1
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Sleep deprivation enhances amyloid beta peptide, p-tau and serotonin in the brain: Neuroprotective effects of nanowired delivery of cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and serotonin. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:125-162. [PMID: 37783554 DOI: 10.1016/bs.irn.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Sharma HS, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Stress induced exacerbation of Alzheimer's disease brain pathology is thwarted by co-administration of nanowired cerebrolysin and monoclonal amyloid beta peptide antibodies with serotonin 5-HT6 receptor antagonist SB-399885. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:3-46. [PMID: 37783559 DOI: 10.1016/bs.irn.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is one of the devastating neurodegenerative diseases affecting mankind worldwide with advancing age mainly above 65 years and above causing great misery of life. About more than 7 millions are affected with Alzheimer's disease in America in 2023 resulting in huge burden on health care system and care givers and support for the family. However, no suitable therapeutic measures are available at the moment to enhance quality of life to these patients. Development of Alzheimer's disease may reflect the stress burden of whole life inculcating the disease processes of these neurodegenerative disorders of the central nervous system. Thus, new strategies using nanodelivery of suitable drug therapy including antibodies are needed in exploring neuroprotection in Alzheimer's disease brain pathology. In this chapter role of stress in exacerbating Alzheimer's disease brain pathology is explored and treatment strategies are examined using nanotechnology based on our own investigation. Our observations clearly show that restraint stress significantly exacerbate Alzheimer's disease brain pathology and nanodelivery of a multimodal drug cerebrolysin together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP) together with a serotonin 5-HT6 receptor antagonist SB399885 significantly thwarted Alzheimer's disease brain pathology exacerbated by restraint stress, not reported earlier. The possible mechanisms and future clinical significance is discussed.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int J Mol Sci 2023; 24:6602. [PMID: 37047574 PMCID: PMC10095287 DOI: 10.3390/ijms24076602] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for approximately 80% of all TBI cases and is a growing source of morbidity and mortality worldwide. To improve the management of children and adults with mTBI, a series of candidate biomarkers have been investigated in recent years. In this context, the measurement of blood biomarkers in the acute phase after a traumatic event helps reduce unnecessary CT scans and hospitalizations. In athletes, improved management of sports-related concussions is also sought to ensure athletes' safety. S100B protein has emerged as the most widely studied and used biomarker for clinical decision making in patients with mTBI. In addition to its use as a diagnostic biomarker, S100B plays an active role in the molecular pathogenic processes accompanying acute brain injury. This review describes S100B protein as a diagnostic tool as well as a potential therapeutic target in patients with mTBI.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin Together with Antibodies to Amyloid Beta Peptide, Phosphorylated Tau, and Tumor Necrosis Factor Alpha Induces Superior Neuroprotection in Alzheimer's Disease Brain Pathology Exacerbated by Sleep Deprivation. ADVANCES IN NEUROBIOLOGY 2023; 32:3-53. [PMID: 37480458 DOI: 10.1007/978-3-031-32997-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Sleep deprivation induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism. Thus, it is likely that sleep deprivation is one of the predisposing factors in precipitating Alzheimer's disease (AD) brain pathology. Our previous studies indicate significant brain pathology following sleep deprivation or AD. Keeping these views in consideration in this review, nanodelivery of monoclonal antibodies to amyloid beta peptide (AβP), phosphorylated tau (p-tau), and tumor necrosis factor alpha (TNF-α) in sleep deprivation-induced AD is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AβP with p-tau and TNF-α induces superior neuroprotection in AD caused by sleep deprivation, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci 2022; 45:809-819. [PMID: 35995628 PMCID: PMC9768528 DOI: 10.1016/j.tins.2022.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
In the brain, increases in neural activity drive changes in local blood flow via neurovascular coupling. The common explanation for increased blood flow (known as functional hyperemia) is that it supplies the metabolic needs of active neurons. However, there is a large body of evidence that is inconsistent with this idea. Baseline blood flow is adequate to supply oxygen needs even with elevated neural activity. Neurovascular coupling is irregular, absent, or inverted in many brain regions, behavioral states, and conditions. Increases in respiration can increase brain oxygenation without flow changes. Simulations show that given the architecture of the brain vasculature, areas of low blood flow are inescapable and cannot be removed by functional hyperemia. As discussed in this article, potential alternative functions of neurovascular coupling include supplying oxygen for neuromodulator synthesis, brain temperature regulation, signaling to neurons, stabilizing and optimizing the cerebral vascular structure, accommodating the non-Newtonian nature of blood, and driving the production and circulation of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Patrick J Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, Biology, and Biomedical Engineering, The Pennsylvania State University, W-317 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022; 13:866059. [PMID: 35450067 PMCID: PMC9016115 DOI: 10.3389/fimmu.2022.866059] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Diet is an important lifestyle factor that is known to contribute in the development of human disease. It is well established that poor diet plays an active role in exacerbating metabolic diseases, such as obesity, diabetes and hypertension. Our understanding of how the immune system drives chronic inflammation and disease pathogenesis has evolved in recent years. However, the contribution of dietary factors to inflammatory conditions such as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A western diet has been associated as pro-inflammatory, in contrast to traditional dietary patterns that are associated as being anti-inflammatory. This may be due to direct effects of nutrients on immune cell function. Diet may also affect the composition and function of gut microbiota, which consequently affects immunity. In animal models of inflammatory disease, diet may modulate inflammation in the gastrointestinal tract and in other peripheral sites. Despite limitations of animal models, there is now emerging evidence to show that anti-inflammatory effects of diet may translate to human gastrointestinal and inflammatory diseases. However, appropriately designed, larger clinical studies must be conducted to confirm the therapeutic benefit of dietary therapy.
