1
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
2
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Guardia-Escote L, Blanco J, Basaure P, Biosca-Brull J, Verkaik-Schakel RN, Cabré M, Peris-Sampedro F, Pérez-Fernández C, Sánchez-Santed F, Plösch T, Domingo JL, Colomina MT. Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010184. [PMID: 33383760 PMCID: PMC7795072 DOI: 10.3390/ijerph18010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
Developmental exposure to toxicants and diet can interact with an individual's genetics and produce long-lasting metabolic adaptations. The different isoforms of the apolipoprotein E (APOE) are an important source of variability in metabolic disorders and influence the response to the pesticide chlorpyrifos (CPF). We aimed to study the epigenetic regulation on feeding control genes and the influence of postnatal CPF exposure, APOE genotype, and sex, and how these modifications impact on the metabolic response to a high-fat diet (HFD). Both male and female apoE3- and apoE4-TR mice were exposed to CPF on postnatal days 10-15. The DNA methylation pattern of proopiomelanocortin, neuropeptide Y, leptin receptor, and insulin-like growth factor 2 was studied in the hypothalamus. At adulthood, the mice were given a HFD for eight weeks. The results highlight the importance of sex in the epigenetic regulation and the implication of CPF treatment and APOE genotype. The body weight progression exhibited sex-dimorphic differences, apoE4-TR males being the most susceptible to the effects induced by CPF and HFD. Overall, these results underscore the pivotal role of sex, APOE genotype, and developmental exposure to CPF on subsequent metabolic disturbances later in life and show that sex is a key variable in epigenetic regulation.
Collapse
Affiliation(s)
- Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Correspondence:
| |
Collapse
|
4
|
Meléndez-Flores JD, Millán-Alanís JM, González-Martínez A, Álvarez-Villalobos NA, Estrada-Bellmann I. Does glitazone treatment have a role on the prevention of Parkinson's disease in adult diabetic population? A systematic review. Metab Brain Dis 2020; 35:1067-1075. [PMID: 32363472 DOI: 10.1007/s11011-020-00568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Lately, focus on the relation between Parkinson's disease (PD) and Diabetes has risen greatly, as neuroprotective properties have been attributed to insulin use. Several studies have assessed the effect of glitazones, an insulin-sensitizing agent, in diabetic population on PD future risk. However, reports on the effect of their use have been heterogeneous. We aimed to synthesize the available scientific evidence which assesses the effect of glitazone use in type 2 diabetes patients on PD incidence. A systematic review was performed on multiple electronic databases. Considered for inclusion were studies that assessed the incidence of PD in type 2 diabetes glitazone users. Two reviewers worked independently and in duplicate to assess all studies, extract information and assess the methodological quality in each included study. Four high quality retrospective cohorts fulfilled inclusion criteria. Comparison groups varied across studies. In each study, incidence of PD was lower in glitazone-exposed patients compared to their respective comparison group. Pooled analysis showed lesser risk of PD in ever versus never glitazone users (RR 0.75 [95% C.I. 0.67-0.85; p < .0001; I2 = 0]). Our pooled analysis showed lesser risk of PD in glitazone versus non glitazone users, however, we advise to take results with caution since results are non-adjusted to possible confounding variables, furthermore, different glitazone-exposure time, follow up and comparison groups are aspects that also need to be pointed out. More clinical research focused on glitazone use and its relation with PD is needed, as this could result in new potential treatment modalities.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Juan Manuel Millán-Alanís
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit México), Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
- Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
- Servicio de Neurología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico.
| |
Collapse
|
5
|
Suresh J, Khor IW, Kaur P, Heng HL, Torta F, Dawe GS, Tai ES, Tolwinski NS. Shared signaling pathways in Alzheimer’s and metabolic disease may point to new treatment approaches. FEBS J 2020; 288:3855-3873. [DOI: 10.1111/febs.15540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ing Wei Khor
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
| | - Prameet Kaur
- Science Division Yale‐ NUS College Singapore Singapore
| | - Hui Li Heng
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Gavin S. Dawe
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - E Shyong Tai
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
- Division of Endocrinology National University HospitalNational University Health System
| | | |
Collapse
|
6
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm 2020; 586:119582. [DOI: 10.1016/j.ijpharm.2020.119582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
7
|
Muller YL, Hanson RL, Mahkee D, Piaggi P, Kobes S, Hsueh WC, Knowler WC, Bogardus C, Baier LJ. Low Serum Insulinlike Growth Factor II Levels Correlate with High BMI in American Indian Adults. Obesity (Silver Spring) 2020; 28:676-682. [PMID: 32030914 PMCID: PMC7192225 DOI: 10.1002/oby.22741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Insulinlike growth factor II (IGF-II) regulates metabolism and growth. In humans, both positive and negative relationships have been reported between serum IGF-II levels and obesity. This study assessed the relationship between serum IGF-II levels and BMI and determined whether IGF-II levels predict weight gain. METHODS Serum samples were available from 911 American Indians with a recorded BMI. IGF-II was measured using enzyme-linked immunosorbent assay. RESULTS Serum IGF-II levels were negatively correlated with BMI (r = -0.17, P = 4.4 × 10-7 , adjusted for age, sex, and storage time). The strongest correlation was in participants aged ≥ 30 years (r = -0.28, P = 3.4 × 10-8 , N = 349), a modest correlation was in participants aged 20 to 29 years (r = -0.15, P = 7.6 × 10-3 , N = 322), and participants aged 15 to 19 years had no correlation (r = 0.05, P = 0.48, N = 240). IGF-II levels did not predict weight gain. However, among individuals who had genotypes for 64 established obesity variants (age ≥ 20 years, N = 671), a genetic risk score for high BMI was associated with lower IGF-II (β = -0.08 SD of IGF-II per SD of the genetic risk score, P = 0.025). CONCLUSIONS There is a negative relationship between IGF-II levels and BMI, in which the correlation is stronger at older ages. The association between genetic risk for BMI and IGF-II levels suggests that this correlation may be due to an effect of obesity on IGF-II.
