1
|
Zhang Z, Scanlan A, Koneru R, Morrell CR, Reece MD, Edwards E, Roa S, Gavegnano C, Bimonte-Nelson H, Arbiser J, Tyor W. Honokiol hexafluoro confers reversal of neuropathological markers of HIV infection in a murine SCID model. Neurotherapeutics 2024; 21:e00329. [PMID: 38388224 PMCID: PMC10943487 DOI: 10.1016/j.neurot.2024.e00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cognitive impairment remains a persistent challenge in people living with HIV (PWLH) despite antiretroviral therapy (ART) due to ART's inability to eliminate brain HIV. HIV-induced cognitive dysfunction results from immune dysregulation, ongoing neuroinflammation, and the continuous virus presence, collectively contributing to cognitive deficits. Therefore, adjunctive therapies are needed to reduce cerebral HIV reservoirs, mitigate neuroinflammation, and impede cognitive dysfunction progression. Our study focused on Honokiol, known for its anti-inflammatory and neuroprotective properties, in an experimental mouse model simulating HIV-induced cognitive dysfunction. Using Honokiol Hexafluoro (HH), a synthetic analogue, we comprehensively evaluated its potential to ameliorate cognitive dysfunction and cerebral pathology in HIV-associated cognitive dysfunction. Our findings showed that HH treatment effectively reversed HIV-induced cognitive dysfunction, concurrently suppressing astrocyte activation, restoring neuronal dendritic arborization, and reducing microglial activation. Furthermore, HH remodeled the metabolic profile of HIV-infected human monocyte-derived macrophages, resulting in decreased activation and the promotion of a quiescent state in vitro.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Rajeth Koneru
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Chelsea Richardson Morrell
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily Edwards
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sebastian Roa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina Gavegnano
- Atlanta VA Medical Center, Decatur, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA; Center for the Study of Human Health, Emory College, Atlanta, GA, USA; Harvard Medical School, Center for Bioethics, Boston, MA, USA
| | | | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, USA; Metroderm/United Derm Partners, Atlanta, GA, USA
| | - William Tyor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
2
|
Jia C, Long Q, Ernst T, Shang Y, Chang L, Adali T. Independent Component and Graph Theory Analyses Reveal Normalized Brain Networks on Resting-State Functional MRI After Working Memory Training in People With HIV. J Magn Reson Imaging 2023; 57:1552-1564. [PMID: 36165907 PMCID: PMC10040468 DOI: 10.1002/jmri.28439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown. PURPOSE To test whether WMT affects PWH brain functional connectivity in resting-state fMRI (rsfMRI). STUDY TYPE Prospective. POPULATION A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53 HIV-seronegative controls (SN, ages 49.5 ± 1.6 years, six women). FIELD STRENGTH/SEQUENCE Axial single-shot gradient-echo echo-planar imaging at 3.0 T was performed at baseline (TL1), at 1-month (TL2), and at 6-months (TL3), after WMT. ASSESSMENT All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training, n = 58: 28 PWH, 30 SN; nonadaptive training, n = 48: 25 PWH, 23 SN), 25 sessions over 5-8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2. STATISTICAL TESTS Two-way analyses of variance (ANOVA) on GT metrics and two-sample t-tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set at P < 0.05 after false discovery rate correction. RESULTS The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = -0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%). DATA CONCLUSION ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Chunying Jia
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Yuanqi Shang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Rivera J, Isidro RA, Loucil-Alicea RY, Cruz ML, Appleyard CB, Isidro AA, Chompre G, Colon-Rivera K, Noel RJ. Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood-brain-barrier permeability. PLoS One 2019; 14:e0225760. [PMID: 31774879 PMCID: PMC6881014 DOI: 10.1371/journal.pone.0225760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Collapse
Affiliation(s)
- Jocelyn Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Raymond A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Raisa Y. Loucil-Alicea
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Angel A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gladys Chompre
- Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
| | - Krystal Colon-Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
4
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
5
|
Womersley JS, Seedat S, Hemmings SMJ. Childhood maltreatment and HIV-associated neurocognitive disorders share similar pathophysiology: a potential sensitisation mechanism? Metab Brain Dis 2017; 32:1717-1733. [PMID: 28681198 DOI: 10.1007/s11011-017-0062-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) are increasingly prevalent despite the use of antiretroviral therapies. Previous research suggests that individual host factors play an important role in determining susceptibility to HAND. In this review, we propose that childhood trauma (CT) and HAND share several common aetiological mechanisms, namely hypothalamic-pituitary-adrenal axis dysregulation, neuroinflammation and oxidative stress. These convergent and consequent mechanisms may translate into an increased risk of developing HAND in individuals who have experienced early life stress. We provide an overview of basic and clinical research relating to these pathophysiological mechanisms and suggest that further research examine brain-derived neurotrophic factor and telomere length as common mediating factors and potential therapeutic targets for HAND and CT. Graphical abstract Both childhood trauma and HIV-associated neurocognitive disorders are associated with HPA axis dysregulation, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
6
|
Rahimy E, Li FY, Hagberg L, Fuchs D, Robertson K, Meyerhoff DJ, Zetterberg H, Price RW, Gisslén M, Spudich S. Blood-Brain Barrier Disruption Is Initiated During Primary HIV Infection and Not Rapidly Altered by Antiretroviral Therapy. J Infect Dis 2017; 215:1132-1140. [PMID: 28368497 DOI: 10.1093/infdis/jix013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Abstract
Background We explored the establishment of abnormal blood-brain barrier (BBB) permeability and its relationship to neuropathogenesis during primary human immunodeficiency virus (HIV) infection by evaluating the cerebrospinal fluid (CSF) to serum albumin quotient (QAlb) in patients with primary HIV infection. We also analyzed effects of initiating combination antiretroviral therapy (cART). Methods The QAlb was measured in longitudinal observational studies of primary HIV infection. We analyzed trajectories of the QAlb before and after cART initiation, using mixed-effects models, and associations between the QAlb and the CSF level of neurofilament light chain (NFL), the ratio of N-acetylaspartate to creatinine levels (a magnetic resonance spectroscopy neuronal integrity biomarker), and neuropsychological performance. Results The baseline age-adjusted QAlb was elevated in 106 patients with primary HIV infection (median time of measurement, 91 days after infection), compared with that in 64 controls (P = .02). Before cART initiation, the QAlb increased over time in 84 participants with a normal baseline QAlb (P = .006) and decreased in 22 with a high baseline QAlb (P = .011). The QAlb did not change after a median cART duration of 398 days, initiated at a median interval of 225 days after infection (P = .174). The QAlb correlated with the NFL level at baseline (r = 0.497 and P < .001) and longitudinally (r = 0.555 and P < .001) and with the ratio of N-acetylaspartate to creatinine levels in parietal gray matter (r = -0.352 and P < .001 at baseline and r = -0.387 and P = .008 longitudinally) but not with neuropsychological performance. Conclusion The QAlb rises during primary HIV infection, associates with neuronal injury, and does not significantly improve over a year of treatment. BBB-associated neuropathogenesis in HIV-infected patients may initiate during primary infection.