Collapse
Affiliation(s)
- Paul A Gill
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Saskia Inniss
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Tomoko Kumagai
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Farooq Z Rahman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom.,Department of Gastroenterology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Andrew M Smith
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
7
|
Kushak RI, Sengupta A, Winter HS. Interactions between the intestinal microbiota and epigenome in individuals with autism spectrum disorder. Dev Med Child Neurol 2022; 64:296-304. [PMID: 34523735 DOI: 10.1111/dmcn.15052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of cognitive function and interpersonal relationships. Furthermore, some individuals with ASD have gastrointestinal disorders that have been correlated with impairments in intestinal microbiota. Gut microbiota are important not only for intestinal health, but also for many other functions including food digestion, energy production, immune system regulation, and, according to current data, behavior. Disruption of the indigenous microbiota, microbial dysbiosis (imbalance between microorganisms present in the gut), overgrowth of potentially pathogenic microorganisms, a less diverse microbiome, or lower levels of beneficial bacteria in children with ASD can affect behavior. Metabolome analysis in children with ASD has identified perturbations in multiple metabolic pathways that might be associated with cognitive functions. Recent studies have shown that the intestinal microbiome provides environmental signals that can modify host response to stimuli by modifying the host epigenome, which affects DNA methylation, histone modification, and non-coding RNAs. The most studied microbiota-produced epigenetic modifiers are short-chain fatty acids, although other products of intestinal microbiota might also cause epigenetic modifications in the host's DNA. Here we review evidence suggesting that epigenetic alterations caused by modification of gene expression play an important role in understanding ASD.
Collapse
Affiliation(s)
- Rafail I Kushak
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashok Sengupta
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harland S Winter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Sharma HS, Sharma A. Preface. PROGRESS IN BRAIN RESEARCH 2021; 266:xxi-xxx. [PMID: 34689868 DOI: 10.1016/s0079-6123(21)00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Császár N, Bókkon I. Gut serotonin as a general membrane permeability regulator. Curr Neuropharmacol 2021; 20:269-271. [PMID: 34548000 PMCID: PMC9413787 DOI: 10.2174/1570159x19666210921100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Császár N
- Psychosomatic Outpatient Clinics, Budapest. Hungary
| | - Bókkon I
- Psychosomatic Outpatient Clinics, Budapest. Hungary
| |
Collapse
|
11
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|
13
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Szőke H, Kovács Z, Bókkon I, Vagedes J, Szabó AE, Hegyi G, Sterner MG, Kiss Á, Kapócs G. Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain. Rev Neurosci 2020; 31:415-425. [DOI: 10.1515/revneuro-2019-0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
AbstractThe microbiota and microbiome and disruption of the gut-brain axis were linked to various metabolic, immunological, physiological, neurodevelopmental, and neuropsychiatric diseases. After a brief review of the relevant literature, we present our hypothesis that intestinal serotonin, produced by intestinal enterochromaffin cells, picked up and stored by circulating platelets, participates and has an important role in the regulation of membrane permeability in the intestine, brain, and other organs. In addition, intestinal serotonin may act as a hormone-like continuous regulatory signal for the whole body, including the brain. This regulatory signal function is mediated by platelets and is primarily dependent on and reflects the intestine’s actual health condition. This hypothesis may partially explain why gut dysbiosis could be linked to various human pathological conditions as well as neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Henrik Szőke
- Department of CAM, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Kovács
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - István Bókkon
- Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
- Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - Jan Vagedes
- University of Tübingen, Children’s Hospital, Tübingen, Germany
- ARCIM Institute (Academic Research in Complementary and Integrative Medicine), Filderstadt, Germany
| | | | - Gabriella Hegyi
- Department of CAM, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | | | - Ágnes Kiss
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kapócs
- Buda Family-Centered Mental Health Centre, Department of Psychiatry and Psychiatric Rehabilitation, Teaching Department of Semmelweis University, New Saint John Hospital, Budapest, Hungary
- Institute for Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Sharma HS, Muresanu DF, Nozari A, Castellani RJ, Dey PK, Wiklund L, Sharma A. Anesthetics influence concussive head injury induced blood-brain barrier breakdown, brain edema formation, cerebral blood flow, serotonin levels, brain pathology and functional outcome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:45-81. [PMID: 31349932 DOI: 10.1016/bs.irn.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several lines of evidences show that anesthetics influence neurotoxicity and neuroprotection. The possibility that different anesthetic agents potentially influence the pathophysiological and functional outcome following neurotrauma was examined in a rat model of concussive head injury (CHI). The CHI was produced by an impact of 0.224N on the right parietal bone by dropping a weight of 114.6g from a 20cm height under different anesthetic agents, e.g., inhaled ether anesthesia or intraperitoneally administered ketamine, pentobarbital, equithesin or urethane anesthesia. Five hour CHI resulted in profound volume swelling and brain edema formation in both hemispheres showing disruption of the blood-brain barrier (BBB) to Evans blue and radioiodine. A marked decrease in the cortical CBF and a profound increase in plasma or brain serotonin levels were seen at this time. Neuronal damages were present in several parts of the brain. These pathological changes were most marked in CHI under ether anesthesia followed by ketamine (35mg/kg, i.p.), pentobarbital (50mg/kg, i.p.), equithesin (3mL/kg, i.p.) and urethane (1g/kg, i.p.). The functional outcome on Rota Rod performances or grid walking tests was also most adversely affected after CHI under ether anesthesia followed by pentobarbital, equithesin and ketamine. Interestingly, the plasma and brain serotonin levels strongly correlated with the development of brain edema in head injured animals in relation to different anesthetic agents used. These observations suggest that anesthetic agents are detrimental to functional and pathological outcomes in CHI probably through influencing the circulating plasma and brain serotonin levels, not reported earlier. Whether anesthetics could also affect the efficacy of different neuroprotective agents in CNS injuries is a new subject that is currently being examined in our laboratory.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin Fior Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Prasanta Kumar Dey