Collapse
Affiliation(s)
- Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Darin Mahkee
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Protective effects of the GLP-1 mimetic exendin-4 in Parkinson's disease. Neuropharmacology 2017; 136:260-270. [PMID: 28927992 DOI: 10.1016/j.neuropharm.2017.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the potential role of glucagon-like peptide-1 (GLP-1) receptor agonists as neuroprotective treatments in neurodegenerative diseases including Parkinson's disease following the publication of the results of the Exenatide-PD trial. Of the current GLP-1 receptor agonists already licensed to treat Type 2 diabetes several including exenatide, liraglutide and lixisenatide are the subject of ongoing clinical trials in PD. The underlying rationale for using drugs licensed and effective for T2DM in PD patients therefore needs to be scrutinized, and the results obtained to date critically reviewed. We review the relationship between insulin resistance and Parkinson's disease, the implications on pathogenesis and the efforts to reposition GLP-1 agonists as potential treatments for Parkinson's disease and give an overview of the pre-clinical and clinical data supporting the use of exenatide in Parkinson's disease with a discussion regarding possible mechanisms of action. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
9
|
Xiang L, Li J, Wang Q, Tang R, Qi J. Leptin Gene Transfer Improves Symptoms of Type 2 Diabetic Mice by Regulating Leptin Signaling Pathway and Insulin Resistance of Peripheral Tissues. Hum Gene Ther 2017. [PMID: 28622065 DOI: 10.1089/hum.2016.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The leptin gene was transferred into the liver of streptozocin- and high fat diet-induced type 2 diabetic (T2D) mice by hydrodynamic-based gene delivery. The food intake, water consumption, glucose concentration, and triglyceride and total cholesterol levels of T2D mice were significantly decreased. Meanwhile, plasma leptin was remarkably increased after gene transfer for 2, 3, 5, and 7 days, while plasma adiponectin was also significantly increased at day 2. To understand the mechanism of action of leptin on T2D mice, gene expressions related to glycometabolism and energy metabolism in the liver, epididymal adipose tissue, hypothalamus, and muscle were measured. The mRNA expression levels of adiponectin receptor 1 (ADR1), glucose transporter 4 (GLUT4), glucose-6-phosphase, and peroxisome proliferator-activated receptor γ in the liver, leptin, adiponectin, and hormone-sensitive lipase in adipose tissue, leptin, leptin-receptor, ADR1 in the hypothalamus, and ADR1, GLUT4, and insulin 1 in the gastrocnemius significantly increased. Moreover, the hepatic glycogen of the leptin-gene-treated group was significantly increased in comparison to the control group. Meanwhile, the significant decrease of forkhead box O1, adiponectin receptor 2, and peroxisome proliferator-activated receptor α in the liver, and agouti-related protein and proopiomelanocortin genes in the hypothalamus were also observed. In fat tissue and hypothalamus, leptin and adiponectin protein levels were also significantly increased, whereas the neuropeptide Y protein level was significantly decreased. These results indicated that the leptin gene transfer could improve the symptoms of T2D mice by regulating the leptin-hypothalamus signaling pathway and improving the insulin resistance of the peripheral tissues of T2D mice.
Collapse
Affiliation(s)
- Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Jing Li
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Qian Wang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Ruiqi Tang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| |
Collapse
|
10
|
Thon M, Hosoi T, Ozawa K. Possible Integrative Actions of Leptin and Insulin Signaling in the Hypothalamus Targeting Energy Homeostasis. Front Endocrinol (Lausanne) 2016; 7:138. [PMID: 27812350 PMCID: PMC5071376 DOI: 10.3389/fendo.2016.00138] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity has emerged as one of the most burdensome conditions in modern society. In this context, understanding the mechanisms controlling food intake is critical. At present, the adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin are considered the principal anorexigenic hormones. Although leptin and insulin signal transduction pathways are distinct, their regulation of body weight maintenance is concerted. Resistance to the central actions of leptin or insulin is linked to the emergence of obesity and diabetes mellitus. A growing body of evidence suggests a convergence of leptin and insulin intracellular signaling at the insulin-receptor-substrate-phosphatidylinositol-3-kinase level. Moreover, numerous factors mediating the pathophysiology of leptin resistance, a hallmark of obesity, such as endoplasmic reticulum stress, protein tyrosine phosphatase 1B, and suppressor of cytokine signaling 3 also contribute to insulin resistance. Recent studies have also indicated that insulin potentiates leptin-induced signaling. Thus, a greater understanding of the overlapping functions of leptin and insulin in the central nervous system is vital to understand the associated physiological and pathophysiological states. This mini-review focuses on the cross talk and integrative signaling of leptin and insulin in the regulation of energy homeostasis in the brain.
Collapse
Affiliation(s)
- Mina Thon
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
12
|
Berilgen MS, Bulut S, Gonen M, Tekatas A, Dag E, Mungen B. Comparison of the Effects of Amitriptyline and Flunarizine on Weight Gain and Serum Leptin, C Peptide and Insulin Levels when used as Migraine Preventive Treatment. Cephalalgia 2016; 25:1048-53. [PMID: 16232156 DOI: 10.1111/j.1468-2982.2005.00956.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tricyclic antidepressant amitriptyline (AMT) and the calcium channel blocker flunarizine are frequently used in the preventive treatment of migraine, but the side-effect of prominent weight gain that frequently emerges during preventive treatment of migraine with these agents often leads to the discontinuation of therapy. In this study, we aimed to investigate the possible relationship between the weight gain associated with the use of these agents and serum levels of leptin, C-peptide and insulin in patient with migraine. Forty-nine migraine patients with a body mass index (BMI) < 25 and without any endocrinological, immunological or chronic diseases were randomly divided into two groups, receiving AMT or flunarizine. There was a statistically significant increase in serum levels of leptin, C-peptide, insulin and measures of BMI in both groups when measured at the 12th week of therapy compared to their respective basal levels. To our knowledge this is the first study investigating the effects of AMT and flunarizine on serum leptin levels in preventive use of migraine treatment. A result from this study indicates that AMT and flunarizine may cause leptin resistance possibly by different mechanisms and thereby result in increase in serum leptin levels and BMI.
