1
|
Huang CH, Geng JH, Wu DW, Chen SC, Hung CH, Kuo CH. Betel Nut Chewing Was Associated with Obstructive Lung Disease in a Large Taiwanese Population Study. J Pers Med 2021; 11:jpm11100973. [PMID: 34683114 PMCID: PMC8537851 DOI: 10.3390/jpm11100973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of betel nut chewing in Taiwan is high at approximately 7%, however, few studies have evaluated the relationship between betel nut chewing and lung disease. Therefore, the aim of this study was to investigate associations between betel nut chewing and lung function in 80,877 participants in the Taiwan Biobank (TWB). We further investigated correlations between betel nut chewing characteristics such as years of use, frequency, daily amount, and accumulative dose, with obstructive lung disease. We used data from the TWB. Lung function was assessed using spirometry measurements of forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). The participants were classified into normal lung function and obstructive lung function (FEV1/FVC < 70%) groups. The participants were asked questions about betel nut chewing, including years of use, frequency, and daily amount. After multivariable analysis, betel nut chewing (odds ratio [OR] = 1.159; p < 0.001) was significantly associated with FEV1/FVC < 70% in all participants (n = 80,877). Further, in the participants who chewed betel nut (n = 5135), a long duration of betel nut chewing (per 1 year; OR = 1.008; p = 0.012), betel nut use every day (vs. 1–3 days/month; OR = 1.793; p = 0.036), 10–20 quids a day (vs. <10 quids; OR = 1.404; p = 0.019), 21–30 quids a day (vs. <10 quids; OR = 1.662; p = 0.010), ≥31 quids a day (vs. <10 quids; OR = 1.717; p = 0.003), and high cumulative dose (per 1 year × frequency × daily score; OR = 1.001; p = 0.002) were significantly associated with FEV1/FVC < 70%. In this large population-based cohort study, chewing betel nut was associated with obstructive lung disease. Furthermore, a long duration of betel nut chewing, more frequent use, higher daily amount, and high cumulative dose were associated with obstructive lung disease. This suggests that preventing betel nut chewing should be considered to reduce obstructive lung disease in Taiwan.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Correspondence: ; Tel.: +886-7-8036-783 (ext. 3440); Fax: +886-7-8063-346
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Real-time measurement of adenosine and ATP release in the central nervous system. Purinergic Signal 2020; 17:109-115. [PMID: 33025425 PMCID: PMC7954901 DOI: 10.1007/s11302-020-09733-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/12/2022] Open
Abstract
This brief review recounts how, stimulated by the work of Geoff Burnstock, I developed biosensors that allowed direct real-time measurement of ATP and adenosine during neural function. The initial impetus to create an adenosine biosensor came from trying to understand how ATP and adenosine-modulated motor pattern generation in the frog embryo spinal cord. Early biosensor measurements demonstrated slow accumulation of adenosine during motor activity. Subsequent application of these biosensors characterized real-time release of adenosine in in vitro models of brain ischaemia, and this line of work has recently led to clinical measurements of whole blood purine levels in patients undergoing carotid artery surgery or stroke. In parallel, the wish to understand the role of ATP signalling in the chemosensory regulation of breathing stimulated the development of ATP biosensors. This revealed that release of ATP from the chemosensory areas of the medulla oblongata preceded adaptive changes in breathing, triggered adaptive changes in breathing via activation of P2 receptors, and ultimately led to the discovery of connexin26 as a channel that mediates CO2-gated release of ATP from cells.
Collapse
|
3
|
Mild hypothermia protects synaptic transmission from experimental ischemia through reduction in the function of nucleoside transporters in the mouse hippocampus. Neuropharmacology 2019; 163:107853. [PMID: 31734385 DOI: 10.1016/j.neuropharm.2019.107853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
Ischemia, a severe metabolic stress, increases adenosine levels and causes the suppression of synaptic transmission through adenosine A1 receptors. Although temperature also regulates extracellular adenosine levels, the effect of temperature on ischemia-induced activation of adenosine receptors is not yet fully understood. Here we examined the role of adenosine A1 receptors in mild hypothermia-mediated neuroprotection during the acute phase of ischemia. Severe ischemia-induced neurosynaptic impairment was reproduced by oxygen-glucose deprivation at normothermia (36 °C) and assessed with extracellular recordings or whole-cell patch clamp recordings in acute hippocampal slices in mice. Mild hypothermia (32 °C) induced the protection of synaptic transmission by activating adenosine A1 receptors. Stricter hypothermia (28 °C) caused additional neuroprotective effects by extending the onset time to anoxic depolarization; however, this effect was not associated with adenosine A1 receptors. The response of exogenous adenosine-induced inhibition of hippocampal synaptic transmission was increased by lowering the temperature to 32 °C or 28 °C. Hypothermia also reduced the function of dipryidamole-sensitive nucleoside transporters. These findings suggest that an increased response of adenosine A1 receptors, caused by a reduction in the function of nucleoside transporters, is one mechanism by which therapeutic hypothermia (usually used within the mild range) mediates neurosynaptic protection in the acute phase of stroke.
