1
|
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler's Virus-Induced Demyelinating Disease. Int J Mol Sci 2021; 22:ijms22105254. [PMID: 34067536 PMCID: PMC8156427 DOI: 10.3390/ijms22105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.
Collapse
|
2
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Schøller AS, Fonnes M, Nazerai L, Christensen JP, Thomsen AR. Local Antigen Encounter Is Essential for Establishing Persistent CD8 + T-Cell Memory in the CNS. Front Immunol 2019; 10:351. [PMID: 30886617 PMCID: PMC6409353 DOI: 10.3389/fimmu.2019.00351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
While the brain is considered an immune-privileged site, the CNS may nevertheless be the focus of immune mediated inflammation in the case of infection and certain autoimmune diseases, e.g., multiple sclerosis. As in other tissues, it has been found that acute T-cell infiltration may be followed by establishment of persistent local T-cell memory. To improve our understanding regarding the regulation of putative tissue resident memory T (Trm) cells in CNS, we devised a new model system for studying the generation of Trm cells in this site. To this purpose, we exploited the fact that the CNS may be a sanctuary for adenoviral infection, and to minimize virus-induced disease, we chose replication-deficient adenoviruses for infection of the CNS. Non-replicating adenoviruses are known to be highly immunogenic, and our studies demonstrate that intracerebral inoculation causes marked local T-cell recruitment, which is followed by persistent infiltration of the CNS parenchyma by antigen specific CD8+ T cells. Phenotypical analysis of CNS infiltrating antigen specific CD8+ T cells was consistent with these cells being Trms. Regarding the long-term stability of the infiltrate, resident CD8+ T cells expressed high levels of the anti-apoptotic molecule Bcl-2 as well as the proliferation marker Ki-67 suggesting that the population is maintained through steady homeostatic proliferation. Functionally, memory CD8+ T cells from CNS matched peripheral memory cells with regard to capacity for ex vivo cytotoxicity and cytokine production. Most importantly, our experiments revealed a key role for local antigen encounter in the establishment of sustained CD8+ T-cell memory in the brain. Inflammation in the absence of cognate antigen only led to limited and transient infiltration by antigen specific CD8+ T cells. Together these results indicate that memory CD8+ T cells residing in the CNS predominantly mirror previous local infections and immune responses to local autoantigens.
Collapse
Affiliation(s)
- Amalie S Schøller
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Masja Fonnes
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Loulieta Nazerai
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
CD4 and CD8 T cells mediate distinct lethal meningoencephalitis in mice challenged with Tacaribe arenavirus. Cell Mol Immunol 2016; 14:90-107. [PMID: 27569560 PMCID: PMC5214944 DOI: 10.1038/cmi.2016.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023] Open
Abstract
Neonates are at increased risk of viral encephalopathies that can result in neurological dysfunction, seizures, permanent disability and even death. The neurological damage results from the combined effect of the virus and the immune response it elicits, thus finding tools to facilitate viral clearance from central nervous system (CNS) while minimizing neuron damage remains a critical challenge. Neonatal mice inoculated intraperitoneally with Tacaribe virus (TCRV) develop seizures, hindlimb paralysis and death within 15 days of inoculation. TCRV localizes to the CNS within days of challenge, primarily infecting astrocytes in the cerebellum and brain stem. We show that infection leads to inflammation, T cell and monocyte infiltration into the cerebellar parenchyma, apoptosis of astrocytes, neuronal degeneration and loss of Purkinje cells. Infiltrating antigen-specific T cells fail to clear the virus but drive the disease, as T-cell-deficient CD3ɛ KO mice survive TCRV infection with minimal inflammation or clinical manifestations despite no difference in CNS viral loads in comparison with T-cell sufficient mice. CD8+ T cells drive the pathology, which even in the absence of CD4+ T-cell help, infiltrate the parenchyma and mediate the apoptotic loss of cerebellar astrocytes, neurodegeneration and loss of Purkinje cells resulting in loss of balance, paralysis and death. CD4+ T cells are also pathogenic inducing gliosis and inflammation in the cerebellum and cerebrum that are associated with wasting and death several weeks after CD4+ T-cell transfer. These data demonstrate distinct pathogenic effects of CD4+ and CD8+ T cells and identify them as possible therapeutic targets.
Collapse
|
5
|
Mundt S, Engelhardt B, Kirk CJ, Groettrup M, Basler M. Inhibition and deficiency of the immunoproteasome subunit LMP7 attenuates LCMV-induced meningitis. Eur J Immunol 2015; 46:104-13. [PMID: 26464284 DOI: 10.1002/eji.201545578] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/07/2015] [Accepted: 10/08/2015] [Indexed: 11/05/2022]
Abstract
In addition to antigen processing, immunoproteasomes were recently shown to exert functions influencing cytokine production by monocytes and T cells, T-helper cell differentiation, and T-cell survival. Moreover, selective inhibition of the immunoproteasome subunit LMP7 ameliorated symptoms of autoimmune diseases including CD4(+) T-cell mediated EAE. In this study, we show that LMP7 also plays a crucial role in the pathogenesis of lymphocytic choriomeningitis virus (LCMV)-induced meningitis mediated by CTLs. Mice lacking functional LMP7 display delayed and reduced clinical signs of disease accompanied by a strongly decreased inflammatory infiltration into the brain. Interestingly, we found that selective inhibition and genetic deficiency of LMP7 affect the pathogenesis of LCMV-induced meningitis in a distinct manner. Our findings support the important role of LMP7 in inflammatory disorders and suggest immunoproteasome inhibition as a novel strategy against inflammation-induced neuropathology in the CNS.
Collapse
Affiliation(s)
- Sarah Mundt
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz (BITg), Kreuzlingen, Switzerland
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz (BITg), Kreuzlingen, Switzerland
| |
Collapse
|
6
|
Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways. J Virol 2014; 88:14090-104. [PMID: 25253351 DOI: 10.1128/jvi.01346-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Suppressors of cytokine signaling (SOCS) proteins are intracellular proteins that inhibit cytokine signaling in a variety of cell types. A number of viral infections have been associated with SOCS upregulation; however, not much is known about the mechanisms regulating SOCS expression during viral infection. In this study, we used two pathologically distinct intracerebral (i.c.) infection models to characterize temporal and spatial aspects of SOCS expression in the virus-infected central nervous system (CNS), and by employing various knockout mouse models, we sought to identify regulatory mechanisms that may underlie a virus induced upregulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual upregulation of SOCS1/3 mRNA expression peaking at day 7 postinfection (p.i.). In the LCMV model, SOCS mRNA was expressed in brain resident cells, including astrocytes and some neurons, and for SOCS1 in particular this upregulation was almost entirely mediated by gamma interferon (IFN-γ) produced by infiltrating T cells. After infection with YF, we also found SOCS expression to be upregulated in brain resident cells with a peak on day 7 p.i., but in this model, the upregulation was only partially dependent on IFN-γ and T cells, indicating that at least one other mediator was involved in the upregulation of SOCS following YF infection. We conclude that virus-induced inflammation of the CNS is associated with upregulation of SOCS1/3 mRNA expression in brain resident cells and that at least two distinctive pathways can lead to this upregulation. IMPORTANCE In the present report, we have studied the induction of SOCS1 and SOCS3 expression in the context of virus-induced CNS infection. We found that both a noncytolytic and a cytolytic virus induce marked upregulation of SOCS1 and -3 expression. Notably, the kinetics of the observed upregulation follows that of activity within proinflammatory signaling pathways and, interestingly, type II interferon (IFN), which is also a key inducer of inflammatory mediators, seems to be essential in initiating this counterinflammatory response. Another key observation is that not only cells of the immune system but also CNS resident cells are actively involved in both the pro- and the counterinflammatory immune circuits; thus, for example, astrocytes upregulate both C-X-C-motif chemokine 10 (CXCL10) and SOCS when exposed to type II IFN in vivo.