Collapse
Affiliation(s)
- M S Berilgen
- Firat University School of Medicine, Department of Neurology, Elazig, Turkey.
| | | | | | | | | | | |
Collapse
|
13
|
On NH, Yathindranath V, Sun Z, Miller DW. Pathways for Drug Delivery to the Central Nervous System. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Insulin-Like Growth Factor-1 Receptor Is Differentially Distributed in Developing Cerebellar Cortex of Rats Born to Diabetic Mothers. J Mol Neurosci 2015; 58:221-32. [DOI: 10.1007/s12031-015-0661-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023]
|
15
|
Genome-wide identification and comparative analysis of the TUBBY-like protein gene family in maize. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0338-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
17
|
Steculorum SM, Solas M, Brüning JC. The paradox of neuronal insulin action and resistance in the development of aging-associated diseases. Alzheimers Dement 2014; 10:S3-11. [PMID: 24529522 DOI: 10.1016/j.jalz.2013.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/08/2023]
Abstract
During past decades, ever-increasing life expectancy, despite the development of a sedentary lifestyle and altered eating habits, has led to a dramatic parallel increase in the prevalence of age-related diseases such as type 2 diabetes mellitus (T2DM) and neurodegenerative disorders. Converging evidence from animal and human studies has indicated that insulin resistance in the central nervous system (CNS) is observed in both T2DM and neurodegenerative disorders such as Alzheimer's disease (AD), leading to the hypothesis that impaired neuronal insulin action might be a unifying pathomechanism in the development of both diseases. This assumption, however, is in striking contrast to the evolutionary conserved, protective role of impaired insulin/insulin-like growth factor 1 signaling (IIS) in aging and in protein aggregation-associated diseases, such as AD. Thus, this review summarizes our current understanding of the physiological role of insulin action in various regions of the CNS to regulate neuronal function, learning, and memory, and to control peripheral metabolism. We also discuss mechanisms and clinical outcomes of neuronal insulin resistance and address the seeming paradox of how impaired neuronal IIS can protect from the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie M Steculorum
- Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, Köln, Germany; Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Köln, Germany; Center for Molecular Medicine Cologne, Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases, Köln, Germany; Max-Planck-Institute for Neurological Research, Köln, Germany
| | - Maite Solas
- Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, Köln, Germany; Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Köln, Germany; Center for Molecular Medicine Cologne, Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases, Köln, Germany; Max-Planck-Institute for Neurological Research, Köln, Germany
| | - Jens C Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, Köln, Germany; Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Köln, Germany; Center for Molecular Medicine Cologne, Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases, Köln, Germany; Max-Planck-Institute for Neurological Research, Köln, Germany.
| |
Collapse
|
18
|
Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1693-706. [PMID: 24949886 DOI: 10.1016/j.bbadis.2014.06.010] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.
Collapse
|
19
|
Hami J, Kheradmand H, Haghir H. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study. Cell Mol Neurobiol 2014; 34:215-26. [PMID: 24287499 DOI: 10.1007/s10571-013-0005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | |
Collapse
|
20
|
Hami J, Kheradmand H, Haghir H. Sex differences and laterality of insulin receptor distribution in developing rat hippocampus: an immunohistochemical study. J Mol Neurosci 2014; 54:100-8. [PMID: 24573599 DOI: 10.1007/s12031-014-0255-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
This study aimed to compare the regional distribution of insulin receptor in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14) between male/female and right/left hippocampi. We found that the number of insulin receptor (InsR)-immunoreactive-positive (InsR+) cells in CA1 continued to increase until P7 and remained unchanged thereafter. A marked increase in distribution of InsR+ cells in CA3 from P0 to P14 was observed, although there was a significant decline in the number of InsR+ cells in dentate gyrus (DG) at the same time. No differences between the right/left and male/female hippocampi were detected at P0 (P > 0.05). Seven-day-old female rats showed a higher number of labeled cells in the left than in the right hippocampus. Moreover, the differences between the number of InsR+ cells in area CA1 and CA3 were statistically significant between males and females (P < 0.05). At P14, the number of InsR+ cells was significantly higher in CA1 and DG of males, especially in the right one (P < 0.05). These results indicate the existence of a differential distribution pattern of InsR between the left/right and male/female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left/right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | |
Collapse
|
21
|
El Khoury NB, Gratuze M, Papon MA, Bretteville A, Planel E. Insulin dysfunction and Tau pathology. Front Cell Neurosci 2014; 8:22. [PMID: 24574966 PMCID: PMC3920186 DOI: 10.3389/fncel.2014.00022] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/16/2014] [Indexed: 01/26/2023] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.
Collapse
Affiliation(s)
- Noura B El Khoury
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval Québec, QC, Canada ; Axe Neurosciences, Centre Hospitalier de l'Université Laval Québec, QC, Canada
| | - Maud Gratuze
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval Québec, QC, Canada ; Axe Neurosciences, Centre Hospitalier de l'Université Laval Québec, QC, Canada
| | - Marie-Amélie Papon
- Axe Neurosciences, Centre Hospitalier de l'Université Laval Québec, QC, Canada
| | - Alexis Bretteville
- Axe Neurosciences, Centre Hospitalier de l'Université Laval Québec, QC, Canada
| | - Emmanuel Planel
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval Québec, QC, Canada ; Axe Neurosciences, Centre Hospitalier de l'Université Laval Québec, QC, Canada
| |
Collapse
|
22
|
Sohrabji F, Williams M. Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 2013; 25:1173-81. [PMID: 23763366 PMCID: PMC5630268 DOI: 10.1111/jne.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022]
Abstract
Oestrogen has been shown to be neuroprotective for stroke and other neural injury models. Oestrogen promotes a neuroprotective phenotype through myriad actions, including stimulating neurogenesis, promoting neuronal differentiation and survival, suppressing neuroinflammation and maintaining the integrity of the blood-brain barrier. At the molecular level, oestrogen directly modulates genes that are beneficial for repair and regeneration via the canonical oestrogen receptor. Increasingly, evidence indicates that oestrogen acts in concert with growth factors to initiate neuroprotection. Oestrogen and insulin-like growth factor (IGF)-1 act cooperatively to influence cell survival, and combined steroid hormone/growth factor interaction has been well documented in the context of neurones and astrocytes. Here, we summarise the evidence that oestrogen-mediated neuroprotection is critically dependent on IGF-1 signalling, and specifically focus on microglia as the source of IGF-1 and the locus of oestrogen-IGF-1 interactions in stroke neuroprotection.