Collapse
|
4
|
Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med 2019; 48:2041-2051. [PMID: 29923147 DOI: 10.1007/s40279-018-0946-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095-1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia.
| | - Romain Meeusen
- Vrije Universiteit Brussel Human Performance Research Group, Brussels, Belgium
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
- New South Wales Institute of Sport, Sydney, NSW, Australia
| | - Richard Keegan
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| |
Collapse
|
5
|
Kawamura M, Ruskin DN, Masino SA. Adenosine A 1 receptor-mediated protection of mouse hippocampal synaptic transmission against oxygen and/or glucose deprivation: a comparative study. J Neurophysiol 2019; 122:721-728. [PMID: 31242045 DOI: 10.1152/jn.00813.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors are widely expressed in the brain, and adenosine is a key bioactive substance for neuroprotection. In this article, we clarify systematically the role of adenosine A1 receptors during a range of timescales and conditions when a significant amount of adenosine is released. Using acute hippocampal slices obtained from mice that were wild type or null mutant for the adenosine A1 receptor, we quantified and characterized the impact of varying durations of experimental ischemia, hypoxia, and hypoglycemia on synaptic transmission in the CA1 subregion. In normal tissue, these three stressors rapidly and markedly reduced synaptic transmission, and only treatment of sufficient duration led to incomplete recovery. In contrast, inactivation of adenosine A1 receptors delayed and/or lessened the reduction in synaptic transmission during all three stressors and reduced the magnitude of the recovery significantly. We reproduced the responses to hypoxia and hypoglycemia by applying an adenosine A1 receptor antagonist, validating the clear effects of genetic receptor inactivation on synaptic transmission. We found activation of adenosine A1 receptor inhibited hippocampal synaptic transmission during the acute phase of ischemia, hypoxia, or hypoglycemia and caused the recovery from synaptic impairment after these three stressors using genetic mutant. These studies quantify the neuroprotective role of the adenosine A1 receptor during a variety of metabolic stresses within the same recording system.NEW & NOTEWORTHY Deprivation of oxygen and/or glucose causes a rapid adenosine A1 receptor-mediated decrease in synaptic transmission in mouse hippocampus. We quantified adenosine A1 receptor-mediated inhibition during and synaptic recovery after ischemia, hypoxia, and hypoglycemia of varying durations using a genetic mutant and confirmed these findings using pharmacology. Overall, using the same recording conditions, we found the acute response and the neuroprotective ability of the adenosine A1 receptor depended on the type and duration of deprivation event.
