1
|
Lee-Okada HC, Xue C, Yokomizo T. Recent advances on the physiological and pathophysiological roles of polyunsaturated fatty acids and their biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159564. [PMID: 39326727 DOI: 10.1016/j.bbalip.2024.159564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyunsaturated fatty acids (PUFAs)-fatty acids containing multiple double bonds within their carbon chain-are an indispensable component of the cell membrane. PUFAs, including the omega-6 PUFA arachidonic acid (ARA; C20:4n-6) and the omega-3 PUFAs eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), have been implicated in various (patho)physiological events. These PUFAs are either obtained from the diet or biosynthesized from the essential fatty acids linoleic acid (LA; C18:2n-6) and α-linolenic acid (ALA; C18:3n-3) via enzymatic reactions that are catalyzed by fatty acid elongases (ELOVL2 and ELOVL5) and fatty acid desaturases (FADS1 and FADS2). In this review, we summarize the recent literature studying the role of PUFAs, placing a special emphasis on the newly discovered functions of PUFAs and their biosynthetic pathway as revealed by studies using animal models targeting the PUFA biosynthetic pathway and genetic approaches including genome-wide association studies.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Chengxuan Xue
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Bouchebti S, Levin E. Differential fatty acids utilization across life stages in a Vespa species. J Comp Physiol B 2024:10.1007/s00360-024-01589-7. [PMID: 39387868 DOI: 10.1007/s00360-024-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/18/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Dietary fatty acids (FAs) are essential macronutrients affecting animal fitness, growth, and development. While the degree of saturation of FAs usually determines the level of absorption and allocation within the body, the utilization of dietary FAs across the life stages of individuals remains unknown. We used three different 13 C labeled FAs, with a different saturation level (linoleic acid (18:2), oleic acid (18:1), and palmitic acid (16:0)), to investigate the absorption and allocation of dietary FAs across the life stages of the Oriental hornet. Our results show that only larvae utilized all tested FAs as metabolic fuel, with palmitic acid being oxidized at the highest rate. Oleic and palmitic acids were predominantly incorporated into larval tissues, while oleic acid dominated pupal tissues. In contrast, linoleic and oleic acids were predominantly incorporated into adult tissues. These findings highlight a life stage-dependent shift in certain FAs utilization, with palmitic acid mostly utilized in early stages and linoleic acid in adulthood, while oleic acid remained consistently utilized across all life stages. This study emphasizes the importance of considering FA saturation and life stage dynamics in understanding FA utilization patterns.
Collapse
Affiliation(s)
- Sofia Bouchebti
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Present address: Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel.
| | - Eran Levin
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
4
|
Savoca ML, Brownell JN. Comprehensive nutrition guidelines and management strategies for enteropathy in children. Semin Pediatr Surg 2024; 33:151425. [PMID: 38849288 DOI: 10.1016/j.sempedsurg.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Protein-losing enteropathy (PLE) describes a syndrome of excessive protein loss into the gastrointestinal tract, which may be due to a wide variety of etiologies. For children in whom the protein loss is associated with lymphangiectasia, medical nutrition therapy focused on restricting enteral long-chain triglycerides and thus intestinal chyle production is an integral component of treatment. This approach is based on the principle that reducing intestinal chyle production will concurrently decrease enteric protein losses of lymphatic origin. In patients with ongoing active PLE or those who are on a fat-restricted diet, particularly in infants and young children, supplemental calories may be provided with medium-chain triglycerides (MCT). MCT are absorbed directly into the bloodstream, bypassing intestinal lymphatics and not contributing to intestinal chyle production. Patients with active PLE or who are on dietary fat restriction should be monitored for associated micronutrient deficiencies. In this paper, we seek to formally present recommended nutrition interventions, principles of dietary education and patient counseling, and monitoring parameters in pediatric populations with PLE based on our experience in a busy clinical referral practice focused on this population.
Collapse
Affiliation(s)
- Melanie L Savoca
- Children's Hospital of Philadelphia, Department of Clinical Nutrition, Jill and Mark Fishman Center for Lymphatic Disorders, Comprehensive Vascular Anomalies Program, Philadelphia, PA.
| | - Jefferson N Brownell
- Children's Hospital of Philadelphia, Division of Gastroenterology, Hepatology and Nutrition, Jill and Mark Fishman Center for Lymphatic Disorders, Comprehensive Vascular Anomalies Program, Philadelphia, PA
| |
Collapse
|
5
|
Cui Z, Xu H, Wu F, Chen J, Zhu L, Shen Z, Yi X, Yang J, Jia C, Zhang L, Zhou P, Li MJ, Zhu L, Duan S, Yao Z, Yu Y, Liu Q, Zhou J. Maternal circadian rhythm disruption affects neonatal inflammation via metabolic reprograming of myeloid cells. Nat Metab 2024; 6:899-913. [PMID: 38561509 DOI: 10.1038/s42255-024-01021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Disruption of circadian rhythm during pregnancy produces adverse health outcomes in offspring; however, the role of maternal circadian rhythms in the immune system of infants and their susceptibility to inflammation remains poorly understood. Here we show that disruption of circadian rhythms in pregnant mice profoundly aggravates the severity of neonatal inflammatory disorders in both male and female offspring, such as necrotizing enterocolitis and sepsis. The diminished maternal production of docosahexaenoic acid (DHA) and the impaired immunosuppressive function of neonatal myeloid-derived suppressor cells (MDSCs) contribute to this phenomenon. Mechanistically, DHA enhances the immunosuppressive function of MDSCs via PPARγ-mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieves neonatal inflammation induced by maternal rhythm disruption. These observations collectively demonstrate a previously unrecognized role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.
Collapse
Affiliation(s)
- Zhaohai Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
| | - Haixu Xu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fan Wu
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Zhu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuxia Shen
- Department of Cardiology, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xianfu Yi
- Department of Bioinformatics, Tianjin, China
| | - Jinhao Yang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunhong Jia
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | | | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Qiang Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
6
|
Kawashima H, Yoshizawa K. The physiological and pathological properties of Mead acid, an endogenous multifunctional n-9 polyunsaturated fatty acid. Lipids Health Dis 2023; 22:172. [PMID: 37838679 PMCID: PMC10576882 DOI: 10.1186/s12944-023-01937-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Mead acid (MA, 5,8,11-eicosatrienoic acid) is an n-9 polyunsaturated fatty acid (PUFA) and a marker of essential fatty acid deficiency, but nonetheless generally draws little attention. MA is distributed in various normal tissues and can be converted to several specific lipid mediators by lipoxygenase and cyclooxygenase. Recent pathological and epidemiological studies on MA raise the possibility of its effects on inflammation, cancer, dermatitis and cystic fibrosis, suggesting it is an endogenous multifunctional PUFA. This review summarizes the biosynthesis, presence, metabolism and physiological roles of MA and its relation to various diseases, as well as the significance of MA in PUFA metabolism.
Collapse
Affiliation(s)
- Hiroshi Kawashima
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan.
