1
|
Sharma P, Mathews DB, Nguyen QA, Rossmann GL, A Patten C, Hammond CJ. Old Dog, New Tricks: A Review of Identifying and Addressing Youth Cannabis Vaping in the Pediatric Clinical Setting. Clin Med Insights Pediatr 2023; 17:11795565231162297. [PMID: 36993933 PMCID: PMC10041590 DOI: 10.1177/11795565231162297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
Cannabis vaping has emerged as a predominant mode of cannabis use among United States (US) adolescents and young adults (AYA) primarily due to the popularity of modifiable designs of vaping devices coupled with changes in cannabis policies and increased availability of cannabinoid products. New methods for cannabis vaping by e-liquid/oil vaping, dry plant vaping, and cannabis concentrate vaping (ie, dabbing) have had high uptake among American youth with unclear long-term health implications. Issues with contamination, mislabeling, and expansion of the vaped cannabis market to include not only delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD) but also delta-9-THC analogs (eg, delta-8 and delta-10) sold as hemp-derived "legal highs" further complicated this healthcare space. Recent research suggests that cannabis/THC vaping carries distinct and overlapping risks when compared to cannabis smoking and may be associated with greater risk for acute lung injuries, seizures, and acute psychiatric symptoms. Primary care clinicians providing care for AYA are in an ideal position to identify cannabis misuse and intervene early to address cannabis vaping. To improve public health outcomes, a need exists for pediatric clinicians to be educated about different ways/methods that youth are vaping cannabinoid products and associated risks related to cannabinoid vaping. Further, pediatric clinicians need to be trained how to effectively screen for and discuss cannabis vaping with their youth patients. In the current article, we present a clinically focused review of cannabis vaping among young people with 3 main aims to: (1) identify and describe the cannabis vaping products commonly used by American youth; (2) review the health correlates of youth cannabis vaping; and (3) discuss clinical considerations related to identifying and treating youth who vape cannabis.
Collapse
Affiliation(s)
- Pravesh Sharma
- Behavioral Health Research Program, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic Health System, Eau Claire, WI, USA
- Pravesh Sharma, Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic Health System, 1221 Whipple St., Eau Claire, WI 54703, USA.
| | | | - Quang Anh Nguyen
- Behavioral Health Research Program, Mayo Clinic, Rochester, MN, USA
| | | | - Christi A Patten
- Behavioral Health Research Program, Mayo Clinic, Rochester, MN, USA
| | - Christopher J Hammond
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Fouda MA, Mohamed YF, Fernandez R, Ruben PC. Anti-inflammatory effects of cannabidiol against lipopolysaccharides in cardiac sodium channels. Br J Pharmacol 2022; 179:5259-5272. [PMID: 35906756 DOI: 10.1111/bph.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Sepsis, caused by a dysregulated host response to infections, can lead to cardiac arrhythmias. However, the mechanisms underlying sepsis-induced inflammation, and how inflammation provokes cardiac arrhythmias, are not well understood. We hypothesized that CBD may ameliorate lipopolysaccharides (LPS)-induced cardiotoxicity via Toll-like receptor 4 (TLR-4) and cardiac sodium channels (Nav1.5). METHODS AND RESULTS We incubated human immune cells (THP-1 macrophages) with LPS for 24 hours, then extracted the THP-1 incubation media. ELISA assay showed that LPS (1 or 5 μg/ml), in a concentration-dependent manner, or MPLA (TLR-4 agonist, 5 μg/ml) stimulated the THP-1 cells to release inflammatory cytokines (TNF-α and IL-6). Prior incubation (4 hours) with cannabidiol (CBD: 5 μM) or C34 (TLR-4 antagonist: 5 μg/ml) inhibited LPS and MPLA-induced release of both IL-6 and TNF-α. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) were subsequently incubated for 24 hours in the media extracted from THP-1 cells incubated with LPS, MPLA alone, or in combination with CBD or C34. Voltage-clamp experiments showed a right shift in the voltage dependence of Nav1.5 activation, steady state fast inactivation (SSFI), increased persistent current and prolonged in silico action potential duration in hiSPC-CM incubated in the LPS or MPLA-THP-1 media. Co-incubation with CBD or C34 rescued the biophysical dysfunction caused by LPS and MPLA. CONCLUSION Our results suggest that CBD may protect against sepsis-induced inflammation and subsequent arrhythmias through (i) inhibition of the release of inflammatory cytokines, antioxidant and anti-apoptotic effects and/or (ii) direct effect on Nav1.5.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Yasmine Fathy Mohamed
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, Alexandria University, Alexandria, Egypt
| | - Rachel Fernandez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
3
|
Maguire AD, Bethea JR, Kerr BJ. TNFα in MS and Its Animal Models: Implications for Chronic Pain in the Disease. Front Neurol 2021; 12:780876. [PMID: 34938263 PMCID: PMC8686517 DOI: 10.3389/fneur.2021.780876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.