Collapse
Affiliation(s)
- F Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX, USA
| | | |
Collapse
|
23
|
Mastorakos G, Zapanti E. The Hypothalamic-Pituitary-Adrenal Axis in the Neuroendocrine Regulation of Food Intake and Obesity: The Role of Corticotropin Releasing Hormone. Nutr Neurosci 2013; 7:271-80. [PMID: 15682923 DOI: 10.1080/10284150400020516] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this paper is to review the present knowledge on the role of the hypothalamic-pituitary-adrenal axis in the control of food intake and the pathogenesis of obesity and to discuss, on the basis of available literature, the interactions between other neurosystems and this hormonal axis. Food intake is influenced by a system of physiologic signals and behavioral controls consisting of positive and negative sensory feedback mechanisms. It is regulated by a complex neuroendocrine system consisting of peripheral signals (cortisol, leptin) in constant interplay with central neurosystems such as the cocaine-amfetamine-regulated transcript system. In these neurosystems, corticotropin-releasing hormone, pro-opiomelanocortin, melanin-concentrating hormone and neuropeptide Y are actively involved. The corticotropin-releasing hormone system is widely distributed throughout the brain, but it is particularly abundant in the medial parvocellular division of the paraventricular nucleus. Within the brain corticotropin-releasing hormone with its two receptor types, its binding protein and its closely related peptide urocortin forms a network of neuronal pathways capable of interacting with other circuitries controlling food intake and sympathetically-mediated thermogenesis. A defect in the synthesis and release of corticotropin-releasing hormone has been implicated in the development of obesity in laboratory animals. This condition is alleviated by exogenous corticotropin-releasing hormone treatment. The relationship between the neuropeptide Y system and the hypothalamic-pituitary-adrenal axis is complex and seems to include positive feedback between neuropeptide Y and corticosteroids and negative feedback between corticotropin-releasing hormone and neuropeptide Y. Leptin is involved in the regulation of energy balance by interacting with the hypothalamic-pituitary-adrenal axis. In the past, we have shown by cross-correlation analysis, that under physiological conditions cortisol and plasma leptin levels are related to each other in a time-related negative and positive fashion over 24h.
Collapse
Affiliation(s)
- George Mastorakos
- Department of Obstetrics and Gynecology, Medical School, University of Athens, Athens, Greece.
| | | |
Collapse
|
24
|
Haghir H, Rezaee AAR, Sankian M, Kheradmand H, Hami J. The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates. Metab Brain Dis 2013; 28:397-410. [PMID: 23397157 DOI: 10.1007/s11011-013-9386-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/01/2013] [Indexed: 12/24/2022]
Abstract
Diabetes during pregnancy impairs brain development in offspring, leading to behavioral problems, motor dysfunction and learning deficits. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. Aim of the present study was to examine the effects of maternal diabetes on insulin receptor (InsR) and IGF-1 receptor (IGF-1R) expression in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14, an active neurogenesis period in brain development equivalent to the third trimester in human. The expression of InsR and IGF-1R in cerebelli was evaluated using real-time PCR and western blot analysis. We found a significant upregulation of both IGF-1R and InsR transcripts in cerebellum of pups born to diabetic mothers at P0, compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. In contrast to InsR, which does not show any difference, there was a markedly reduction in cerebellar expression of IGF-1R mRNA and protein level in the diabetic group of newborns at P7. Moreover, 2 weeks after birth, mRNA expression and protein levels of both InsR and IGF-1R in cerebellum of the diabetic group was significantly downregulated. Compared to controls, we did not find any difference in cerebellar InsR or IGF-1R mRNA and protein levels in the insulin treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both InsR and IGF-1R in the developing cerebellum. Furthermore, optimal maternal glycaemia control by insulin administration normalized these effects.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Animals, Newborn
- Blood Glucose/metabolism
- Blotting, Western
- Cerebellum/metabolism
- DNA, Complementary/biosynthesis
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Expression/drug effects
- Male
- Pregnancy
- RNA/biosynthesis
- RNA/isolation & purification
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- Hossein Haghir
- Department of Anatomy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
25
|
Aquilani R, Scocchi M, Boschi F, Viglio S, Iadarola P, Pastoris O, Verri M. Effect of calorie-protein supplementation on the cognitive recovery of patients with subacute stroke. Nutr Neurosci 2013; 11:235-40. [DOI: 10.1179/147683008x301586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
27
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
28
|
Slouzkey I, Rosenblum K, Maroun M. Memory of conditioned taste aversion is erased by inhibition of PI3K in the insular cortex. Neuropsychopharmacology 2013; 38:1143-53. [PMID: 23385661 PMCID: PMC3656365 DOI: 10.1038/npp.2013.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/23/2012] [Accepted: 01/02/2013] [Indexed: 11/08/2022]
Abstract
The conditioned taste aversion (CTA) paradigm, in which association between a novel taste and visceral malaise is formed, gives a unique experimental setting to examine the mechanisms underlying memory acquisition and extinction processes. AKT is a main kinase of the phosphoinositide 3-kinase cascade (PI3K) and has been implicated in long-term memory. We have recently reported that blockade of PI3K in the basolateral amygdala (BLA) before retrieval of fear memory was associated with long-term reduction in fear responses, suggesting a possible role of PI3K inhibition in fear erasure. In this study, we aimed to elucidate whether PI3K has a similar role in the insular cortex (IC), which has a crucial role in CTA acquisition, consolidation, maintenance, and extinction. To that end, we (1) monitored AKT phosphorylation in the IC following CTA acquisition and extinction and (2) inhibited PI3K by local microinjection of the PI3K inhibitor LY294002 at different stages of CTA acquisition and extinction. Our results show that while AKT phosphorylation is increased following CTA learning, it is decreased following CTA extinction. Inhibition of AKT phosphorylation in the IC before or after the first CTA retrieval test resulted in reduction in the aversion index. This reduction in aversion is due to the erasure of the original CTA trace memory, as re-application of the unconditioned stimulus (lithium chloride) did not induce the recovery of aversion in LY294002-treated animals. Our present data add new evidence to suggest that PI3K is engaged in consolidation of aversive memories, as its inhibition is associated with erasure of CTA memory.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Hashmi S, Wang Y, Parhar RS, Collison KS, Conca W, Al-Mohanna F, Gaugler R. A C. elegans model to study human metabolic regulation. Nutr Metab (Lond) 2013; 10:31. [PMID: 23557393 PMCID: PMC3636097 DOI: 10.1186/1743-7075-10-31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/19/2013] [Indexed: 12/16/2022] Open