Collapse
Affiliation(s)
| | - Fang-Yong Li
- Yale Center for Analytical Sciences, Yale University, New Haven, Connecticut
| | | | - Dietmar Fuchs
- Division of Biological Chemistry, Innsbruck Medical University, Austria; and
| | - Kevin Robertson
- Department of Neurology, University of North Carolina, Chapel Hill
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, and.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, United Kingdom
| | - Richard W Price
- Department of Neurology, University of California, San Francisco
| | | | | |
Collapse
|
7
|
Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J Neurovirol 2017; 23:460-473. [PMID: 28247269 DOI: 10.1007/s13365-017-0518-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Collapse
|
8
|
Effect of Cocaine on HIV Infection and Inflammasome Gene Expression Profile in HIV Infected Macrophages. Sci Rep 2016; 6:27864. [PMID: 27321752 PMCID: PMC4913267 DOI: 10.1038/srep27864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
We have observed significantly increased HIV infection in HIV infected macrophages in the presence of cocaine that could be due to the downregulation of BST2 restriction factor in these cells. In human inflammasome PCR array, among different involved in inflammasome formation, in HIV infected macrophages in the presence of cocaine, we have observed significant upregulation of NLRP3, AIM2 genes and downstream genes IL-1β and PTGS2. Whereas negative regulatory gene MEFV was upregulated, CD40LG and PYDC1 were significantly downregulated. Among various NOD like receptors, NOD2 was significantly upregulated in both HIV alone and HIV plus cocaine treated cells. In the downstream genes, chemokine (C-C motif) ligand 2 (CCL2), CCL7 and IL-6 were significantly up regulated in HIV plus cocaine treated macrophages. We have also observed significant ROS production (in HIV and/or cocaine treated cells) which is one of the indirect-activators of inflammasomes formation. Further, we have observed early apoptosis in HIV alone and HIV plus cocaine treated macrophages which may be resultant of inflammasome formation and cspase-1 activation. These results indicate that in case of HIV infected macrophages exposed to cocaine, increased ROS production and IL-1β transcription serve as an activators for the formation of NLRP3 and AIM2 mediated inflammasomes that leads to caspase 1 mediated apoptosis.
Collapse
|
9
|
Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, Valente ST. Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res 2015; 13:64-79. [PMID: 25613133 DOI: 10.2174/1570162x13666150121111548] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
Abstract
HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1β, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susana T Valente
- Department of Infectious diseases, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
11
|
Verma V, Bali A, Singh N, Jaggi AS. Implications of sodium hydrogen exchangers in various brain diseases. J Basic Clin Physiol Pharmacol 2015; 26:417-426. [PMID: 26020555 DOI: 10.1515/jbcpp-2014-0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
Collapse
|
12
|
Liu X, Kumar A. Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes. Sci Rep 2015; 5:9867. [PMID: 26075907 PMCID: PMC4467202 DOI: 10.1038/srep09867] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
Variety of HIV-1 viral proteins including HIV-1 Nef are known to activate astrocytes and microglia in the brain and cause the release of pro-inflammatory cytokines, which is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. IL-6 and IL-8 have been found in the CSF of patients with HIV-1 associated dementia (HAD), suggesting that they might play important roles in HIV-1 neuropathology. In the present study we examined the effects of HIV-1 Nef on IL-6 and IL-8 induction in astrocytes. The results demonstrate that both IL-6 and IL-8 are significantly induced in HIV-1 Nef-transfected SVGA astrocytes and HIV-1 Nef-treated primary fetal astrocytes. We also determined the molecular mechanisms responsible for the HIV-1 Nef-induced increased IL-6 and IL-8 by using chemical inhibitors and siRNAs against PI3K/Akt/PKC, p38 MAPK, NF-κB, CEBP and AP-1. Our results clearly demonstrate that the PI3K/PKC, p38 MAPK, NF-κB and AP-1 pathways are involved in HIV-1 Nef-induced IL-6 production in astrocytes, while PI3K/PKC and NF-κB pathways are involved in HIV-1 Nef-induced IL-8 production. These results offer new potential targets to develop therapeutic strategy for treatment of HIV-1 associated neurological disorders, prevalent in > 40% of individuals infected with HIV-1.
Collapse
Affiliation(s)
- Xun Liu
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108
| |
Collapse
|
13
|
Gruol DL, Vo K, Bray JG. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci 2014; 8:234. [PMID: 25177271 PMCID: PMC4132577 DOI: 10.3389/fncel.2014.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Emerging research has identified that neuroimmune factors are produced by cells of the central nervous system (CNS) and play critical roles as regulators of CNS function, directors of neurodevelopment and responders to pathological processes. A wide range of neuroimmune factors are produced by CNS cells, primarily the glial cells, but the role of specific neuroimmune factors and their glial cell sources in CNS biology and pathology have yet to be fully elucidated. We have used transgenic mice that express elevated levels of a specific neuroimmune factor, the cytokine IL-6 or the chemokine CCL2, through genetic modification of astrocyte expression to identify targets of astrocyte produced IL-6 or CCL2 at the protein level. We found that in non-transgenic mice constitutive expression of IL-6 and CCL2 occurs in the two CNS regions studied, the hippocampus and cerebellum, as measured by ELISA. In the CCL2 transgenic mice elevated levels of CCL2 were evident in the hippocampus and cerebellum, whereas in the IL-6 transgenic mice, elevated levels of IL-6 were only evident in the cerebellum. Western blot analysis of the cellular and synaptic proteins in the hippocampus and cerebellum of the transgenic mice showed that the elevated levels of CCL2 or IL-6 resulted in alterations in the levels of specific proteins and that these actions differed for the two neuroimmune factors and for the two brain regions. These results are consistent with cell specific profiles of action for IL-6 and CCL2, actions that may be an important aspect of their respective roles in CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Khanh Vo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Jennifer G Bray
- Department of Biology, University of Wisconsin-Stevens Point Stevens Point, WI, USA
| |
Collapse
|
14
|
Viviani B, Boraso M, Marchetti N, Marinovich M. Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 2014; 43:10-20. [PMID: 24662010 DOI: 10.1016/j.neuro.2014.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.