Collapse
Affiliation(s)
- Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Meehan-Atrash J, Rahman I. Cannabis Vaping: Existing and Emerging Modalities, Chemistry, and Pulmonary Toxicology. Chem Res Toxicol 2021; 34:2169-2179. [PMID: 34622654 PMCID: PMC8882064 DOI: 10.1021/acs.chemrestox.1c00290] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The outbreak of e-cigarette or vaping product use-associated lung injury (EVALI) has been cause for concern to the medical community, particularly given that this novel illness has coincided with the COVID-19 pandemic, another cause of severe pulmonary illness. Though cannabis e-cigarettes tainted with vitamin E acetate were primarily associated with EVALI, acute lung injuries stemming from cannabis inhalation were reported in the literature prior to 2019, and it has been suggested that cannabis components or additives other than vitamin E acetate may be responsible. Despite these concerning issues, novel cannabis vaporizer ingredients continue to arise, such as Δ8-tetrahydrocannabinol, Δ10-tetrahydrocannabinol, hexahydrocannabinol, and cannabichromene. In order to address cannabis e-cigarette safety and vaping in an effective manner, we provide a comprehensive knowledge of the latest products, delivery modes, and ingredients. This perspective highlights the types of cannabis vaping modalities common to the United States cannabis market, with special attention to cartridge-type cannabis e-cigarette toxicology and their involvement in the EVALI outbreak, in particular, acute lung injurious responses. Novel ingredient chemistry, origins, and legal statuses are reviewed, as well as the toxicology of known cannabis e-cigarette aerosol components.
Collapse
Affiliation(s)
- Jiries Meehan-Atrash
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester 14642, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester 14642, NY, United States
| |
Collapse
|
5
|
Reusch N, Ravichandran KA, Olabiyi BF, Komorowska-Müller JA, Hansen JN, Ulas T, Beyer M, Zimmer A, Schmöle AC. Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia 2021; 70:71-88. [PMID: 34499767 DOI: 10.1002/glia.24089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | - Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.,International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Yonker LM, Barrios J, Mou H, Hurley BP. Untapped Potential: Therapeutically Targeting Eicosanoids and Endocannabinoids in the Lung. Clin Pharmacol Ther 2021; 110:69-81. [PMID: 33423293 DOI: 10.1002/cpt.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023]
Abstract
Inflammation of the airway involves the recruitment of highly active immune cells to combat and clear microbes and toxic factors; however, this inflammatory response can result in unintended damage to lung tissue. Tissue damage resulting from inflammation is often mitigated by resolving factors that limit the scope and duration of the inflammatory response. Both inflammatory and resolving processes require the actions of a vast array of lipid mediators that can be rapidly synthesized through a variety of airway resident and infiltrating immune cells. Eicosanoids and endocannabinoids represent two major classes of lipid mediators that share synthetic enzymes and have diverse and overlapping functions. This review seeks to provide a summary of the major bioactive eicosanoids and endocannabinoids, challenges facing researchers that study them, and their roles in modulating inflammation and resolution. With a special emphasis on cystic fibrosis, a variety of therapeutics are discussed that have been explored for their potential anti-inflammatory or proresolving impact toward alleviating excessive airway inflammation and improving lung function.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, Massachusetts, USA.,Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Juliana Barrios
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Hongmei Mou
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| |
Collapse
|
7
|