- Neurophysiology Research Unit, Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Sharma A, Patnaik R, Sharma HS. Neuroprotective effects of 5-HT 3 receptor antagonist ondansetron on morphine withdrawal induced brain edema formation, blood-brain barrier dysfunction, neuronal injuries, glial activation and heat shock protein upregulation in the brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:209-228. [PMID: 31349928 DOI: 10.1016/bs.irn.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morphine withdrawal response is associated with brain edema formation, blood-brain barrier (BBB) disruption, activation of glial cells and heat shock protein (HSP 72kDa) responses in the CNS. Thus, exploration of suitable therapeutic measures is the need of the hour to induce neuroprotection in morphine withdrawal cases. There are reports that 5-HT3-receptor antagonists ondansetron attenuate some of the behavioral changes in morphine-withdrawal symptoms. However, brain protection in morphine withdrawal using pharmacological approaches is still not well known. In present investigation, effect of ondansetron the potent 5-HT3 receptor antagonist on brain edema formation BBB disruption, glial activation and/or HSP response following morphine withdrawal was examined. Rats received ondansetron (1mg or 2mg/kg, s.c) or saline once daily from 2days before morphine administration (10mg/kg, s.c. once daily for 10days) that continued up to 2days after its withdrawal (day 13th). Cessation of morphine on day 11th results in withdrawal symptoms and BBB breakdown to proteins in the cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem and spinal cord along with activation of glial fibrillary acidic protein (GFAP) and HSP immunoreactivity. In these animals brain edema and neurotoxicity are prominent on day 13th as compared to controls. Ondansetron treatment significantly reduced withdrawal symptoms on the day 13th in a dose dependent manner and attenuated BBB breakdown, edema formation, GFAP and HSP expression and neuronal injuries. These observations are the first to show that ondansetron is neuroprotective following morphine withdrawal indicating an important role of 5-HT3 receptors in psychostimulants abuse.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ranjana Patnaik
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
21
|
Sharma A, Castellani RJ, Smith MA, Muresanu DF, Dey PK, Sharma HS. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:1-44. [DOI: 10.1016/bs.irn.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Karim MF, Banerjee S, Poddar MK. Does patchouli oil change blood platelet monoamine oxidase-A activity of adult mammals? J Physiol Sci 2018; 68:281-291. [PMID: 28365907 PMCID: PMC10717597 DOI: 10.1007/s12576-017-0534-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022]
Abstract
Patchouli oil, an essential aroma oil extracted from patchouli leaf during short-term exposure with five and ten drops either inhibited (at 1 or 2 h) or stimulated (at 4 h) the platelet MAO-A activity depending on the dosages of the aroma oil mainly due to inhibition or stimulation of its K m. The long-term 15 consecutive days exposure (with two or five drops) of patchouli oil, on the other hand, maximally stimulated the platelet MAO-A activity with five drops patchouli oil for 1 h exposure, but further continuation of its exposure with same doses (two or five drops) for 30 consecutive days significantly stimulated (with two drops) and inhibited (with five drops) the platelet MAO-A activity due to stimulation and inhibition respectively of its corresponding both K m and V max. These results thus suggest that this aroma oil exposure may modulate the blood platelet serotonergic regulation depending on the dose, duration, and conditions of exposure.
Collapse
Affiliation(s)
- Md Fazlul Karim
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
23
|
Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E. TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 2018; 69:556-567. [PMID: 29452218 PMCID: PMC5963697 DOI: 10.1016/j.bbi.2018.02.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Recovery from major depressive disorder is difficult, particularly in patients who are refractory to antidepressant treatments. To examine factors that regulate recovery, we developed a prolonged learned helplessness depression model in mice. After the induction of learned helplessness, mice were separated into groups that recovered or did not recover within 4 weeks. Comparisons were made between groups in hippocampal proteins, inflammatory cytokines, and blood brain barrier (BBB) permeability. Compared with mice that recovered and control mice, non-recovered mice displaying prolonged learned helplessness had greater hippocampal activation of glycogen synthase kinase-3 (GSK3), higher levels of tumor necrosis factor-α (TNFα), interleukin-17A, and interleukin-23, increased permeability of the blood brain barrier (BBB), and lower levels of the BBB tight junction proteins occludin, ZO1, and claudin-5. Treatment with the GSK3 inhibitor TDZD-8 reduced inflammatory cytokine levels, increased tight junction protein levels, and reversed impaired recovery from learned helplessness, demonstrating that prolonged learned helplessness is reversible and is maintained by abnormally active GSK3. In non-recovered mice with prolonged learned helpless, stimulation of sphingosine 1-phosphate receptors by Fingolimod or administration of the TNFα inhibitor etanercept repaired the BBB and reversed impaired recovery from prolonged learned helplessness. Thus, disrupted BBB integrity mediated in part by TNFα contributes to blocking recovery from prolonged learned helplessness depression-like behavior. Overall, this report describes a new model of prolonged depression-like behavior and demonstrates that stress-induced GSK3 activation contributes to disruption of BBB integrity mediated by inflammation, particularly TNFα, which contributes to impaired recovery from prolonged learned helplessness.