Collapse
|
7
|
Shin JH, Sakoda Y, Kim JH, Tanaka T, Kida H, Kimura T, Ochiai K, Umemura T. Efficacy of Intracerebral Immunization against Pseudorabies Virus in Mice. Microbiol Immunol 2013; 50:823-30. [PMID: 17053319 DOI: 10.1111/j.1348-0421.2006.tb03849.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To evaluate the efficacy of intracerebral (IC) immunization, mice were immunized with formalin-inactivated pseudorabies virus (PRV) by either subcutaneous (SC) or IC injection, and then 10(6) plaque-forming units of PRV were introduced into the hindleg of the immunized or non-immunized mice by intramuscular injection. The antibody titer in serum was elevated and boosted by additional immunization via both the SC and IC routes, but was higher after IC immunization. Intracerebrally immunized mice were completely protected from mortality and neurological signs, whereas all the non-immunized and 80% of the subcutaneously immunized mice died after developing neurological signs. In mouse models, IC immunization is more effective at inducing a protective immune response against the transneural spread of PRV than SC immunization.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9 Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Role of interferon regulatory factor 7 in T cell responses during acute lymphocytic choriomeningitis virus infection. J Virol 2012; 86:11254-65. [PMID: 22875973 DOI: 10.1128/jvi.00576-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFNs), predominantly IFN-α and -β, play critical roles in both innate and adaptive immune responses against viral infections. Interferon regulatory factor 7 (IRF7), a key innate immune molecule in the type I IFN signaling pathway, is essential for the type I IFN response to many viruses, including lymphocytic choriomeningitis virus (LCMV). Here, we show that although IRF7 knockout (KO) mice failed to control the replication of LCMV in the early stages of infection, they were capable of clearing LCMV infection. Despite the lack of type I IFN production, IRF7 KO mice generated normal CD4(+) T cell responses, and the expansion of naïve CD8(+) T cells into primary CD8(+) T cells specific for LCMV GP(33-41) was relatively normal. In contrast, the expansion of the LCMV NP(396)-specific CD8(+) T cells was severely impaired in IRF7 KO mice. We demonstrated that this defective CD8(+) T cell response is due neither to an impaired antigen-presenting system nor to any intrinsic role of IRF7 in CD8(+) T cells. The lack of a type I IFN response in IRF7 KO mice did not affect the formation of memory CD8(+) T cells. Thus, the present study provides new insight into the impact of the innate immune system on viral pathogenesis and demonstrates the critical contribution of innate immunity in controlling virus replication in the early stages of infection, which may shape the quality of CD8(+) T cell responses.
Collapse
|
9
|
Differential impact of interferon regulatory factor 7 in initiation of the type I interferon response in the lymphocytic choriomeningitis virus-infected central nervous system versus the periphery. J Virol 2012; 86:7384-92. [PMID: 22514347 DOI: 10.1128/jvi.07090-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are a family of transcription factors involved in regulating type I IFN genes and other genes participating in the early antiviral host response. To better understand the mechanisms involved in virus-induced central nervous system (CNS) inflammation, we studied the influence of IRF1, -3, -7, and -9 on the transcriptional activity of key genes encoding antiviral host factors in the CNS of mice infected with lymphocytic choriomeningitis virus (LCMV). A key finding is that neither IRF3 nor IRF7 is absolutely required for induction of a type I IFN response in the LCMV-infected CNS, whereas concurrent elimination of both factors markedly reduces the virus-induced host response. This is unlike the situation in the periphery, where deficiency of IRF7 almost eliminates the LCMV-induced production of the type I IFNs. This difference is seemingly related to the local environment, as peripheral production of type I IFNs is severely reduced in intracerebrally (i.c.) infected IRF7-deficient mice, which undergo a combined infection of the CNS and peripheral organs, such as spleen and lymph nodes. Interestingly, despite the redundancy of IRF7 in initiating the type I IFN response in the CNS, the response is not abolished in IFN-β-deficient mice, as might have been expected. Collectively, these data demonstrate that the early type I IFN response to LCMV infection in the CNS is controlled by a concerted action of IRF3 and -7. Consequently this work provides strong evidence for differential regulation of the type I IFN response in the CNS versus the periphery during viral infection.
Collapse
|
10
|
Mice deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4+ T-cell-mediated disease following infection with lymphocytic choriomeningitis virus. J Virol 2012; 86:6932-46. [PMID: 22496215 DOI: 10.1128/jvi.07147-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.
Collapse
|
11
|
Schleiss MR, Patterson JC. Viral Infections of the Fetus and Newborn and Human Immunodeficiency Virus Infection during Pregnancy. AVERY'S DISEASES OF THE NEWBORN 2012:468-512. [DOI: 10.1016/b978-1-4377-0134-0.10037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Preferential induction of protective T cell responses to Theiler's virus in resistant (C57BL/6 x SJL)F1 mice. J Virol 2010; 85:3033-40. [PMID: 21191011 DOI: 10.1128/jvi.02400-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.
Collapse
|
13
|
Shin JH, Sakoda Y, Yano S, Ochiai K, Kida H, Umemura T. Effective prevention against rabies by intracerebral immunization in mice. J Vet Med Sci 2009; 71:1331-6. [PMID: 19887739 DOI: 10.1292/jvms.001331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate the efficacy of intracerebral (IC) immunization, mice were immunized with a rabies vaccine by the subcutaneous (SC), intramuscular (IM) or IC route, and 10-fold the 50% lethal dose of rabies virus was inoculated into the hindleg of the immunized or non-immunized mice. The antibody titer in serum was elevated and boosted by additional immunization via all routes, but highest after the IC immunization followed by the IM and SC routes, in this order. Intracerebrally immunized mice were completely protected from death and the neurological signs of infection, whereas the IM or SC immunization only partly protected the mice. In mouse models, IC immunization is more effective at inducing a protective immune response against the transneural spread of rabies virus than IM or SC immunization.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Christensen JE, Simonsen S, Fenger C, Sørensen MR, Moos T, Christensen JP, Finsen B, Thomsen AR. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. THE JOURNAL OF IMMUNOLOGY 2009; 182:1079-87. [PMID: 19124751 DOI: 10.4049/jimmunol.182.2.1079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracerebral inoculation of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) normally results in fatal CD8+ T cell mediated meningoencephalitis. However, in CXCL10-deficient mice, the virus-induced CD8+ T cell accumulation in the neural parenchyma is impaired, and only 30-50% of the mice succumb to the infection. Similar results are obtained in mice deficient in the matching chemokine receptor, CXCR3. Together, these findings point to a key role for CXCL10 in regulating the severity of the LCMV-induced inflammatory process. For this reason, we now address the mechanisms regulating the expression of CXCL10 in the CNS of LCMV-infected mice. Using mice deficient in type I IFN receptor, type II IFN receptor, or type II IFN, as well as bone marrow chimeras expressing CXCL10 only in resident cells or only in bone marrow-derived cells, we analyzed the up-stream regulation as well as the cellular source of CXCL10. We found that expression of CXCL10 initially depends on signaling through the type I IFN receptor, while late expression and up-regulation requires type II IFN produced by the recruited CD8+ T cells. Throughout the infection, the producers of CXCL10 are exclusively resident cells of the CNS, and astrocytes are the dominant expressors in the neural parenchyma, not microglial cells or recruited bone marrow-derived cell types. These results are consistent with a model suggesting a bidirectional interplay between resident cells of the CNS and the recruited virus-specific T cells with astrocytes as active participants in the local antiviral host response.
Collapse
Affiliation(s)
- Jeanette E Christensen
- University of Copenhagen, Department of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2008; 457:191-5. [PMID: 19011611 PMCID: PMC2702264 DOI: 10.1038/nature07591] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/30/2008] [Indexed: 12/27/2022]
Abstract
Lymphocytic choriomeningitis virus infection of the mouse central nervous system (CNS) elicits fatal immunopathology through blood-brain barrier breakdown and convulsive seizures. Although lymphocytic-choriomeningitis-virus-specific cytotoxic T lymphocytes (CTLs) are essential for disease, their mechanism of action is not known. To gain insights into disease pathogenesis, we observed the dynamics of immune cells in the meninges by two-photon microscopy. Here we report visualization of motile CTLs and massive secondary recruitment of pathogenic monocytes and neutrophils that were required for vascular leakage and acute lethality. CTLs expressed multiple chemoattractants capable of recruiting myelomonocytic cells. We conclude that a CD8(+) T-cell-dependent disorder can proceed in the absence of direct T-cell effector mechanisms and rely instead on CTL-recruited myelomonocytic cells.