The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: a comparative study. Pharmacol Rep 2020; 73:143-153. [PMID: 33026642 DOI: 10.1007/s43440-020-00166-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The inflammatory sequence is the first phase of wound healing. Macrophages (MPhs) and mesenchymal stromal cells (MSCs) respond to an inflammatory microenvironment by adapting their functional activity, which polarizes them into the pro-inflammatory phenotypes M1 and MSC1. Prolongation of the inflammatory phase results in the formation of chronic wounds. The endocannabinoid system (ECS) possesses immunomodulatory properties that may impede this cellular phenotypic switch. METHODS We investigated the immunosuppressive influence of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on the M1 and MSC1 cytokine secretion. Lipopolysaccharides (LPS) were used as inflammagen to stimulate MPhs and MSCs. Both inflammatory phenotypes were co-exposed to AEA or 2-AG, the specific cannabinoid receptor CB2 agonist JWH-133 served as reference. The inflammatory responses were detected by CD80/163 immuno-labelling and by ELISA measures of secreted IL-6, IL-8, MIF, TNF-α, TGF-β, and VEGF. RESULTS M1 cells were found positive for CD80 expression and secreted less IL-6 and IL-8 than MSC1 cells, while both cell types produced similar amounts of MIF. TNF-α release was increased by M1, and growth factors were secreted by MSC1, only. Cannabinoid receptor ligands efficiently decreased the inflammatory response of M1, while their impact was less pronounced in MSC1. CONCLUSIONS The ECS down-regulated the inflammatory responses of MPhs and MSCs by decreasing the cytokine release upon LPS treatment, while CB2 appeared to be of particular importance. Hence, stimulating the ECS by manipulation of endo- or use of exogenous cannabinoids in vivo may constitute a potent therapeutic option against inflammatory disorders.
Collapse
|
8
|
Abdel-Salam OME, Sleem AA, Youness ER, Omara EA. Identification of biomarkers for the detection of subtle brain injury after cannabis and/or tramadol administration. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2019. [DOI: 10.1186/s41935-019-0165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There is a need to identify biomarkers which could indicate the occurrence of brain injury in drug abuse.
Objectives
We aimed to investigate ubiquitin-C-terminal hydrolase-1 (UCH-L1), a neuronal cell body injury marker, the glial protein S-100 beta (S100β), and the glial fibrillary acidic protein (GFAP) as putative markers for neuronal injury due to cannabis, tramadol, or their combined use.
Materials and methods
Rats were treated with cannabis and/or tramadol subcutaneously daily for 6 weeks and UCH-L1, S100β, and GFAP were immunoassayed in the brain and serum.
Results
The results are as follows: (i) either cannabis or tramadol increased UCH-L1 and GFAP in the brain, (ii) serum UCH-L1 and GFAP increased by the highest dose of cannabis or tramadol, (iii) there was no additive effect for cannabis and tramadol on UCH-L1 or GFAP level in the brain or serum, (iv) S100β decreased in the brain by 5–20 mg/kg of cannabis and in the serum following 20 mg/kg of cannabis, and (v) S100β levels increased in the brain after 20 mg/kg of tramadol but decreased the brain and serum after both cannabis and tramadol. Cytoplasmic vacuolations, apoptotic cells, and gliosis were observed in the brain tissue of cannabis and/or tramadol-treated rats.
Conclusions
These results suggest that changes in UCH-L1, GFAP, or S100β are likely to reflect neurotoxicity and serum levels could be used to detect neuronal damage in chronic users.
Collapse
|
9
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs. Front Pharmacol 2016; 7:317. [PMID: 27695418 PMCID: PMC5023687 DOI: 10.3389/fphar.2016.00317] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| |
Collapse
|
10
|
Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016; 2016:5831315. [PMID: 27597805 PMCID: PMC4997072 DOI: 10.1155/2016/5831315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.