Abstract
Lipid metabolic disorder is a critical risk factor for metabolic syndrome, triggering debilitating diseases like obesity and diabetes. Both obesity and diabetes are the epicenter of important medical issues, representing a major international public health threat. Accumulation of fat in adipose tissue, muscles and liver and/or the defects in their ability to metabolize fatty acids, results in insulin resistance. This triggers an early pathogenesis of type 2 diabetes (T2D). In mammals, lipid metabolism involves several organs, including the brain, adipose tissue, muscles, liver, and gut. These organs are part of complex homeostatic system and communicate through hormones, neurons and metabolites. Our study dissects the importance of mammalian Krüppel-like factors in over all energy homeostasis. Factors controlling energy metabolism are conserved between mammals and Caenorhabditis elegans providing a new and powerful strategy to delineate the molecular pathways that lead to metabolic disorder. The C. elegans intestine is our model system where genetics, molecular biology, and cell biology are used to identify and understand genes required in fat metabolism. Thus far, we have found an important role of C. elegans KLF in FA biosynthesis, mitochondrial proliferation, lipid secretion, and β-oxidation. The mechanism by which KLF controls these events in lipid metabolism is unknown. We have recently observed that C. elegans KLF-3 selectively acts on insulin components to regulate insulin pathway activity. There are many factors that control energy homeostasis and defects in this control system are implicated in the pathogenesis of human obesity and diabetes. In this review we are discussing a role of KLF in human metabolic regulation.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ, 08901, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Haghir H, Rezaee AAR, Nomani H, Sankian M, Kheradmand H, Hami J. Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum. Cell Mol Neurobiol 2013; 33:369-77. [PMID: 23322319 DOI: 10.1007/s10571-012-9903-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/29/2012] [Indexed: 12/30/2022]
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) are considered to play important roles in brain development; and their cognate receptors -InsR and IGF-1R- localized within distinct brain regions including cerebellum. Using Real-Time PCR and western blot analysis, we compared the expression of InsR and IGF-1R in male and female developing rat cerebellum at P0, P7, and P14. At all time points studied, the cerebellar expression of IGF-1R, both at mRNA and protein levels was higher than that of InsR. The lowest InsR and IGF-1R mRNA and protein levels were measured in the neonate cerebellum, independent of gender. In males, the highest InsR and IGF-1R mRNA and protein expression were found at P7. InsR and IGF-1R expression increased significantly between P0 and P7, followed by a marked downregulation at P14. In contrast, in females, mRNA and protein levels of InsR and IGF-1R remain unchanged between P0 and P7, and are upregulated at P14. Therefore, peaked InsR and IGF-1R expression in female cerebelli occurred at P14. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that InsR and IGF-1R transcription is not subject to modulatory effects during the first 2 weeks of development. These findings indicate that there are prominent sexual differences in InsR and IGF-1R expression in the developing rat cerebellum, suggesting a probable mechanism for the control of gender differences in development and function of the cerebellum.
Collapse
Affiliation(s)
- Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
31
|
LEE YOUNGJU, KIM JIEUN, HWANG INSIK, KWAK MOONHWA, LEE JAEHO, JUNG YOUNGJIN, AN BEUMSOO, KWON HYEOGSOONG, KIM BYOUNGCHUL, KIM SEONJONG, KIM JOOMAN, HWANG DAEYOUN. Alzheimer’s phenotypes induced by overexpression of human presenilin 2 mutant proteins stimulate significant changes in key factors of glucose metabolism. Mol Med Rep 2013; 7:1571-8. [DOI: 10.3892/mmr.2013.1404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 11/06/2022] Open
|
32
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
33
|
Cho CE, Sánchez-Hernández D, Reza-López SA, Huot PSP, Kim YI, Anderson GH. Obesogenic phenotype of offspring of dams fed a high multivitamin diet is prevented by a post-weaning high multivitamin or high folate diet. Int J Obes (Lond) 2013; 37:1177-82. [PMID: 23295499 PMCID: PMC4954778 DOI: 10.1038/ijo.2012.210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/31/2012] [Accepted: 11/18/2012] [Indexed: 11/17/2022]
Abstract
Background High multivitamin (10-fold AIN-93G, HV) diets fed during pregnancy to Wistar rats increase characteristics of metabolic syndrome in offspring when weaned to the recommended vitamin (RV) diet. Objective To determine if the effects of HV gestational diets on obesogenic phenotypes in the offspring arise as a consequence of altered hypothalamic control of feeding behavior and if their increased food intake could be prevented by feeding them HV or high folate (10-fold folate, HFol) diets. Methods Male offspring of dams fed HV diet during pregnancy weaned to RV, HV or HFol diets were compared to those born to RV dams and weaned to RV diet for 29 weeks. Food intake over 72 hours and body weight were measured bi-weekly and weekly, respectively. Glucose response to a glucose load was measured at 18 weeks post-weaning. Hypothalamic gene expression of feeding-related neuropeptides including neuropeptide Y, pro-opiomelanocortin (POMC), insulin receptor, leptin receptor, brain-derived neurotrophic factor (BDNF), receptors for dopamine (DopaR1/2/5) and serotonin (SeroR1A/2A/2C), as well as global DNA methylation and brain and plasma folate concentrations were measured at 29 weeks post-weaning. Results HV or HFol pup diets increased brain and plasma folate concentrations and prevented the increase in food intake (5%, P=0.03), body weight (8%, P=0.0006) and glucose response to a glucose load (36%, P=0.02) found in those fed the RV diet. Expression of anorexigenic POMC (P=0.004) and BDNF (P=0.02) was higher, and DopaR1 was lower (P=0.06) in pups fed the HV diet. The HFol pup diet partially brought BDNF to the control level (P=0.02) and lowered SeroR2A (P=0.008). Expression of other genes was unaffected. Global DNA methylation was similar among the diet groups. Conclusion The obesogenic phenotype in offspring from HV fed dams is prevented by feeding HV or HFol pup diets, possibly due to post-weaning modulation of food intake regulatory mechanisms.