Collapse
|
16
|
Shin JH, Sakoda Y, Kim JH, Ochiai K, Umemura T. Comparison of antibody titers in rabbits following immunization with inactivated influenza virus via subarachnoidal or subcutaneous route. J Vet Med Sci 2008; 69:1167-9. [PMID: 18057832 DOI: 10.1292/jvms.69.1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabbits were immunized with inactivated influenza virus via the subarachnoidal (SA) or subcutaneous (SC) route, and the antibody titers in cerebrospinal fluid (CSF) and serum were assayed. There were no nervous signs or morphological lesions related to SA immunization. In the SC group, the antibody titer was elevated in serum, but not elevated in CSF. In the SA group, the antibody titer was significantly elevated in serum and even in CSF, and their antibody titers were much greater than in the SC group. The present results suggest that intrathecal immunization is more effective than SC immunization at inducing a protective immune response against the transneural spread of viruses.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
17
|
Campo MS, Jarrett WF. Vaccination against cutaneous and mucosal papillomavirus in cattle. CIBA FOUNDATION SYMPOSIUM 2007; 187:61-73; discussion 73-7. [PMID: 7796677 DOI: 10.1002/9780470514672.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Viruses are responsible for approximately 15% of human cancer worldwide. Human papillomavirus and hepatitis B virus are the recognized agents of cervical and liver cancer, respectively, which together constitute 80% of all virally induced cancers. If measures could be found to bring viral infection under control, a great proportion of human cancer would be greatly reduced. Experimental vaccines are being developed against papillomavirus. In principle two different types of vaccine can be envisaged: prophylactic vaccines that would elicit virus-neutralizing antibodies and would prevent infection and therapeutic vaccines that would induce regression of established lesions before progression to malignancy took place. The research on vaccines against human papillomavirus is hampered by the difficulties encountered in growing the virus in tissue culture and by the unacceptable nature of experimentation in humans. Effective vaccines, both natural and genetically engineered, have been developed against bovine papillomavirus and cottontail rabbit papillomavirus. The success obtained with the animal models supports the optimistic prediction that in the relatively near future vaccines will be available against the most problematic or potentially dangerous forms of papillomatosis in humans.
Collapse
Affiliation(s)
- M S Campo
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow, UK
| | | |
Collapse
|
18
|
Walter L, Albert ML. Cutting Edge: Cross-Presented Intracranial Antigen Primes CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6038-42. [PMID: 17475827 DOI: 10.4049/jimmunol.178.10.6038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The CNS is considered immune privileged due to the blood-brain barrier and the absence of conventional lymphatics. Nonetheless, T cell immune responses specific for CNS Ag have been documented. Where these events are initiated and what cellular mechanisms are involved remain unknown. In this study, we established an experimental mouse model to evaluate the requirements for priming CD8+ T cells following the cross-presentation of intracranial Ag. Surprisingly, we find that even with a damaged blood-brain barrier, Ag presentation occurs in regional lymph nodes and not within the CNS itself. Only once the responding cells have expanded can they traffic to the site of CNS injury. Cross-presentation of intracranial Ag is efficient and the subsequent priming of CD8+ T cells is dependent on CD4+ T cell help and CD40 signaling in host APCs. Our findings have important implications for the initiation of T cell immune responses toward CNS Ags.
Collapse
Affiliation(s)
- Lisa Walter
- Department of Immunology, Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France
| | | |
Collapse
|
19
|
Wacher C, Müller M, Hofer MJ, Getts DR, Zabaras R, Ousman SS, Terenzi F, Sen GC, King NJC, Campbell IL. Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses. J Virol 2006; 81:860-71. [PMID: 17079283 PMCID: PMC1797448 DOI: 10.1128/jvi.01167-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations. Expression of the ISG-54 gene also increased but to lower levels and with a more restricted distribution. Although expression of the ISG-49, ISG-54, and ISG-56 genes was increased in the brains of LCMV-infected STAT1 and STAT2 knockout (KO) mice, this was blunted, delayed, and restricted to the choroid plexus, meninges, and endothelium. ISG-56 protein was regulated in parallel with the corresponding RNA transcript in the brain during LCMV infection in wild-type and STAT KO mice. Similar changes in ISG-49, ISG-54, and ISG-56 RNA levels and ISG-56 protein levels were observed in the brains of wild-type mice following infection with WNV. Thus, the ISG-49, ISG-54, and ISG-56 genes are coordinately upregulated in the brain during LCMV and WNV infection; this upregulation, in the case of LCMV, was totally (neurons) or partially (non-neurons) dependent on the IFN-signaling molecules STAT1 and STAT2. These findings suggest a dominant role for the ISG-49, ISG-54, and ISG-56 genes in the host response to different viruses in the central nervous system, where, particularly in neurons, these genes may have nonredundant functions.
Collapse
Affiliation(s)
- Christie Wacher
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Becher B, Bechmann I, Greter M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med (Berl) 2006; 84:532-43. [PMID: 16773356 DOI: 10.1007/s00109-006-0065-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/02/2006] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) is traditionally viewed as an immune privileged site in which overzealous immune cells are prevented from doing irreparable damage. It was believed that immune responses occurring within the CNS could potentially do more damage than the initial pathogenic insult itself. However, virtually every aspect of CNS tissue damage, including degeneration, tumors, infection, and of course autoimmunity, involves a significant cellular inflammatory component. While the blood-brain barrier (BBB) inhibits diffusion of hydrophilic (immune) molecules across brain capillaries, activated lymphocytes readily pass the endothelial layer of postcapillary venules without difficulty. In classic neuro-immune diseases such as multiple sclerosis or acute disseminated encephalomyelitis, it is thought that neuroantigen-reactive lymphocytes, which have escaped immune tolerance, now invade the CNS and are responsible for tissue damage, demyelination, and axonal degeneration. The developed animal model for these disorders, experimental autoimmune encephalomyelitis (EAE), reflects many aspects of the human conditions. Studies in EAE proved that auto-reactive encephalitogenic T helper (Th) cells are responsible for the onset of the disease. Th cells recognize their cognate antigen (Ag) only when presented by professional Ag-presenting cells in the context of major histocompatibility complex class II molecules. The apparent target structures of EAE immunity are myelinating oligodendrocytes, which are not capable of presenting Ag to invading encephalitogenic T cells. A compulsory third party is thus required to mediate between the attacking T cells and the myelin-expressing target. This review will discuss the recent advances in this field of research and we will discuss the journey of an auto-reactive T cell from its site of activation into perivascular spaces and further into the target tissue.
Collapse
Affiliation(s)
- Burkhard Becher
- Neurology Department, Division for Neuroimmunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
21
|
Christensen JE, de Lemos C, Moos T, Christensen JP, Thomsen AR. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system. THE JOURNAL OF IMMUNOLOGY 2006; 176:4235-43. [PMID: 16547260 DOI: 10.4049/jimmunol.176.7.4235] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma-inducible protein 10/CXCL10 is a chemokine associated with type 1 T cell responses, regulating the migration of activated T cells through binding to the CXCR3 receptor. Expression of both CXCL10 and CXCR3 are observed during immunopathological diseases of the CNS, and this receptor/ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8(+) T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected intracerebrally with lymphocytic choriomeningitis virus, which in normal immunocompetent mice induces a fatal CD8(+) T cell-mediated meningoencephalitis. We found that a normal antiviral CD8(+) T cell response was generated in CXCL10-deficient mice, and that lack of CXCL10 had no influence on the accumulation of mononuclear cells in the cerebrospinal fluid. However, analysis of the susceptibility of CXCL10-deficient mice to lymphocytic choriomeningitis virus-induced meningitis revealed that these mice just like CXCR3-deficient mice were partially resistant to this disease, whereas wild-type mice invariably died. Furthermore, despite marked up-regulation of the two remaining CXCR3 ligands: CXCL9 and 11, we found a reduced accumulation of CD8(+) T cells in the brain parenchyma around the time point when wild-type mice succumb as a result of CD8(+) T cell-mediated inflammation. Thus, taken together these results indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Chemokine CXCL10
- Chemokine CXCL11
- Chemokine CXCL9
- Chemokines, CXC/deficiency
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Gene Expression Regulation, Viral
- Immunologic Surveillance/immunology
- Kinetics
- Ligands
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/pathology
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/immunology
- Meningitis, Viral/immunology
- Meningitis, Viral/metabolism
- Meningitis, Viral/pathology
- Meningitis, Viral/virology
- Mice
- Mice, Knockout
- Receptors, CXCR3
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
Collapse
|
22
|
González JM, Bergmann CC, Ramakrishna C, Hinton DR, Atkinson R, Hoskin J, Macklin WB, Stohlman SA. Inhibition of interferon-gamma signaling in oligodendroglia delays coronavirus clearance without altering demyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:796-804. [PMID: 16507895 PMCID: PMC1606538 DOI: 10.2353/ajpath.2006.050496] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/03/2005] [Indexed: 11/20/2022]
Abstract
Infection of the central nervous system (CNS) by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces an acute encephalomyelitis associated with demyelination. To examine the anti-viral and/or regulatory role of interferon-gamma (IFN-gamma) signaling in the cell that synthesizes and maintains the myelin sheath, we analyzed JHMV pathogenesis in transgenic mice expressing a dominant-negative IFN-gamma receptor on oligodendroglia. Defective IFN-gamma signaling was associated with enhanced oligodendroglial tropism and delayed virus clearance. However, the CNS inflammatory cell composition and CD8(+) T-cell effector functions were similar between transgenic and wild-type mice, supporting unimpaired peripheral and CNS immune responses in transgenic mice. Surprisingly, increased viral load in oligodendroglia did not affect the extent of myelin loss, the frequency of oligodendroglial apoptosis, or CNS recruitment of macrophages. These data demonstrate that IFN-gamma receptor signaling is critical for the control of JHMV replication in oligodendroglia. In addition, the absence of a correlation between increased oligodendroglial infection and the extent of demyelination suggests a complex pathobiology of myelin loss in which infection of oligodendroglia is required but not sufficient.