Collapse
|
11
|
Moretti S, Castelli M, Franchi S, Raggi MA, Mercolini L, Protti M, Somaini L, Panerai AE, Sacerdote P. Δ⁹-Tetrahydrocannabinol-induced anti-inflammatory responses in adolescent mice switch to proinflammatory in adulthood. J Leukoc Biol 2014; 96:523-34. [PMID: 24744434 DOI: 10.1189/jlb.3hi0713-406rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Marijuana abuse is prominent among adolescents. Although Δ(9)-THC, one of its main components, has been demonstrated to modulate immunity in adults, little is known about its impact during adolescence on the immune system and the long-lasting effects in adulthood. We demonstrate that 10 days of Δ(9)-THC treatment induced a similar alteration of macrophage and splenocyte cytokines in adolescent and adult mice. Immediately at the end of chronic Δ(9)-THC, a decrease of proinflammatory cytokines IL- 1β and TNF-α and an increase of anti-inflammatory cytokine IL-10 production by macrophages were present as protein and mRNA in adolescent and adult mice. In splenocytes, Δ(9)-THC modulated Th1/Th2 cytokines skewing toward Th2: IFN-γ was reduced, and IL-4 and IL-10 increased. These effects were lost in adult animals, 47 days after the last administration. In contrast, in adult animals treated as adolescents, a perturbation of immune responses, although in an opposite direction, was present. In adults treated as adolescents, a proinflammatory macrophage phenotype was observed (IL-1β and TNF-α were elevated; IL-10 decreased), and the production of Th cytokines was blunted. IgM titers were also reduced. Corticosterone concentrations indicate a long-lasting dysregulation of HPA in adolescent mice. We measured blood concentrations of Δ(9)-THC and its metabolites, showing that Δ(9)-THC plasma levels in our mice are in the order of those achieved in human heavy smokers. Our data demonstrate that Δ(9)-THC in adolescent mice triggers immune dysfunctions that last long after the end of abuse, switching the murine immune system to proinflammatory status in adulthood.
Collapse
Affiliation(s)
- Sarah Moretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Mara Castelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Maria Augusta Raggi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Italy; and
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Italy; and
| | - Michele Protti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Italy; and
| | - Lorenzo Somaini
- Addiction Treatment Centre, Local Health Service, Cossato, Biella, Italy
| | - Alberto E Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy;
| |
Collapse
|
12
|
The effect of cannabis on oxidative stress and neurodegeneration induced by intrastriatal rotenone injection in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1907-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Δ-Tetrahydrocannabinol induces cytotoxicity in macrophage J774-1 cells: involvement of cannabinoid receptor 2 and p38 MAPK. Toxicology 2013; 314:254-61. [PMID: 24184660 DOI: 10.1016/j.tox.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022]
Abstract
Tetrahydrocannabinol (THC), a psychoactive component of marijuana, is known to exert cytotoxicity in immune cells. In the present study, we examined the cytotoxicity of Δ⁸-THC in mouse macrophage J774-1 cells and a possible involvement of cannabinoid receptors and stress-responsive mitogen-activated protein kinases (MAPKs) in the cytotoxic process. J774-1 cells were treated with Δ⁸-THC (0-20 μM) for up to 6 h. As measured by the MTT and LDH assays, Δ⁸-THC induced cell death of J774-1 cells in a concentration- and/or exposure time-dependent manner. Δ⁸-THC-induced cell damage was associated with vacuole formation, cell swelling, chromatin condensation, and nuclear fragmentation. The cytotoxic effect of Δ⁸-THC was significantly prevented by a caspase-1 inhibitor Ac-YVAD-cmk but not a caspase-3 inhibitor z-DEVD-fmk. The pretreatment with SR144528, a CB₂ receptor-selective antagonist, effectively suppressed Δ⁸-THC-induced cytotoxicity in J774-1 cells, which exclusively expressed CB₂ receptors as indicated by real-time polymerase chain reaction analysis. In contrast, AM251, a CB₁ receptor-selective antagonist, did not affect the cytotoxicity. Pertussis toxin and α-tocopherol significantly attenuated Δ⁸-THC-induced cytotoxicity suggesting that G(i/o) protein coupling signal transduction and oxidative stress are responsible for the cytotoxicity. Δ⁸-THC stimulated the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in J774-1 cells, which were effectively antagonized by the pretreatment with SR144528. In addition, SB203580, a p38 MARK inhibitor, significantly attenuated the cytotoxic effect of Δ⁸-THC, whereas SP600125, a JNK inhibitor, significantly enhanced the cytotoxicity. These results suggest that the cytotoxicity of Δ⁸-THC to J774-1 cells is exerted mediated through the CB₂ receptor followed by the activation of p38 MAPK.