Collapse
Affiliation(s)
- Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Sachi Desse
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC, 28040 Madrid, Spain
| | - Ryan J. Worthen
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136,Corresponding author: Richard S. Jope, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building room 416, Miami, Florida 33136 USA, phone: 305-243-0262,
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
24
|
Effect of low-frequency but high-intensity noise exposure on swine brain blood barrier permeability and its mechanism of injury. Neurosci Lett 2017; 662:122-128. [PMID: 28941872 DOI: 10.1016/j.neulet.2017.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Vibroacousitic disease (VAD) is caused by excessive exposure to low-frequency but high-intensity noise. The integrity of the brain blood barrier (BBB) is essential for the brain. The study aimed to investigate the effect of noise exposure on the BBB. METHODS Healthy male Bama swine were exposed to 50, 70, 100, and 120Hz, 140dB noise for 30min. After exposure, CT brain imaging and ex vivo fluorescent imaging of parenchymal EB leakage were performed (each group consisted of N=3 swine). The human cerebral microvascular endothelial cells were exposed to 70Hz, 140dB noise for 5min. RESULTS The BBB permeability assay showed that 50, 70, and 100Hz with 140dB noise exposure accelerated BBB permeability, and the BBB opening at 70Hz was most serious and reversible. Additionally, CT images demonstrated that the noise-induced opening of the BBB caused no intracerebral hemorrhage. This noise-induced BBB opening was related to the downregulation of zo-1 and occludin. Finally, cysteinyl leukotriene receptor 1 (CysLT1 receptor) was found to regulate noise-induced tight junction defects in vitro. CONCLUSIONS In conclusion, noise exposure accelerates the formation of a high-permeability BBB with leaky tight junctions through a CysLT1-mediated mechanism, which warrants additional research.
Collapse
|
25
|
Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet B Neuropsychiatr Genet 2017; 174:651-660. [PMID: 28691768 PMCID: PMC9586840 DOI: 10.1002/ajmg.b.32567] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Reza Alam
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Hamid M. Abdolmaleky
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
26
|
Lafuente JV, Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Patnaik R, Sharma HS. Repeated Forced Swim Exacerbates Methamphetamine-Induced Neurotoxicity: Neuroprotective Effects of Nanowired Delivery of 5-HT3-Receptor Antagonist Ondansetron. Mol Neurobiol 2017; 55:322-334. [DOI: 10.1007/s12035-017-0744-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Hurtado-Alvarado G, Velázquez-Moctezuma J, Gómez-González B. Chronic sleep restriction disrupts interendothelial junctions in the hippocampus and increases blood-brain barrier permeability. J Microsc 2017; 268:28-38. [PMID: 28543440 DOI: 10.1111/jmi.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Chronic sleep loss in the rat increases blood-brain barrier permeability to Evans blue and FITC-dextrans in almost the whole brain and sleep recovery during short periods restores normal blood-brain barrier permeability. Sleep loss increases vesicle density in hippocampal endothelial cells and decreases tight junction protein expression. However, at the ultrastructural level the effect of chronic sleep loss on interendothelial junctions is unknown. In this study we characterised the ultrastructure of interendothelial junctions in the hippocampus, the expression of tight junction proteins, and quantified blood-brain barrier permeability to fluorescein-sodium after chronic sleep restriction. Male Wistar rats were sleep restricted using the modified multiple platform method during 10 days, with a daily schedule of 20-h sleep deprivation plus 4-h sleep recovery at their home-cages. At the 10th day hippocampal samples were obtained immediately at the end of the 20-h sleep deprivation period, and after 40 and 120 min of sleep recovery. Samples were processed for transmission electron microscopy and western blot. Chronic sleep restriction increased blood-brain barrier permeability to fluorescein-sodium, and decreased interendothelial junction complexity by increasing the frequency of less mature end-to-end and simply overlap junctions, even after sleep recovery, as compared to intact controls. Chronic sleep loss also induced the formation of clefts between narrow zones of adjacent endothelial cell membranes in the hippocampus. The expression of claudin-5 and actin decreased after chronic sleep loss as compared to intact animals. Therefore, it seems that chronic sleep loss disrupts interendothelial junctions that leads to blood-brain barrier hyperpermeability in the hippocampus.
Collapse
Affiliation(s)
- G Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - J Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - B Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| |
Collapse
|
28
|
Roszkowski M, Bohacek J. Stress does not increase blood-brain barrier permeability in mice. J Cereb Blood Flow Metab 2016; 36:1304-15. [PMID: 27146513 PMCID: PMC4929709 DOI: 10.1177/0271678x16647739] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/08/2016] [Indexed: 12/28/2022]
Abstract
Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood-brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood-brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood-brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood-brain barrier permeability. To additionally assess if stress could change blood-brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood-brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood-brain barrier permeability.