Collapse
Affiliation(s)
- John M González
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Storm P, Bartholdy C, Sørensen MR, Christensen JP, Thomsen AR. Perforin-deficient CD8+ T cells mediate fatal lymphocytic choriomeningitis despite impaired cytokine production. J Virol 2006; 80:1222-30. [PMID: 16414999 PMCID: PMC1346958 DOI: 10.1128/jvi.80.3.1222-1230.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracerebral (i.c.) infection with lymphocytic choriomeningitis virus (LCMV) is one of the most studied models for virus-induced immunopathology, and based on results from perforin-deficient mice, it is currently assumed that fatal disease directly reflects perforin-mediated cell lysis. However, recent studies have revealed additional functional defects within the effector T cells of LCMV-infected perforin-deficient mice, raising the possibility that perforin may not be directly involved in mediating lethal disease. For this reason, we decided to reevaluate the role of perforin in determining the outcome of i.c. infection with LCMV. We confirmed that the expansion of virus-specific CD8(+) T cells is unimpaired in perforin-deficient mice. However, despite the fact that the virus-specific CD8(+) effector T cells in perforin-deficient mice are broadly impaired in their effector function, these mice invariably succumb to i.c. infection with LCMV strain Armstrong, although a few days later than matched wild-type mice. Upon further investigation, we found that this delay correlates with the delayed recruitment of inflammatory cells to the central nervous system (CNS). However, CD8(+) effector T cells were not kept from the CNS by sequestering in infected extraneural organ sites such as liver or lungs. Thus, the observed dysfunctionality regarding the production of proinflammatory mediators probably results in the delayed recruitment of effector cells to the CNS, and this appears to be the main explanation for the delayed onset of fatal disease in perforin-deficient mice. However, once accumulated in the CNS, virus-specific CD8(+) T cells can induce fatal CNS pathology despite the absence of perforin-mediated lysis and reduced capacity to produce several key cytokines.
Collapse
Affiliation(s)
- Pernille Storm
- Institute of Medical Microbiology and Immunology, The Panum Institute, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
24
|
de Lemos C, Christensen JE, Nansen A, Moos T, Lu B, Gerard C, Christensen JP, Thomsen AR. Opposing Effects of CXCR3 and CCR5 Deficiency on CD8+ T Cell-Mediated Inflammation in the Central Nervous System of Virus-Infected Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:1767-75. [PMID: 16034118 DOI: 10.4049/jimmunol.175.3.1767] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice were generated and infected intracerebrally with noncytolytic lymphocytic choriomeningitis virus. Because these chemokine receptors are mostly expressed by overlapping subsets of activated CD8+ T cells, it was expected that absence of both receptors would synergistically impair effector T cell invasion and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma was significantly delayed in both CXCR3- and CXCR3/CCR5-deficient mice, more CD8+ T cells were found in the parenchyma of double-deficient mice when these were analyzed around the time when the difference in clinical outcome becomes manifest. Taken together, these results indicate that while CXCR3 plays an important role in controlling CNS inflammation, other receptors but not CCR5 also contribute significantly. Additionally, our results suggest that CCR5 primarily functions as a negative regulator of the antiviral CD8+ T cell response.
Collapse
MESH Headings
- Animals
- Brain Chemistry/genetics
- Brain Chemistry/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Chemotaxis, Leukocyte/genetics
- Genetic Predisposition to Disease
- Injections, Intraventricular
- Lymphocyte Activation/genetics
- Lymphocytic Choriomeningitis/cerebrospinal fluid
- Lymphocytic Choriomeningitis/genetics
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/pathology
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neurons/immunology
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/biosynthesis
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/deficiency
- Receptors, CCR5/genetics
- Receptors, CXCR3
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Virus Activation/immunology
Collapse
Affiliation(s)
- Carina de Lemos
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ramakrishna C, Stohlman SA, Atkinson RA, Hinton DR, Bergmann CC. Differential regulation of primary and secondary CD8+ T cells in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2004; 173:6265-73. [PMID: 15528365 DOI: 10.4049/jimmunol.173.10.6265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
T cell accumulation and effector function following CNS infection is limited by a paucity of Ag presentation and inhibitory factors characteristic of the CNS environment. Differential susceptibilities of primary and recall CD8+ T cell responses to the inhibitory CNS environment were monitored in naive and CD8+ T cell-immune mice challenged with a neurotropic coronavirus. Accelerated virus clearance and limited spread in immunized mice was associated with a rapid and increased CNS influx of virus-specific secondary CD8+ T cells. CNS-derived secondary CD8+ T cells exhibited increased cytolytic activity and IFN-gamma expression per cell compared with primary CD8+ T cells. However, both Ag-specific primary and secondary CD8+ T cells demonstrated similar contraction rates. Thus, CNS persistence of increased numbers of secondary CD8+ T cells reflected differences in the initial pool size during peak inflammation rather than enhanced survival. Unlike primary CD8+ T cells, persisting secondary CD8+ T cells retained ex vivo cytolytic activity and expressed high levels of IFN-gamma following Ag stimulation. However, both primary and secondary CD8+ T cells exhibited reduced capacity to produce TNF-alpha, differentiating them from effector memory T cells. Activation of primary and secondary CD8+ T cells in the same host using adoptive transfers confirmed similar survival, but enhanced and prolonged effector function of secondary CD8+ T cells in the CNS. These data suggest that an instructional program intrinsic to T cell differentiation, rather than Ag load or factors in the inflamed CNS, prominently regulate CD8+ T cell function.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Neurology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
26
|
Bartholdy C, Stryhn A, Christensen JP, Thomsen AR. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2004; 173:6284-93. [PMID: 15528367 DOI: 10.4049/jimmunol.173.10.6284] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cells, Cultured
- Chronic Disease
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Variation/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunologic Memory
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/prevention & control
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Secondary Prevention
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Christina Bartholdy
- Institute of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, 3C Blegdamsvej, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Bassaganya-Riera J, King J, Hontecillas R. Health benefits of CLA - lessons from pig models in biomedical research. EUR J LIPID SCI TECH 2004. [DOI: 10.1002/ejlt.200401067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Christensen JE, Nansen A, Moos T, Lu B, Gerard C, Christensen JP, Thomsen AR. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J Neurosci 2004; 24:4849-58. [PMID: 15152045 PMCID: PMC6729455 DOI: 10.1523/jneurosci.0123-04.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis virus (LCMV). Analysis of the induction phase of the antiviral CD8+ T-cell response did not reveal any immune defects in CXCR3-deficient mice. Yet, when mice were challenged with LCMV intracerebrally, most CXCR3-deficient mice survived the infection, whereas wild-type mice invariably died from CD8+ T-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3-deficient mice to migrate from the meninges into the outer layers of the brain parenchyma despite similar localization of virus-infected target cells. Reconstitution of CXCR3-deficient mice with wild-type CD8+ T-cells completely restored susceptibility to LCMV-induced meningitis. Thus, taken together, our results strongly point to a critical role for CXCR3 in the positioning of effector T-cells at sites of viral inflammation in the brain.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Count
- Cell Movement/genetics
- Cell Movement/immunology
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Flow Cytometry
- Genetic Predisposition to Disease
- Hyaluronan Receptors/biosynthesis
- Immunologic Surveillance/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/pathology
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/pathogenicity
- Meninges/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- Receptors, CXCR3
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Survival Rate
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
|
29
|
Fassnacht U, Ackermann A, Staeheli P, Hausmann J. Immunization with dendritic cells can break immunological ignorance toward a persisting virus in the central nervous system and induce partial protection against intracerebral viral challenge. J Gen Virol 2004; 85:2379-2387. [PMID: 15269380 DOI: 10.1099/vir.0.80115-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) have been used successfully to induce CD8 T cells that control virus infections and growth of tumours. The efficacy of DC-mediated immunization for the control of neurotropic Borna disease virus (BDV) in mice was evaluated. Certain strains of mice only rarely develop spontaneous neurological disease, despite massive BDV replication in the brain. Resistance to disease is due to immunological ignorance toward BDV antigen in the central nervous system. Ignorance in mice can be broken by immunization with DCs coated with TELEISSI, a peptide derived from the N protein of BDV, which represents the immunodominant cytotoxic T lymphocyte epitope in H-2(k) mice. Immunization with TELEISSI-coated DCs further induced solid protective immunity against intravenous challenge with a recombinant vaccinia virus expressing BDV-N. Interestingly, however, this immunization scheme induced only moderate protection against intracerebral challenge with BDV, suggesting that immune memory raised against a shared antigen may be sufficient to control a peripherally replicating virus, but not a highly neurotropic virus that is able to avoid activation of T cells. This difference might be due to the lack of BDV-specific CD4 T cells and/or inefficient reactivation of DC-primed, BDV-specific CD8 T cells by the locally restricted BDV infection. Thus, a successful vaccine against persistent viruses with strong neurotropism should probably induce antiviral CD8 (as well as CD4) T-cell responses and should favour the accumulation of virus-specific memory T cells in cervical lymph nodes.