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
7
|
Carré C, Acar N, Daruich A, Grégoire S, Martine L, Buteau B, Aho S, Eid P, Arnould L, Bron AM, Driessen M, Kermorvant E, Simon E, Creuzot-Garcher C, Gabrielle PH. Study protocol of OmegaROP-2 prospective study: expression of placental fatty acid receptors in preterm newborns with retinopathy of prematurity. BMC Ophthalmol 2023; 23:404. [PMID: 37803473 PMCID: PMC10559396 DOI: 10.1186/s12886-023-03156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Incomplete vascularization of the retina in preterm infants carries a risk of retinopathy of prematurity (ROP). Progress in neonatal resuscitation in developing countries has led to the survival of an increasing number of premature infants, resulting in an increased rate of ROP and consequently in visual disability. Strategies to reduce ROP involve optimizing oxygen saturation, nutrition, and normalizing factors such as insulin-like growth factor 1 and n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Our previous study, OmegaROP, showed that there is an accumulation or retention of docosahexaenoic acid (DHA) in mothers of infants developing ROP, suggesting abnormalities in the LC-PUFA placental transfer via fatty acid transporting proteins. The present study aims to better understand the LC-PUFA transport dysfunction in the fetoplacental unit during pregnancy and to find a novel target for the prevention of ROP development. METHODS The study protocol is designed to evaluate the correlation between the expression level of placental fatty acid receptors and ROP occurrence. This ongoing study will include 100 mother-infant dyads: mother-infant dyads born before 29 weeks of gestational age (GA) and mother-infant dyads with full-term pregnancies. Recruitment is planned over a period of 46 months. Maternal and cord blood samples as well as placental tissue samples will be taken following delivery. ROP screening will be performed using wide-field camera imaging according to the International Classification of ROP consensus statement. DISCUSSION The results of this study will have a tangible impact on public health. Indeed, if we show a correlation between the expression level of placental omega-3 receptors and the occurrence of ROP, it would be an essential step in discovering novel pathophysiological mechanisms involved in this retinopathy. TRIAL REGISTRATION NCT04819893.
Collapse
Affiliation(s)
- Chloé Carré
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Stéphane Grégoire
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Bénédicte Buteau
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Serge Aho
- Department of Epidemiology & Biostatistics, Dijon University Hospital, Dijon, France
| | - Petra Eid
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | - Louis Arnould
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | - Alain Marie Bron
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Emmanuel Simon
- Department of Gynecology, Dijon University Hospital, Dijon, France
| | - Catherine Creuzot-Garcher
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Henry Gabrielle
- Department of Ophthalmology, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000, Dijon, France.
- Eye and Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
8
|
Duttaroy AK. Influence of Maternal Diet and Environmental Factors on Fetal Development. Nutrients 2023; 15:4094. [PMID: 37836378 PMCID: PMC10574755 DOI: 10.3390/nu15194094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This Special Issue of Nutrients, "Influence of Maternal Diet and Environmental Factors on Fetal Development", requests articles on the roles of maternal diet and environmental factors such as microbiota, plastics, and endocrine disruptive chemicals impact fetal development [...].
Collapse
Affiliation(s)
- Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
9
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
10
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Yuzyuk TN, Nelson HA, Johnson LM. Inherited causes of exocrine pancreatic insufficiency in pediatric patients: clinical presentation and laboratory testing. Crit Rev Clin Lab Sci 2023:1-16. [PMID: 36876586 DOI: 10.1080/10408363.2023.2179968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Pediatric patients with exocrine pancreatic insufficiency (EPI) have symptoms that include abdominal pain, weight loss or poor weight gain, malnutrition, and steatorrhea. This condition can be present at birth or develop during childhood for certain genetic disorders. Cystic fibrosis (CF) is the most prevalent disorder in which patients are screened for EPI; other disorders also are associated with pancreatic dysfunction, such as hereditary pancreatitis, Pearson syndrome, and Shwachman-Diamond syndrome. Understanding the clinical presentation and proposed pathophysiology of the pancreatic dysfunction of these disorders aids in diagnosis and treatment. Testing pancreatic function is challenging. Directly testing aspirates produced from the pancreas after stimulation is considered the gold standard, but the procedures are not standardized or widely available. Instead, indirect tests are often used in diagnosis and monitoring. Although indirect tests are more widely available and easier to perform, they have inherent limitations due to a lack of sensitivity and/or specificity for EPI.
Collapse
Affiliation(s)
- Tatiana N Yuzyuk
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Heather A Nelson
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Lisa M Johnson
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
12
|
Gasparetto H, Carolina Ferreira Piazzi Fuhr A, Paula Gonçalves Salau N. Forecasting soybean oil extraction using cyclopentyl methyl ether through soft computing models with a density functional theory study. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Devaraj S, Giuffrida F, Hartweg M, Estorninos EM, Buluran KB, Lawenko RB, Thakkar SK, Samuel TM. Temporal evolution of fatty acid content in human milk of lactating mothers from the Philippines. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102543. [PMID: 36724727 DOI: 10.1016/j.plefa.2023.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Fatty acids (FA) play a key role in infant growth and development. The aim of this study was to study the temporal evolution of FA from 3 or 4 weeks to 4 months postpartum in human milk (HM) from Filipino mothers. Mid-morning HM samples (n = 41) were collected after full expression from a single breast and FA were assessed using gas-liquid chromatography coupled to flame ionization detector. The total FA content remained relatively constant over the study period. The most abundant FA in HM were oleic acid (OA), palmitic acid (PA) and linoleic acid (LA), a trend similarly reported in HM from European and Chinese mothers. The former two were unchanged over the course of lactation while there was a slight increase in LA content over time. Similarly, the saturated fatty acid (SFA) and monounsaturated FA (MUFA) contents did not vary over the first four months of lactation. The SFA content was much higher than that reported in HM from Europe and China, mainly driven by PA, lauric and myristic acids. The MUFA content on the other hand, while comparable to that reported in HM from Chinese populations was lower than that reported in Europe. There was a small increase in the polyunsaturated FA (PUFA) content over the study duration. The levels of essential FA, linoleic acid (LA) and α-linolenic acid (ALA) were found to be much lower than that reported in other populations. The concentrations of arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remained stable over the study duration. AA and DHA in HM from Filipino mothers were comparable to global averages, however in case of the latter the concentration was found to be lower than in previous reports. DHA is of great clinical significance as it plays a key role in infant growth and development. In our study, we observed a wide inter- and intra-individual variability in the levels of DHA in HM, presumably reflecting diverse intakes of DHA rich foods and bioconversion in vivo. Personalized recommendations may help achieve recommended levels of DHA amongst population with levels below global averages. This may help achieve HM sufficiency and therefore be linked to clinical benefits for the mother and the baby. SUMMARY: This study details the temporal evolution of human milk (HM) fatty acids (FA) in Filipino mothers up to four months postpartum. The total FA content remained relatively constant over the study period. The most abundant FA were oleic, palmitic and linoleic acids. HM from Filipino mothers had relatively higher saturated FA content driven by palmitic, lauric and myristic acids, while the levels of essential FA, linoleic and α-linoleic acids were lower compared to other populations. Similarly, the concentration of monounsaturated FA were also lower than that reported in HM from European mothers. Arachidonic acid and docosahexaenoic acid (DHA) concentrations were comparable to global averages however the HM DHA levels were seen to have decreased when compared to previous reports from the Philippines. Additionally, a wide variability was seen in HM DHA levels suggesting a need for strategies such as personalized recommendations in order to ensure HM DHA sufficiency.