Collapse
Affiliation(s)
- Martin Roszkowski
- Brain Research Institute, Neuroscience Center Zurich, ETH Zurich, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Johannes Bohacek
- Brain Research Institute, Neuroscience Center Zurich, ETH Zurich, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| |
Collapse
|
29
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
30
|
Malan-Müller S, Fairbairn L, Daniels WMU, Dashti MJS, Oakeley EJ, Altorfer M, Kidd M, Seedat S, Gamieldien J, Hemmings SMJ. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq. Metab Brain Dis 2016; 31:135-56. [PMID: 26400817 DOI: 10.1007/s11011-015-9727-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Lorren Fairbairn
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Willie M U Daniels
- Department of Human Physiology, University of KwaZulu-Natal, Durban, South Africa
| | | | - Edward J Oakeley
- Novartis Institutes for BioMedical Research, Biomarker Development - Human Genetics and Genomics, Genome Technologies, Basel, Switzerland
| | - Marc Altorfer
- Novartis Institutes for BioMedical Research, Biomarker Development - Human Genetics and Genomics, Genome Technologies, Basel, Switzerland
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Junaid Gamieldien
- University of the Western Cape, South African National Bioinformatics Institute, Cape Town, South Africa
| | - Sîan Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
31
|
Wanner SP, Prímola-Gomes TN, Pires W, Guimarães JB, Hudson ASR, Kunstetter AC, Fonseca CG, Drummond LR, Damasceno WC, Teixeira-Coelho F. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology. Temperature (Austin) 2015; 2:457-75. [PMID: 27227066 PMCID: PMC4844073 DOI: 10.1080/23328940.2015.1119615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023] Open
Abstract
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.
Collapse
Affiliation(s)
- Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - Washington Pires
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Juliana Bohnen Guimarães
- Laboratório de Fisiologia do Exercício; Universidade Estadual de Minas Gerais ; Ibirité (MG), Brazil
| | - Alexandre Sérvulo Ribeiro Hudson
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Cletiana Gonçalves Fonseca
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Lucas Rios Drummond
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - William Coutinho Damasceno
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Francisco Teixeira-Coelho
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais; Belo Horizonte (MG), Brazil; Centro de Formação de Professores; Universidade Federal do Recôncavo da Bahia; Amargosa (BA), Brazil
| |
Collapse
|
32
|
Sharma HS, Kiyatkin EA, Patnaik R, Lafuente JV, Muresanu DF, Sjöquist PO, Sharma A. Exacerbation of Methamphetamine Neurotoxicity in Cold and Hot Environments: Neuroprotective Effects of an Antioxidant Compound H-290/51. Mol Neurobiol 2015; 52:1023-33. [PMID: 26111626 PMCID: PMC5518775 DOI: 10.1007/s12035-015-9252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/21/2022]
Abstract
In this study, we examined the influence of cold and hot environments on methamphetamine (METH) neurotoxicity in both drug-naive rats and animals previously exposed to different types of nanoparticles (NPs). Since METH induces oxidative stress, we also examined how a potential chain-breaking antioxidant H-290/51 (Astra-Zeneca, Mölndal, Sweden) affects METH-induced neurotoxicity. Exposure of drug-naive rats to METH (9 mg/kg, s.c.) at 4, 21, or 34 °C for 3 h resulted in breakdown of the blood-brain barrier (BBB), brain edema, and neuronal injuries, which all differed in severity depending upon ambient temperatures. The changes were moderate at 21 °C, 120-180 % larger at 34 °C, and almost absent at 4 °C. In rats chronically treated with NPs (SiO2, Cu, or Ag; 50-60 nm, 50 mg/kg, i.p. for 7 days), METH-induced brain alterations showed a two- to fourfold increase at 21 °C, a four- to sixfold increase at 34 °C, and three- to fourfold increase at 4 °C. SiO2 exposure showed the most pronounced METH-induced brain pathology at all temperatures followed by Ag and Cu NPs. Pretreatment with a potent antioxidant compound H-290/51 (50 mg/kg, p.o., 30 min before METH) significantly reduced brain pathology in naive animals exposed to METH at 21 and 34 °C. In NPs-treated animals, however, attenuation of METH-induced brain pathology occurred only after repeated exposure of H-290/51 (-30 min, 0 min, and +30 min). These observations are the first to show that NPs exacerbate METH-induced brain pathology in both cold and hot environments and demonstrate that timely intervention with antioxidant H-290/51 could have neuroprotective effects.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, SE-75185, Uppsala, Sweden,
| | | | | | | | | | | | | |
Collapse
|
33
|
Schulte S, Podlog LW, Hamson-Utley JJ, Strathmann FG, Strüder HK. A systematic review of the biomarker S100B: implications for sport-related concussion management. J Athl Train 2015; 49:830-50. [PMID: 25299445 DOI: 10.4085/1062-6050-49.3.33] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Elevated levels of the astroglial protein S100B have been shown to predict sport-related concussion. However, S100B levels within an athlete can vary depending on the type of physical activity (PA) engaged in and the methodologic approach used to measure them. Thus, appropriate reference values in the diagnosis of concussed athletes remain undefined. The purpose of our systematic literature review was to provide an overview of the current literature examining S100B measurement in the context of PA. The overall goal is to improve the use of the biomarker S100B in the context of sport-related concussion management. DATA SOURCES PubMed, SciVerse Scopus, SPORTDiscus, CINAHL, and Cochrane. STUDY SELECTION We selected articles that contained (1) research studies focusing exclusively on humans in which (2) either PA was used as an intervention or the test participants or athletes were involved in PA and (3) S100B was measured as a dependent variable. DATA EXTRACTION We identified 24 articles. Study variations included the mode of PA used as an intervention, sample types, sample-processing procedures, and analytic techniques. DATA SYNTHESIS Given the nonuniformity of the analytical methods used and the data samples collected, as well as differences in the types of PA investigated, we were not able to determine a single consistent reference value of S100B in the context of PA. Thus, a clear distinction between a concussed athlete and a healthy athlete based solely on the existing S100B cutoff value of 0.1 μg/L remains unclear. However, because of its high sensitivity and excellent negative predictive value, S100B measurement seems to have the potential to be a diagnostic adjunct for concussion in sports settings. We recommend that the interpretation of S100B values be based on congruent study designs to ensure measurement reliability and validity.
