cytotoxic activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5560-9. [PMID: 19380804 PMCID: PMC2714586 DOI: 10.4049/jimmunol.0803945] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL are endowed with the ability to eliminate pathogens through perforin-mediated cytotoxic activity. The mechanism for perforin-mediated Ag-specific killing has been solely attributed to cytotoxic granule exocytosis from activated CD8(+) T cells. In this study, we redefine this mechanism, demonstrating that virus-specific CD8(+) T cells rapidly up-regulate perforin in response to stimulation temporally with IFN-gamma and CD107a expression. Following Ag-specific activation, newly synthesized perforin rapidly appears at the immunological synapse, both in association with and independent of cytotoxic granules, where it functions to promote cytotoxicity. Our work suggests a novel mechanism of CTL cytotoxicity and identifies a novel correlate of CD8(+) T cell-mediated immunity.
Collapse
Affiliation(s)
| | | | - Rahul Pandey
- Children’s Hospital of Philadelphia, Division of Immunology
| | | | | | | | | | | |
Collapse
|
21
|
The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect 2009; 11:452-9. [DOI: 10.1016/j.micinf.2009.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
|
22
|
Urrea Moreno R, Gil J, Rodriguez-Sainz C, Cela E, LaFay V, Oloizia B, Herr AB, Sumegi J, Jordan MB, Risma KA. Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent lipid binding in perforin cytotoxic function. Blood 2009; 113:338-46. [PMID: 18927437 PMCID: PMC2615650 DOI: 10.1182/blood-2008-08-172924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/21/2008] [Indexed: 12/15/2022] Open
Abstract
Perforin-mediated lymphocyte cytotoxicity is critical for pathogen elimination and immune homeostasis. Perforin disruption of target cell membranes is hypothesized to require binding of a calcium-dependent, lipid-inserting, C2 domain. In a family affected by hemophagocytic lymphohistiocytosis, a severe inflammatory disorder caused by perforin deficiency, we identified 2 amino acid substitutions in the perforin C2 domain: T435M, a previously identified mutant with disputed pathogenicity, and Y438C, a novel substitution. Using biophysical modeling, we predicted that the T435M substitution, but not Y438C, would interfere with calcium binding and thus cytotoxic function. The capacity for cytotoxic function was tested after expression of the variant perforins in rat basophilic leukemia cells and murine cytotoxic T lymphocytes. As predicted, cells transduced with perforin-T435M lacked cytotoxicity, but those expressing perforin-Y438C displayed intact cytotoxic function. Using novel antibody-capture and liposome-binding assays, we found that both mutant perforins were secreted; however, only nonmutated and Y438C-substituted perforins were capable of calcium-dependent lipid binding. In addition, we found that perforin-Y438C was capable of mediating cytotoxicity without apparent proteolytic maturation. This study clearly demonstrates the pathogenicity of the T435M mutation and illustrates, for the first time, the critical role of the human perforin C2 domain for calcium-dependent, cytotoxic function.
Collapse
Affiliation(s)
- Ramon Urrea Moreno
- Division of Immunology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hersperger AR, Makedonas G, Betts MR. Flow cytometric detection of perforin upregulation in human CD8 T cells. Cytometry A 2008; 73:1050-7. [PMID: 18615597 DOI: 10.1002/cyto.a.20596] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perforin and granzymes work synergistically to induce apoptosis in target cells recognized by cytotoxic T lymphocytes. While perforin is readily detectable by flow cytometry in resting CD8 T cells, upregulation of perforin in activated cells is thought to require proliferation. However, perforin undergoes numerous conformational changes during its maturation, which may affect the ability of conventional antibodies to recognize newly synthesized perforin. Polychromatic flow cytometry was used to detect perforin and cytokine production following stimulation of ex vivo human CD8 T cells. Two different anti-perforin antibodies, clones B-D48 and deltaG9, were used to discriminate various forms of perforin after cellular activation. We provide evidence for the rapid upregulation of perforin protein, which may contribute to the ability of CD8 T cells to kill multiple targets over time. The deltaG9 clone recognizes the granule-associated conformation of perforin, while the B-D48 clone is able to detect perforin in multiple forms. Finally, we show there is variability in the ability of CD8 T cells to upregulate perforin. Human CD8 T cells are capable of new perforin production immediately following activation. This work defines a novel flow cytometric procedure that can be used to more completely assess the cytotoxic capacity of human CD8 T cells.