Collapse
Affiliation(s)
- Surabhi Devaraj
- Nestlé Research, Société des Produits Nestlé SA, Nestlé R&D Center (Pte) Ltd, 29 Quality Road, 618802 Singapore.
| | - Francesca Giuffrida
- Nestlé Research, Société des Produits Nestlé SA, Route du Jorat 57, Box Office, 1000, Lausanne, Switzerland
| | - Mickaël Hartweg
- Nestlé Research, Société des Produits Nestlé SA, Route du Jorat 57, Box Office, 1000, Lausanne, Switzerland
| | | | | | - Rachel B Lawenko
- Asian Hospital & Medical Center, Muntinlupa City 1780, Philippines
| | - Sagar K Thakkar
- Nestlé Research, Société des Produits Nestlé SA, Nestlé R&D Center (Pte) Ltd, 29 Quality Road, 618802 Singapore
| | - Tinu Mary Samuel
- Nestle Product Technology Center-Nutrition, Société des Produits Nestlé SA, 1800 Vevey, Switzerland
| |
Collapse
|
14
|
Li P, Chen Y, Song J, Yan L, Tang T, Wang R, Fan X, Zhao Y, Qi K. Maternal DHA-rich n-3 PUFAs supplementation interacts with FADS genotypes to influence the profiles of PUFAs in the colostrum among Chinese Han population: a birth cohort study. Nutr Metab (Lond) 2022; 19:48. [PMID: 35871074 PMCID: PMC9308251 DOI: 10.1186/s12986-022-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background The single nucleotide polymorphisms (SNPs) in the fatty acid desaturases and elongases might associate with the endogenous synthesis of polyunsaturated fatty acids (PUFAs). However, the related epidemiological evidence is still conflicting. So we aimed to clearly evaluate the interactions between maternal DHA-rich n-3 PUFAs supplementation and the known 26 SNPs on the profiles of PUFAs in the colostrum using a Chinese birth cohort. Methods Totally, 1050 healthy mother-infant pairs were enrolled in this study at gestational 6–8 weeks when they established their pregnancy files at Fuxing Hospital affiliated to Capital Medical University in Beijing from January to December 2018. Meanwhile, their venous blood samples were obtained for DNA extraction to detect the genotypes of SNPs in the Fads1, Fads2, Fads3, Elovl2 and Elovl5 using the Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Then the colostrum samples were collected to determine the profiles of PUFAs by gas chromatography. Results Maternal DHA-rich n-3 PUFAs supplementation from the early and middle pregnancy could reduce the infant BMI at birth, and impact the profiles of PUFAs in the colostrum, as higher n-3 PUFAs (EPA, DHA, DHA/ALA and DHA/EPA), lower n-6 PUFAs (AA and AA/LA) and ∑-6/n-3ΣPUFAs. Moreover, there were significant correlations between multiple SNPs and the profiles of n-6 PUFAs (rs76996928 for LA, rs174550, rs174553 and rs174609 for AA, rs174550 and rs76996928 for AA/LA) and n-3 PUFAs in the colostrum (rs174448, rs174537, rs174550, rs174553, rs174598, rs3168072, rs174455 and rs174464 for ALA, rs174550, rs174553 and rs174598 for EPA, rs174455 and rs174464 for DHA, rs174448 and rs3168072 for DHA/EPA) using the multiple linear regressions by adjusting the maternal age, gestational week, mode of delivery, infant sex and BMI at birth, and all these above significant SNPs had the cumulative effects on the profiles of PUFAs. Furthermore, the pairwise comparisons also showed the meaningful interactions between maternal DHA-rich n-3 PUFAs supplementation and related genotypes of SNPs (rs76996928 for LA, rs174598 for EPA, rs174448 for DHA and DHA/EPA) on the contents of PUFAs in the colostrum. Conclusions Results from this birth cohort study proved that the pregnant women with the following SNPs such as Fads3 rs174455 T, Fads3 rs174464 A and Fads1 rs174448 G alleles should pay more attention on their exogenous DHA supplementation from the early and middle pregnancy for the blocked endogenous synthesis. Trial registration: This study was approved by the Ethics Committee of Beijing Pediatric Research Institution, Beijing Children’s Hospital affiliated to Capital Medical University (2016–08), which was also registered at the website of http://www.chictr.org.cn/showproj.aspx?proj=4673 (No: ChiCTR-OCH-14004900). Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00683-3.
Collapse
|
15
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
16
|
Rotarescu RD, Rezaei K, Mutch DM, Metherel AH. Increases in plasma n-3 tetracosapentaenoic acid and tetracosahexaenoic acid following 12 weeks of EPA, but not DHA, supplementation in women and men. Prostaglandins Leukot Essent Fatty Acids 2022; 185:102494. [PMID: 36148741 DOI: 10.1016/j.plefa.2022.102494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Dietary feeding and stable isotope studies in rodents support that the 24-carbon omega-3 polyunsaturated fatty acids, tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA), are immediate precursors to docosahexaenoic acid (DHA, 22:6n-3). In this study, we assessed for the first time, changes in TPAn-3 or THA levels following omega-3 PUFA supplementation in humans, providing insight into human omega-3 PUFA metabolism. In this secondary analysis of a double-blind randomized control trial, women and men (19 - 30 years, n = 10 - 14 per sex, per diet) were supplemented with 3 g/day EPA, DHA, or olive oil control for 12 weeks. Plasma TPAn-3 and THA concentrations were determined by gas chromatography-mass spectrometry to determine changes following supplementation in a sex-specific manner (sex x time). EPA supplementation significantly increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM). Furthermore, women had 111% and 99% higher plasma TPAn-3 and THA in the EPA supplemented group compared to men (p < 0.0001). There were no significant effects of time on plasma TPAn-3 or THA concentrations in the DHA supplemented or olive oil supplemented groups. In conclusion, EPA, but not DHA, supplementation in humans increased plasma TPAn-3 and THA levels, suggesting that THA accumulates prior to conversion to DHA in the n-3 PUFA synthesis pathway. Furthermore, women generally exhibit higher plasma TPAn-3 and THA concentrations compared with men, suggesting that women have a greater ability to accumulate 24-carbon n-3 PUFA in plasma via EPA and DPAn-3 elongation, which may explain the known higher DHA levels in women. Summary: In this secondary analysis of a double-blind randomized control trial, we assessed changes in omega-3 (n-3) tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) plasma levels in women and men (19 - 30 years, n = 10 - 14 per sex, per diet) following 12-weeks of n-3 PUFA supplementation (3 g/day EPA, DHA or olive oil). Women had higher plasma TPAn-3 in all supplementation groups and higher THA levels in the EPA and olive oil groups (p < 0.0001) compared to men. EPA supplementation increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM), but DHA supplementation had no effect. For the first time in humans, we show that plasma TPAn-3 and THA levels are higher in women and increased with EPA, but not DHA supplementation, suggesting an accumulation of THA prior to conversion to DHA in the n-3 PUFA synthesis pathway.
Collapse
Affiliation(s)
- Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada
| | - Kimia Rezaei
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, ON, Canada.
| |
Collapse
|
17
|
Romero S, Laino A, Molina G, Cunningham M, Garcia CF. Embryonic and post-embryonic development of the spider Polybetes pythagoricus (Sparassidae): A biochemical point of view. AN ACAD BRAS CIENC 2022; 94:e20210159. [PMID: 35976362 DOI: 10.1590/0001-3765202220210159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Analysis of energy expense during development has achieved special interest through time on account of the crucial role of the consumption of resources required for offspring survival. Spider eggs have a fixed composition as well as some initial energy that is supplied by mothers. These resources are necessary to support the metabolic expense not only through the embryonic period but also during the post-embryonic period, as well as for post emerging activities before spiderlings become self-sustaining. Depletion of these resources would be critical for spiders since it could give rise to prey competition as well as filial cannibalism. Even though spiders represent a megadiverse order, information regarding the metabolic requirements during spiders development is very scarce. In this study, we analyse the changes in protein, lipid and carbohydrate content as well as the variation in lipovitellin reserves and hemocyanin content during Polybetes pythagoricus development. Our results show that lipovitellins and phospholipids represent the major energy source throughout embryonic and post-embryonic development. Lipovitellin apolipoproteins are gradually consumed but are later depleted after dispersion. Phosphatidylethanolamine is mainly consumed during the post-embryonic period, while triacylglycerides are consumed after juveniles' dispersion. Finally, hemocyanin concentration starts to increase in postembryonic stages.