Collapse
Affiliation(s)
- Stefanie Schulte
- Department of Exercise and Sport Science, University of Utah, Salt Lake City
| | | | | | | | | |
Collapse
|
34
|
Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron. Mol Neurobiol 2015; 52:867-81. [PMID: 26133300 DOI: 10.1007/s12035-015-9236-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 12/28/2022]
Abstract
Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB disruption and brain pathology, (ii) nanoparticles exacerbate SD-induced brain damage, and (iii) serotonin 5-HT3 receptor antagonist ondansetron is neuroprotective in SD that is further potentiated byTiO2-nanowired delivery, not reported earlier.
Collapse
|
35
|
Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats. Exp Brain Res 2015; 233:2789-99. [DOI: 10.1007/s00221-015-4349-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023]
|
36
|
Falcone T, Janigro D, Lovell R, Simon B, Brown CA, Herrera M, Myint AM, Anand A. S100B blood levels and childhood trauma in adolescent inpatients. J Psychiatr Res 2015; 62:14-22. [PMID: 25669696 PMCID: PMC4413930 DOI: 10.1016/j.jpsychires.2014.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum levels of the astrocytic protein S100B have been reported to indicate disruption of the blood-brain barrier. In this study, we investigated the relationship between S100B levels and childhood trauma in a child psychiatric inpatient unit. METHOD Levels of S100B were measured in a group of youth with mood disorders or psychosis with and without history of childhood trauma as well as in healthy controls. Study participants were 93 inpatient adolescents admitted with a diagnosis of psychosis (N = 67), or mood disorder (N = 26) and 22 healthy adolescents with no history of trauma or psychiatric illness. Childhood trauma was documented using the Life Events Checklist (LEC) and Adverse Child Experiences (ACE). RESULTS In a multivariate regression model, suicidality scores and trauma were the only two variables which were independently related to serum S100B levels. Patients with greater levels of childhood trauma had significantly higher S100B levels even after controlling for intensity of suicidal ideation. Patients with psychotic diagnoses and mood disorders did not significantly differ in their levels of S100B. Patients exposed to childhood trauma were significantly more likely to have elevated levels of S100B (p < .001) than patients without trauma, and patients with trauma had significantly higher S100B levels (p < .001) when compared to the control group. LEC (p = 0.046), and BPRS-C suicidality scores (p = 0.001) significantly predicted S100B levels. CONCLUSIONS Childhood trauma can potentially affect the integrity of the blood-brain barrier as indicated by associated increased S100B levels.
Collapse
Affiliation(s)
- Tatiana Falcone
- Cleveland Clinic, Neurologic Institute, Department of Neurology, 9500 Euclid Avenue, S60, Cleveland, OH 44195, USA; Cleveland Clinic, Neurologic Institute, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Damir Janigro
- Cleveland Clinic, Lerner College of Medicine, Cerebrovascular Research NB-20 LRI, 9600 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Rachel Lovell
- Begun Center for Violence Prevention Research and Education, Case Western Reserve University, 11402 Bellflower Road, Cleveland, OH 44106-7167, USA.
| | - Barry Simon
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Charles A. Brown
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA
| | - Mariela Herrera
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Aye Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital Ludwig-Maximilian University, Nussbaumstrasse, 780336 Munich, Germany.
| | - Amit Anand
- Cleveland Clinic, Department of Psychiatry, Center for Behavioral Health, 9500 Euclid Avenue P57, Cleveland, OH 44195, USA.