Collapse
Affiliation(s)
- Adam R Hersperger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
24
|
Metkar SS, Menaa C, Pardo J, Wang B, Wallich R, Freudenberg M, Kim S, Raja SM, Shi L, Simon MM, Froelich CJ. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 2008; 29:720-33. [PMID: 18951048 DOI: 10.1016/j.immuni.2008.08.014] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 04/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Granzyme A (GzmA) is considered a major proapoptotic protease. We have discovered that GzmA-induced cell death involves rapid membrane damage that depends on the synergy between micromolar concentrations of GzmA and sublytic perforin (PFN). Ironically, GzmA and GzmB, independent of their catalytic activity, both mediated this swift necrosis. Even without PFN, lower concentrations of human GzmA stimulated monocytic cells to secrete proinflammatory cytokines (interleukin-1beta [IL-1beta], TNFalpha, and IL-6) that were blocked by a caspase-1 inhibitor. Moreover, murine GzmA and GzmA(+) cytotoxic T lymphocytes (CTLs) induce IL-1beta from primary mouse macrophages, and GzmA(-/-) mice resist lipopolysaccharide-induced toxicity. Thus, the granule secretory pathway plays an unexpected role in inflammation, with GzmA acting as an endogenous modulator.
Collapse
Affiliation(s)
- Sunil S Metkar
- Department of Medicine, NorthShore University HealthSystem Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Khan AA, Apte RS. An assay for macrophage-mediated regulation of endothelial cell proliferation. Immunobiology 2008; 213:695-9. [PMID: 18926285 DOI: 10.1016/j.imbio.2008.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/16/2022]
Abstract
We have developed an assay that quantifies the potential of macrophages to regulate proliferation of endothelial cells. We show that young mice macrophages can be distinguished from old mice macrophages by their ability to inhibit vascular endothelial cell proliferation. While young mice macrophages robustly inhibit proliferation, old mice macrophages fail to do so and actually promote the proliferation of endothelial cells. In this report, we outline a technique that directly assesses the effect of macrophages on modulation of endothelial cell proliferation. This assay will help us in understanding the mechanisms of macrophage function in several disease states characterized by abnormal angiogenesis including cancers, angiogenic eye disease and atherosclerotic heart disease.
Collapse
Affiliation(s)
- Aslam Ali Khan
- Ophthalmology and Visual Sciences and Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8096, St. Louis, MO 63110, USA
| | | |
Collapse
|
26
|
Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA. The MACPF/CDC family of pore-forming toxins. Cell Microbiol 2008; 10:1765-74. [PMID: 18564372 PMCID: PMC2654483 DOI: 10.1111/j.1462-5822.2008.01191.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pore-forming toxins (PFTs) are commonly associated with bacterial pathogenesis. In eukaryotes, however, PFTs operate in the immune system or are deployed for attacking prey (e.g. venoms). This review focuses upon two families of globular protein PFTs: the cholesterol-dependent cytolysins (CDCs) and the membrane attack complex/perforin superfamily (MACPF). CDCs are produced by Gram-positive bacteria and lyse or permeabilize host cells or intracellular organelles during infection. In eukaryotes, MACPF proteins have both lytic and non-lytic roles and function in immunity, invasion and development. The structure and molecular mechanism of several CDCs are relatively well characterized. Pore formation involves oligomerization and assembly of soluble monomers into a ring-shaped pre-pore which undergoes conformational change to insert into membranes, forming a large amphipathic transmembrane β-barrel. In contrast, the structure and mechanism of MACPF proteins has remained obscure. Recent crystallographic studies now reveal that although MACPF and CDCs are extremely divergent at the sequence level, they share a common fold. Together with biochemical studies, these structural data suggest that lytic MACPF proteins use a CDC-like mechanism of membrane disruption, and will help understand the roles these proteins play in immunity and development.
Collapse
Affiliation(s)
- Carlos J Rosado
- Department of Biochemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, Thompson PE, Trapani JA, Bird PI. The major human and mouse granzymes are structurally and functionally divergent. ACTA ACUST UNITED AC 2007; 175:619-30. [PMID: 17116752 PMCID: PMC2064598 DOI: 10.1083/jcb.200606073] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Approximately 2% of mammalian genes encode proteases. Comparative genomics reveals that those involved in immunity and reproduction show the most interspecies diversity and evidence of positive selection during evolution. This is particularly true of granzymes, the cytotoxic proteases of natural killer cells and CD8+ T cells. There are 5 granzyme genes in humans and 10 in mice, and it is suggested that granzymes evolve to meet species-specific immune challenge through gene duplication and more subtle alterations to substrate specificity. We show that mouse and human granzyme B have distinct structural and functional characteristics. Specifically, mouse granzyme B is 30 times less cytotoxic than human granzyme B and does not require Bid for killing but regains cytotoxicity on engineering of its active site cleft. We also show that mouse granzyme A is considerably more cytotoxic than human granzyme A. These results demonstrate that even "orthologous" granzymes have species-specific functions, having evolved in distinct environments that pose different challenges.