Collapse
Affiliation(s)
- Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Mariaserena Boraso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Natalia Marchetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Nelson TE, Olde Engberink A, Hernandez R, Puro A, Huitron-Resendiz S, Hao C, De Graan PNE, Gruol DL. Altered synaptic transmission in the hippocampus of transgenic mice with enhanced central nervous systems expression of interleukin-6. Brain Behav Immun 2012; 26:959-71. [PMID: 22609298 PMCID: PMC3427030 DOI: 10.1016/j.bbi.2012.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/06/2012] [Accepted: 05/09/2012] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of the inflammatory cytokine interleukin-6 (IL-6) occur in a number of CNS disorders. However, little is known about how this condition affects CNS neuronal function. Transgenic mice that express elevated levels of IL-6 in the CNS show cognitive changes, increased propensity for hippocampal seizures and reduced number of inhibitory interneurons, suggesting that elevated levels of IL-6 can cause neuroadaptive changes that alter hippocampal function. To identify these neuroadaptive changes, we measured the levels of protein expression using Western blot analysis and synaptic function using field potential recordings in hippocampus from IL-6 transgenic mice (IL-6 tg) and their non-transgenic (non-tg) littermates. Western blot analysis showed enhanced levels of the GFAP and STAT3 in the IL-6 tg hippocampus compared with the non-tg hippocampus, but no difference for several other proteins. Field potential recordings of synaptic transmission at the Schaffer collateral to CA1 synapse showed enhanced dendritic excitatory postsynaptic potentials and somatic population spikes in the CA1 region of hippocampal slices from IL-6 tg mice compared with slices from non-tg littermate controls. No differences were observed for several forms of short-term and long-term synaptic plasticity between hippocampal slices from IL-6 tg and non-tg mice. These results demonstrate that elevated levels of IL-6 can alter mechanisms involved in the excitability of hippocampal neurons and synapses, an effect consistent with recent evidence indicating that elevated production of IL-6 plays an important role in conditions associated with seizure activity and in other impairments observed in CNS disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- T E Nelson
- Molecular and Integrative Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|
17
|
Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 2012; 7:24-41. [PMID: 21822589 PMCID: PMC3267003 DOI: 10.1007/s11481-011-9299-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/14/2011] [Indexed: 12/15/2022]
Abstract
Cognitive decline is a common problem of aging. Whereas multiple neural and glial mechanisms may account for these declines, microglial sensitization and/or dystrophy has emerged as a leading culprit in brain aging and dysfunction. However, glial activation is consistently observed in normal brain aging as well, independent of frank neuroinflammation or functional impairment. Such variability suggests the existence of additional vulnerability factors that can impact neuronal-glial interactions and thus overall brain and cognitive health. The goal of this review is to elucidate our working hypothesis that an individual's risk or resilience to neuroinflammatory disorders and poor cognitive aging may critically depend on their early life experience, which can change immune reactivity within the brain for the remainder of the lifespan. For instance, early-life infection in rats can profoundly disrupt memory function in young adulthood, as well as accelerate age-related cognitive decline, both of which are linked to enduring changes in glial function that occur in response to the initial infection. We discuss these findings within the context of the growing literature on the role of immune molecules and neuroimmune crosstalk in normal brain development. We highlight the intrinsic factors (e.g., chemokines, hormones) that regulate microglial development and their colonization of the embryonic and postnatal brain, and the capacity for disruption or "re-programming" of this crucial process by external events (e.g., stress, infection). An impact on glia, which in turn alters neural development, has the capacity to profoundly impact cognitive and mental health function at all stages of life.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
18
|
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) is critical for normal hippocampus (HP)-dependent cognition, whereas high levels can disrupt memory and are implicated in neurodegeneration. However, the cellular source of IL-1β during learning has not been shown, and little is known about the risk factors leading to cytokine dysregulation within the HP. We have reported that neonatal bacterial infection in rats leads to marked HP-dependent memory deficits in adulthood. However, deficits are only observed if unmasked by a subsequent immune challenge [lipopolysaccharide (LPS)] around the time of learning. These data implicate a long-term change within the immune system that, upon activation with the "second hit," LPS, acutely impacts the neural processes underlying memory. Indeed, inhibiting brain IL-1β before the LPS challenge prevents memory impairment in neonatally infected (NI) rats. We aimed to determine the cellular source of IL-1β during normal learning and thereby lend insight into the mechanism by which this cytokine is enduringly altered by early-life infection. We show for the first time that CD11b(+) enriched cells are the source of IL-1β during normal HP-dependent learning. CD11b(+) cells from NI rats are functionally sensitized within the adult HP and produce exaggerated IL-1β ex vivo compared with controls. However, an exaggerated IL-1β response in vivo requires LPS before learning. Moreover, preventing microglial activation during learning prevents memory impairment in NI rats, even following an LPS challenge. Thus, early-life events can significantly modulate normal learning-dependent cytokine activity within the HP, via a specific, enduring impact on brain microglial function.
Collapse
|
19
|
HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2011; 61:807-14. [PMID: 21756955 DOI: 10.1016/j.neuint.2011.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
Abstract
HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.
Collapse
|
20
|
Bachis A, Cruz MI, Mocchetti I. M-tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T-tropic gp120 in rat striatum. Eur J Neurosci 2010; 32:570-8. [PMID: 20670282 DOI: 10.1111/j.1460-9568.2010.07325.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most early human immunodeficiency virus type 1 (HIV-1) strains are macrophage (M)-tropic HIV variants and use the chemokine receptor CCR5 for infection. Neuronal loss and dementia are less severe among individuals infected with M-tropic strains. However, after several years, the T-cell (T)-tropic HIV strain, which uses the CXCR4 variant, can emerge in conjunction with brain abnormalities, suggesting strain-specific differences in neuropathogenicity. The molecular and cellular mechanisms of such diversity remain under investigation. We have previously demonstrated that HIV envelope protein gp120IIIB, which binds to CXCR4, causes neuronal apoptosis in rodents. Thus, we have used a similar experimental model to examine the neurotoxic effects of M-tropic gp120BaL. gp120BaL was microinjected in the rat striatum and neuronal apoptosis was examined in the striatum, as well as in anatomically connected areas, such as the somatosensory cortex and the substantia nigra. gp120BaL promoted neuronal apoptosis and tissue loss that were confined to the striatum. Apoptosis was associated with microglial activation and increased levels of interleukin-1beta. Intriguingly, gp120BaL increased brain-derived neurotrophic factor in the striatum. Overall, our data show that gp120BaL demonstrates a different neuropathological profile than gp120IIIB. A better understanding of the pathogenic mechanisms mediating HIV neurotoxicity is vital for developing effective neuroprotective therapies against AIDS-associated dementia complex.
Collapse
Affiliation(s)
- Alessia Bachis
- Department of Neuroscience, Georgetown University Medical Center, New Research Building, 3970 Reservoir Rd, Washington, DC 20057, USA
| | | | | |
Collapse
|
21
|
Yang Y, Wu J, Lu Y. Mechanism of HIV-1-TAT induction of interleukin-1beta from human monocytes: Involvement of the phospholipase C/protein kinase C signaling cascade. J Med Virol 2010; 82:735-46. [PMID: 20336759 DOI: 10.1002/jmv.21720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus TAT plays an important role in the disregulation of cytokine production associated with the neurological disorders that follow HIV infection. IL-1beta is one of the important inflammatory cytokines secreted by immune-activated monocytes/macrophages. Previous reports have shown that extracellular TAT stimulates IL-1beta expression in monocytes/macrophages. However, little is known about the mechanisms and possible TAT-responsive elements within the IL-1beta promoter. The present study shows that TAT increases the production of IL-1beta in human monocytes; PLC-PKC pathway-dependent phosphorylation of p44/42 and JNK MAP kinases participates partially in IL-1beta induction by TAT; specific C/EBP and NF-kappaB transcription factor binding elements within the IL-1beta promoter are involved in TAT regulation of IL-1beta production. This study identifies a signaling mechanism for HIV-1-induced IL-1beta production in human monocytes that may be involved in the neuropathogenesis of HIV-associated dementia.
Collapse
Affiliation(s)
- Yongbo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
22
|
Nolting T, Lindecke A, Koutsilieri E, Maschke M, Husstedt IW, Sopper S, Stüve O, Hartung HP, Arendt G. Measurement of soluble inflammatory mediators in cerebrospinal fluid of human immunodeficiency virus-positive patients at distinct stages of infection by solid-phase protein array. J Neurovirol 2010; 15:390-400. [PMID: 20001608 DOI: 10.3109/13550280903350192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The objective of this study was to evaluate immune cytokine expression in cerebrospinal fluid (CSF) of patients with human immunodeficiency virus-1 (HIV-1)-associated dementia (HAD) using a novel cytokine array assay. HIV-1 induces a condition resembling classical subcortical dementia, known as HAD. The immune mechanisms contributing to HAD have not been elucidated. Cytokine expression in CSF was determined by solid-phase protein array in 33 neurologically asymptomatic HIV-positive male patients and were compared to levels in non-HIV controls and patients with HAD. Neurological examinations and lumbar and venous punctures were conducted in all patients and controls. Interleukin (IL)-1, IL-4, and IL-10, were up-regulated in all treated acquired immunodeficiency syndrome (AIDS) patients independent of neurological status compared to controls. In contrast, interferon gamma (IFN-gamma), IL-1alpha, IL-15, and tumor necrosis factor alpha (TNF-alpha) were highly expressed in patients with HAD compared to undemented HIV-positive patients. These results show that solid-phase protein array can detect immunological changes in patients infected with HIV. Cytokine expression levels differ in different disease stages and in patients on different treatment paradigms. Pending further validation on a larger number of patients, this method may be a useful tool in CSF diagnostics and the longitudinal evaluation of patient with HAD.