Collapse
Affiliation(s)
- C E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Childhood obesity represents a significant challenge for paediatric healthcare delivery. As obesity rates increase, obese children and adolescents are at significant risk for the development of a myriad of medical and surgical problems as well as mental health problems. Moreover, children with mental health problems are increasingly presenting to their psychiatrists with obesity. Treatment of paediatric obesity requires a multidisciplinary approach with incorporation of the family into the treatment plan although still typically only offering suboptimal results. Paediatric providers from all disciplines should focus efforts primarily on obesity prevention and encouragement of healthy lifestyles, while incorporating treatment for obesity when such efforts fail. The goals of this article are to provide an overview of the epidemiology, pathophysiology, genetics, clinical features and treatment strategies for paediatric obesity.
Collapse
Affiliation(s)
- Ann O Scheimann
- Division of Pediatric Gastroenterology and Nutrition, Johns Hopkins School of Medicine, Baltimore, MD 21287-2631, USA.
| |
Collapse
|
35
|
Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 2012; 153:2420-35. [PMID: 22408173 PMCID: PMC3339639 DOI: 10.1210/en.2011-1783] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I.
Collapse
Affiliation(s)
- Robyn Balden
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
36
|
Landmann EM, Schellong K, Melchior K, Rodekamp E, Ziska T, Harder T, Plagemann A. Short-term regulation of the hypothalamic melanocortinergic system under fasting and defined glucose-refeeding conditions in rats: a laser capture microdissection (LMD)-based study. Neurosci Lett 2012; 515:87-91. [PMID: 22450045 DOI: 10.1016/j.neulet.2012.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/27/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
It is well established that under fasting conditions the expression of the orexigenic neuropeptide agouti-related peptide (AGRP) is up-regulated in the hypothalamic arcuate nucleus (ARC), while inconsistent data exist regarding fasting regulation of the anorexigenic neurohormone proopiomelanocortin (POMC). Inconsistencies might have methodological reasons, especially concerning neuromorphological and/or experimental (nutritional) specificity. We analyzed the expression of both neuropeptides in ARC neurons, using lasercapture microdissection (LMD) and real-time PCR in 12h fasted vs. fed Wistar rats as well as after a standardized glucose load, i.e., under clinically relevant conditions in terms of diagnosing glucose intolerance in the human. Under fasting conditions, clear up-regulation of AGRP was observed, with increasing magnitude in ARC single neurons (SNP) as compared to ARC cell layers (+125% vs. +23%, resp.), closely correlated to hypoinsulinemia and hypoleptinemia. Surprisingly, in the fasting state POMC was not found to be down-regulated, neither in ARC cell layers nor in ARC single neurons (+9% vs. +6%). However, glucose-refeeding under diagnostically relevant conditions led to strong neuronal up-regulation of POMC expression in ARC SNP (+128%), and AGRP down-regulation (-50%). In conclusion, experimentally, topographically, and analytically specific and standardized conditions confirmed AGRP in ARC neurons as being neuronally up- and down-regulated, resp., depending on the general nutritional state, while POMC was found to be (up-) regulated only after peripheral glucose load. Findings suggest that POMC in ARC neurons acts glucose-mediated as an "anti-orexigenic" neurohormone, specifically responding to hyperglycemia.
Collapse
Affiliation(s)
- Emelie M Landmann
- Clinic of Obstetrics, Research Group Experimental Obstetrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee KY, Miki T, Yokoyama T, Ueki M, Warita K, Suzuki S, Ohta KI, Wang ZY, Jamal M, Yakura T, Liu JQ, Hosomi N, Takeuchi Y. Neonatal repetitive maternal separation causes long-lasting alterations in various neurotrophic factor expression in the cerebral cortex of rats. Life Sci 2012; 90:578-84. [PMID: 22365961 DOI: 10.1016/j.lfs.2012.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/27/2012] [Indexed: 01/08/2023]
Abstract
AIMS This study was carried out to examine the effects of early postnatal maternal separation stress on the development of the cerebral cortex with respect to time-dependent fluctuations of neurotrophic factor ligand and receptor expression. MAIN METHODS Wistar rats were separated from their mothers for 3h per day during postnatal days (PND) 10 to 15. The cerebral cortex was analyzed by real-time RT-PCR for the evaluation of the expression of mRNA for brain-derived neurotrophic factor (BDNF), TrkB, insulin-like growth factor-1 (IGF-1), and type 1 IGF receptor (IGF-1R) on PND16, 20, 30, and 60. KEY FINDINGS The expression of these neurotrophic factor ligands and receptors in the cerebral cortex was enhanced on PND16 and PND20, and then it returned to baseline levels on PND30. By PND60, however, the expression levels were attenuated. SIGNIFICANCE The important implication of this study is the persistent abnormal fluctuation of neurotrophic factor expression for a prolonged period, triggered even after the brain growth spurt. Given that neurotrophic factors play important roles in brain development, it can be speculated that the altered expression of these factors induced by maternal separation may interrupt normal brain development and ultimately lead to functional disruption. However, the possibility of such changes leading to various functional disruptions and the underlying mechanisms involved require further study.
Collapse
Affiliation(s)
- Kyoung-Youl Lee
- Department of Health Science, Kongju National University, Chungnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct 2012; 218:73-84. [PMID: 22241286 DOI: 10.1007/s00429-011-0377-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/29/2011] [Indexed: 01/17/2023]
Abstract
Diabetes during pregnancy causes neurodevelopmental and neurocognitive abnormalities in offspring. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. We examined the effects of maternal diabetes on insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14. We found a significant bilateral upregulation of both IGF-1R and InsR transcripts in the hippocampus of pups born to diabetic mothers at P0, as compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. At P7, there was a marked bilateral reduction in mRNA expression and protein levels of IGF-1R, although not of InsR in the diabetic group. We also found a downregulation in IGF1-R transcripts, especially in left hippocampus of the diabetic group at P14. Moreover, at the same time point, InsR expression was significantly decreased in both hippocampi of diabetic newborns. When compared with controls, we did not find any difference in hippocampal IGF-1R or InsR mRNA and protein levels in the insulin-treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both IGF-1R and InsR in the right/left developing hippocampi. Furthermore, the rigid control of maternal glycaemia by insulin administration normalized these effects.