Collapse
Affiliation(s)
- Dion Kaiserman
- Department of Biochemistry and Molecular Biology and 2Victorian Bioinformatics Consortium, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2007; 6:940-52. [PMID: 17124515 DOI: 10.1038/nri1983] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
30
|
Lettau M, Schmidt H, Kabelitz D, Janssen O. Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 2006; 108:10-9. [PMID: 17097742 DOI: 10.1016/j.imlet.2006.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/22/2022]
Abstract
Secretory lysosomes are specialized organelles that combine catabolic functions of conventional lysosomes with an inducible secretory potential. They are present in various hematopoietic cell types commonly characterized by the need for rapid mobilization and secretion of effector proteins. As an example, the cytotoxic effector function of T cells and natural killer cells strictly depends on the activation-dependent mobilization of such vesicles to the cytotoxic immunological synapse. This review focuses on some molecules that have been identified as cargo of secretory lysosomes and which play a major role in effector function of CTL and NK cells. We also briefly point to the fact that the dysregulation of formation and transport of secretory vesicles is causative for severe immunodeficiencies and autoimmunity observed in patients and also in mice that have been used as representative model systems to analyze the pathophysiological relevance of secretory vesicles in vivo.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, Medical Center Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | |
Collapse
|
31
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Nonspecific cytotoxic cells of teleosts are armed with multiple granzymes and other components of the granule exocytosis pathway. Mol Immunol 2006; 43:1152-62. [PMID: 16137766 DOI: 10.1016/j.molimm.2005.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Indexed: 11/29/2022]
Abstract
Granzymes are members of the serine protease family and major components of cytotoxic granules of professional killer cells. Multiple granzymes have been identified from human and rodents with different substrate specificities. Although the significance of granzymes A and B in cell-mediated cytotoxicity has been extensively investigated, recent reports suggest that other granzymes may have either equal or greater importance in mediating cell death. Studies on the evolution of these closely related proteases were hindered by the lack of sequence and biochemical information of granzymes from "lower vertebrates." Here we report the generation of a catalytically active recombinant granzyme identified in the cytotoxic cells of an ectothermic vertebrate. Fully active, soluble recombinant catfish granzyme-1 (CFGR-1) was generated using a yeast-based expression system. In vitro enzyme kinetic assays using various thiobenzyl ester substrates verified its tryptase activity in full agreement with previous observations by sequence comparison and molecular modeling. The tryptase activity that was secreted from catfish NCC during an in vitro cytotoxicity assay strongly correlated with the cytotoxicity induced by these cells. Evidence for additional granzymes with different substrate specificities in NCC was obtained by analysis of the protease activity of supernatants collected from in vitro cytotoxicity assays. Searches of the catfish EST database further confirmed the presence of teleost granzymes with different substrate specificities. Granzyme activity measurements suggested a predominance of chymase and tryptase activities in NCC. Further proof that the granule exocytosis pathway is one of the cytotoxic mechanisms in NCC was provided by the expression of granule components perforin, granulysin and serglycin detected by RT-PCR analysis. These results demonstrate the evidence for a parallel evolution of effector molecules of cell-mediated cytotoxicity in teleosts.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
32
|
Risma KA, Frayer RW, Filipovich AH, Sumegi J. Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J Clin Invest 2006; 116:182-92. [PMID: 16374518 PMCID: PMC1319223 DOI: 10.1172/jci26217] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022] Open
Abstract
Missense mutations in perforin, a critical effector of lymphocyte cytotoxicity, lead to a spectrum of diseases, from familial hemophagocytic lymphohistiocytosis to an increased risk of tumorigenesis. Understanding of the impact of mutations has been limited by an inability to express human perforin in vitro. We have shown, for the first time to our knowledge, that recombinant human perforin is expressed, processed appropriately, and functional in rat basophilic leukemia (RBL) cells following retroviral transduction. Subsequently, we have addressed how perforin missense mutations lead to absent perforin detection and impaired cytotoxicity by analyzing 21 missense mutations by flow cytometry, immunohistochemistry, and immunoblot. We identified perforin missense mutations with partial maturation (class 1), no apparent proteolytic maturation (class 2), and no recognizable forms of perforin (class 3). Class 1 mutations exhibit lytic function when expressed in RBL cells and are associated with residual protein detection and variable cytotoxic function in affected individuals, suggesting that carriers of class 1 alleles may exhibit more subtle immune defects. By contrast, class 3 mutations cause severely diminished perforin detection and cytotoxicity, while class 2 mutations have an intermediate phenotype. Thus, the pathologic mechanism of perforin missense mutation likely involves a protein dosage effect of the mature protein.