Collapse
Affiliation(s)
- Ulrike Fassnacht
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Andreas Ackermann
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Jürgen Hausmann
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| |
Collapse
|
30
|
Madsen AN, Nansen A, Christensen JP, Thomsen AR. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection. J Virol 2003; 77:12378-84. [PMID: 14581577 PMCID: PMC254281 DOI: 10.1128/jvi.77.22.12378-12384.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity.
Collapse
Affiliation(s)
- Andreas N Madsen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, Nagarkatti M. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. J Biol Chem 2003; 278:43818-30. [PMID: 12904302 DOI: 10.1074/jbc.m304467200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS. The decreased VLS in CD44v6-v7 KO and CD44v7 KO mice did not result from differential activation and expansion of CD8+ T cells, NK, and NK-T cells or from altered degree of perivascular lymphocytic infiltration in the lungs. LAK cells from CD44v7 KO mice showed a significant decrease in their ability to adhere to and mediate lysis of EC but not lysis of P815 tumor cells in vitro. CD44v7-mediated lysis of EC by LAK cells was dependent on the activity of phosphatidylinositol 3-kinase and tyrosine kinases. Interestingly, IL-2-activated LAK cells expressing CD44hi but not CD44lo were responsible for EC lysis. Furthermore, lysis of EC targets could be blocked by addition of soluble or enzymatic cleavage of CD44v6-v7-binding glycosaminoglycans. Finally, anti-CD44v7 mAbs caused a significant reduction in the adherence to and killing of EC and led to suppression of IL-2-induced VLS. Together, this study suggests that the expression of CD44v7 on LAK cells plays a specific role in EC injury and that it may be possible to reduce EC injury but not tumor cell killing by specifically targeting CD44v7.
Collapse
Affiliation(s)
- Robert J McKallip
- Departments of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bassaganya-Riera J, Pogranichniy RM, Jobgen SC, Halbur PG, Yoon KJ, O'Shea M, Mohede I, Hontecillas R. Conjugated Linoleic Acid Ameliorates Viral Infectivity in a Pig Model of Virally Induced Immunosuppression. J Nutr 2003; 133:3204-14. [PMID: 14519812 DOI: 10.1093/jn/133.10.3204] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the cellular and molecular immunoregulatory actions of conjugated linoleic acid (CLA) of relevance to viral disease pathogenesis and antiviral responses. To test the hypothesis that CLA ameliorates viral disease, we developed a viral challenge model by infecting pigs with type-2 porcine circovirus (PCV2). After 42 d of dietary supplementation with either soybean oil (n = 16) or CLA (n = 16), half of the pigs in each group were challenged with PCV2. We examined the effect of CLA on the development of lesions (i.e., lymphoid depletion and pneumonia) and observed the kinetics of the immune responses against PCV2. The viral infection depleted immature B cells (IgM+SWC3+) and favored proapoptotic mRNA expression profiles [i.e., suppressed B-cell leukemia/lymphoma-xl (Bcl-xl) and stimulated Bcl-2 homologous antagonist/killer (Bak)] in the external inguinal lymph nodes. B-cell depletion was more accentuated in pigs fed the control diet, whereas interleukin (IL)-2 mRNA expression was downregulated. Histopathological examination of the lungs revealed that the interstitial pneumonia tended to be more severe in infected pigs fed the control diet, which were also affected by growth retardation. CD8+ T cells were the primary cellular targets of CLA action in peripheral blood (CD8+CD29low and CD8+CD45RC+) and thymus (CD8+ and CD4+CD8+). CLA interacted with PCV2 to increase the proliferation of CD8+ T cells and to suppress PCV2-specific interferon (IFN)-gamma production in CD4+ T cells. At the molecular level, these cellular immunoregulatory properties were associated with differential patterns of peroxisome proliferator-activated receptor (alpha and gamma) mRNA expression between diets in virally infected pigs.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Nutrition Laboratory, Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Andreasen SØ, Thomsen AR, Koteliansky VE, Novobrantseva TI, Sprague AG, de Fougerolles AR, Christensen JP. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2804-11. [PMID: 12960301 DOI: 10.4049/jimmunol.171.6.2804] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1)beta(1) parallels that of viral-specific effector CD8(+) T cells (defined by tetramer and IFN-gamma staining). In an adoptive transfer model, mAb-mediated blockade of these integrins on activated effector and memory T cells inhibited Ag-specific delayed-type hypersensitivity responses; similar decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect of alpha(1)beta(1) blockade on the delayed-type hypersensitivity response could be bypassed by direct injection of Ag-specific T cells to inflammatory sites, demonstrating for the first time in vivo that collagen-binding integrins are involved in leukocyte migration into tissues.
Collapse
Affiliation(s)
- Susanne Ø Andreasen
- Institute of Medical Microbiology and Immunology, Panum Institute, Copenhagen, Denmark. Biogen, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Roffê E, Silva AA, Marino APMP, dos Santos PVA, Lannes-Vieira J. Essential role of VLA-4/VCAM-1 pathway in the establishment of CD8+ T-cell-mediated Trypanosoma cruzi-elicited meningoencephalitis. J Neuroimmunol 2003; 142:17-30. [PMID: 14512161 DOI: 10.1016/s0165-5728(03)00254-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Central nervous system (CNS) damage can occur during Trypanosoma cruzi infection, especially in immunosuppressed patients. The enhanced susceptibility of C3H/He mice to CD8-mediated acute meningoencephalitis is associated with higher up-regulation of vascular cell adhesion molecule-1 (VCAM-1) on CNS vascular endothelia than in the less susceptible C57BL/6. Further, in vitro adhesion of activated peripheral blood cells to CNS blood vessels was abrogated by anti-VLA-4 antibodies that also inhibited cell migration into the CNS of T. cruzi-infected mice. Lastly, the reactivation of meningoencephalitis in immunosuppressed chronically infected mice was associated with VCAM-1 up-regulation. Therefore, we hypothesize that VLA-4/VCAM-1 pathway plays a pivotal role in the establishment of T. cruzi-elicited encephalitis.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/analysis
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/parasitology
- Cell Adhesion/immunology
- Cell Movement/immunology
- Central Nervous System Protozoal Infections/immunology
- Central Nervous System Protozoal Infections/metabolism
- Central Nervous System Protozoal Infections/parasitology
- Central Nervous System Protozoal Infections/pathology
- Chagas Disease/immunology
- Chagas Disease/metabolism
- Chagas Disease/parasitology
- Chagas Disease/pathology
- Chronic Disease
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/parasitology
- Endothelium, Vascular/pathology
- Female
- Genetic Predisposition to Disease
- Immunophenotyping
- Immunosuppressive Agents/administration & dosage
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/physiology
- Intercellular Adhesion Molecule-1/biosynthesis
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/parasitology
- Meningoencephalitis/immunology
- Meningoencephalitis/metabolism
- Meningoencephalitis/parasitology
- Meningoencephalitis/pathology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Recurrence
- Signal Transduction/immunology
- Trypanosoma cruzi/immunology
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/physiology
Collapse
Affiliation(s)
- Ester Roffê
- Laboratório de Autoimunidade e Imuno-regulação, Departamento de Imunologia, Instituto Oswaldo Cruz-Fundação Oswaldo Cruz, Av. Brasil, 4365 Rio de Janeiro, RJ 21045-900, Brazil
| | | | | | | | | |
Collapse
|
35
|
Lindow M, Nansen A, Bartholdy C, Stryhn A, Hansen NJV, Boesen TP, Wells TNC, Schwartz TW, Thomsen AR. The virus-encoded chemokine vMIP-II inhibits virus-induced Tc1-driven inflammation. J Virol 2003; 77:7393-400. [PMID: 12805438 PMCID: PMC164793 DOI: 10.1128/jvi.77.13.7393-7400.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhibit virus-induced T-cell-mediated inflammation. This was done by use of the well-established model system murine lymphocytic choriomeningitis virus infection. Mice were infected in the footpad, and the induced CD8(+) T-cell-dependent inflammation was evaluated in mice subjected to treatment with vMIP-II. We found that inflammation was markedly inhibited in mice treated during the efferent phase of the antiviral immune response. In vitro studies revealed that vMIP-II inhibited chemokine-induced migration of activated CD8(+) T cells, but not T-cell-target cell contact, granule exocytosis, or cytokine release. Consistent with these in vitro findings treatment with vMIP-II inhibited the adoptive transfer of a virus-specific delayed-type hypersensitivity response in vivo, but only when antigen-primed donor cells were transferred via the intravenous route and required to migrate actively, not when the cells were injected directly into the test site. In contrast to the marked inhibition of the effector phase, the presence of vMIP-II during the afferent phase of the immune response did not result in significant suppression of virus-induced inflammation. Taken together, these results indicate that chemokine-induced signals are pivotal in directing antiviral effector cells toward virus-infected organ sites and that vMIP-II is a potent inhibitor of type 1 T-cell-mediated inflammation.