| |
Collapse
|
37
|
Immune System Related Markers: Changes in childhood Neuropsychiatry Disorders Cause and Consequence. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13602-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Sharma HS, Menon P, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, Sharma A. Development ofin vivodrug-induced neurotoxicity models. Expert Opin Drug Metab Toxicol 2014; 10:1637-61. [DOI: 10.1517/17425255.2014.970168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Xu CJ, Peng-Zhang, Dai TL, Niu XY, Wang JL, Jin MS, Min-Liao. Evaluation of blood-brain barrier permeability in tryptophan hydroxylase 2-knockout mice. Exp Ther Med 2014; 8:1467-1470. [PMID: 25289042 PMCID: PMC4186353 DOI: 10.3892/etm.2014.1938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/01/2014] [Indexed: 11/09/2022] Open
Abstract
The blood-brain barrier (BBB) is critical to the health of the central nervous system (CNS). The possibility that 5-hydroxytryptamine (5-HT) participates in the alteration of the BBB has been previously demonstrated. Tryptophan hydroxylase 2 (TPH2) is a unique genetic enzyme isoform that catalyzes the rate-limiting step in the biosynthesis of 5-HT in the CNS; however, its role in the permeability changes of the BBB remains unclear. In the present study, TPH2-knockout mice were utilized in the assessment of BBB disruption, as measured by the Evans Blue (EB) extravasation or fluorescein isothiocyanate-albumin leakage assay in the brain. EB was not found to be retained in the brain in the TPH2-knockout mice or the wild-type controls. The results of the study demonstrate that TPH2 knockout has no effect on BBB permeability, indicating that TPH2 and the 5-HT system in the CNS are not sufficient to influence the BBB leakage.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Peng-Zhang
- Department of Anatomy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ting-Li Dai
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xue-Yuan Niu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun-Ling Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ming-Shun Jin
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Min-Liao
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
40
|
Sharma HS, Muresanu DF, Patnaik R, Sharma A. Exacerbation of Brain Pathology After Partial Restraint in Hypertensive Rats Following SiO2 Nanoparticles Exposure at High Ambient Temperature. Mol Neurobiol 2013; 48:368-79. [DOI: 10.1007/s12035-013-8502-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022]
|
41
|
Changes in Plasma Levels of Serotonin and 5-Hydroxyindoleacetic Acid and Population of Serotonin-Secreting Cells in Small and Large Intestine of Wistar Rats in Hypo- and Hyperandrogenemia. Bull Exp Biol Med 2013; 154:677-80. [DOI: 10.1007/s10517-013-2028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
MELANCON MICHELO, LORRAIN DOMINIQUE, DIONNE ISABELLEJ. Exercise Increases Tryptophan Availability to the Brain in Older Men Age 57–70 Years. Med Sci Sports Exerc 2012; 44:881-7. [DOI: 10.1249/mss.0b013e31823ede8e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Cordeiro LMS, Guimarães JB, Wanner SP, La Guardia RB, Miranda RM, Marubayashi U, Soares DD. Inhibition of tryptophan hydroxylase abolishes fatigue induced by central tryptophan in exercising rats. Scand J Med Sci Sports 2012; 24:80-8. [PMID: 22540893 DOI: 10.1111/j.1600-0838.2012.01464.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2012] [Indexed: 11/28/2022]
Abstract
Fatigue during prolonged exercise is related to brain monoamines concentrations, but the mechanisms underlying this relationship have not been fully elucidated. We investigated the effects of increased central tryptophan (TRP) availability on physical performance and thermoregulation in running rats that were pretreated with parachlorophenylalanine (p-CPA), an inhibitor of the conversion of TRP to serotonin. On the 3 days before the experiment, adult male Wistar rats were treated with intraperitoneal (ip) injections of saline or p-CPA. On the day of the experiment, animals received intracerebroventricular (icv) injections of either saline or TRP (20.3 μM) and underwent a submaximal exercise test until fatigue. Icv TRP-treated rats that received ip saline presented higher heat storage rate and a 69% reduction in time to fatigue compared with the control animals. Pretreatment with ip p-CPA blocked the effects of TRP on thermoregulation and performance. Moreover, ip p-CPA administration accelerated cutaneous heat dissipation when compared with saline-pretreated rats. We conclude that an elevated availability of central TRP interferes with fatigue mechanisms of exercising rats. This response is modulated by serotonergic pathways, because TRP effects were blocked in the presence of p-CPA. Our data also support that a depletion of brain serotonin facilitates heat loss mechanisms during exercise.
Collapse
Affiliation(s)
- L M S Cordeiro
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Gómez‐González B, Larios HM, Escobar A. Increased transvascular transport of WGA‐peroxidase after chronic perinatal stress in the hippocampal microvasculature of the rat. Int J Dev Neurosci 2011; 29:839-46. [DOI: 10.1016/j.ijdevneu.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Affiliation(s)
- Beatriz Gómez‐González
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Horacio Merchant Larios
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Alfonso Escobar
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| |
Collapse
|
45
|
Alberghina D, Giannetto C, Piccione G. Peripheral serotoninergic response to physical exercise in athletic horses. J Vet Sci 2011; 11:285-9. [PMID: 21113096 PMCID: PMC2998738 DOI: 10.4142/jvs.2010.11.4.285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to evaluate the influence of exercise on plasma tryptophan (TRP) and free serotonin (f5-HT), whole blood-5-HT (WB-5-HT) and f5-HT/WB-5-HT ratio in Italian Saddle horses. Six clinically healthy Italian Saddle horses were subjected to a 450 meters obstacles course. Blood samples were collected from each horse by jugular venipuncture using vacutainer tubes with K(3)-EDTA at rest, immediately after exercise, and after 30 min. TRP, f5-HT and WB-5-HT were analyzed by HPLC. Immediately after exercise, statistically significant increases of f5-HT (p <0.001) and WB-5-HT (p <0.001) were observed. After 30 min, f5-HT and WB-5-HT decreased compared to immediately after exercise, but were still significantly higher than rest values (p <0.01 and p <0.05, respectively). A significant linear regression between f5-HT and WB-5-HT was observed during experimental conditions. f5-HT and WB-5-HT modifications after exercise suggest an important role of peripheral serotoninergic markers in response to physical activity. The possible source of extra serotonin detected after show jumping should be clarified by further investigation.