Collapse
Affiliation(s)
- Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut
| | - Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut
| |
Collapse
|
6
|
Point-of-care measurements reveal release of purines into venous blood of stroke patients. Purinergic Signal 2019; 15:237-246. [PMID: 30859371 PMCID: PMC6635545 DOI: 10.1007/s11302-019-09647-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/31/2019] [Indexed: 11/10/2022] Open
Abstract
Stroke is a leading cause of death and disability. Here, we examine whether point-of-care measurement of the purines, adenosine, inosine and hypoxanthine, which are downstream metabolites of ATP, has potential to assist the diagnosis of stroke. In a prospective observational study, patients who were suspected of having had a stroke, within 4.5 h of symptom onset and still displaying focal neurological symptoms at admission, were recruited. Clinical research staff in the Emergency Departments of two hospitals used a prototype biosensor array, SMARTCap, to measure the purines in the venous blood of stroke patients and healthy controls. In controls, the baseline purines were 7.1 ± (SD) 4.2 μM (n = 52), while in stroke patients, they were 11.6 ± 8.9 μM (n = 76). Using the National Institutes for Stoke Scale (NIHSS) to band the severity of stroke, we found that minor, moderate and severe strokes all gave significant elevation of blood purines above the controls. The purine levels fall over 24 h. This was most marked for patients with haemorrhagic strokes (5.1 ± 3.6 μM, n = 9 after 24 h). The purine levels measured on admission show a significant correlation with the volume of affected brain tissue determined by medical imaging in patients who had not received thrombolysis or mechanical thrombectomy. ClinicalTrials.gov Identifier: NCT02308605
Collapse
|
7
|
Tian F, Bibi F, Dale N, Imray CHE. Blood purine measurements as a rapid real-time indicator of reversible brain ischaemia. Purinergic Signal 2017; 13:521-528. [PMID: 28803399 PMCID: PMC5714841 DOI: 10.1007/s11302-017-9578-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
To preserve the disequilibrium between ATP and ADP necessary to drive cellular metabolism, enzymatic pathways rapidly convert ADP to adenosine and the downstream purines inosine and hypoxanthine. During ischaemia, these same pathways result in the production of purines. We performed a prospective observational study to test whether purine levels in arterial blood might correlate with brain ischaemia. We made real-time perioperative measurements, via microelectrode biosensors, of the purine levels in untreated arterial blood from 18 patients undergoing regional anaesthetic carotid endarterectomy. Pre-operatively, the median purine level was 2.4 μM (95% CI 1.3-4.0 μM); during the cross-clamp phase, the purines rose to 6.7 μM (95% CI 4.7-11.5 μM) and fell back to 1.9 μM (95% CI 1.4-2.7 μM) in recovery. Three patients became unconscious during carotid clamping, necessitating insertion of a temporary carotid shunt to restore cerebral blood flow. In these, the pre-operative median purine level was 5.4 μM (range 4.7-6.1 μM), on clamping, 9.6 μM (range 9.4-16.1 μM); during shunting, purines fell to below the pre-operative level (1.4 μM, range 0.4-2.9 μM) and in recovery 1.8 μM (range 1.8-2.6 μM). Our results suggest that blood purines may be a sensitive real-time and rapidly produced indicator of brain ischaemia, even when there is no accompanying neurological obtundation.
Collapse
Affiliation(s)
- Faming Tian
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK
| | - Fakhra Bibi
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK
| | - Nicholas Dale
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Christopher H E Imray
- Department of Vascular Surgery, University Hospitals of Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol 2017; 455:33-40. [PMID: 27884781 DOI: 10.1016/j.mce.2016.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023]
Abstract
Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.
Collapse
Affiliation(s)
- Cesar L Moreno
- Department of Neurology, 1470 Madison Ave., 9-119, New York, NY 10029, USA
| | - Charles V Mobbs
- Departments of Neuroscience, Endocrinology, and Geriatrics, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA.
| |
Collapse
|
9
|
Duarte JMN, Cunha RA, Carvalho RA. Adenosine A1receptors control the metabolic recovery after hypoxia in rat hippocampal slices. J Neurochem 2016; 136:947-57. [DOI: 10.1111/jnc.13512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- João M. N. Duarte
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Medicine; University of Coimbra; Coimbra Portugal
| | - Rui A. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
10
|
Engl E, Attwell D. Non-signalling energy use in the brain. J Physiol 2015; 593:3417-29. [PMID: 25639777 PMCID: PMC4560575 DOI: 10.1113/jphysiol.2014.282517] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/27/2015] [Indexed: 01/19/2023] Open
Abstract
Energy use limits the information processing power of the brain. However, apart from the ATP used to power electrical signalling, a significant fraction of the brain's energy consumption is not directly related to information processing. The brain spends just under half of its energy on non-signalling processes, but it remains poorly understood which tasks are so energetically costly for the brain. We review existing experimental data on subcellular processes that may contribute to this non-signalling energy use, and provide modelling estimates, to try to assess the magnitude of their ATP consumption and consider how their changes in pathology may compromise neuronal function. As a main result, surprisingly little consensus exists on the energetic cost of actin treadmilling, with estimates ranging from < 1% of the brain's global energy budget up to one-half of neuronal energy use. Microtubule treadmilling and protein synthesis have been estimated to account for very small fractions of the brain's energy budget, whereas there is stronger evidence that lipid synthesis and mitochondrial proton leak are energetically expensive. Substantial further research is necessary to close these gaps in knowledge about the brain's energy-expensive non-signalling tasks.