Collapse
Affiliation(s)
- Morten Lindow
- Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bergmann CC, Parra B, Hinton DR, Chandran R, Morrison M, Stohlman SA. Perforin-mediated effector function within the central nervous system requires IFN-gamma-mediated MHC up-regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3204-13. [PMID: 12626579 DOI: 10.4049/jimmunol.170.6.3204] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD8(+) T cells infiltrating the CNS control infection by the neurotropic JHM strain of mouse hepatitis virus. Differential susceptibility of infected cell types to clearance by perforin or IFN-gamma uncovered distinct, nonredundant roles for these antiviral mechanisms. To separately evaluate each effector function specifically in the context of CD8(+) T cells, pathogenesis was analyzed in mice deficient in both perforin and IFN-gamma (PKO/GKO) or selectively reconstituted for each function by transfer of CD8(+) T cells. Untreated PKO/GKO mice were unable to control the infection and died of lethal encephalomyelitis within 16 days, despite substantially higher CD8(+) T cell accumulation in the CNS compared with controls. Uncontrolled infection was associated with limited MHC class I up-regulation and an absence of class II expression on microglia, coinciding with decreased CD4(+) T cells in CNS infiltrates. CD8(+) T cells from perforin-deficient and wild-type donors reduced virus replication in PKO/GKO recipients. By contrast, IFN-gamma-deficient donor CD8(+) T cells did not affect virus replication. The inability of perforin-mediated mechanisms to control virus in the absence of IFN-gamma coincided with reduced class I expression. These data not only confirm direct antiviral activity of IFN-gamma within the CNS but also demonstrate IFN-gamma-dependent MHC surface expression to guarantee local T cell effector function in tissues inherently low in MHC expression. The data further imply that IFN-gamma plays a crucial role in pathogenesis by regulating the balance between virus replication in oligodendrocytes, CD8(+) T cell effector function, and demyelination.
Collapse
Affiliation(s)
- Cornelia C Bergmann
- Department of Neurology, Keck School of Medicine, University of California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
37
|
Marten NW, Stohlman SA, Zhou J, Bergmann CC. Kinetics of virus-specific CD8+ -T-cell expansion and trafficking following central nervous system infection. J Virol 2003; 77:2775-8. [PMID: 12552021 PMCID: PMC141092 DOI: 10.1128/jvi.77.4.2775-2778.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8+ T cells control acute infection of the central nervous system (CNS) by neurotropic mouse hepatitis virus but do not suffice to achieve sterile immunity. To determine the lag between T-cell priming and optimal activity within the CNS, the accumulation of virus-specific CD8+ T cells in the CNS relative to that in peripheral lymphoid organs was assessed by using gamma interferon-specific ELISPOT assays and class I tetramer staining. Virus-specific CD8+ T cells were first detected in the cervical lymph nodes. Expansion in the spleen was delayed and less pronounced but also preceded accumulation in the CNS. The data further suggest peripheral acquisition of cytolytic function, thus enhancing CD8+ -T-cell effector function upon cognate antigen recognition in the CNS.
Collapse
Affiliation(s)
- Norman W Marten
- Department of Pathology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
38
|
Thomsen AR, Nansen A, Madsen AN, Bartholdy C, Christensen JP. Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunol Lett 2003; 85:119-27. [PMID: 12527217 DOI: 10.1016/s0165-2478(02)00236-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
T cell mediated immunity and in particular CD8+ T cells are pivotal for the control of most viral infections. T cells exclusively exert their antiviral effect through close cellular interaction with relevant virus-infected target cells in vivo. It is therefore imperative that efficient mechanisms exist, which will rapidly direct newly generated effector T cells to sites of viral replication. In the present report we have reviewed our present knowledge concerning the molecular interactions, which are important in targeting of effector CD8+ T cells to sites of viral infection.
Collapse
Affiliation(s)
- Allan Randrup Thomsen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
39
|
McGavern DB, Homann D, Oldstone MBA. T cells in the central nervous system: the delicate balance between viral clearance and disease. J Infect Dis 2002; 186 Suppl 2:S145-51. [PMID: 12424690 PMCID: PMC5319418 DOI: 10.1086/344264] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The central nervous system (CNS) is considered an "immunoprivileged" site with restricted access and a unique microenvironment that profoundly affects the capacity of T cells to exert their functions. The lymphocytic choriomeningitis virus model offers a unique system in which to evaluate the contrasting roles of specific T cells in causing lethal CNS disease or curing pervasive and life-long CNS infection. Specific T cell kinetics in the periphery is briefly discussed. The T cell-mediated mechanisms leading to fatal choriomeningitis are reviewed as are recent methodologic advances that will facilitate the study of antigen-specific T cells in disease pathogenesis. Understanding the specific constraints imposed by the CNS on local T cell activity has important consequences for the design of therapeutic strategies aimed at preventing or curing CNS infection.
Collapse
Affiliation(s)
- Dorian B McGavern
- Division of Virology, Department of Neuropharmacology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
40
|
Mustafa A, McKallip RJ, Fisher M, Duncan R, Nagarkatti PS, Nagarkatti M. Regulation of interleukin-2-induced vascular leak syndrome by targeting CD44 using hyaluronic acid and anti-CD44 antibodies. J Immunother 2002; 25:476-88. [PMID: 12439345 DOI: 10.1097/00002371-200211000-00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies from our laboratory demonstrated that CD44 knockout mice exhibit marked decrease in interleukin (IL)-2-induced vascular leak syndrome (VLS), thereby suggesting a role for CD44 in VLS. In the current study, we tested whether treatment with mAbs against CD44 or hyaluronic acid (HA), the ligand for CD44, can abrogate IL-2-induced VLS. Interestingly, administration of HA caused a marked increase in IL-2-induced VLS in the lungs and liver of C57BL/6 mice. In contrast, use of anti-CD44 mAbs reduced IL-2-induced VLS in the lungs and liver. Treatment with HA enhanced the IL-2-induced edema and lymphocytic infiltration in these organs and caused marked increase in IL-2-induced lymphokine-activated killer (LAK) cell activity, whereas administration of anti-CD44 mAbs caused a significant decrease in edema and LAK activity but similar levels of lymphocytic infiltration. Anti-CD44 mAbs, but not HA caused marked downregulation of CD44 expression on LAK cells. These studies demonstrate that molecular targeting of CD44 may serve as a useful tool to selectively alter the LAK activity and to prevent endothelial cell injury induced by IL-2.