Collapse
Affiliation(s)
- Sofia Romero
- Universidad Nacional de La Plata/Consejo Nacional de Investigaciones Cientificas y Técnicas (UNLP-CONICET), Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), FCM, Calle 60 y 120, La Plata (1900), Buenos Aires, Argentina
| | - Aldana Laino
- Universidad Nacional de La Plata/Consejo Nacional de Investigaciones Cientificas y Técnicas (UNLP-CONICET), Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), FCM, Calle 60 y 120, La Plata (1900), Buenos Aires, Argentina
| | - Gabriel Molina
- Universidad Nacional de La Plata/Consejo Nacional de Investigaciones Cientificas y Técnicas (UNLP-CONICET), Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), FCM, Calle 60 y 120, La Plata (1900), Buenos Aires, Argentina
| | - Monica Cunningham
- Universidad Nacional de La Plata/Consejo Nacional de Investigaciones Cientificas y Técnicas (UNLP-CONICET), Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), FCM, Calle 60 y 120, La Plata (1900), Buenos Aires, Argentina
| | - Carlos Fernando Garcia
- Universidad Nacional de La Plata/Consejo Nacional de Investigaciones Cientificas y Técnicas (UNLP-CONICET), Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), FCM, Calle 60 y 120, La Plata (1900), Buenos Aires, Argentina
| |
Collapse
|
18
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
19
|
Furangseroj T, Suteerojntrakool O, Hongvisitagul P, Chatchatee P, Suratannon N, Sapwarobol S, Techasukthavorn V, Dahlan W, Chomtho S. Effects of Maternal Exclusion Diet for Infants Suspected Food Allergy on Fatty Acid Composition in Breast Milk. Breastfeed Med 2022; 17:611-617. [PMID: 35544150 DOI: 10.1089/bfm.2021.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Levels of fatty acid (FA) in breast milk (BM) may vary depending on the maternal diet. This study aimed to explore FA composition in BM of lactating women following dietary restrictions due to infant allergic conditions. Materials and Methods: Thai lactating mothers of term infants who were on exclusion diets were recruited. Mature BM was collected before and after a period (at least 2 weeks) of dietary restriction. FA in BM was analyzed by gas chromatography-mass spectrometry. Results: Fifty lactating women 33.7 ± 3.6 years of age were enrolled. Thirty-three percent of the lactating mothers restricted more than eight food items. Most common dietary restriction were cow's milk (88%) and eggs (74%). After the period of dietary exclusion, total polyunsaturated FA showed no significant change, while saturated FA (SFA) declined, and monounsaturated FA (MUFA) increased. A decrease in fat intake was associated with an increase in arachidonic acid (ARA) and docosahexaenoic acid (DHA) content in BM (r = -0.37, r = -0.36; p < 0.05). However, a rise in ARA, eicosapentaenoic acid (EPA), and DHA intake was associated with an increase in linoleic acid and EPA in BM, respectively (r = 0.38, r = 0.55 and r = 0.41; p < 0.05). Infant weight-for-age z-score did not significantly change after the period of maternal dietary exclusion. Conclusion: Maternal exclusion diet resulted in lower SFA and higher MUFA composition in BM. Further study should explore the long-term outcomes of maternal dietary restriction on infant and child health.
Collapse
Affiliation(s)
- Thipaporn Furangseroj
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Orapa Suteerojntrakool
- King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prawpan Hongvisitagul
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Pantipa Chatchatee
- King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwimol Sapwarobol
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Varanya Techasukthavorn
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Winai Dahlan
- The Halal Science Center, Chulalongkorn University, Bangkok, Thailand
| | - Sirinuch Chomtho
- King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
|
21
|
Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, Stoicescu S, Silva MG, Picaud JC, Martinez-Costa C, Domellöf M, Billeaud C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022; 61:2167-2182. [PMID: 35072787 PMCID: PMC9106604 DOI: 10.1007/s00394-021-02788-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. METHODS 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother's blood and cord blood were established. RESULTS During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. CONCLUSIONS These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM.
Collapse
Affiliation(s)
| | - Mathilde Fleith
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Amélie Goyer
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., 1800 Vevey, Switzerland
| | | | - Patric Fontannaz
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | - Luca Lavalle
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Thameur Rakza
- Centre d’Investigation Clinique de Lille, Hôpital Jeanne de Flandre, 59777 Lille, France
| | | | | | | | | | | | | | | | | | | | - Jean-Charles Picaud
- Hospices Civils de Lyon, Neonatology, Hôpital de La Croix Rousse, Hospices civils de Lyon, 69004 Lyon, France
- Univ. Lyon, Carmen Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, 69921 Oullins, France
| | | | - Magnus Domellöf
- Department of Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | - Claude Billeaud
- Neonatology & Nutrition, CIC Pédiatrique 1401 Inserm, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
22
|
Associations of Maternal Consumption of Dairy Products during Pregnancy with Perinatal Fatty Acids Profile in the EDEN Cohort Study. Nutrients 2022; 14:nu14081636. [PMID: 35458197 PMCID: PMC9025886 DOI: 10.3390/nu14081636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Maternal diet is the main source of fatty acids for developing offspring in-utero and in breastfed infants. Dairy products (DP) are important sources of fat in the European population diet. C15:0 and C17:0 fatty acids have been suggested as biomarkers of dairy fat consumption. This study’s aim is to describe the associations between maternal DP (milk included) consumption during pregnancy and C15:0, C17:0 and polyunsaturated fatty acid (PUFA) levels in perinatal biofluids. Study populations were composed of 1763, 1337 and 879 French mothers from the EDEN (“Étude des Déterminants pre- et post-natals de la santé de l’ENfant”) study, with data on maternal and cord red blood cells’ (RBC) membrane and colostrum, respectively. Associations were assessed using linear regression models adjusted for recruitment center, maternal age, healthy dietary pattern or fish consumption. Greater adherence to a ”cheese” consumption pattern was associated with lower linoleic acid level in colostrum and higher C15:0 and C17:0 levels but in a less consistent manner for C17:0 across biofluids. Greater adherence to “semi-skimmed milk, yogurt” and “reduced-fat DP” patterns was related to higher docosahexaenoic acid and total n-3 PUFA levels and lower n-6/n-3 long-chain PUFA ratio in maternal and cord RBC. Our results suggest that C15:0 could be a good biomarker of maternal dairy fat consumption in perinatal biofluids.