Collapse
Affiliation(s)
- Thorsten Nolting
- Department of Neurology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009; 4:430-47. [PMID: 19768553 PMCID: PMC5935112 DOI: 10.1007/s11481-009-9174-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can result in neurological dysfunction with devastating consequences in a significant proportion of individuals with acquired immune deficiency syndrome. HIV-1 does not infect neurons directly but induces damage indirectly through the accumulation of activated macrophage/microglia (M/M) cells, some of which are infected, that release neurotoxic mediators including both cellular activation products and viral proteins. One mechanism for the accumulation of activated M/M involves the development in infected individuals of an activated peripheral blood monocyte population that traffics through the blood-brain barrier, a process that also serves to carry virus into CNS and establish local infection. A second mechanism involves the release by infected and activated M/M in the CNS of chemotactic mediators that recruit additional monocytes from the periphery. These activated M/M, some of which are infected, release a number of cytokines and small molecule mediators as well as viral proteins that act on bystander cells and in turn activate them, thus amplifying the cascade. These viral proteins and cellular products have neurotoxic properties as well, both directly and through induction of astrocyte dysfunction, which ultimately lead to neuronal injury and death. In patients effectively treated with antiretroviral therapy, frank dementia is now uncommon and has been replaced by milder forms of neurocognitive impairment, with less frequent and more focal neuropathology. This review summarizes key findings that support the critical role and mechanisms of monocyte/macrophage activation and inflammation as a major component for HIV-1 encephalitis or HIV-1 associated dementia.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine and Center for AIDS Research, University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009; 3:14. [PMID: 19738918 PMCID: PMC2737431 DOI: 10.3389/neuro.08.014.2009] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022] Open
Abstract
The immune system is well characterized for its critical role in host defense. Far beyond this limited role however, there is mounting evidence for the vital role the immune system plays within the brain, in both normal, “homeostatic” processes (e.g., sleep, metabolism, memory), as well as in pathology, when the dysregulation of immune molecules may occur. This recognition is especially critical in the area of brain development. Microglia and astrocytes, the primary immunocompetent cells of the CNS, are involved in every major aspect of brain development and function, including synaptogenesis, apoptosis, and angiogenesis. Cytokines such as tumor necrosis factor (TNF)α, interleukin [IL]-1β, and IL-6 are produced by glia within the CNS, and are implicated in synaptic formation and scaling, long-term potentiation, and neurogenesis. Importantly, cytokines are involved in both injury and repair, and the conditions underlying these distinct outcomes are under intense investigation and debate. Evidence from both animal and human studies implicates the immune system in a number of disorders with known or suspected developmental origins, including schizophrenia, anxiety/depression, and cognitive dysfunction. We review the evidence that infection during the perinatal period of life acts as a vulnerability factor for later-life alterations in cytokine production, and marked changes in cognitive and affective behaviors throughout the remainder of the lifespan. We also discuss the hypothesis that long-term changes in brain glial cell function underlie this vulnerability.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University Durham, NC, USA.
| | | |
Collapse
|
25
|
Jeong HJ, Lee HJ, Hong SH, Kim HM, Um JY. INHIBITORY EFFECT OF YANGKYUK-SANHWA-TANG ON INFLAMMATORY CYTOKINE PRODUCTION IN PERIPHERAL BLOOD MONONUCLEAR CELLS FROM THE CEREBRAL INFARCTION PATIENTS. Int J Neurosci 2009; 117:525-37. [PMID: 17365133 DOI: 10.1080/00207450600773590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Yangkyuk-Sanhwa-Tang (YST) has been used for the Soyangin cerebral infarction (CI) patients according to Sasang constitutional philosophy. This study investigated the effect of YST on production of various cytokines using peripheral blood mononuclear cells (PBMCs) from the Soyangin CI patients group. The amount of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-8, and tumor necrosis factor-alpha increased in the lipopolysaccharide (LPS)-treated cells compared with unstimulated-cells. YST inhibited IL-1alpha, IL-1beta, and IL-8 production in PBMCs stimulated with LPS. These data suggest that YST has a regulatory effect on cytokine production, which might explain its beneficial effect in the treatment of Soyangin CI patients.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- Department of Pharmacology College of Oriental Medicine, Institute of Oriental Medicine Kyung Hee University. Seoul. Republic of Korea
| | | | | | | | | |
Collapse
|
26
|
Kamat A, Ravi V, Desai A, Satishchandra P, Satish KS, Kumar M. Estimation of virological and immunological parameters in subjects from South India infected with human immunodeficiency virus type 1 clade C and correlation of findings with occurrence of neurological disease. J Neurovirol 2008; 15:25-35. [PMID: 19031329 DOI: 10.1080/13550280802338652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several studies carried out in Western countries have demonstrated that a number of virological and immunological markers such as viral loads, cytokines, beta(2)-microglobulin, neopterin, etc., are elevated in the serum and cerebrospinal fluid (CSF) of human immunodeficiency virus (HIV)-infected individuals with neurological disease. The neurological manifestations of HIV infection noted in Indian patients is different from those reported in Western countries. Moreover, few studies have investigated the role of virological and immunological parameters with respect to the progression of HIV-1 clade C infection in India. In this study, we measured virological (HIV-1 RNA levels) and immunological parameters (CD4 cell count and inflammatory markers) in the plasma and CSF of HIV-1-infected neurologically asymptomatic and symptomatic (with opportunistic infections and/or dementia) subjects. By using clade-specific polymerase chain reaction (PCR), we ascertained that all samples used for the study were infected with HIV-1 clade C. Among the various laboratory parameters evaluated, high viral loads in the CSF, low CD4 counts, and higher levels of interleukin (IL)-1alpha, IL-6, tumor necrosis factor alpha (TNFalpha), beta(2)-microglobulin, and neopterin were noted in HIV-infected subjects with neurological disease as compared to asymptomatic subjects. These data suggest that the markers evaluated in plasma and CSF samples correlated with occurrence of neurological disease in symptomatic individuals as compared to asymptomatic HIV infected subjects.
Collapse
Affiliation(s)
- Anupa Kamat
- Department of Neurovirology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
27
|
Cheung R, Ravyn V, Wang L, Ptasznik A, Collman RG. Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:6675-84. [PMID: 18453587 DOI: 10.4049/jimmunol.180.10.6675] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of proinflammatory cytokines, including IL-1beta from macrophages, that are implicated in the pathogenesis of HIV-associated dementia. However, the signal transduction pathways involved have not been fully defined. Previously, our laboratory reported that soluble gp120 activates multiple protein kinases in primary human monocyte-derived macrophages, including the Src family kinase Lyn, PI3K, and the focal adhesion-related proline-rich tyrosine kinase Pyk2. In this study we showed that gp120 induces IL-1beta release from macrophages in a time- and concentration-dependent manner through binding to the chemokine receptor CCR5 and coupling to G(i)alpha protein. Using pharmacological inhibitors and small interfering RNA gene knockdown, we demonstrated that concomitant activation of Lyn, Pyk2, and class IA PI3K are required for gp120-induced IL-1beta production. By coimmunoprecipitation and immunofluorescence confocal microscopy, we showed that CCR5 activation by gp120 triggered the assembly of a signaling complex involving endogenous Lyn, PI3K, and Pyk2 and is associated with PI3K and Pyk2 translocation from the cytoplasm to the membrane where they colocalized with Lyn. Finally, we demonstrated that virion-associated gp120 induced similar response, as structurally intact whole virions also triggered IL-1beta release and re-localization of PI3K and Pyk2. This study identifies a novel signaling mechanism for HIV-1-induced IL-1beta production by primary human macrophages that may be involved in the neuropathogenesis of HIV-associated dementia.