Collapse
Affiliation(s)
- Amjad Mustafa
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kang BS, Lyman MA, Kim BS. The majority of infiltrating CD8+ T cells in the central nervous system of susceptible SJL/J mice infected with Theiler's virus are virus specific and fully functional. J Virol 2002; 76:6577-85. [PMID: 12050370 PMCID: PMC136254 DOI: 10.1128/jvi.76.13.6577-6585.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.
Collapse
Affiliation(s)
- Bong-Su Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
42
|
Nansen A, Christensen JP, Andreasen SØ, Bartholdy C, Christensen JE, Thomsen AR. The role of CC chemokine receptor 5 in antiviral immunity. Blood 2002; 99:1237-45. [PMID: 11830471 DOI: 10.1182/blood.v99.4.1237] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune response to lymphocytic choriomeningitis virus in mice lacking CCR5 (CCR5(-/-) mice). This infection is a classical model for studying antiviral immunity, and influx of CCR5-expressing CD8(+) T cells and macrophages is essential for both virus control and associated immunopathology. Results showed that the virus-induced clonal expansion of antigen-specific T cells was augmented in CCR5(-/-) mice especially with regard to the CD4(+) subset. Despite absence of CCR5, intracerebral infection invariably resulted in lethal T cell-mediated meningitis, and quantitative and qualitative analysis of the inflammatory exudate cells did not reveal any significant differences between gene-targeted mice and wild-type controls. CCR5 was also found to be redundant regarding the ability to eliminate virus from internal organs. Using delayed-type hypersensitivity to evaluate CD8(+) T cell-mediated inflammation, no significant influence of CCR5 was found, not even when viral peptide was used as local trigger instead of live virus. Finally, long-term CD8(+) T cell-mediated immune surveillance was efficiently sustained in CCR5(-/-) mice. Taken together, these results indicate that expression of CCR5 is not critical for T cell-mediated antiviral immunity, and this molecule may therefore constitute a logic and safe target for anti-HIV therapies.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Immunity
- Lymphocyte Activation/immunology
- Lymphocytic Choriomeningitis/immunology
- Meningitis, Viral/etiology
- Meningitis, Viral/immunology
- Meningitis, Viral/pathology
- Mice
- Mice, Knockout
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/physiology
- T-Lymphocyte Subsets/immunology
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Anneline Nansen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Maier J, Kincaid C, Pagenstecher A, Campbell IL. Regulation of signal transducer and activator of transcription and suppressor of cytokine-signaling gene expression in the brain of mice with astrocyte-targeted production of interleukin-12 or experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:271-88. [PMID: 11786421 PMCID: PMC1867143 DOI: 10.1016/s0002-9440(10)64371-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-12 and interferon (IFN)-gamma are implicated in the pathogenesis of immune disorders of the central nervous system (CNS). To define the basis for the actions of these cytokines in the CNS, we examined the temporal and spatial regulation of key signal transducers and activators of transcription (STATs) and suppressors of cytokine signaling (SOCS) in the brain of transgenic mice with astrocyte production of IL-12 or in mice with experimental autoimmune encephalomyelitis (EAE). In healthy mice, with the exception of STAT4 and STAT6, the expression of a number of STAT and SOCS genes was detectable. However, in symptomatic transgenic mice and in EAE significant up-regulation of STAT1, STAT2, STAT3, STAT4, IRF9, and SOCS1 and SOCS3 RNA transcripts was observed. Although the increased expression of STAT1 RNA was widely distributed and included neurons, astrocytes, and microglia, STAT4 and STAT3 and SOCS1 and SOCS3 RNA was primarily restricted to the infiltrating mononuclear cell population. The level and location of the STAT1, STAT3, and STAT4 proteins overlapped with their corresponding RNA and additionally showed nuclear localization indicative of activation of these molecules. Thus, in both the glial fibrillary acidic protein-IL-12 mice and in EAE the CNS expression of key STAT and SOCS genes that regulate IL-12 (STAT4) and IFN-gamma (STAT1, SOCS1, and SOCS3) receptor signaling is highly regulated and compartmentalized. We conclude the interaction between these positive and negative signaling circuits and their distinct cellular locations likely play a defining role in coordinating the actions of IL-12 and IFN-gamma during the pathogenesis of type 1 immune responses in the CNS.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Brain/physiopathology
- Central Nervous System/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic/genetics
- Monocytes/physiology
- RNA, Messenger/metabolism
- Repressor Proteins/genetics
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
Collapse
Affiliation(s)
- Joachim Maier
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
44
|
Topham DJ, Castrucci MR, Wingo FS, Belz GT, Doherty PC. The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6983-90. [PMID: 11739518 DOI: 10.4049/jimmunol.167.12.6983] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of Ag in the recruitment and localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza infection was explored using TCR-transgenic (Tg) mice. Naive, Thy1.2(+)CD8(+) OT-I TCR-Tg cells were primed and recruited to the lung after transfer into congenic Thy1.1(+) recipients challenged with a genetically engineered influenza virus (influenza A/WSN/33 (WSN)-OVA(I)) containing the K(b) restricted OVA(257-264) epitope (siinfekl) in the viral neuraminidase stalk. However, if the transferred animals were infected with a similar influenza virus that expressed an irrelevant K(b) epitope (WSN-PEPII), no TCR-Tg T cells were detectable in the lung, although they were easily visible in the lymphoid organs. Conversely, there were substantial numbers of OT-I cells found in the lungs of WSN-PEPII-infected mice when the animals had been previously, or were concurrently, infected with a recombinant vaccinia virus expressing OVA. Similar results were obtained with nontransgenic populations of memory CD8(+) T cells reactive to a murine gamma-herpesvirus-68 Ag. Interestingly, the primary host response to the immunodominant influenza nucleoprotein epitope was not affected by the presence of memory or recently activated OT-I T cells. Thus, although Ag is required to activate the T cells, the subsequent localization of T cells to the lung during a virus infection is a property of recently activated and memory T cells and is not necessarily driven by Ag in the lung.
Collapse
Affiliation(s)
- D J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
45
|
Bergmann CC, Ramakrishna C, Kornacki M, Stohlman SA. Impaired T cell immunity in B cell-deficient mice following viral central nervous system infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1575-83. [PMID: 11466379 DOI: 10.4049/jimmunol.167.3.1575] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are required to control acute viral replication in the CNS following infection with neurotropic coronavirus. By contrast, studies in B cell-deficient (muMT) mice revealed Abs as key effectors in suppressing virus recrudescence. The apparent loss of initial T cell-mediated immune control in the absence of B cells was investigated by comparing T cell populations in CNS mononuclear cells from infected muMT and wild-type mice. Following viral recrudescence in muMT mice, total CD8(+) T cell numbers were similar to those of wild-type mice that had cleared infectious virus; however, virus-specific T cells were reduced at least 3-fold by class I tetramer and IFN-gamma ELISPOT analysis. Although overall T cell recruitment into the CNS of muMT mice was not impaired, discrepancies in frequencies of virus-specific CD8(+) T cells were most severe during acute infection. Impaired ex vivo cytolytic activity of muMT CNS mononuclear cells, concomitant with reduced frequencies, implicated IFN-gamma as the primary anti viral factor early in infection. Reduced virus-specific CD8(+) T cell responses in the CNS coincided with poor peripheral expansion and diminished CD4(+) T cell help. Thus, in addition to the lack of Ab, limited CD8(+) and CD4(+) T cell responses in muMT mice contribute to the ultimate loss of control of CNS infection. Using a model of virus infection restricted to the CNS, the results provide novel evidence for a role of B cells in regulating T cell expansion and differentiation into effector cells.