Collapse
Affiliation(s)
- Daniela Alberghina
- Department of Experimental Sciences and Applied Biotechnology, Faculty of Veterinary Medicine, University of Messina, Messina, Italy.
| | | | | |
Collapse
|
46
|
Muresanu DF, Sharma A, Sharma HS. Diabetes aggravates heat stress-induced blood-brain barrier breakdown, reduction in cerebral blood flow, edema formation, and brain pathology: possible neuroprotection with growth hormone. Ann N Y Acad Sci 2010; 1199:15-26. [PMID: 20633105 DOI: 10.1111/j.1749-6632.2009.05328.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The possibility that diabetes influences the outcome of heat stress-induced brain pathology was examined in our experimental rat model. Because growth hormone (GH) deficiency is an important factor in diabetes, the possible neuroprotective role of GH supplements was also examined in diabetic rats following heat stress. Rats receiving streptozotocine once daily for three days (50 mg/kg, i.p.) and allowed to survive four weeks resulted in diabetes (blood glucose level 18 and 20 mMol/L) compared to controls (blood glucose 4-6 mMol/L). Control or diabetic rats when subjected to four hours' heat stress at 38 degrees C in a biological oxygen demand incubator (BOD) showed profound disruption of the blood-brain barrier (BBB), reduction in cerebral blood flow (CBF), brain edema formation, and cell injury. These effects were most pronounced in diabetic rats. Pretreatment with GH (50 microg/kg/min for 10 min before heat stress) significantly attenuated brain pathology in normal animals subjected to hyperthermia. On the other hand, almost a double dose of the growth hormone (80 to 120 microg/g/min for 10 min) is needed in diabetic rats to induce considerable neuroprotection following heat stress. These observations are the first to suggest that diabetic rats are more vulnerable to heat stress-induced brain pathology and further show that the efficacy of neuroprotective drugs is also severely reduced in diabetic rats. Taken together, our results demonstrate that the dosage of neuroprotective drugs requires adjustment to enhance neuroprotection depending on the patient's endocrine or metabolic status, for example, diabetes mellitus, a finding not reported earlier.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Neurology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | | | | |
Collapse
|
47
|
Altered functional development of the blood–brain barrier after early life stress in the rat. Brain Res Bull 2009; 79:376-87. [DOI: 10.1016/j.brainresbull.2009.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 11/22/2022]
|
48
|
Sharma HS, Muresanu D, Sharma A, Patnaik R. Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:297-334. [PMID: 19897082 DOI: 10.1016/s0074-7742(09)88011-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Role of cocaine in influencing blood-brain barrier (BBB) function is still unknown. Available evidences suggest that cocaine administration results in acute hyperthermia and alterations in brain serotonin metabolism. Since hyperthermia is capable to induce the breakdown of the BBB either directly or through altered serotonin metabolism, a possibility exists that cocaine may induce neurotoxicity by causing BBB disruption. This hypothesis is discussed in this review largely based on our own laboratory investigations. Our observations in rats demonstrate that cocaine depending on the dose and routes of administration induces profound hyperthermia, increased plasma and brain serotonin levels leading to BBB breakdown and brain edema formation. Furthermore, cocaine was able to enhance cellular stress as seen by upregulation of heat shock protein (HSP 72 kD) expression and resulted in marked neuronal and glial cell damages at the time of the BBB dysfunction. Taken together, these observations are the first to suggest that cocaine-induced BBB disruption is instrumental in precipitating brain pathology. The possible mechanisms of cocaine-induced BBB breakdown and neurotoxicity are discussed.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research & Pain Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | | |
Collapse
|
49
|
Sharma HS, Ali SF. Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury. Ann N Y Acad Sci 2008; 1139:242-58. [PMID: 18991870 DOI: 10.1196/annals.1432.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The psychostimulant 3,4-,ethylenedioxymethamphetamine (MDMA, "ecstasy") is known to induce hyperthermia and alterations in neurochemical metabolism in the CNS. However, the detailed cellular or molecular mechanisms behind MDMA-induced neurotoxicity are still not well known. Since MDMA induces profound hyperthermia that could lead to intense cellular stress and cause disruption of the blood-brain barrier (BBB), this investigation examined the effects of acute MDMA on BBB dysfunction, brain edema, and cell injury in rats and mice. When MDMA (40 mg/kg, i.p.) was administered to rats or mice, these animals exhibited profound behavioral disturbances (hyperactivity and hyperlocomotion) and hyperthermia (>40 to 41 degrees C) at 4 h. At this time, the leakage of Evans blue dye was evident, particularly in the cerebellum, hippocampus, cortex, thalamus, and hypothalamus. This effect was most pronounced in mice compared to rats. Marked increase in brain water along with Na(+), K(+), and Cl(-) content was also seen in the aforementioned brain regions. Presence of distorted neuronal and glial cells in brain regions associated with leakage of Evans blue is quite common in MDMA-treated animals. Increased albumin immunoreactivity, indicating breakdown of the BBB, and upregulation of glial fibrillary acidic protein (GFAP), suggesting activation of astrocytes, were seen in most brain regions showing edematous changes. Upregulation of heat-shock protein (HSP72) immunoreactivity in the nuclei and cell cytoplasm of the neurons located in the edematous brain regions are quite common. Taken together, these observations are the first to show that MDMA has the capacity to disrupt BBB permeability to proteins and to induce the formation of edema, probably by inducing hyperthermia and cellular stress, as evident with HSP overexpression leading to cell injury.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Neurochemistry, Division of Neurotoxicology, National Center of Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA.
| | | |
Collapse
|
50
|
Fournier N, Galic M, Kalynchuk L, Persinger M. Profound hypothermia determines the anticonvulsant and neuroprotective effects of swim stress. Brain Res 2008; 1240:153-64. [DOI: 10.1016/j.brainres.2008.08.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/15/2008] [Accepted: 08/21/2008] [Indexed: 01/22/2023]
|