Collapse
Affiliation(s)
- Kimberly A Risma
- Division of Allergy/Immunology and Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
33
|
Han D, Leith J, Alejandro R, Bolton W, Ricordi C, Kenyon NS. Peripheral blood cytotoxic lymphocyte gene transcript levels differ in patients with long-term type 1 diabetes compared to normal controls. Cell Transplant 2005; 14:403-9. [PMID: 16180659 DOI: 10.3727/000000005783982972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to compare mRNA levels of the cytotoxic lymphocyte (CL) gene products: granzyme B (GB), perforin (P), and fas ligand (FasL) in patients with long-term type 1 diabetes and healthy controls. The objective was to utilize this information to follow patients as they undergo islet cell transplantation at our center and to determine if changes in CL gene transcript levels correlate with graft status. We have measured mRNA levels for CL genes in peripheral blood samples from 65 long-term (>5 years) type 1 diabetes patients and 29 healthy controls. Total RNA was extracted from EDTA anticoagulated peripheral blood samples and reverse transcribed into first-strand cDNA using SuperScript II reverse Transcriptase. Quantitative, real-time PCR was utilized to determine CL gene transcript levels. mRNA levels of P and FasL genes were found to be significantly lower for patients with type 1 diabetes compared to normal controls (p < 0.05). However, there was no significant difference for GB mRNA levels between patients and controls (p > 0.05). The decreased expression of P and FasL in patients with long-term type 1 diabetes might contribute to the inability to maintain normal levels of peripheral tolerance, which is essential for protection from autoimmune disease.
Collapse
Affiliation(s)
- Dongmei Han
- Diabetes Research Institute, University of Miami School of Medicine, 1450 N.W. 10th Avenue, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Perforin is critical for cytotoxicity mediated by granules present in natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Perforin-deficient mice have impaired cytotoxicity by NK cells and CTLs, resulting in failure to control infections with certain viruses or bacteria. Infection of perforin-deficient mice with lymphocytic choriomeningitis virus results in haemophagocytic lymphohistiocytosis and elevated levels of pro-inflammatory cytokines. Mutations throughout the perforin gene have been identified in patients with familial haemophagocytic lymphohistiocytosis (FHL) type 2. These patients present with fever, hepatosplenomegaly, pancytopenia, have marked elevations of T-helper type 1 and type 2 cytokines, and have impaired NK cell and CTL cytotoxicity. A number of infectious pathogens have been implicated as triggering the onset of disease. Identification of mutations in perforin as the cause of FHL should allow prenatal diagnosis of the disorder. While stem cell transplantation is curative, gene therapy might be effective in the future.
Collapse
Affiliation(s)
- Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
35
|
Kelly JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. J Biol Chem 2004; 279:22236-42. [PMID: 15028722 DOI: 10.1074/jbc.m401670200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell death is mediated by cytotoxic lymphocytes through various granule serine proteases released with perforin. The unique protease activity, restricted expression, and distinct gene locus of granzyme M suggested this enzyme might have a novel biological function or trigger a novel form of cell death. Herein, we demonstrate that in the presence of perforin, the protease activity of granzyme M rapidly and effectively induces target cell death. In contrast to granzyme B, cell death induced by granzyme M does not feature obvious DNA fragmentation, occurs independently of caspases, caspase activation, and perturbation of mitochondria and is not inhibited by overexpression of Bcl-2. These data raise the likelihood that granzyme M represents a third major and specialized perforin-dependent cell death pathway that plays a significant role in death mediated by NK cells.