Collapse
Affiliation(s)
- C C Bergmann
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
46
|
Dörries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:219-45. [PMID: 11417137 DOI: 10.1007/978-3-662-10356-2_11] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T lymphocytes play a decisive role in the course and clinical outcome of viral CNS infection. Summarizing the information presented in this review, the following sequence of events might occur during acute virus infection: After invasion of the host and a few initial rounds of replication, the virus reaches the CNS in most cases by hematogeneous spread. After passage through the BBB, CNS cells are infected and replication of virus in brain cells causes activation of the surrounding microglia population. Moreover, local production of IFN-alpha/beta induces expression of MHC antigens on CNS cells, and microglial cells start to phagocytose cellular debris, which accumulates as a result of virus-induced cytopathogenic effects. Upon phagocytosis, microglia becomes more activated; they up-regulate MHC molecules, acquire antigen presentation capabilities and secrete chemokines. This will initiate up-regulation of adhesion molecules on adjacent endothelial cells of the BBB. Transmigration of activated T lymphocytes through the BBB is followed by interaction with APC, presenting the appropriate peptides in the context of MHC antigens. It appears that CD8+ T lymphocytes are amongst the first mononuclear cells to arrive at the infected tissue. Without a doubt, their induction and attraction is deeply influenced by natural killer cells, which, after virus infection, secrete IFN-gamma, a cytokine that stimulates CD8+ T cells and diverts the immune response to a TH1-type CD4+ T cell-dominated response. Following the CD8+ T lymphocytes, tissue-penetrating, TH1 CD4+ T cells contact local APC. This results in a tremendous up-regulation of MHC molecules and secretion of more chemotactic and toxic substances. Consequently an increasing number of inflammatory cells, including macrophages/microglia and finally antibody-secreting plasma cells, are attracted to the site of virus infection. All trapped cells are mainly terminally differentiated cells that are going to enter apoptosis during or shortly after exerting their effector functions. The clinical consequences and the influence of the effector phase on the further course of the infection depends on the balance and fine-tuning of the contributing lymphoid cell populations. Generally, any delay in the recruitment of effector lymphocytes to the tissue or an unbalanced combination of lymphocyte subsets allows the virus to spread in the CNS, which in turn will cause severe immune-mediated tissue effects as well as disease. If either too late or partially deficient, the immune system response may contribute to a lethal outcome or cause autosensitization to brain-specific antigens by epitope spreading to the antigen-presenting system in peripheral lymphoid tissue. This could form the basis for subsequent booster reactions of autosensitized CD4+ T cells--a process that finally will end in an inflammatory autoimmune reaction, which in humans we call multiple sclerosis. In contrast, a rapid and specific local response in the brain tissue will result in efficient limitation of viral spread and thereby a subclinical immune system-mediated termination of the infection. After clearance of virus-infected cells, downsizing of the local response probably occurs via self-elimination of the contributing T cell populations and/or by so far unidentified signal pathways. However, much of this is highly speculative, and more data have to be collected to make decisive conclusions regarding this matter. Several strategies have been developed by viruses to escape T cell-mediated eradication, including interference with the MHC class I presentation pathway of the host cell or "hiding" in cells which lack MHC class I expression. This may result in life-long persistence of the virus in the brain, a state which probably is actively controlled by T lymphocytes. Under severe immunosuppression, however, reactivation of viral replication can occur, which is a lethal threat to the host.
Collapse
Affiliation(s)
- R Dörries
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
47
|
Charles PC, Trgovcich J, Davis NL, Johnston RE. Immunopathogenesis and immune modulation of Venezuelan equine encephalitis virus-induced disease in the mouse. Virology 2001; 284:190-202. [PMID: 11384219 DOI: 10.1006/viro.2001.0878] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The course of Venezuelan equine encephalitis (VEE) disease in immunodeficient and immunologically normal mice was compared to define the role of the immune system in this disease process. Immunocompetent mice infected with VEE exhibited a biphasic illness characterized by an early self-limiting lymphoid phase and a fatal CNS phase. The lymphoid phase of the illness was characterized by extensive viral replication within spleen, thymus, Peyer's patches, and lymph nodes, was accompanied by a high-titered serum viremia, and resolved with the production of VEE-specific IgM class antibody at 72 h postinfection (p.i.). Immunocompetent animals survived an average of 6.8 +/- 1.2 days before succumbing to fulminant encephalitis. In contrast, SCID mice infected with VEE showed a persistent replication of virus throughout all organs tested beginning at 24 h p.i. VEE-infected SCID mice exhibited a severe spongiform encephalopathy with 100% mortality and an average survival time of 8.9 +/- 0.9 days. These studies indicated that the characteristic organ tropism of VEE in the mouse is due in large part to an early anti-viral state, the establishment of which is dependent upon the presence of an intact immune system. Finally, the CNS pathology in a VEE-infected mouse had a significant immunologic component. However, in contrast to other neurovirulent alphaviruses, VEE was directly cytopathic for the cells of the CNS, even in the absence of an immune response.
Collapse
Affiliation(s)
- P C Charles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
This chapter discusses chemokines and their receptors in the evolution of viral infectious diseases of the central nervous system (CNS). Infection of the human CNS with many different viruses or infection of the rodent CNS induces vigorous host-inflammatory responses with recruitment of large numbers of leukocytes, particularly T lymphocytes and macrophages. Chemokines coordinate trafficking of peripheral blood leukocytes by stimulating their chemotaxis, adhesion, extravasation, and other effector functions. In view of these properties, research efforts have turned increasingly to the possible involvement of chemokines in regulating both peripheral tissue and CNS leukocyte migration during viral infection. The biological effects of chemokines are mediated via their interaction with receptors belonging to the family of seven transmembrane (7TM)-spanning, G-protein coupled receptors (GPCRs). In the normal mammalian CNS, the number of leukocytes present in the brain is scant. However, these cells are attracted to, and accumulate in, a variety of pathologic states, many involving viral infection. Although leukocyte migration into local tissue compartments, such as the CNS, is a multifactorial process, it has become clear that chemokines are pivotal components of this process, providing a necessary chemotactic signal for leukocyte recruitment.
Collapse
Affiliation(s)
- V C Asensio
- Department of Neuropharmacology, SP-315, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
49
|
Marten NW, Stohlman SA, Atkinson RD, Hinton DR, Fleming JO, Bergmann CC. Contributions of CD8+ T cells and viral spread to demyelinating disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4080-8. [PMID: 10754301 DOI: 10.4049/jimmunol.164.8.4080] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic demyelination are hallmarks of CNS infection by the neurotropic JHM strain of mouse hepatitis virus. Although infectious virus is cleared by CD8+ T cells, both viral RNA and activated CD8+ T cells remain in the CNS during persistence potentially contributing to pathology. To dissociate immune from virus-mediated determinants initiating and maintaining demyelinating disease, mice were infected with two attenuated viral variants differing in a hypervariable region of the spike protein. Despite similar viral replication and tropism, one infection was marked by extensive demyelination and paralysis, whereas the other resulted in no clinical symptoms and minimal neuropathology. Mononuclear cells from either infected brain exhibited virus specific ex vivo cytolytic activity, which was rapidly lost during viral clearance. As revealed by class I tetramer technology the paralytic variant was superior in inducing specific CD8+ T cells during the acute disease. However, after infectious virus was cleared, twice as many virus-specific IFN-gamma-secreting CD8+ T cells were recovered from the brains of asymptomatic mice compared with mice undergoing demyelination, suggesting that IFN-gamma ameliorates rather than perpetuates JHM strain of mouse hepatitis virus-induced demyelination. The present data thus indicate that in immunocompetent mice, effector CD8+ T cells control infection without mediating either clinical disease or demyelination. In contrast, demyelination correlated with early and sustained infection of the spinal cord. Rapid viral spread, attributed to determinants within the spike protein and possibly perpetuated by suboptimal CD8+ T cell effector function, thus ultimately leads to the process of immune-mediated demyelination.
Collapse
Affiliation(s)
- N W Marten
- Departments of Neurology, Molecular Microbiology and Immunology, and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Using mice deficient of E-selectin and E/P-selectin, we have studied the requirement for endothelial selectins in extravasation of leukocytes at sites of viral infection, with major emphasis on the recruitment of virus-specific TC1 cells. Lymphocytic choriomeningitis virus (LCMV)–induced meningitis was used as our primary experimental model. Additionally, localized subdermal inflammation and virus clearance in internal organs were analyzed during LCMV infection. The generation of CD8+ effector T cells in infected mutants was unimpaired. Quantitative and qualitative analysis of the inflammatory exudate cells in intracerebrally infected mice gave identical results in all strains of mice. Expression of endothelial selectin was also found to be redundant regarding the ability of effector cells to eliminate virus in nonlymphoid organs. Concerning LCMV-induced footpad swelling, absent or marginal reduction was found in E/P-sel −/− mice, compared with wild-type mice after local challenge with virus or immunodominant viral MHC class I restricted peptide, respectively. Similar results were obtained after adoptive transfer of wild-type effector cells into E/P-sel −/− recipients, whereas footpad swelling was markedly decreased in P-sel/ICAM-1 −/− and ICAM-1 −/− recipients. LCMV-induced footpad swelling was completely inhibited in ICAM-deficient mice transfused with donor cell preincubated with soluble VCAM-1-Ig chimeric protein. Taken together, the current findings strongly indicate that the migration of TC1 effector cells to sites of viral infection can proceed in the absence of endothelial selectins, whereas ligands of the Ig superfamily are critically involved in this process.
Collapse
|