Collapse
Affiliation(s)
- Ricky Cheung
- Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
In this review we critically assess biomarkers of the direct effects of HIV related brain disease. This area is becoming increasingly complex because of the presence of confounds and varying degrees of activity of HIV brain disease. Sensitive and specific biomarkers are urgently needed although existing biomarkers do have some utility. The review will focus on the practical implications of the more established biomarkers. We discuss blood, cerebrospinal fluid and neurophysiological biomarkers but not neuroimaging techniques as they are beyond the scope of this review.
Collapse
Affiliation(s)
- Bruce James Brew
- Departments of Neurology and HIV Medicine, St Vincent's Hospital, Sydney, Australia
| | | |
Collapse
|
29
|
Asif M, Lowenthal JW, Ford ME, Schat KA, Kimpton WG, Bean AGD. Interleukin-6 expression after infectious bronchitis virus infection in chickens. Viral Immunol 2007; 20:479-86. [PMID: 17931118 DOI: 10.1089/vim.2006.0109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Viral infections in chickens pose a major health threat to the poultry industry. Infectious bronchitis virus (IBV) usually causes respiratory disease; however, the disease severity is influenced by the genotype of the chicken and the IBV strain involved. Nephropathogenic strains of IBV, such as the Australian T strain, can cause high mortalities due to kidney failure characterized by mononuclear cell infiltration and inflammation. In a previous study, a line of specific pathogen-free chickens, the S-line, was shown to be susceptible to high mortalities from IBV infection. The cause of these high mortalities is unknown but it is suspected that differential cytokine expression may play a role. With this in mind, we decided to study the role of the proinflammatory cytokine interleukin (IL)-6 during infection to determine its contribution to nephritis and influence on disease susceptibility. To investigate this, we infected the susceptible S-line and the more disease-resilient HWL line with the T strain of IBV and measured their cytokine response levels. In both lines of birds, IL-6 mRNA levels were elevated in the kidneys at 4 d postinfection. However, in S-line chickens, these levels were 20 times higher than those in the HWL chickens. In addition, S-line birds also showed three times higher serum IL-6 levels than HWL birds after IBV infection. These findings suggest that IL-6 may play a role in IBV-induced nephritis and may open an avenue to develop alternative strategies, such as the use of antiinflammatory cytokines, to overcome the nephropathogenic effects of IBV.
Collapse
Affiliation(s)
- Manija Asif
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol 2007; 153:775-83. [PMID: 18059318 DOI: 10.1038/sj.bjp.0707610] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Interleukin (IL)-1 is a key mediator of inflammatory and host defence responses and its effects in the brain are mediated primarily via effects on glia. IL-1 induces release of inflammatory mediators such as IL-6 from glia via the type-1 receptor (IL-1R1) and established signalling mechanisms including mitogen-activated protein kinases and nuclear factor kappa-B. IL-1 also modifies physiological functions via actions on neurones, through activation of the neutral sphingomyelinase (nSMase)/Src kinase signalling pathway, although the mechanism of IL-1-induced IL-6 synthesis in neurones remains unknown. EXPERIMENTAL APPROACH Primary mouse neuronal cell cultures, ELISA, Western blot and immunocytochemistry techniques were used. KEY RESULTS We show here that IL-1beta induces the synthesis of IL-6 in primary mouse neuronal cultures, and this is dependent on the activation of IL-1R1, nSMase and Src kinase. We demonstrate that IL-1beta-induced Src kinase activation triggers the phosphorylation of the NMDA receptor NR2B subunit, leading to activation of Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and the nuclear transcription factor CREB. We also show that NR2B, CamKII and CREB are essential signalling elements involved in IL-1beta-induced IL-6 synthesis in neurones. CONCLUSIONS AND IMPLICATIONS These results demonstrate that IL-1 interacts with the same receptors on neurones and glia to elicit IL-6 release, but does so via distinct signalling pathways. The mechanism by which IL-1beta induces IL-6 synthesis in neurones could be critical in both physiological and pathophysiological actions of IL-1beta, and may provide a new therapeutic target for the treatment of acute CNS injury.
Collapse
|
31
|
Sanz E, Hofer MJ, Unzeta M, Campbell IL. Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia 2007; 56:190-9. [DOI: 10.1002/glia.20602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
|
33
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
34
|
PENG HUI, ERDMANN NATHAN, WHITNEY NICHOLAS, DOU HUANGYU, GORANTLA SANTHI, GENDELMAN HOWARDE, GHORPADE ANUJA, ZHENG JIALIN. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 2006; 54:619-29. [PMID: 16944452 PMCID: PMC1919406 DOI: 10.1002/glia.20409] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stromal cell-derived factor 1 alpha (SDF-1alpha) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HIV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1beta following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1beta receptor antagonist (IL-1Ra) and IL-1beta siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1beta mRNA expression. These observations provide direct evidence that IL-1beta, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD.
Collapse
Affiliation(s)
- HUI PENG
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - NATHAN ERDMANN
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - NICHOLAS WHITNEY
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - HUANGYU DOU
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - SANTHI GORANTLA
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - HOWARD E. GENDELMAN
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - ANUJA GHORPADE
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - JIALIN ZHENG
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- *Correspondence to: Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198–5880, USA. E-mail:
| |
Collapse
|
35
|
Viviani B, Gardoni F, Bartesaghi S, Corsini E, Facchi A, Galli CL, Di Luca M, Marinovich M. Interleukin-1β Released by gp120 Drives Neural Death through Tyrosine Phosphorylation and Trafficking of NMDA Receptors. J Biol Chem 2006; 281:30212-22. [PMID: 16887807 DOI: 10.1074/jbc.m602156200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interleukin-1beta is a proinflammatory cytokine implicated under pathological conditions involving NMDA receptor activation, including the AIDS dementia complex (HAD). No information is available on the molecular mechanisms recruited by native interleukin-1beta produced under this type of condition. Using a sandwich co-culture of primary hippocampal neurons and glia, we investigated whether native interleukin-1beta released by HIV-gp120-activated glia (i) affects NMDAR functions and (ii) the relevance on neuronal spine density and survival, two specific traits of HAD. Increased phosphorylation of NR2B Tyr-1472 was observed after 24 h of exposure of neurons to 600 pm gp120. This effect occurred only when neurons were treated in the presence of glial cells and was abolished by the interleukin-1 receptor antagonist (IL-1ra). Gp120-induced phosphorylation of NR2B resulted in a sustained elevation of intracellular Ca(2+) in neurons and in a significant increase of NR2B binding to PSD95. Increased intracellular Ca(2+) was prevented by 10 mum ifenprodil, that selectively inhibits receptors containing the NR2B, by interleukin-1ra and by Ca-pYEEIE, a Src family SH2 inhibitor peptide. These last two inhibitors, prevented also NR2B binding to PSD95. Finally, gp120 reduced by 35% of the total PSD95 positive spine density after 48 h of treatment and induced by 30% of the neuronal death. Again, both of these effects were blocked by Ca-pYEEIE. Altogether, our data show that gp120 releasing interleukin-1beta from glia increases tyrosine phosphorylation of NMDAR. Thus, tyrosine phosphorylation may contribute to the sensitization of the receptor increasing its function and synaptic localization. Both of these effects are relevant for neurodegeneration.