Collapse
Affiliation(s)
- Elisabeth Engl
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
11
|
Lindquist BE, Shuttleworth CW. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J Cereb Blood Flow Metab 2014; 34:1779-90. [PMID: 25160669 PMCID: PMC4269755 DOI: 10.1038/jcbfm.2014.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 2014; 34:9621-43. [PMID: 25031403 DOI: 10.1523/jneurosci.3991-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after hypoxia/cerebral ischemia.
Collapse
|
13
|
Kawamura M, Ruskin DN, Geiger JD, Boison D, Masino SA. Ketogenic diet sensitizes glucose control of hippocampal excitability. J Lipid Res 2014; 55:2254-60. [PMID: 25170119 PMCID: PMC4617128 DOI: 10.1194/jlr.m046755] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A high-fat low-carbohydrate ketogenic diet (KD) is an effective treatment for
refractory epilepsy, yet myriad metabolic effects in vivo have not been reconciled
clearly with neuronal effects. A KD limits blood glucose and produces ketone bodies
from β-oxidation of lipids. Studies have explored changes in ketone bodies
and/or glucose in the effects of the KD, and glucose is increasingly implicated in
neurological conditions. To examine the interaction between altered glucose and the
neural effects of a KD, we fed rats and mice a KD and restricted glucose in vitro
while examining the seizure-prone CA3 region of acute hippocampal slices. Slices from
KD-fed animals were sensitive to small physiological changes in glucose, and showed
reduced excitability and seizure propensity. Similar to clinical observations,
reduced excitability depended on maintaining reduced glucose. Enhanced glucose
sensitivity and reduced excitability were absent in slices obtained from KD-fed mice
lacking adenosine A1 receptors (A1Rs); in slices from normal
animals effects of the KD could be reversed with blockers of pannexin-1 channels,
A1Rs, or KATP channels. Overall, these studies reveal that a
KD sensitizes glucose-based regulation of excitability via purinergic mechanisms in
the hippocampus and thus link key metabolic and direct neural effects of the KD.
Collapse
Affiliation(s)
- Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - David N Ruskin
- Psychology Department and Neuroscience Program, Trinity College, Hartford, CT 06106
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232
| | - Susan A Masino
- Psychology Department and Neuroscience Program, Trinity College, Hartford, CT 06106
| |
Collapse
|
14
|
Abstract
Adenosine's role in the nervous system is multifaceted. As the core molecule of adenosine triphosphate (ATP), adenosine exists in equilibrium with the adenine nucleotide pool and contributes to cellular energy charge, a quantification of relative amounts of available ATP, ADP, AMP and adenosine. Beyond participating in overall energy balance and thus in maintaining cellular homeostasis, adenosine critically influences dynamic signaling in the nervous system. In particular, adenosine has an effect on and is affected by excitatory synaptic transmission. This report describes the ubiquitous nature of adenosine's influence, outlines specific scenarios of clinical import and highlights emerging knowledge about the regulation of adenosine.
Collapse
Affiliation(s)
- Susan A Masino
- Neuroscience Program and Department of Psychology, 300 Summit St., Trinity College, Hartford, CT 06106, USA.
| | | |
Collapse
|
15
|
Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 2012; 9:198. [PMID: 22894638 PMCID: PMC3458985 DOI: 10.1186/1742-2094-9-198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/01/2012] [Indexed: 02/07/2023] Open
Abstract
Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Collapse
|
16
|
Shetty PK, Galeffi F, Turner DA. Cellular Links between Neuronal Activity and Energy Homeostasis. Front Pharmacol 2012; 3:43. [PMID: 22470340 PMCID: PMC3308331 DOI: 10.3389/fphar.2012.00043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/24/2012] [Indexed: 12/20/2022] Open
Abstract
Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.