Collapse
|
23
|
Garbi A, Armand M, Beltran-Anzola AA, Sarté C, Brévaut-Malaty V, Tosello B, Gire C. Effect of Massage with Oil Balanced in Essential Fatty Acids on Development and Lipid Parameters in Very Premature Neonates: A Randomized, Controlled Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040463. [PMID: 35455507 PMCID: PMC9031158 DOI: 10.3390/children9040463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Background: Oil massage versus only massage can increase preterm newborn development, especially weight gain, via a supposed percutaneous absorption of oil lipids, but data are contradictory. Aims: Investigating whether massage with a vegetable oil balanced in essential fatty acids improves neonatal weight gain, and digestive autonomy as proxy for neuro-development outcomes. Methods: A prospective monocentric randomized study was conducted in very premature newborns who received massage with oil (isio4 10 mL/kg/day, n = 18) versus with no oil (n = 18) for five consecutive days (10-min session twice daily) at a corrected gestational age of 34−35 weeks. Anthropometrics and clinical characteristics were recorded. Plasma triglyceride and total cholesterol concentrations were analyzed with an enzymatic kit. The fatty acid composition (weight%, mg/mL) of total plasma lipids and of red blood cell (RBC) membrane was analyzed by gas chromatography. Results: Weight gain velocity at the end of massage period was 12.3 ± 1.4 g/kg/day with oil vs. 9.8 ± 1.4 g/kg/day with no oil (p = 0.1). Digestive autonomy, plasma lipid parameters, polyunsaturated fatty acids in plasma total lipids or in RBC were comparable. The no oil group displayed a higher RBC level in nervonic acid at discharge (4.3 ± 0.2 vs. 3.4 ± 0.2%; p = 0.025) and in C18:1n-9 plasmalogen species at the end of the massage period and at discharge (0.73 ± 0.06 vs. 0.48 ± 0.06; 0.92 ± 0.06 vs. 0.69 ± 0.06%; p < 0.01), two molecules that are involved in neurodevelopment. Conclusions: The use of isio4 oil did not provide additional benefits for the development of very premature newborns, neither changed lipid metabolism nor polyunsaturated fatty acid biological status, which did not corroborate the existence of a percutaneous route for oil lipid absorption. The reason for different levels of nervonic acid and plasmalogen in RBC remains to be explored.
Collapse
Affiliation(s)
- Aurélie Garbi
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Martine Armand
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Any-Alejandra Beltran-Anzola
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| | - Catherine Sarté
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Véronique Brévaut-Malaty
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Barthélémy Tosello
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Correspondence:
| | - Catherine Gire
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| |
Collapse
|
24
|
Correa KDP, Silva MET, Ribeiro OS, Matta SLP, Peluzio MDCG, Oliveira EB, Coimbra JSDR. Homogenised and pasteurised human milk: lipid profile and effect as a supplement in the enteral diet of Wistar rats. Br J Nutr 2022; 127:711-721. [PMID: 33902762 DOI: 10.1017/s0007114521001380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retention of human milk (HM) fat in nasogastric probes of infusion pumps can be observed during the feed of infants unable to suck at the mother's breast. The lack of homogenisation of HM could contribute to the fat holding. Therefore, the present study evaluated (i) the influence of homogenisation on milk fat retaining in infant feeding probes and (ii) the in vivo effect of the homogenisation on lipid absorption by Wistar rats. The animals were fed with HM treated following two processing conditions, that is, pasteurised and homogenised-pasteurised. The animals were randomly subdivided into four experimental groups: water-fed (control), pasteurised milk, homogenised-pasteurised milk and pasteurised-skimmed milk. The results of food consumption, mass body gain, corporate metrics and plasma blood levels of total cholesterol did not show any difference (P < 0·05) among the three types of HM used in the experiments. The liver, intestine and intra-abdominal adipose tissue of the four groups of animals presented normal and healthy histology. The composition of fatty acids in the brain tissue of animals fed with homogenised HM increased when compared with the groups fed with non-homogenised HM. These values were 11·08 % higher for arachidonic acids, 6·59 % for DAH and 47·92 % for nervous acids. The ingestion of homogenised HM promoted higher absorption of milk nutrients. Therefore, the addition of the homogenisation stage in HM processing could be an alternative to reduce fat retention in probes and to improve the lipids' absorption in the body.
Collapse
Affiliation(s)
- Kely de Paula Correa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Monique E T Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Otávio S Ribeiro
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Sérgio L P Matta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Maria do Carmo G Peluzio
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Eduardo B Oliveira
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Jane S Dos R Coimbra
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| |
Collapse
|
25
|
Murru E, Carta G, Manca C, Saebo A, Santoni M, Mostallino R, Pistis M, Banni S. Dietary Phospholipid-Bound Conjugated Linoleic Acid and Docosahexaenoic Acid Incorporation Into Fetal Liver and Brain Modulates Fatty Acid and N-Acylethanolamine Profiles. Front Nutr 2022; 9:834066. [PMID: 35360687 PMCID: PMC8961418 DOI: 10.3389/fnut.2022.834066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
We evaluated whether maternal intake of conjugated linoleic acid (CLA) and docosahexaenoic acid (DHA) in the phospholipid (PL) form (CLA-DHA PL) affects maternal and fetal brain and liver fatty acids (FAs) profile and the biosynthesis of FA-derived bioactive lipid mediators N-acylethanolamines (NAEs) involved in several neurophysiological functions. We fed rat dams during the first 2/3 of their pregnancy a CLA-DHA PL diet containing PL-bound 0.5% CLA and 0.2% DHA. FA and NAE profiles were analyzed in maternal and fetal liver and brain by Liquid Chromatography diode array detector (LC-DAD) and MS/MS in line. We found that CLA and DHA crossed the placenta and were readily incorporated into the fetal liver and brain. CLA metabolites were also found abundantly in fetal tissues. Changes in the FA profile induced by the CLA-DHA PL diet influenced the biosynthesis of NAE derived from arachidonic acid (ARA; N-arachidonoylethanolamine, AEA) and from DHA (N-docosahexaenoylethanolamine, DHEA). The latter has been previously shown to promote synaptogenesis and neuritogenesis. The reduced tissue n6/n3 ratio was associated to a significant decrease of AEA levels in the fetal and maternal liver and an increase of DHEA in the fetal and maternal liver and in the fetal brain. Maternal dietary CLA-DHA PL by promptly modifying fetal brain FA metabolism, and thereby, increasing DHEA, might represent an effective nutritional strategy to promote neurite growth and synaptogenesis and protect the offspring from neurological and psychiatric disorders with neuroinflammatory and neurodegenerative basis during the critical prenatal period.
Collapse
Affiliation(s)
- Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- *Correspondence: Sebastiano Banni
| |
Collapse
|
26
|
Synthesis of symmetrical medium- and long-chain triacylglycerols rich in arachidonic acid at sn-2 position for infant formula. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Duttaroy AK, Basak S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front Physiol 2022; 12:787848. [PMID: 35126178 PMCID: PMC8811195 DOI: 10.3389/fphys.2021.787848] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, maternal plasma fatty acids are critically required for cell growth and development, cell signaling, and the development of critical structural and functional aspects of the feto-placental unit. In addition, the fatty acids modulate the early stages of placental development by regulating angiogenesis in the first-trimester human placenta. Preferential transport of maternal plasma long-chain polyunsaturated fatty acids during the third trimester is critical for optimal fetal brain development. Maternal status such as obesity, diabetes, and dietary intakes may affect the functional changes in lipid metabolic processes in maternal-fetal lipid transport and metabolism. Fatty acids traverse the placental membranes via several plasma membrane fatty acid transport/binding proteins (FAT, FATP, p-FABPpm, and FFARs) and cytoplasmic fatty acid-binding proteins (FABPs). This review discusses the maternal metabolism of fatty acids and their effects on early placentation, placental fatty acid transport and metabolism, and their roles in feto-placental growth and development. The review also highlights how maternal fat metabolism modulates lipid processing, including transportation, esterification, and oxidation of fatty acids.