Collapse
|
39
|
Hami J, Sadr-Nabavi A, Sankian M, Haghir H. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus. Brain Struct Funct 2011; 217:293-302. [PMID: 22042446 DOI: 10.1007/s00429-011-0358-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022]
Abstract
Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi square, Mashhad, Iran
| | | | | | | |
Collapse
|
40
|
Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di Carlo M. Insulin-activated Akt rescues Aβ oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 2011; 10:832-43. [PMID: 21624038 DOI: 10.1111/j.1474-9726.2011.00724.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence indicates that Alzheimer's disease, one of the most diffused aging pathologies, and diabetes may be related. Here, we demonstrate that insulin signalling protects LAN5 cells by amyloid-β42 (Aβ)-induced toxicity. Aβ affects both activation of insulin receptors and the levels of phospho-Akt, a critical signalling molecule in this pathway. In contrast, oxidative stress induced by Aβ can be antagonized by active Akt that, in turn, inhibits Foxo3a, a pro-apoptotic transcription factor activated by reactive oxygen species generation. Insulin cascade protects against mitochondrial damage caused by Aβ treatment, restoring the mitochondrial membrane potential. Moreover, we show that the recovery of the organelle integrity recruits active Akt translocation to the mitochondrion. Here, it plays a role both by maintaining unimpaired the permeability transition pore through increase in HK-II levels and by blocking apoptosis through phosphorylation of Bad, coming from cytoplasm after Aβ stimulus. Together, these results indicate that the Akt survival signal antagonizes the Aβ cell death process by balancing the presence and modifications of common molecules in specific cellular environments.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare Alberto Monroy, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev 2011; 91:389-411. [PMID: 21527729 DOI: 10.1152/physrev.00007.2010] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.
Collapse
Affiliation(s)
- Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
42
|
Liu XY, Shi JH, DU WH, Fan YP, Hu XL, Zhang CC, Xu HB, Miao YJ, Zhou HY, Xiang P, Chen FL. Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Exp Ther Med 2011; 2:977-984. [PMID: 22977608 DOI: 10.3892/etm.2011.292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of glucocorticoids (GCs) on appetite and gene expression of the hypothalamic appetite regulatory peptides, neuropeptide Y (NPY), agouti-related protein (AGRP) and cocaine and amphetamine-regulated transcript (CART), in non-obese and obese rats. Both non-obese and obese rats were randomly assigned to three groups: normal saline, low- and high-dose GC groups (NSG, LDG and HDG, respectively), which received an intraperitoneal injection with normal saline (0.2 ml/100 g) or hydrocortisone sodium succinate at 5 and 15 mg/kg, respectively, for 20 days. The expression levels of NPY, AGRP and CART mRNA in the hypothalamus were measured by real-time quantitative PCR. Non-obese and obese rats were found to undergo weight loss after GC injection, and a higher degree of weight loss was observed in the HDG rats. The average and cumulative food intakes in the obese and non-obese rats injected with high-dose GC were lower compared to that in the NSG (p<0.05). mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and the anorexigenic neuropeptide, CART, were significantly lower in the HDG than levels in the NSG for both the obese and non-obese rats (p<0.05). GC treatment decreased appetite and body weight, induced apparent glucolipid metabolic disturbances and hyperinsulinemia, while down-regulated mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and anorexigenic neuropeptide, CART, in the hypothalamus in the rats. The mechanism which induces this neuropeptide expression requires further study.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Endocrinology, No. 3 People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 201900
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin S, Rhodes PG, Cai Z. Whole body hypothermia broadens the therapeutic window of intranasally administered IGF-1 in a neonatal rat model of cerebral hypoxia-ischemia. Brain Res 2011; 1385:246-56. [PMID: 21316352 DOI: 10.1016/j.brainres.2011.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/17/2022]
Abstract
To investigate whether whole body hypothermia after neonatal cerebral hypoxia-ischemia (HI) could broaden the therapeutic window of intranasal treatment of IGF-1 (iN-IGF-1), postnatal day 7 rat pups were subjected to right common carotid artery ligation, followed by 8% oxygen inhalation for 2h. After HI, one group of pups were returned to their dams and kept at room temperature (24.5±0.2°C). A second group of pups were subjected to whole body hypothermia in a cool environment (21.5±0.3°C) for 2 or 4h before being returned to their dams. Two doses of 50 μg recombinant human IGF-1 were administered intranasally at a 1h interval starting at 0, 2 or 4h after hypothermia. Hypothermia decreased the rectal temperature of pups by 4.5°C as compared to those kept at room temperature. While hypothermia or iN-IGF-1 administered 2h after HI alone did not provide neuroprotection, the combined treatment of hypothermia with iN-IGF-1 significantly protected the neonatal rat brain from HI injury. Hypothermia treatment extended the therapeutic window of IGF-1 to 6h after HI. The extended IGF-1 therapeutic window by hypothermia was associated with decreases in infiltration of polymorphonuclear leukocytes and activation of microglia/macrophages and with attenuation of NF-κB activation in the ipsilateral hemisphere following HI.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
44
|
Stranahan AM, Mattson MP. Bidirectional metabolic regulation of neurocognitive function. Neurobiol Learn Mem 2011; 96:507-16. [PMID: 21236352 DOI: 10.1016/j.nlm.2011.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/04/2011] [Indexed: 12/16/2022]
Abstract
The efficiency of somatic energy metabolism is correlated with cognitive change over the lifespan. This relationship is bidirectional, with improved overall fitness associated with enhanced synaptic function and neuroprotection, and synaptic endangerment occurring in the context of impaired energy metabolism. In this review, we discuss recent advancements in the fields of exercise, dietary energy intake and diabetes, as they relate to neuronal function in the hippocampus. Because hippocampal neurons have energy requirements that are relatively higher than those of other brain regions, they are uniquely poised to benefit from exercise, and to be harmed by diabetes. We view exercise and dietary energy restriction as being associated with enhanced hippocampal plasticity at one end of a continuum, with obesity and diabetes accompanied by cognitive impairment at the other end of the continuum. Understanding the mechanisms for this continuum may yield novel therapeutic targets for the prevention and treatment of cognitive decline following aging, disease, or injury.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
45
|
Meal size can be decreased in obese subjects through pharmacological acceleration of gastric emptying (The OBERYTH trial). Int J Obes (Lond) 2010; 35:829-37. [PMID: 20938444 DOI: 10.1038/ijo.2010.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Entry of nutrients into the small intestine activates neuro-hormonal signals that regulate food intake through induction of satiation. OBJECTIVE To evaluate whether caloric intake can be decreased by pharmacologically accelerating gastric emptying (GE) of nutrients into the small intestine. METHODS Subjects were tested in 2 days, at baseline (day1) and after randomly receiving, in a double-blind manner, a 1 h infusion of erythromycin (3 mg Kg(-1), to accelerate GE) or placebo (day 2). Ad libitum caloric intake and postprandial gastrointestinal symptoms were evaluated using a validated nutrient drink test, simultaneously measuring gastric emptying [corrected] by scintigraphy. Plasma levels of satiation factors were also measured to evaluate their role in the modification of caloric intake and postprandial symptoms. Acceleration of GE was assessed as the difference in percentage emptied between day 2 and day 1 (DGE). The effects of DGE on caloric intake and symptoms were evaluated using multiple (lineal) regression. RESULTS Among 30 overweight/obese subjects (24F and 6 M), 15 received erythromycin and 15 placebo. The overall median age was 36 years (IQR: 30-42) and body mass index was 30 Kg m(-2) (IQR: 27-36). Subjects receiving erythromycin on day 2 presented accelerated GE as compared with placebo (P = 0.0002). DGE at 15 min after initiating eating had a significant effect on prospective caloric intake (P = 0.004). From the best-fitted regression model (R (2) = 81%, P < 0.0001), a 10% increase in GE at 15 min induced on an average a 135 ± 43.5 Kcal decrease in caloric intake. Postprandial increase in cholecystokinin (CCK) (P = 0.03) and insulin (P = 0.02) was associated with decreased caloric intake. Acceleration of GE at 60 min after initiating eating increased postprandial symptom scores measured 30 min after the completion of food consumption (P = 0.01). Postprandial increase in CCK (P = 0.002) and PP (P = 0.02) was associated with postprandial symptoms. CONCLUSION Meal size can be reduced in overweight/obese subjects by pharmacologically accelerating GE. This may be a reasonable target in obesity management.