Collapse
Affiliation(s)
- Pavan K Shetty
- Neurosurgery and Neurobiology, Research and Surgery Services, Durham VA Medical Center, Duke University Durham, NC, USA
| | | | | |
Collapse
|
17
|
Measurement of purine release with microelectrode biosensors. Purinergic Signal 2011; 8:27-40. [PMID: 22095158 DOI: 10.1007/s11302-011-9273-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Purinergic signalling departs from traditional paradigms of neurotransmission in the variety of release mechanisms and routes of production of extracellular ATP and adenosine. Direct real-time measurements of these purinergic agents have been of great value in understanding the functional roles of this signalling system in a number of diverse contexts. Here, we review the methods for measuring purine release, introduce the concept of microelectrode biosensors for ATP and adenosine and explain how these have been used to provide new mechanistic insight in respiratory chemoreception, synaptic physiology, eye development and purine salvage. We finish by considering the association of purine release with pathological conditions and examine the possibilities that biosensors for purines may one day be a standard part of the clinical diagnostic tool chest.
Collapse
|
18
|
Masino SA, Kawamura M, Wasser CD, Wasser CA, Pomeroy LT, Ruskin DN. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 2010; 7:257-68. [PMID: 20190967 PMCID: PMC2769009 DOI: 10.2174/157015909789152164] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 12/12/2022] Open
Abstract
For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed.
Collapse
Affiliation(s)
- S A Masino
- Psychology Department, Trinity College, 300 Summit St., Hartford, CT, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
20
|
Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 2010; 30:3886-95. [PMID: 20237259 DOI: 10.1523/jneurosci.0055-10.2010] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabolic perturbations that decrease or limit blood glucose-such as fasting or adhering to a ketogenic diet-reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A(1) receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K(+) channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A(1) receptors coupled to ATP-sensitive K(+) channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS.
Collapse
|
21
|
Masino SA, Kawamura M, Ruskin DN, Gawryluk J, Chen X, Geiger JD. Purines and the Anti-Epileptic Actions of Ketogenic Diets. ACTA ACUST UNITED AC 2010; 4:58-63. [PMID: 22064941 DOI: 10.2174/1874082001004010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ketogenic diets are high in fat and low in carbohydrates and represent a well-established and effective treatment alternative to anti-epileptic drugs. Ketogenic diets are used for the management of a variety of difficult-to-treat or intractable seizure disorders, especially pediatric refractory epilepsy. However, it has been shown that this dietary therapy can reduce seizures in people of all ages, and ketogenic diets are being applied to other prevalent medical conditions such as diabetes. Although used effectively to treat epilepsy for nearly 90 years, the mechanism(s) by which ketogenic diets work to reduce seizures remain ill-understood. One mechanism receiving increased attention is based on findings that ketogenic diets increase the brain energy molecule ATP, and may also increase the levels and actions of the related endogenous inhibitory neuromodulator adenosine. ATP and adenosine have both been identified as important modulators of seizures; seizures increase the actions of these purines, these purines regulate epileptic activity in brain, adenosine receptor antagonists are pro-convulsant, and adenosinergic mechanisms have been implicated previously in the actions of approved anti-epileptic therapeutics. Here we will review recent literature and describe findings that shed light on mechanistic relationships between ketogenic diets and the purines ATP and adenosine. These emerging mechanisms hold great promise for the effective therapeutic management of epileptic seizures and other neurological conditions.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology/Neuroscience Program, Trinity College, Hartford, Connecticut, 06106, USA
| | | | | | | | | | | |
Collapse
|
22
|
Krnjević K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008; 55:319-33. [DOI: 10.1016/j.neuropharm.2008.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|
23
|
Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. Br J Pharmacol 2008; 153:1022-9. [PMID: 18223675 DOI: 10.1038/sj.bjp.0707587] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) have been postulated to play a crucial role in the pathogenesis of ischaemia-reperfusion injury. Among these, hydrogen peroxide (H(2)O(2)) is known to be a toxic compound responsible for free-radical-dependent neuronal damage. In recent years, however, the 'bad reputation' of H(2)O(2) and other ROS molecules has changed. The aim of this study was to assess the protective role of H(2)O(2) and modification in its endogenous production on the electrophysiological and morphological changes induced by oxygen/glucose deprivation (OGD) on CA1 hippocampal neurons. EXPERIMENTAL APPROACH Neuroprotective effects of exogenous and endogenous H(2)O(2) were determined using extracellular electrophysiological recordings of field excitatory post synaptic potentials (fEPSPs) and morphological studies in a hippocampal slice preparation. In vitro OGD was delivered by switching to an artificial cerebrospinal fluid solution with no glucose and with oxygen replaced by nitrogen. KEY RESULTS Neuroprotection against in vitro OGD was observed in slices treated with H(2)O(2) (3 mM). The rescuing action of H(2)O(2) was mediated by catalase as pre-treatment with the catalase inhibitor 3-amino-1,2,4-triazole blocked this effect. More interestingly, we showed that an increase of the endogenous levels of H(2)O(2), due to a combination of an inhibitor of the glutathione peroxidase enzyme and addition of Cu,Zn-superoxide dismutase in the tissue bath, prevented the OGD-induced irreversible depression of fEPSPs. CONCLUSIONS AND IMPLICATIONS Taken together, our results suggest new possible strategies to lessen the damage produced by a transient brain ischaemia by increasing the endogenous tissue level of H(2)O(2).