Collapse
Affiliation(s)
- Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Asim K. Duttaroy,
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| |
Collapse
|
28
|
Doi M, Usui N, Shimada S. Prenatal Environment and Neurodevelopmental Disorders. Front Endocrinol (Lausanne) 2022; 13:860110. [PMID: 35370942 PMCID: PMC8964779 DOI: 10.3389/fendo.2022.860110] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
The internal and external environment of the mother during the developmental stages of the fetus affects the offspring's health. According to the developmental origins of health and disease (DOHaD) theory, environmental factors influence the offspring and also affect health in adulthood. Recently, studies based on this theory have gained attracted attention because of their clinical utility in identifying the risk groups for various diseases. Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) can be caused by exposure to certain prenatal environments during pregnancy. This review describes the latest findings on the effect of prenatal environment on the onset mechanism of NDDs based on the DOHaD theory. Unravelling the molecular mechanisms underlying the pathogenesis of NDDs is important, because there are no therapeutic drugs for these disorders. Furthermore, elucidating the relationship between the DOHaD theory and NDDs will contribute to the popularization of preventive medicine.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
29
|
Li S, Li J, Feng S, Bian L, Liu Z, Ping Y, Wang X, Van Schepdael A. Headspace solid-phase microextraction and on-fiber derivatization for the determination of 3-/2-MCPDE and GE in breast milk and infant formula by gas chromatography tandem mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Passeri E, Elkhoury K, Jiménez Garavito MC, Desor F, Huguet M, Soligot-Hognon C, Linder M, Malaplate C, Yen FT, Arab-Tehrany E. Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice. Int J Mol Sci 2021; 22:11859. [PMID: 34769291 PMCID: PMC8584305 DOI: 10.3390/ijms222111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Elodie Passeri
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Kamil Elkhoury
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | | | - Frédéric Desor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Marion Huguet
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Claire Soligot-Hognon
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Michel Linder
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| |
Collapse
|
31
|
Madurapperumage A, Tang L, Thavarajah P, Bridges W, Shipe E, Vandemark G, Thavarajah D. Chickpea ( Cicer arietinum L.) as a Source of Essential Fatty Acids - A Biofortification Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:734980. [PMID: 34712256 PMCID: PMC8545914 DOI: 10.3389/fpls.2021.734980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 06/12/2023]
Abstract
Chickpea is a highly nutritious pulse crop with low digestible carbohydrates (40-60%), protein (15-22%), essential fats (4-8%), and a range of minerals and vitamins. The fatty acid composition of the seed adds value because fats govern the texture, shelf-life, flavor, aroma, and nutritional composition of chickpea-based food products. Therefore, the biofortification of essential fatty acids has become a nutritional breeding target for chickpea crop improvement programs worldwide. This paper examines global chickpea production, focusing on plant lipids, their functions, and their benefits to human health. In addition, this paper also reviews the chemical analysis of essential fatty acids and possible breeding targets to enrich essential fatty acids in chickpea (Cicer arietinum) biofortification. Biofortification of chickpea for essential fatty acids within safe levels will improve human health and support food processing to retain the quality and flavor of chickpea-based food products. Essential fatty acid biofortification is possible by phenotyping diverse chickpea germplasm over suitable locations and years and identifying the candidate genes responsible for quantitative trait loci mapping using genome-wide association mapping.
Collapse
Affiliation(s)
- Amod Madurapperumage
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Leung Tang
- Agilent Technologies, Glasgow, United Kingdom
| | | | - William Bridges
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Emerson Shipe
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - George Vandemark
- Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman, WA, United States
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
32
|
Chen Y, Miura Y, Sakurai T, Chen Z, Shrestha R, Kato S, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Imai H, Minami H, Mizuta M, Hui SP. Comparison of dimension reduction methods on fatty acids food source study. Sci Rep 2021; 11:18748. [PMID: 34548525 PMCID: PMC8455623 DOI: 10.1038/s41598-021-97349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Serum fatty acids (FAs) exist in the four lipid fractions of triglycerides (TGs), phospholipids (PLs), cholesteryl esters (CEs) and free fatty acids (FFAs). Total fatty acids (TFAs) indicate the sum of FAs in them. In this study, four statistical analysis methods, which are independent component analysis (ICA), factor analysis, common principal component analysis (CPCA) and principal component analysis (PCA), were conducted to uncover food sources of FAs among the four lipid fractions (CE, FFA, and TG + PL). Among the methods, ICA provided the most suggestive results. To distinguish the animal fat intake from endogenous fatty acids, FFA variables in ICA and factor analysis were studied. ICA provided more distinct suggestions of FA food sources (endogenous, plant oil intake, animal fat intake, and fish oil intake) than factor analysis. Moreover, ICA was discovered as a new approach to distinguish animal FAs from endogenous FAs, which will have an impact on epidemiological studies. In addition, the correlation coefficients between a published dataset of food FA compositions and the loading values obtained in the present ICA study suggested specific foods as serum FA sources. In conclusion, we found that ICA is a useful tool to uncover food sources of serum FAs.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Yusuke Miura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Rojeet Shrestha
- Patients Choice Laboratories, 7026 Corporate Dr, Indianapolis, IN, 46278, USA
| | - Sota Kato
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Osaka City University Graduate School of Human Life Science, Osaka, 558-8585, Japan
| | | | - Koshi Nakamura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Akiko Tamakoshi
- Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, 007-0894, Japan
| | - Hideyuki Imai
- Faculty of Information Science and Technology, Computer Science and Information Technology Mathematical Science, Hokkaido University, Sapporo, 060-0814, Japan
| | - Hiroyuki Minami
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Masahiro Mizuta
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan.
| |
Collapse
|
33
|
Balogun KA, Zuromski LM, Kim R, Anderson A, Lozier B, Kish-Trier E, Yuzyuk T. Establishing age-stratified red blood cell fatty acid reference ranges using model-based clustering and iterative application of the harris-boyd method. Clin Biochem 2021; 97:25-33. [PMID: 34329622 DOI: 10.1016/j.clinbiochem.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The current assessment of nutritional status and diagnosis of essential fatty acids deficiency (EFAD) utilizes the analysis of long-chain fatty acids (LCFAs) in serum or plasma; however, these concentrations do not represent habitual LCFA intake. LCFAs in red blood cells (RBCs) are less prone to intra-individual variability and exclude the need for fasting, which is unrealistic in pediatric populations. Our study objective was to characterize the RBC LCFA profiles in pediatric and adult reference populations and establish age-specific reference intervals (RIs). METHODS Twenty-one LCFAs in RBCs were measured in 523 pediatric and adult controls by gas chromatography-mass spectrometry. Model-based clustering was used to identify possible age subgroups. After removing outliers by the Tukey method, initial age subgroups were then compared using the Harris-Boyd method in an iterative manner. RIs (95%), with confidence intervals (90%), in the final age groups were established using parametric or non-parametric statistics. RESULTS Our data showed heterogeneous changes in the concentrations of most LCFAs and the EFAD biomarkers (mead acid, Triene/Tetraene ratio) during infancy. Model-based clustering identified six initial age subgroups per fatty acid, on average. Our application of the iterative Harris-Boyd method decreased the average number of age groups to three per fatty acid, with 13 total unique age cut-offs. Finally, using these age groups, we established age-specific RIs for 21 fatty acids, six group totals, and the Triene/Tetraene ratio. CONCLUSION Our study revealed significant age-dependent changes in RBC fatty acid profiles warranting separate pediatric and adults RIs. Model-based clustering and the iterative application of the Harris-Boyd method were successfully used to establish RBC fatty acid RIs for an objective assessment of long-term nutritional status in pediatric and adult populations.