Collapse
Affiliation(s)
- Janice M Kelly
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, 8006 Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Ohshima K, Karube K, Hamasaki M, Makimoto Y, Fujii A, Kawano R, Tutiya T, Yamaguchi T, Suzumiya J, Kikuchi M. Apoptosis- and cell cycle-associated gene expression profiling of histiocytic necrotising lymphadenitis. Eur J Haematol 2004; 72:322-9. [PMID: 15059066 DOI: 10.1111/j.1600-0609.2004.00226.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell death is of two types; necrosis and apoptosis. In histiocytic necrotising lymphadenitis (HNL), apoptosis is the main form of cell death. Apoptosis results in the formation of nuclear debris, which is one of the characteristic features of HNL. We previously reported that in HNL it is predominantly CD8-positive cytotoxic T cells that undergo apoptosis; however, the majority of proliferating cells are also CD8-positive T cells. Recent advances in technical and analytical methods have facilitated the parallel quantitation of expression of numerous genes using DNA microarrays. The technology is particularly well suited to compare differences in gene expression between normal tissues and inflammatory disease. To investigate the apoptosis- and cell cycle-associated gene expression in HNL, we analysed five cases each of HNL and non-specific lymphadenitis (NSL), using ready-made microarrays, including cyclins and caspases, and immunohistochemical staining of caspase-3, ssDNA, bcl-2 and NF-kappaB. Caspase-3- and ssDNA-positive apoptotic cells were frequently detected in HNL, but were rare in NSL. However, bcl-2- and NF-kappaB-positive cells were rare in HNL. Gene expression tree analysis of DNA microarrays showed different clustering of HNL and NSL. In comparison with NSL, HNL exhibited diffuse upregulation of these gene profiles, particularly of cyclins and caspases (ratio; cyclin A2, 2.72; caspase-6, 2.43; caspase-3, 2.02); whereas, Mcl-1, which has been shown to delay apoptosis, was downregulated (ratio, 0.71), as confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR). Almost all apoptosis-associated genes, especially caspases, were upregulated, and apoptosis inhibitory genes, including bcl-2 by immunohistochemistry, were downregulated in all five cases with HNL. In addition, cell cycle-associated genes were upregulated in all. These findings confirm that both apoptosis and proliferation are simultaneously present in HNL lesions.
Collapse
Affiliation(s)
- Koichi Ohshima
- Department of Pathology, School of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rukamp BJ, Kam CM, Natarajan S, Bolton BW, Smyth MJ, Kelly JM, Powers JC. Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates. Arch Biochem Biophys 2004; 422:9-22. [PMID: 14725853 DOI: 10.1016/j.abb.2003.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Granzyme M is a member of a family of granule serine proteases that participate in target cell death initiated by cytotoxic lymphocytes. The enzyme is almost exclusively expressed in NK cell types. Granzyme M cleaves at the carboxy side of amino acids with long, hydrophobic side chains like Met, Leu, and Nle. To further study the substrate specificity of the enzyme, a series of peptide thiobenzyl esters was synthesized. The hydrolysis of the substrates with murine and human recombinant forms of granzyme M was observed. The results show that the enzyme has a strong preference for Pro at the P2 position and Ala, Ser, or Asp at the P3 position. These results suggest that the protein residues of the S2 and S3 subsites form important binding interactions that aid in the selection of specific natural substrates for granzyme M. A series of inhibitors was also tested with granzyme M. None of the inhibitors were effective inactivators of granzyme M, including the general serine protease inhibitor, 3,4-dichloroisocoumarin, which is usually a potent inactivator of serine proteases. This suggests that inhibition of granzyme M may be difficult. Also reported for the first time is the method utilized to isolate granzyme M used in this and previous publications. The observations in this paper will be valuable in development of new potent inhibitors for granzyme M as well as assist in determining the biological function of the enzyme.
Collapse
Affiliation(s)
- Brian J Rukamp
- The School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Raja SM, Metkar SS, Froelich CJ. Cytotoxic granule-mediated apoptosis: unraveling the complex mechanism. Curr Opin Immunol 2003; 15:528-32. [PMID: 14499261 DOI: 10.1016/s0952-7915(03)00111-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular details of cytotoxic granule-mediated apoptosis have been gleaned from the study of the effects of isolated granzymes and perforin on target cells. Recent evidence indicates that the physiological apoptosis-inducing form is a multi-component macro-complex consisting of cationic granule proteins non-covalently linked to the chondroitin-sulfate proteoglycan, serglycin.