Collapse
Affiliation(s)
- Barbara Viviani
- Laboratory of Toxicology and Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Buriani A, Petrelli L, Facci L, Romano PG, Dal Tosso R, Leon A, Skaper SD. Human immunodeficiency virus type 1 envelope glycoprotein gp120 induces tumor necrosis factor-alpha in astrocytes. ACTA ACUST UNITED AC 2006; 2:1-13. [PMID: 16873189 DOI: 10.1300/j128v02n02_01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
gp120 induction of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) was studied in cultures of purified astrocytes. Incubation of pure mouse cortical astrocytes with gp120 IIIB induced the expression of TNF-alpha mRNA, assessed by in situ hybridization. Anti- TNF-alpha immunocytochemical staining of gp120 IIIB stimulated astrocytes indicated the presence of TNF-alpha. gp120 IIIB treatment also stimulated secretion of bioactive TNF-alpha from astrocytes, which was prevented by inhibitors of transcription and translation. Hippocampal and cerebellar astrocytes displayed similar behaviors. Further, gp120 displayed cytotoxicity for astrocytes that depended on macromolecular synthesis. The data are the first to show gp120 IIIB induction of de novo TNF-alpha production by pure astrocytes. Because TNF-alpha exerts a wide array of effects in the brain of infected individuals and has HIV-1 inducing activity as well, induction of this cytokine by gp120 IIIB in astrocytes may contribute importantly to the pathogenesis of AIDS dementia complex. Since TNF-alpha can stimulate astrocyte reactivity and proliferation by an autocrine mechanism, the extent of the gp120 effect could conceivably increase with HIV-1 disease progression in a self-amplifying loop, involving other cell types, thus favoring both virus persistence and a chronic disease state.
Collapse
Affiliation(s)
- A Buriani
- Researchlife S.c.p.A., Centro di Ricera Biomedia-Ospedale Civile, Castelfranco Veneto, 31033, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Bilbo SD, Biedenkapp JC, Der-Avakian A, Watkins LR, Rudy JW, Maier SF. Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J Neurosci 2006; 25:8000-9. [PMID: 16135757 PMCID: PMC6725459 DOI: 10.1523/jneurosci.1748-05.2005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have reported that neonatal infection leads to memory impairment after an immune challenge in adulthood. Here we explored whether events occurring as a result of early infection alter the response to a subsequent immune challenge in adult rats, which may then impair memory. In experiment 1, peripheral infection with Escherichia coli on postnatal day 4 increased cytokines and corticosterone in the periphery, and cytokine and microglial cell marker gene expression in the hippocampus of neonate pups. Next, rats treated neonatally with E. coli or PBS were injected in adulthood with lipopolysaccharide (LPS) or saline and killed 1-24 h later. Microglial cell marker mRNA was elevated in hippocampus in saline controls infected as neonates. Furthermore, LPS induced a greater increase in glial cell marker mRNA in hippocampus of neonatally infected rats, and this increase remained elevated at 24 h versus controls. After LPS, neonatally infected rats exhibited faster increases in interleukin-1beta (IL-1beta) within the hippocampus and cortex and a prolonged response within the cortex. There were no group differences in peripheral cytokines or corticosterone. In experiment 2, rats treated neonatally with E. coli or PBS received as adults either saline or a centrally administered caspase-1 inhibitor, which specifically prevents the synthesis of IL-1beta, 1 h before a learning event and subsequent LPS challenge. Caspase-1 inhibition completely prevented LPS-induced memory impairment in neonatally infected rats. These data implicate IL-1beta in the set of immune/inflammatory events that occur in the brain as a result of neonatal infection, which likely contribute to cognitive alterations in adulthood.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Bilbo SD, Rudy JW, Watkins LR, Maier SF. A behavioural characterization of neonatal infection-facilitated memory impairment in adult rats. Behav Brain Res 2006; 169:39-47. [PMID: 16413067 DOI: 10.1016/j.bbr.2005.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/28/2005] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
We have reported that exposure to bacteria (Escherichia coli) during the neonatal period in rats is associated with impaired memory for a novel context in adulthood. However, impairment is only observed if a peripheral immune challenge (bacterial lipopolysaccharide (LPS)) is administered immediately following context exposure. The goal of the current study was to more fully characterize this phenomenon. In Experiment 1, memory impairment as a result of neonatal infection and subsequent LPS challenge was observed in juvenile rats, indicating that the changes induced by infection occur early on and are then manifest throughout the lifespan. In Experiment 2, infection in juvenile rats did not lead to LPS-induced memory impairment in adulthood, suggesting there is a critical period for early infection-induced alterations. In Experiments 3 and 4, memory for a novel context was impaired in neonatally infected rats, a task that is dependent on the hippocampus, whereas cued memory for a tone, which does not depend on the hippocampus, was not impaired. Furthermore, long-term, but not short-term contextual memory was impaired in adult rats infected as neonates following an LPS challenge either 24 h before or immediately after conditioning. Finally, in Experiment 5, no neonatal group differences were observed in corticosterone or open field behaviour, suggesting that decreased freezing to a conditioned context reflects impaired memory, and not simply hyperactivity or altered stress reactivity. Taken together, we have demonstrated that neonatal infection results in robust hippocampal-dependent memory impairment following an immune challenge in adulthood using a number of conditioning paradigms.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
39
|
Gruol DL, Nelson TE. Purkinje neuron physiology is altered by the inflammatory factor interleukin-6. THE CEREBELLUM 2005; 4:198-205. [PMID: 16147952 DOI: 10.1080/14734220500199987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cytokine interleukin-6 (IL-6) is produced by cells of the central nervous system (CNS) during a variety of neuroinflammatory states, in which it is thought to play a role in neuroprotection and/or neuropathology associated with neurological disease. In addition, CNS expression of IL-6 during non-pathological conditions may also occur, although the conditions for such IL-6 production remain elusive. Expression of IL-6 and its receptor and signal transducing elements by neurons and glia within the cerebellum implicate a role of IL-6 in modulating cerebellar function under normal conditions and in contributing to pathology and pathophysiology within the cerebellum during CNS disease states. Evidence for such a role of IL-6 comes from studies using transgenic mice that chronically express IL-6 within the CNS. These mice exhibit profound cerebellar pathology and significant alterations of Purkinje neuron electrical and synaptic activity. Additional evidence comes from in vitro studies using primary cultures of cerebellar cortex that have been chronically exposed to exogenously applied IL-6. Consistent with the IL-6 transgenic mice, chronic IL-6 treated Purkinje neurons in culture exhibit alterations of endogenous electrophysiological properties as well as changes in intracellular Ca2+ homeostasis and signaling. Despite these changes in Purkinje neuron physiology, chronic IL-6 does not affect the survival or morphology of Purkinje neurons in culture. Thus, by itself, IL-6 is able to modulate key components of cerebellar circuitry during periods of chronic expression, such as during neuroinflammation, and may be an important player in the movement disorders associated with a number of CNS disease states.