Collapse
|
14
|
Sánchez A, García-Merino A. Neuroprotective agents: Cannabinoids. Clin Immunol 2012; 142:57-67. [DOI: 10.1016/j.clim.2011.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
15
|
Eisenstein TK, Meissler JJ, Wilson Q, Gaughan JP, Adler MW. Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J Neuroimmunol 2007; 189:17-22. [PMID: 17640739 PMCID: PMC2083705 DOI: 10.1016/j.jneuroim.2007.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
This study shows that two cannabinoids, Delta(9)-tetrahydrocannabinol (THC) and anandamide, induce dose-related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB(2) receptor, but not by SR141716, a CB(1) antagonist. These studies are novel in that they show that both anandamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB(2) receptor.
Collapse
Affiliation(s)
- Toby K Eisenstein
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| | | | | | | | | |
Collapse
|
16
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
17
|
Germain N, Boichot E, Advenier C, Berdyshev EV, Lagente V. Effect of the cannabinoid receptor ligand, WIN 55,212-2, on superoxide anion and TNF-alpha production by human mononuclear cells. Int Immunopharmacol 2002; 2:537-43. [PMID: 11962732 DOI: 10.1016/s1567-5769(01)00200-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cannabinoids are known to downregulate immune response but the role for cannabinoid receptors in cannabinoid-induced immunosuppression is still unclear. To address this question, the interference of CB1 and CB2 receptor antagonists with the inhibition of TNF-alpha production by synthetic cannabinoid WIN 55,212-2 was studied using human peripheral blood mononuclear cells (PBMC) in vitro. CB2 (SR 144528) but not CB1 (SR 141716A) receptor antagonist dose dependently interfered with WIN 55,212-2-induced inhibition of TNF-alpha synthesis. Also, WIN 55,212-2 decreased fMLP-induced reactive oxygen species generation in lipopolysaccharide (LPS)-primed PBMC. However, the high concentrations of cannabinoid receptor ligands needed to achieve significant effects suggest that the observed effects may be in part cannabinoid receptor independent.
Collapse
|
18
|
Gardner B, Zu LX, Sharma S, Liu Q, Makriyannis A, Tashkin DP, Dubinett SM. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-beta. Biochem Biophys Res Commun 2002; 290:91-6. [PMID: 11779138 DOI: 10.1006/bbrc.2001.6179] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The marijuana-derived cannabinoid Delta(9)-tetrahydrocannabinol (THC) has been shown to be immunosuppressive. We report that THC induces the immunosuppressive cytokine TGF-beta by human peripheral blood lymphocytes (PBL). The ability of THC to stimulate TGF-beta production was blocked by the CB2 receptor specific antagonist SR144528 but not by the CB1 specific antagonist AM251. Furthermore, our data suggest that TGF-beta actively regulates lymphocyte CB2 receptor expression in an autocrine and paracrine manner. Whereas the addition of recombinant TGF-beta to PBL cultures downregulated CB2 receptor expression, anti-TGF-beta antibody treatment increased CB2 receptor expression. We conclude that one mechanism by which THC contributes to immune suppression is by stimulating an enhanced production of lymphocyte TGF-beta.
Collapse
Affiliation(s)
- Brian Gardner
- Pulmonary Immunology Laboratory, Division of Pulmonary and Critical Care Medicine, 37-131 CHS, UCLA School of Medicine, Los Angeles, California 90073, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chang YH, Lee ST, Lin WW. Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 2001; 81:715-23. [PMID: 11329626 DOI: 10.1002/jcb.1103] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Delta(9)-Tetrahydrocannabinol (Delta(9)-THC) is the major psychoactive component of marijuana and elicits pharmacological actions via cannabinoid receptors. Anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG) are endogenous ligands for cannabinoid receptors, which because of their structural similarities to arachidonic acid (AA), AEA, and 2-AG could serve as substrates for lipoxygenases and cyclooxygenases (COXs) that metabolize polyunsaturated fatty acids to potent bioactive molecules. In this study, we have compared the effects of Delta(9)-THC, AEA, 2-AG, and another cannabinoid agonist, indomethacin morpholinylamide (IMMA), on lipopolysaccharide (LPS)-induced NO, IL-6, and PGE(2) release from J774 macrophages. Delta(9)-THC, IMMA, and AEA diminish LPS-induced NO and IL-6 production in a concentration-dependent manner. 2-AG inhibits the production of IL-6 but slightly increases iNOS-dependent NO production. Delta(9)-THC and IMMA also inhibit LPS-induced PGE(2) production and COX-2 induction, while AEA and 2-AG have no effects. These discrepant results of 2-AG on iNOS and COX-2 induction might be due to its bioactive metabolites, AA and PGE(2), whose incubation cause the potentiation of both iNOS and COX-2 induction. On the contrary, the AEA metabolite, PGE(2)-ethanolamide, influences neither the LPS-induced NO nor IL-6 production. Taken together, direct cannabinoid receptor activation leads to anti-inflammatory action via inhibition of macrophage function. The endogenous cannabinoid, 2-AG, also serves as a substrate for COX-catalyzing PGE(2) production, which in turn modulates the action of CB2.