Collapse
Affiliation(s)
- Kayode A Balogun
- Department of Pathology, University of Utah, Salt Lake City, UT, United States; ARUP Laboratories, Salt Lake City, UT, United States
| | - Lauren M Zuromski
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Rachel Kim
- ARUP Laboratories, Salt Lake City, UT, United States
| | - Austin Anderson
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Bucky Lozier
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Erik Kish-Trier
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, United States; ARUP Laboratories, Salt Lake City, UT, United States.
| |
Collapse
|
34
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
35
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
36
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
37
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021; 13:2061. [PMID: 34208549 PMCID: PMC8234848 DOI: 10.3390/nu13062061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India;
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
38
|
Hayashi Y, Lee-Okada HC, Nakamura E, Tada N, Yokomizo T, Fujiwara Y, Ichi I. Ablation of fatty acid desaturase 2 (FADS2) exacerbates hepatic triacylglycerol and cholesterol accumulation in polyunsaturated fatty acid-depleted mice. FEBS Lett 2021; 595:1920-1932. [PMID: 34008174 DOI: 10.1002/1873-3468.14134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Deficiency of polyunsaturated fatty acids (PUFAs) is known to induce hepatic steatosis. However, it is not clearly understood which type of PUFA is responsible for the worsening of steatosis. This study observed a marked accumulation of hepatic triacylglycerol and cholesterol in fatty acid desaturase 2 knockout (FADS2-/- ) mice lacking both C18 and ≥ C20 PUFAs that were fed a PUFA-depleted diet. Hepatic triacylglycerol accumulation was associated with enhanced sterol regulatory element-binding protein (SREBP)-1-dependent lipogenesis and decreased triacylglycerol secretion into the plasma via very-low-density lipoprotein (VLDL). Furthermore, upregulation of cholesterol synthesis contributed to increased hepatic cholesterol content in FADS2-/- mice. These results suggest that ≥ C20 PUFAs synthesized by FADS2 are important in regulating hepatic triacylglycerol and cholesterol accumulation during PUFA deficiency.
Collapse
Affiliation(s)
- Yuri Hayashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Fujiwara
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
39
|
McBurney MI, Blumberg JB, Costello RB, Eggersdorfer M, Erdman JW, Harris WS, Johnson EJ, Hazels Mitmesser S, Post RC, Rai D, Schurgers LJ. Beyond Nutrient Deficiency-Opportunities to Improve Nutritional Status and Promote Health Modernizing DRIs and Supplementation Recommendations. Nutrients 2021; 13:1844. [PMID: 34071268 PMCID: PMC8229216 DOI: 10.3390/nu13061844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The US Dietary Guidelines for Americans (DGA) provide dietary recommendations to meet nutrient needs, promote health, and prevent disease. Despite 40 years of DGA, the prevalence of under-consumed nutrients continues in the US and globally, although dietary supplement use can help to fill shortfalls. Nutrient recommendations are based on Dietary Reference Intakes (DRIs) to meet the nutrient requirements for nearly all (97 to 98 percent) healthy individuals in a particular life stage and gender group and many need to be updated using current evidence. There is an opportunity to modernize vitamin and mineral intake recommendations based on biomarker or surrogate endpoint levels needed to 'prevent deficiency' with DRIs based on ranges of biomarker or surrogate endpoints levels that support normal cell/organ/tissue function in healthy individuals, and to establish DRIs for bioactive compounds. We recommend vitamin K and Mg DRIs be updated and DRIs be established for lutein and eicosapentaenoic and docosahexaenoic acid (EPA + DHA). With increasing interest in personalized (or precision) nutrition, we propose greater research investment in validating biomarkers and metabolic health measures and the development and use of inexpensive diagnostic devices. Data generated from such approaches will help elucidate optimal nutrient status, provide objective evaluations of an individual's nutritional status, and serve to provide personalized nutrition guidance.
Collapse
Affiliation(s)
- Michael I. McBurney
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1H 0B5, Canada
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | - Jeffrey B. Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | | | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA;
| | - William S. Harris
- Department of Internal Medicine, University of South Dakota, Sioux Falls, SD 57105, USA;
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA
| | - Elizabeth J. Johnson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | | | - Robert C. Post
- FoodTrition Solutions, LLC, Hackettstown, NJ 07840, USA;
| | - Deshanie Rai
- Global Regulatory and Scientific Affairs, Omniactive Health Technologies, Morristown, NJ 07960, USA;
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
40
|
Host-microbial interactions in the metabolism of different dietary fats. Cell Metab 2021; 33:857-872. [PMID: 33951472 DOI: 10.1016/j.cmet.2021.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Although generally presumed to be isocaloric, dietary fats can differ in their energetic contributions and metabolic effects. Here, we show how an explicit consideration of the gut microbiome and its interactions with human physiology can enrich our understanding of dietary fat metabolism. We outline how variable human metabolic responses to different dietary fats, such as altered ileal digestibility or bile acid production, have downstream effects on the gut microbiome that differentially promote energy gain and inflammation. By incorporating host-microbial interactions into energetic models of human nutrition, we can achieve greater insight into the underlying mechanisms of diet-driven metabolic disease.
Collapse
|
41
|
Hahn K, Hardimon JR, Caskey D, Jost DA, Roady PJ, Brenna JT, Dilger RN. Safety and Efficacy of Sodium and Potassium Arachidonic Acid Salts in the Young Pig. Nutrients 2021; 13:nu13051482. [PMID: 33925724 PMCID: PMC8145490 DOI: 10.3390/nu13051482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.
Collapse
Affiliation(s)
- Kaylee Hahn
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | | | - Doug Caskey
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Douglas A. Jost
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Patrick J. Roady
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, Austin, TX 78723, USA;
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
42
|
Unsaturated fatty acids as a co-therapeutic agents in cancer treatment. Mol Biol Rep 2021; 48:2909-2916. [PMID: 33821440 DOI: 10.1007/s11033-021-06319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Chemotherapy is standard treatments for many malignancies. However, in most cases, this method is not able to induce apoptosis and in many cases, with cancer recurrence, leads to patient death. There are several procedure to control and suppress malignant cells, but among these methods, administration of ɷ-3 fatty acids and ɷ-6 fatty due to their destructive effects on cancer cells is more prominent. Many clinical studies have shown beneficial effects of ɷ-3 and ɷ-6 fatty acids in cardiovascular disorders, asthma, rheumatoid arthritis, osteoporosis and in most cancers such as colon, breast, prostate and other malignancies. Studies showed that polyunsaturated fatty acids (PUFAs) have a toxic effect on cancer cells. However, the exact mechanism of how ɷ- fatty acids affect cancer cells is still unknown. In this review alternative issues of malignancies co-treatments agents such as PUFAs have been studied. Also, the latest known PUFAs mechanisms on malignancies have been described.
Collapse
|
43
|
Gorica E, Calderone V. Arachidonic Acid Derivatives and Neuroinflammation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:118-129. [PMID: 33557740 DOI: 10.2174/1871527320666210208130412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.
Collapse
Affiliation(s)
- Era Gorica
- Department of Pharmacy, University of Pisa, Pisa. Italy
| | | |
Collapse
|
44
|
Ueda M, Maeda MJ, Burke FM, Hegele RA, Gleghorn EE, Rader DJ, Malloy MJ. Successful Nutritional Intervention for an Infant with Abetalipoproteinemia: A Novel Modular Formula (AbetaMF). JPGN REPORTS 2021; 2:e049. [PMID: 37206948 PMCID: PMC10191596 DOI: 10.1097/pg9.0000000000000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 05/21/2023]
Abstract
Supplemental Digital Content is available in the text.