Collapse
Affiliation(s)
- Donna L Gruol
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
40
|
Hampel H, Haslinger A, Scheloske M, Padberg F, Fischer P, Unger J, Teipel SJ, Neumann M, Rosenberg C, Oshida R, Hulette C, Pongratz D, Ewers M, Kretzschmar HA, Möller HJ. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer's disease brain. Eur Arch Psychiatry Clin Neurosci 2005; 255:269-78. [PMID: 15565298 DOI: 10.1007/s00406-004-0558-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 09/27/2004] [Indexed: 12/24/2022]
Abstract
Involvement of the interleukin-6 receptor complex (IL-6RC) in neuroregulatory and immunological processes of the brain and particularly in Alzheimer's disease (AD) has been hypothesized. The functionally active IL-6RC consists of the cytokine IL-6, which acts through the ligand binding IL-6R and the signal transducing gp130. Using a new immunocytochemical protocol on rapid autopsy cryostat brain sections we studied the expression of the IL-6RC in Braak IV-V staged AD patients compared to normal age-matched controls (HC) across five different cortical regions. Inter-rater reliability of the method was high. The "baseline" expression in normal human brain was determined for IL-6,IL-6R and gp130 in all cortical regions. In normal tissue IL-6 expression was lower in parietal cortex. Higher IL-6R expression was shown in frontal, occipital and parietal cortex, lower expression in temporal cortex and cerebellum. In AD IL-6 expression levels were generally increased in parietal cortex and decreased in occipital cortex compared to controls. IL-6R expression levels were strongly increased in AD frontal and occipital cortex and decreased in temporal cortex and cerebellum. Our findings indicate an altered cortical immunoreactivity pattern of the functional IL-6RC in AD supporting the hypothesis of a disease-related role of IL-6 in AD pathophysiology.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer Memorial Centre, Geriatric Psychiatric Branch, Dementia Research Section, Dept. of Psychiatry Ludwig-Maximilian University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mordelet E, Kissa K, Cressant A, Gray F, Ozden S, Vidal C, Charneau P, Granon S. Histopathological and cognitive defects induced by Nef in the brain. FASEB J 2005; 18:1851-61. [PMID: 15576488 DOI: 10.1096/fj.04-2308com] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Complex mechanisms of human immunodeficiency virus type-1 (HIV-1) brain pathogenesis suggest the contribution of individual HIV-1 gene products. Among them, the Nef protein has been reported to harbor a major determinant of pathogenicity in AIDS-like disease. The goal of the present study was to determine whether Nef protein expressed in vivo by primary macrophages could induce a brain toxicity also affecting the behavior of the rat. To achieve this goal we grafted Nef-transduced macrophages into the rat hippocampus. Two months post-transplantation, we observed that Nef induces monocyte/macrophage recruitment, expression of TNF-alpha, and astrogliosis. No apoptotic event was detected. We further demonstrated that Nef neurotoxicity is associated with cognitive deficits.
Collapse
Affiliation(s)
- Elodie Mordelet
- Unité Postulante "Mycologie Moléculaire," Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nelson TE, Netzeband JG, Gruol DL. Chronic interleukin-6 exposure alters metabotropic glutamate receptor-activated calcium signalling in cerebellar Purkinje neurons. Eur J Neurosci 2005; 20:2387-400. [PMID: 15525280 DOI: 10.1111/j.1460-9568.2004.03706.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic central nervous system expression of the cytokine interleukin-6 (IL-6) is thought to contribute to the histopathological, pathophysiological, and cognitive deficits associated with various neurological disorders. However, the effects of chronic IL-6 expression on neuronal function are largely unknown. Previous studies have shown that chronic IL-6 exposure alters intrinsic electrophysiological properties and intracellular Ca2+ signalling evoked by ionotropic glutamate receptor activation in cerebellar Purkinje neurons. In the current study, using primary cultures of rat cerebellum, we investigated the effects of chronic IL-6 exposure on metabotropic glutamate receptor (mGluR)-activated Ca2+ signalling and release from intracellular Ca2+ stores. Chronic exposure (6-10 days) of Purkinje neurons to 500 units/mL IL-6 resulted in elevated resting Ca2+ levels and increased intracellular Ca2+ signals evoked by the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) compared to untreated control neurons. Chronic IL-6 treatment also augmented Ca2+ signals evoked by brief 100 mm K+ depolarization, although to a lesser degree than responses evoked by DHPG. Depleting intracellular Ca2+ stores with sarcoplasmic-endoplasmic reticulum ATPase inhibitors (thapsigargin or cyclopiazonic acid) or blocking ryanodine receptor-dependent release from intracellular stores (using ryanodine) resulted in a greater reduction of DHPG- and K+-evoked Ca2+ signals in chronic IL-6-treated neurons than in control neurons. The present data show that chronic exposure to elevated levels of IL-6, such as occurs in various neurological diseases, alters Ca2+ signalling involving release from intracellular stores. The results support the hypothesis that chronic IL-6 exposure disrupts neuronal function and thereby may contribute to the pathophysiology associated with many neurological diseases.
Collapse
Affiliation(s)
- Thomas E Nelson
- Department of Neuropharmacology, CVN-11, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
43
|
Braida D, Sacerdote P, Panerai AE, Bianchi M, Aloisi AM, Iosuè S, Sala M. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 2004; 153:423-9. [PMID: 15265638 DOI: 10.1016/j.bbr.2003.12.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 12/19/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Interleukin-6 (IL-6) is a cytokine shown to affect brain function and to be involved in pathological neurodegenerative disorders such as Alzheimer's disease (AD). In the present study we investigated the cognitive function in transgenic mice not expressing IL-6 (IL-6 KO) and in wild type (WT) genotype at 4 and 12 months of age, using a passive avoidance and an eight-arm radial maze tasks. Motor function was quantified using an Animex apparatus. Hippocampal choline acetyltransferase (ChAT) activity was evaluated in both genotypes. No difference was observed in both genotypes for spontaneous motor activity. The mean latency (s) to re-enter the shock box, was similar in both young mutant and WT mice. However, a decreased sensitivity (50%) to scopolamine (1 mg/kg) in mutant compared to WT mice, was obtained. IL-6 KO mice exhibited a facilitation of radial maze learning over 30 days, in terms of a lower number of working memory errors and a higher percentage of animals reaching the criterion as compared with WT genotype tested at both ages. Furthermore, mutant mice, at the age of 12 months, showed a faster acquisition (22 days versus 30 days to reach the criterion). The pattern of arm entry exhibited by IL-6 KO mice showed a robust tendency to enter an adjacent arm at both ages, while WT only at the age of 4 months. ChAT activity was inversely correlated with memory performance. These findings suggest a possible involvement of IL-6 on memory processes, even if the mechanism remains still unclear.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Via Vanvitelli 32/A, 20129 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Jolicoeur P, Hu C, Mak TW, Martinou JC, Kay DG. Protection against murine leukemia virus-induced spongiform myeloencephalopathy in mice overexpressing Bcl-2 but not in mice deficient for interleukin-6, inducible nitric oxide synthetase, ICE, Fas, Fas ligand, or TNF-R1 genes. J Virol 2003; 77:13161-70. [PMID: 14645573 PMCID: PMC296073 DOI: 10.1128/jvi.77.24.13161-13170.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 08/18/2003] [Indexed: 01/20/2023] Open
Abstract
Some murine leukemia viruses (MuLVs), among them Cas-Br-E and ts-1 MuLVs, are neurovirulent, inducing spongiform myeloencephalopathy and hind limb paralysis in susceptible mice. It has been shown that the env gene of these viruses harbors the determinant of neurovirulence. It appears that neuronal loss occurs by an indirect mechanism, since the target motor neurons have not been found to be infected. However, the pathogenesis of the disease remains unclear. Several lymphokines, cytokines, and other cellular effectors have been found to be aberrantly expressed in the brains of infected mice, but whether these are required for the development of the neurodegenerative lesions is not known. In an effort to identify the specific effectors which are indeed required for the initiation and/or development of spongiform myeloencephalopathy, we inoculated gene-deficient (knockout [KO]) mice with ts-1 MuLV. We show here that interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS), ICE, Fas, Fas ligand (FasL), and TNF-R1 KO mice still develop signs of disease. However, transgenic mice overexpressing Bcl-2 in neurons (NSE/Bcl-2) were largely protected from hind limb paralysis and had less-severe spongiform lesions. These results indicate that motor neuron death occurs in this disease at least in part by a Bcl-2-inhibitable pathway not requiring the ICE, iNOS, Fas/FasL, TNF-R1, and IL-6 gene products.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Caspase 1/genetics
- Caspase 1/metabolism
- Central Nervous System Viral Diseases/metabolism
- Central Nervous System Viral Diseases/prevention & control
- Central Nervous System Viral Diseases/virology
- Fas Ligand Protein
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukemia Virus, Murine/pathogenicity
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H/metabolism
- Mice, Knockout
- Mice, Transgenic
- Nerve Degeneration/prevention & control
- Nerve Degeneration/virology
- Neurons/metabolism
- Neurons/pathology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Retroviridae Infections/metabolism
- Retroviridae Infections/prevention & control
- Retroviridae Infections/virology
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | |
Collapse
|
46
|
Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 2002; 25:537-62. [PMID: 12052920 DOI: 10.1146/annurev.neuro.25.112701.142822] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the role of the extended macrophage/monocyte family in the central nervous system during HIV or SIV infection. The accumulated data, buttressed by recent experimental results, suggest that these cells play a central, pathogenic role in retroviral-associated CNS disease. While the immune system is able to combat the underlying retroviral infection, the accumulation and widespread activation of macrophages, microglia, and perivascular cells in the CNS are held in check. However, with the collapse of the immune system and the disappearance of the CD4(+) T cell population, productive infection reemerges, especially in CNS macrophages. These cells, as well as noninfected macrophages, are stimulated to high levels of activation. When members of this cell group become highly activated, they elaborate a wide spectrum of deleterious substances into the neural parenchyma. In the final phases of HIV or SIV infection, this chronic, widespread, and dramatic level of macrophage/monocyte/microglial activation constitutes a self-sustaining state of macrophage dysregulation, which results in pathological alterations and the emergence of various neurological problems.