Collapse
Affiliation(s)
- Srikumar M Raja
- Department of Medicine, Evanston Northwestern Healthcare Research Institute, 2650 Ridge Avenue, Evanston, IL 60201, USA
| | | | | |
Collapse
|
39
|
Smyth MJ, Street SEA, Trapani JA. Cutting edge: granzymes A and B are not essential for perforin-mediated tumor rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:515-8. [PMID: 12847210 DOI: 10.4049/jimmunol.171.2.515] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and B, play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung
- Cytotoxicity, Immunologic/genetics
- Graft Rejection/enzymology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Granzymes
- Interleukin-12/physiology
- Interleukin-2/physiology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Lymphoma/enzymology
- Lymphoma/genetics
- Lymphoma/immunology
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Transplantation
- Perforin
- Pore Forming Cytotoxic Proteins
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Serine Endopeptidases/physiology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mark J Smyth
- Cancer Immunology Program, Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
40
|
Yamada M, Hirasawa A, Shiojima S, Tsujimoto G. Granzyme A mediates glucocorticoid‐induced apoptosis in leukemia cells. FASEB J 2003. [DOI: 10.1096/fj.02-0116fje] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masateru Yamada
- Department of Molecular, Cell Pharmacology National Research Institute for Child Health and Development 3-35-31, Taishido Setagaya, Tokyo 154-8567 Japan
- Genox Research Inc., Teikyo University Biotech Center 907 Nogawa Miyamae, Kawasaki 216-0001 Japan
| | - Akira Hirasawa
- Department of Molecular, Cell Pharmacology National Research Institute for Child Health and Development 3-35-31, Taishido Setagaya, Tokyo 154-8567 Japan
| | - Satoshi Shiojima
- Department of Molecular, Cell Pharmacology National Research Institute for Child Health and Development 3-35-31, Taishido Setagaya, Tokyo 154-8567 Japan
| | - Gozoh Tsujimoto
- Department of Molecular, Cell Pharmacology National Research Institute for Child Health and Development 3-35-31, Taishido Setagaya, Tokyo 154-8567 Japan
| |
Collapse
|
41
|
Hink-Schauer C, Estébanez-Perpiñá E, Kurschus FC, Bode W, Jenne DE. Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat Struct Mol Biol 2003; 10:535-40. [PMID: 12819770 DOI: 10.1038/nsb945] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/27/2003] [Indexed: 11/08/2022]
Abstract
Granzyme A (GzmA) belongs to a family of trypsin-like serine proteases localized in cytoplasmic granules of activated lymphocytes and natural killer (NK) cells. In contrast to the related granzyme B (GzmB), GzmA forms a stable disulfide-linked homodimer and triggers target-cell death in a caspase-independent way. Limited proteolysis of a high-molecular-mass complex containing SET (also named putative HLA-associated protein II or PHAPII), PHAPI (pp32, leucine-rich acidic nuclear protein) and HMG2 by GzmA liberates NM23-H1, a Mg2+-dependent DNase that causes single-stranded breaks in nuclear DNA. By analyzing the dimeric GzmA structure at a resolution of 2.5 A, we determined the substrate-binding constraints and selective advantages of the two domains arranged as a unique functional tandem. The active sites of the two subunits point in opposite directions and the nearby noncatalytic surfaces can function as exosites, presenting substrates to the active site region of the adjacent partner in a manner analogous to staphylokinase or streptokinase, which present plasminogen to the cofactor-plasmin and cofactor-plasminogen complexes.
Collapse
Affiliation(s)
- Clara Hink-Schauer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
42
|
Tsuzuki S, Kokado Y, Satomi S, Yamasaki Y, Hirayasu H, Iwanaga T, Fushiki T. Purification and identification of a binding protein for pancreatic secretory trypsin inhibitor: a novel role of the inhibitor as an anti-granzyme A. Biochem J 2003; 372:227-33. [PMID: 12590650 PMCID: PMC1223377 DOI: 10.1042/bj20021891] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 02/10/2003] [Accepted: 02/19/2003] [Indexed: 11/17/2022]
Abstract
Pancreatic secretory trypsin inhibitor (PSTI) is a potent trypsin inhibitor that is mainly found in pancreatic juice. PSTI has been shown to bind specifically to a protein, distinct from trypsin, on the surface of dispersed cells obtained from tissues such as small intestine. In the present study, we affinity-purified the binding protein from the 2% (w/v) Triton X-100-soluble fraction of dispersed rat small-intestinal cells using recombinant rat PSTI. Partial N-terminal sequencing of the purified protein gave a sequence that was identical with the sequence of mouse granzyme A (GzmA), a tryptase produced in cytotoxic lymphocytes. We confirmed the formation of an affinity-cross-linked complex between (125)I-labelled PSTI and recombinant rat GzmA (rGzmA). In situ hybridization and immunostaining revealed the existence of GzmA-expressing intraepithelial lymphocytes in the rat small intestine. We concluded that the PSTI-binding protein isolated from the dispersed cells is GzmA that is produced in the lymphocytes of the tissue. The rGzmA hydrolysed the N -alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT), and the BLT hydrolysis was inhibited by PSTI. Sulphated glycosaminoglycans, such as fucoidan or heparin, showed almost no effect on the inhibition of rGzmA by PSTI, whereas they decreased the inhibition by antithrombin III. In the present paper, we propose a novel role of PSTI as a GzmA inhibitor.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cytotoxic T lymphocytes and natural killer cells kill their targets by secreting specialized granules that contain potent cytotoxic molecules. Through the study of rare immunodeficiency diseases in which this granule pathway of killing is impaired, proteins such as Rab27a have been identified as components of the secretory machinery of these killer cells. Recent evidence suggests that the destruction of activated lymphocytes through granule-mediated killing may be an important mechanism of immunological homeostasis. Although the process by which this occurs is not yet known, it is possible that events taking place at the immunological synapse may render the killer cell susceptible to fratricidal attack by other killer cells.