Collapse
Affiliation(s)
- Y H Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
20
|
Abstract
Cannabinoid research underwent a tremendous increase during the last 10 years. This progress was made possible by the discovery of cannabinoid receptors and the endogenous ligands for these receptors. Cannabinoid research is developing in two major directions: neurobehavioral properties of cannabinoids and the impact of cannabinoids on the immune system. Recent studies characterized the cannabinoid-induced response as a very complex process because of the involvement of multiple signalling pathways linked to cannabinoid receptors or effects elicited by cannabinoids without receptor participation. The objective of this review is to present this complexity as it applies to immune response. The functional properties of cannabinoid receptors, signalling pathways linked to cannabinoid receptors and the modulation of immune response by cannabinoid receptor ligands are discussed. Special attention is given to 'endocannabinoids' as immunomodulatory molecules.
Collapse
Affiliation(s)
- E V Berdyshev
- The Hormel Institute, University of Minnesota, 801 16th Avenue N.E., Austin, MN 55912, USA.
| |
Collapse
|
21
|
Zhu LX, Sharma S, Stolina M, Gardner B, Roth MD, Tashkin DP, Dubinett SM. Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:373-80. [PMID: 10861074 DOI: 10.4049/jimmunol.165.1.373] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we show that Delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, suppresses host immune reactivity against lung cancer. In two different weakly immunogenic murine lung cancer models, intermittent administration of THC (5 mg/kg, four times/wk i.p. for 4 wk) led to accelerated growth of tumor implants compared with treatment with diluent alone. In contrast to our findings in immunocompetent mice, THC did not affect tumor growth in tumor-bearing SCID mice. The immune inhibitory cytokines, IL-10 and TGF-beta, were augmented, while IFN-gamma was down-regulated at both the tumor site and in the spleens of THC-treated mice. Administration of either anti-IL-10- or anti-TGF-beta-neutralizing Abs prevented the THC-induced enhancement in tumor growth. Both APC and T cells from THC-treated mice showed limited capacities to generate alloreactivity. Furthermore, lymphocytes from THC-treated mice transferred the effect to normal mice, resulting in accelerated tumor growth similar to that seen in the THC-treated mice. THC decreased tumor immunogenicity, as indicated by the limited capacity for tumor-immunized, THC-treated mice to withstand tumor rechallenge. In vivo administration of a specific antagonist of the CB2 cannabinoid receptor also blocked the effects of THC. Our findings suggest the THC promotes tumor growth by inhibiting antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigen-Presenting Cells/immunology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/prevention & control
- Cell Division/drug effects
- Cell Division/immunology
- Cytokines/physiology
- Dronabinol/antagonists & inhibitors
- Dronabinol/metabolism
- Dronabinol/pharmacology
- Growth Inhibitors/administration & dosage
- Immunity, Innate/drug effects
- Immunosuppressive Agents/antagonists & inhibitors
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Injections, Intraperitoneal
- Interleukin-10/immunology
- Lymphocyte Culture Test, Mixed
- Lymphocyte Subsets/drug effects
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Lymphocyte Subsets/transplantation
- Lymphocyte Transfusion
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Neoplasm Transplantation
- Receptors, Cannabinoid
- Receptors, Drug/physiology
- Severe Combined Immunodeficiency/immunology
- T-Lymphocytes/immunology
- Transforming Growth Factor beta/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L X Zhu
- Pulmonary Immunology Laboratory and Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, School of Medicine, 90095, USA
| | | | | | | | | | | | | |
Collapse
|