Collapse
Affiliation(s)
- Masako Ueda
- From the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Frances M. Burke
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Health System. Philadelphia, PA
| | - Robert A. Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elizabeth E. Gleghorn
- Department of Pediatrics, Division of Gastroenterology, University of California San Francisco, Benioff Children's Hospital, Oakland, CA
| | - Daniel J. Rader
- From the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary J. Malloy
- Departments of Pediatrics and Medicine, Cardiovascular Research Institute, University of California School of Medicine, San Francisco, CA
| |
Collapse
|
45
|
Hayashi Y, Yokomizo Y, Fujiwara Y, Ichi I. The effect of polyunsaturated fatty acid deficiency on allergic response in ovalbumin-immunized mice. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102231. [PMID: 33373962 DOI: 10.1016/j.plefa.2020.102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/18/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are present in biological membranes and influence membrane fluidity and immune responses. PUFAs such as 18:2n-6 and 18:3n-3 cannot be synthesized de novo in mammals and are thus called essential fatty acids (EFAs). In addition, PUFAs can be converted to very long-chain PUFAs (VLC-PUFAs), such as arachidonic acid and docosahexaenoic acid, in the body. Although avoiding allergens is an effective strategy for food-allergy patients, the dietary exclusion of several allergens reportedly induces deficiencies in essential nutrients such as PUFAs. In this study, we investigated whether an EFA-deficient (EFAD) diet influenced allergic symptoms in ovalbumin (OVA)-immunized mice. Unexpectedly, no exacerbation of immune responses after OVA-sensitization was observed in mice fed an EFAD diet, and no differences in serum PUFA levels between OVA-immunized and non-immunized mice fed the EFAD diet were detected. However, levels of VLC-PUFAs in the small intestine increased after OVA-sensitization and did not decrease during EFAD diet administration, showing that small intestinal VLC-PUFAs levels were strongly preserved in the food-allergy model mice. Further studies are required to elucidate the mechanisms by which small intestinal VLC-PUFAs are retained in food-allergy model mice.
Collapse
Affiliation(s)
- Yuri Hayashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yuka Yokomizo
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoko Fujiwara
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan; Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan; Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
46
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020; 12:nu12123615. [PMID: 33255561 PMCID: PMC7759779 DOI: 10.3390/nu12123615] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Dietary components are essential for the structural and functional development of the brain. Among these, docosahexaenoic acid, 22:6n-3 (DHA), is critically necessary for the structure and development of the growing fetal brain in utero. DHA is the major n-3 long-chain polyunsaturated fatty acid in brain gray matter representing about 15% of all fatty acids in the human frontal cortex. DHA affects neurogenesis, neurotransmitter, synaptic plasticity and transmission, and signal transduction in the brain. Data from human and animal studies suggest that adequate levels of DHA in neural membranes are required for maturation of cortical astrocyte, neurovascular coupling, and glucose uptake and metabolism. Besides, some metabolites of DHA protect from oxidative tissue injury and stress in the brain. A low DHA level in the brain results in behavioral changes and is associated with learning difficulties and dementia. In humans, the third trimester-placental supply of maternal DHA to the growing fetus is critically important as the growing brain obligatory requires DHA during this window period. Besides, DHA is also involved in the early placentation process, essential for placental development. This underscores the importance of maternal intake of DHA for the structural and functional development of the brain. This review describes DHA’s multiple roles during gestation, lactation, and the consequences of its lower intake during pregnancy and postnatally on the 2019 brain development and function.
Collapse
|
48
|
Hahn KE, Dahms I, Butt CM, Salem N, Grimshaw V, Bailey E, Fleming SA, Smith BN, Dilger RN. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front Nutr 2020; 7:592364. [PMID: 33195377 PMCID: PMC7658628 DOI: 10.3389/fnut.2020.592364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA) profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants that are more like those observed in breastfed infants. Consequently, ARA and DHA have been historically added together to infant formula. This study investigated the impact of ARA or DHA supplementation alone or in combination on tissue FA incorporation, immune responses, and neurodevelopment in the young pig. Methods: Male pigs (N = 48 total) received one of four dietary treatments from postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80). Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis. Blood was collected for T cell immunophenotyping and to quantify a panel of immune outcomes. Myelin thickness in the corpus callosum was measured by transmission electron microscopy and pig movement was measured by actigraphy. Results: There were no differences in formula intake or growth between dietary groups. DHA supplementation increased brain DHA, but decreased ARA, compared with all other groups. ARA supplementation increased brain ARA compared with all other groups but did not affect brain DHA. Combined supplementation increased brain DHA levels but did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had the highest. No differences were observed for immune or myelination outcomes. Conclusion: Supplementation with ARA and DHA did not differentially affect immune responses, but ARA levels in RBC and PFC were reduced when DHA was provided without ARA. Supplementation of either ARA or DHA alone induced differences in time spent asleep, and ARA inclusion increased general activity. Therefore, the current data support the combined supplementation with both ARA and DHA in infant formula and raise questions regarding the safety and nutritional suitability of ARA or DHA supplementation individually.
Collapse
Affiliation(s)
- Kaylee E Hahn
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States
| | - Irina Dahms
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD, United States
| | | | - Eileen Bailey
- DSM Nutritional Products, Columbia, MD, United States
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Brooke N Smith
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
49
|
Jo DS, Park NY, Cho DH. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med 2020; 52:1486-1495. [PMID: 32917959 PMCID: PMC8080768 DOI: 10.1038/s12276-020-00503-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the role of the peroxisome in physiology and disease conditions has become increasingly important. Together with the mitochondria and other cellular organelles, peroxisomes support key metabolic platforms for the oxidation of various fatty acids and regulate redox conditions. In addition, peroxisomes contribute to the biosynthesis of essential lipid molecules, such as bile acid, cholesterol, docosahexaenoic acid, and plasmalogen. Therefore, the quality control mechanisms that regulate peroxisome biogenesis and degradation are important for cellular homeostasis. Current evidence indicates that peroxisomal function is often reduced or dysregulated in various human disease conditions, such as neurodegenerative diseases. Here, we review the recent progress that has been made toward understanding the quality control systems that regulate peroxisomes and their pathological implications. Systematic studies of cellular organelles called peroxisomes are needed to determine their influence on the progression of neurodegenerative diseases. Peroxisomes play vital roles in biological processes including the metabolism of lipids and reactive oxygen species, and the synthesis of key molecules, including bile acid and cholesterol. Disruption to peroxisome activity has been linked to metabolic disorders, cancers and neurodegenerative conditions. Dong-Hyung Cho at Kyungpook National University in Daegu, South Korea, and coworkers reviewed current understanding of peroxisome regulation, with a particular focus on brain disorders. The quantity and activity of peroxisomes alter according to environmental and stress cues. The brain is lipid-rich, and even small changes in fatty acid composition may influence neuronal function. Changes in fatty acid metabolism are found in early stage Alzheimer’s and Parkinson’s diseases, but whether peroxisome disruption is responsible requires clarification.
Collapse
Affiliation(s)
- Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea. .,School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
50
|
Quantitative analyses of essential fatty acids in cereals and green vegetables by isotope dilution-gas chromatography/mass spectrometry. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00237-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAn analytical method for the accurate determination of essential fatty acids in cereals and green vegetables is established based on isotope dilution-gas chromatography/mass spectrometry (ID-GC/MS). In this approach, 13C-labeled fatty acids were added as internal standards to the samples prior to the sample preparation. Repeatability and reproducibility for the analyses of the essential fatty acids extracted from homogenized cereals and green vegetables were examined to validate the ID-GC/MS method. The repeatability and reproducibility were within 2% relative standard deviation. The developed method provides higher-order measurement results with the relative expanded uncertainties of 1–2% and 2–4% for cereals and green vegetables, respectively. Based on the fatty acid measurements, the developed ID-GC/MS method can be used as a candidate reference method for the quantitation of essential fatty acids in cereals and green vegetables. The developed method was also applied to analyze several commercially available products including cereal and vegetable powders.
Collapse
|