Collapse
|
44
|
Abstract
Virtually all of the measurable cell-mediated cytotoxicity delivered by cytotoxic T lymphocytes and natural killer cells comes from either the granule exocytosis pathway or the Fas pathway. The granule exocytosis pathway utilizes perforin to traffic the granzymes to appropriate locations in target cells, where they cleave critical substrates that initiate DNA fragmentation and apoptosis; granzymes A and B induce death via alternate, nonoverlapping pathways. The Fas/FasL system is responsible for activation-induced cell death but also plays an important role in lymphocyte-mediated killing under certain circumstances. The interplay between these two cytotoxic systems provides opportunities for therapeutic interventions to control autoimmune diseases and graft vs. host disease, but oversuppression of these pathways may also lead to increased viral susceptibility and/or decreased tumor cell killing.
Collapse
Affiliation(s)
- John H Russell
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
45
|
Cooper EL, Kauschke E, Cossarizza A. Annelid humoral immunity: cell lysis in earthworms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:169-83. [PMID: 11418982 DOI: 10.1007/978-1-4615-1291-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E L Cooper
- Laboratory of Comparative Immunology, Department of Neurobiology, School of Medicine, University of California, Los Angeles, California 90095-1763, USA
| | | | | |
Collapse
|
46
|
Poggi A, Carosio R, Spaggiari GM, Fortis C, Tambussi G, Dell'Antonio G, Dal Cin E, Rubartelli A, Zocchi MR. NK cell activation by dendritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 Tat C-terminal domain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:95-101. [PMID: 11751951 DOI: 10.4049/jimmunol.168.1.95] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we show that binding to autologous dendritic cells (DC) induces a calcium influx in NK cells, followed by activation of the calcium-calmodulin kinase II (CAMKII), release of perforin and granzymes, and IFN-gamma secretion. CAMKII is induced via LFA-1: indeed, oligomerization of LFA-1 leads to CAMKII induction in NK cells. Moreover, release of lytic enzymes and cytotoxic activity is strongly reduced by masking LFA-1 or by adding CAMKII inhibitors such as KN62 and KN93, at variance with the inactive compound KN92. NK cell-mediated lysis of DC and IFN-gamma release by NK cells upon NK/DC contact are inhibited by exogenous HIV-1 Tat: the protein blocks calcium influx and impairs CAMKII activation elicited via LFA-1 in NK cells, eventually inhibiting degranulation. Experiments performed with synthetic, overlapping Tat-derived peptides showed that the C-terminal domain of the protein is responsible for inhibition. Finally, both KN62 and Tat reduced the extension of NK/DC contacts, possibly affecting NK cell granule polarization toward the target. These data provide evidence that exogenous Tat inhibits NK cell activation occurring upon contact with DC: this mechanism might contribute to the impairment of natural immunity in HIV-1 infection.
Collapse
MESH Headings
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Degranulation
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/ultrastructure
- Enzyme Activation
- Gene Products, tat/chemistry
- Gene Products, tat/pharmacology
- HIV-1
- Humans
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/ultrastructure
- Lymphocyte Activation
- Lymphocyte Function-Associated Antigen-1/physiology
- Membrane Glycoproteins/metabolism
- Perforin
- Pore Forming Cytotoxic Proteins
- Protein Structure, Tertiary
- Serine Endopeptidases/metabolism
- Tumor Cells, Cultured
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Alessandro Poggi
- Laboratory of Immunology, National Institute for Cancer Research, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu CC, Ahearn JM. Apoptosis of skeletal muscle cells and the pathogenesis of myositis: a perspective. Curr Rheumatol Rep 2001; 3:325-33. [PMID: 11470052 DOI: 10.1007/s11926-001-0037-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Apoptosis is a genetically controlled form of cell death that occurs in many biologic processes including embryogenesis, immune cell development, and maintenance of peripheral immune tolerance. Recent studies have yielded evidence suggesting that apoptosis of parenchymal cells may play a role in providing self-antigens to initiate autoimmune reactions. Skeletal muscle cells are fully differentiated and multinucleated. Apoptosis has been described in developing myoblasts and, recently, in mature myotubes. However, the involvement of apoptosis in skeletal muscle pathologies is unclear. This article reviews the available data concerning the occurrence of skeletal muscle cell apoptosis in selected muscle diseases. It also discusses the potential role of muscle cell apoptosis in the development of autoimmune diseases such as idiopathic inflammatory myopathies.