Collapse
|
46
|
Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: A review. World J Diabetes 2010; 1:76-88. [PMID: 21537431 PMCID: PMC3083889 DOI: 10.4239/wjd.v1.i3.76] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/05/2023] Open
Abstract
With the many recent advances in the biomedical world, vast changes are taking place in our growing knowledge of the physiological aspects of almost all the tissues and organs of the human body. One of the most prevalent topics of discussion is the question of obesity and its effect on the metabolic changes in the human body. The original classical role of adipose tissue as an energy storage organ has been greatly modified. We now know that it is an endocrine organ, producing adipokines like leptin, adiponectin, visfatin, resistin, apelin, etc, which modulate metabolic processes in the body. Since obesity is associated with an increase in the adipose tissue mass, these hormones may be expected to be produced in increased concentrations and may thus have a significant impact on the macronutrient metabolism. Further, these adipokines may interact with long term energy modulators like insulin. Even though the scientific community has started unravelling the mysteries of the close linkage between obesity, its hormones and their physiological effects, a lot still remains to be discovered. The present discussion makes an attempt to trace the basic modern day concepts of the role of obesity in various metabolic processes.
Collapse
Affiliation(s)
- Parul Singla
- Parul Singla, Animesh Bardoloi, Department of Biochemistry, Lady Hardinge Medical College, New Delhi 110001, India
| | | | | |
Collapse
|
47
|
Xu RY, Wan YP, Tang QY, Wu J, Cai W. Carbohydrate-to-fat ratio affects food intake and body weight in Wistar rats. Exp Biol Med (Maywood) 2010; 235:833-8. [PMID: 20558837 DOI: 10.1258/ebm.2010.009276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to evaluate the impact of carbohydrate-to-fat ratio on body weight and appetite regulation in Wistar rats. Twenty-four Wistar rats were randomized to three dietary groups (n = 8): normal carbohydrate diet (NC), low-carbohydrate diet (LC) and high-carbohydrate diet (HC) for 12 weeks. Body weight and food intake were recorded. Circulating leptin and insulin levels were measured by radioimmunoassay method. The expression levels of leptin receptor, insulin receptor, orexin, neuropeptide Y (NPY), agouti-related protein (AgRP) and melanocortin-4 receptor (MC-4R) in the hypothalamus were also measured by realtime polymerase chain reaction (PCR). In the LC group, food intake reduced while body weight increased significantly compared with the NC and HC groups. Plasma leptin levels increased in the LC (18.5 +/- 8.2 ng/mL) group compared with the NC (8.6 +/- 3.8 ng/mL, P < 0.001) and HC (6.6 +/- 1.9 ng/mL, P < 0.001) groups. Realtime reverse transcription-PCR revealed a decrease in the hypothalamic expression level of only leptin receptor in the LC (0.764, 0.471-4.648 copy/mL) and HC (0.357, 0.129-0.781 copy/mL) groups compared with the NC (1.323, 0.616-2.392 copy/mL; P = 0.01) group, and that there was no significant change in those of insulin receptor, AgRP, Orexin, NPY and MC-4R. Low-carbohydrate, high-fat diet raised body weight, which led to a rising of circulating leptin levels and a reduced expression of leptin receptor in the hypothalamus.
Collapse
Affiliation(s)
- Ren-Ying Xu
- Department of Clinical Nutrition, Ren Ji Hospital and Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Guyon A, Conductier G, Rovere C, Enfissi A, Nahon JL. Melanin-concentrating hormone producing neurons: Activities and modulations. Peptides 2009; 30:2031-9. [PMID: 19524001 DOI: 10.1016/j.peptides.2009.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/25/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, "first order" neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to "second order" neurons, partly located in the lateral hypothalamic area. These "second order" neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, Univrsité de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, Valbonne, France.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Growing evidence suggests that food intake, energy expenditure and endogenous glucose production are regulated by hypothalamic areas that respond to a variety of peripheral signals. Therefore, in response to a reduction in energy stores or circulating nutrients, the brain initiates responses in order to promote positive energy balance to restore and maintain energy and glucose homeostasis. In contrast, in times of nutrient abundance and excess energy storage, key hypothalamic areas activate responses to promote negative energy balance (i.e. reduced food intake and increased energy expenditure) and decreased nutrient availability (reduced endogenous glucose production). Accordingly, impaired responses or 'resistance' to afferent input from these hormonal or nutrient-related signals would be predicted to favour weight gain and insulin resistance and may contribute to the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Gregory J Morton
- Department of Medicine, Harbourview Medical Center, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|