Collapse
Affiliation(s)
- Kenneth C Williams
- Department of Medicine, Harvard Medical School Division of Viral Pathogenesis Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | |
Collapse
|
47
|
Martín-García J, Kolson DL, González-Scarano F. Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 2002; 16:1709-30. [PMID: 12218382 DOI: 10.1097/00002030-200209060-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Julio Martín-García
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
48
|
Coyle-Rink J, Sweet T, Abraham S, Sawaya B, Batuman O, Khalili K, Amini S. Interaction between TGFbeta signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Virology 2002; 299:240-7. [PMID: 12202226 DOI: 10.1006/viro.2002.1439] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal transduction pathways induced by cytokines can modulate the level of HIV-1 gene transcription and replication in a variety of cells including those from the central nervous system. Here, we investigated the effect of TGFbeta-1 signaling the factors, including Smads, on transcription of the viral LTR in human astrocytic cells. Ectopic expression of Smad-3 increased activity of the viral promoter, while its partner protein, Smad-4, caused a slight decrease in viral gene transcription. Further, Smad-4 was able to suppress transcriptional activation of the LTR by Smad-3 as well as by C/EBPbeta, another activator of LTR transcription in these cells. Results from promoter deletion experiments identified the C/EBP-binding site, which is positioned between nucleotides -114 and -102 as one of the targets for Smad-mediated regulation of the LTR. Band-shift studies showed inhibition of C/EBP binding to its target DNA in protein extract from cells overexpressing Smad-3 and Smad-4. Results from GST pull-down assay and combined immunoprecipitation/Western blot of protein extracts from human astrocytes verified the association of Smad-3 and Smad-4 with C/EBPbeta, suggesting that interaction of C/EBPbeta with Smad-3 and Smad-4 may have a negative impact upon C/EBPbeta-mediated activation of the LTR. Interestingly, Smad-4 showed no inhibitory effect on viral gene transcription in cells expressing Tat protein. However, in the presence of Smad-3, expression of Smad-4 exerted a negative effect on Tat-mediated activation of the LTR promoter. These observations pointed to the functional interplay between viral and cellular proteins in modulating LTR transcription.
Collapse
Affiliation(s)
- Jacquelyn Coyle-Rink
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Nelson TE, Ur CL, Gruol DL. Chronic interleukin-6 exposure alters electrophysiological properties and calcium signaling in developing cerebellar purkinje neurons in culture. J Neurophysiol 2002; 88:475-86. [PMID: 12091569 DOI: 10.1152/jn.2002.88.1.475] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytokine interleukin-6 (IL-6) is chronically expressed at elevated levels within the CNS in many neurological disorders and may contribute to the histopathological, pathophysiological, and cognitive deficits associated with such disorders. However, the effects of chronic IL-6 exposure on neuronal function in the CNS are largely unknown. Therefore using intracellular recording and calcium imaging techniques, we investigated the effects of chronic IL-6 exposure on the physiological properties of cerebellar Purkinje neurons in primary culture. Two weeks of exposure to 1,000 units/ml (U/ml) IL-6 resulted in altered electrophysiological properties of Purkinje neurons, including a significant reduction in action potential generation, an increase in input resistance, and an enhanced electrical response to the ionotropic glutamate receptor agonist, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) compared with untreated neurons. Lower concentrations of IL-6 (100 and 500 U/ml) had no effects on these electrophysiological parameters. However, neurons exposed to 500 U/ml chronic IL-6 resulted in significantly elevated resting levels of intracellular calcium as well as an increase in the intracellular calcium signal of Purkinje neurons in response to AMPA, effects not observed in neurons exposed to 1,000 U/ml chronic IL-6. Morphometric analysis revealed a lack of gross structural changes following chronic IL-6 treatment, such as in the number, size, and extent of dendritic arborization of Purkinje neurons in culture. Using immunohistochemistry, we found that cultured Purkinje neurons express both the IL-6 receptor and its intracellular signaling subunit, gp130, indicating that IL-6 may act directly on Purkinje neurons to alter their physiological properties. The present data show that chronic exposure to elevated levels of IL-6, such as occurs in various neurological diseases, produces alterations in several important physiological properties of Purkinje neurons and that these changes occur in the absence of neuronal toxicity, damage, or death. The results support the hypothesis that chronic IL-6 exposure can disrupt normal CNS function and thereby contribute to the pathophysiology associated with many neurological diseases.
Collapse
Affiliation(s)
- Thomas E Nelson
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
50
|
Jeong HJ, Hong SH, Park HJ, Kweon DY, Lee SW, Lee JD, Kim KS, Cho KH, Kim HS, Kim KY, Kim HM. Yangkyuk-Sanhwa-Tang induces changes in serum cytokines and improves outcome in focal stroke patients. Vascul Pharmacol 2002; 39:63-8. [PMID: 12616992 DOI: 10.1016/s1537-1891(02)00217-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yangkyuk-Sanhwa-Tang (YS-Tang), a specific prescription composed of nine herbal mixtures, has been developed as a formula for the Soyangin cerebral infarction (CI) patients according to Sasang constitutional philosophy. However, the mechanisms by which this formula affects CI remain unknown. This study revealed changes in cytokine production in the acute stage of Soyangin constitution CI patients after YS-Tang administration. Clinical signs (vertigo, headache and slurred speech) of CI disappeared significantly in about 2 weeks after oral administration of YS-Tang (P < .05). The mean interleukin (IL)-2 plasma levels were lower by 15% in the patients with CI than in the normal groups, whereas the mean TNF-alpha, IL-4, IL-6 and IgE levels were significantly higher in the patients (P < .01). There were no significant differences in interferon-gamma (IFN-gamma) levels between the groups. Serum IFN-gamma and IL-2 levels were elevated significantly (P < .01) in the patients with CI by YS-Tang administration. Significant reduced plasma levels (P < .01) of TNF-alpha, IL-4, IL-6 and IgE were observed in the patients treated with YS-Tang. During the period of YS-Tang administration, there were no other adverse effects. The data indicate that YS-Tang has an enhancing effect on antiinflammatory cytokines and an inhibitory effect on inflammatory cytokines. These results may implicate a good CI treatment effect of YS-tang and that its action may be due to regulation of cytokine production.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan-city, Jeonbuk, 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|