Collapse
Affiliation(s)
- C C Liu
- University of Pittsburgh School of Medicine, University of Pittsburgh Arthritis Institute, S723 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
48
|
Smyth MJ, Kelly JM, Sutton VR, Davis JE, Browne KA, Sayers TJ, Trapani JA. Unlocking the secrets of cytotoxic granule proteins. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mark J. Smyth
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Janice M. Kelly
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Vivien R. Sutton
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Joanne E. Davis
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Kylie A. Browne
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Thomas J. Sayers
- Laboratory of Experimental Immunology, National Cancer Institute, FDR‐DC, NIH, Frederick, Maryland
| | - Joseph A. Trapani
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| |
Collapse
|
49
|
Ohshima K, Nakashima M, Sonoda K, Kikuchi M, Watanabe T. Expression of RCAS1 and FasL in human trophoblasts and uterine glands during pregnancy: the possible role in immune privilege. Clin Exp Immunol 2001; 123:481-6. [PMID: 11298137 PMCID: PMC1906005 DOI: 10.1046/j.1365-2249.2001.01461.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2000] [Indexed: 11/20/2022] Open
Abstract
Pregnancy is an immunological balancing act. Trophoblasts do not express MHC class I or II, except HLA-C and G, but express Fas ligand (FasL), which confers immune privilege. RCAS1 (receptor-binding cancer antigen expressed on SiSo cells) has recently been recognized to play a role in immune evasion of the tumour cells. We therefore studied the involvement of RCAS1 and FasL in the infiltration of NK cells by examining the curettaged uterine contents of 20 cases of early stage of pregnancy. The cases were clinically divided into two groups; curettage was performed (A) due to the absence of foetal heart beats, and (B) due to spontaneous uterine bleeding and abortion. In group A, RCAS1 was expressed in the uterine glands and extravillous cytotrophoblasts, as was FasL. Infiltration of NK cells around the uterine glands was scarcely detected. In contrast, in group B, expression of both RCAS1 and FasL was strikingly decreased in both the level of expression and the numbers of RCAS1/FasL-positive cells and massive infiltration of NK cells was frequently detected around the uterine glands. These findings suggest that a reduction in RCAS1 and FasL expression seems to be closely associated with activation and infiltration of maternal NK cells and destruction of uterine glands, resulting in rejection of the foetus. Thus, expression of RCAS1 and FasL in the uterine glands and cytotrophoblasts may play a role in the downregulation of the maternal immune response, thereby maintaining pregnancy at early stage.
Collapse
Affiliation(s)
- K Ohshima
- Department of Pathology, School of Medicine, Fukuoka University, Japan.
| | | | | | | | | |
Collapse
|
50
|
Vincent-Schneider H, Théry C, Mazzeo D, Tenza D, Raposo G, Bonnerot C. Secretory granules of mast cells accumulate mature and immature MHC class II molecules. J Cell Sci 2001; 114:323-34. [PMID: 11148134 DOI: 10.1242/jcs.114.2.323] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone marrow-derived mast cells as well as dendritic cells, macrophages and B lymphocytes express major histocompatibility complex (MHC) class II molecules. In mast cells, the majority of MHC class II molecules reside in intracellular cell type-specific compartments, secretory granules. To understand the molecular basis for the localisation of MHC class II molecules in secretory granules, MHC class II molecules were expressed, together with the invariant chain, in the mast cell line, RBL-2H3. Using electron and confocal microscopy, we observed that in RBL-2H3 cells, mature and immature class II molecules accumulate in secretory granules. Two particular features of class II transport accounted for this intracellular localization: first, a large fraction of newly synthesized MHC class II molecules remained associated with invariant chain fragments. This defect, resulting in a slower rate of MHC class II maturation, was ascribed to a low cathepsin S activity. Second, although a small fraction of class II dimers matured (i.e. became free of invariant chain), allowing their association with antigenic peptides, they were retained in secretory granules. As a consequence of this intracellular localization, cell surface expression of class II molecules was strongly increased by cell activation stimuli which induced the release of the contents of secretory granules. Our results suggest that antigen presentation, and thereby antigen specific T cell stimulation, are regulated in mast cells by stimuli which induce mast cell activation.
Collapse
|