Collapse
|
24
|
Abdelmalik PA, Shannon P, Yiu A, Liang P, Adamchik Y, Weisspapir M, Samoilova M, Burnham WM, Carlen PL. Hypoglycemic seizures during transient hypoglycemia exacerbate hippocampal dysfunction. Neurobiol Dis 2007; 26:646-60. [PMID: 17459717 DOI: 10.1016/j.nbd.2007.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/26/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022] Open
Abstract
Severe hypoglycemia constitutes a medical emergency, involving seizures, coma and death. We hypothesized that seizures, during limited substrate availability, aggravate hypoglycemia-induced brain damage. Using immature isolated, intact hippocampi and frontal neocortical blocks subjected to low glucose perfusion, we characterized hypoglycemic (neuroglycopenic) seizures in vitro during transient hypoglycemia and their effects on synaptic transmission and glycogen content. Hippocampal hypoglycemic seizures were always followed by an irreversible reduction (>60% loss) in synaptic transmission and were occasionally accompanied by spreading depression-like events. Hypoglycemic seizures occurred more frequently with decreasing "hypoglycemic" extracellular glucose concentrations. In contrast, no hypoglycemic seizures were generated in the neocortex during transient hypoglycemia, and the reduction of synaptic transmission was reversible (<60% loss). Hypoglycemic seizures in the hippocampus were abolished by NMDA and non-NMDA antagonists. The anticonvulsant, midazolam, but neither phenytoin nor valproate, also abolished hypoglycemic seizures. Non-glycolytic, oxidative substrates attenuated, but did not abolish, hypoglycemic seizure activity and were unable to support synaptic transmission, even in the presence of the adenosine (A1) antagonist, DPCPX. Complete prevention of hypoglycemic seizures always led to the maintenance of synaptic transmission. A quantitative glycogen assay demonstrated that hypoglycemic seizures, in vitro, during hypoglycemia deplete hippocampal glycogen. These data suggest that suppressing seizures during hypoglycemia may decrease subsequent neuronal damage and dysfunction.
Collapse
Affiliation(s)
- Peter A Abdelmalik
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network MCL12-413, Toronto Western Hospital, 399 Bathurst St., Toronto, Ontario, 416-603-5040, Canada M5T2S8
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brust TB, Cayabyab FS, Zhou N, MacVicar BA. p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J Neurosci 2006; 26:12427-38. [PMID: 17135404 PMCID: PMC6674914 DOI: 10.1523/jneurosci.4052-06.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adenosine is arguably the most potent and widespread presynaptic modulator in the CNS, yet adenosine receptor signal transduction pathways remain unresolved. Here, we demonstrate a novel mechanism in which adenosine A1 receptor stimulation leads to p38 mitogen-activated protein kinase (MAPK) activation and contributes to the inhibition of synaptic transmission. Western blot analysis indicated that selective A1 receptor activation [with N6-cyclopentyladenosine (CPA)] resulted in rapid increases in phosphorylated p38 (phospho-p38) MAPK immunoreactivity in membrane fractions, and decreases in phospho-p38 MAPK in cytosolic fractions. Immunoprecipitation with a phospho-p38 MAPK antibody revealed constitutive association of this phosphoprotein with adenosine A1 receptors. Phospho-p38 MAPK activation by A1 receptor stimulation induced translocation of PP2a (protein phosphatase 2a) to the membrane. We then examined the actions of p38 MAPK activation in A1 receptor-mediated synaptic inhibition. Excitatory postsynaptic field potentials evoked in area CA1 of the rat hippocampus markedly decreased in response to adenosine (10 microM), the A1 receptor agonist CPA (40 nM), or a 5 min exposure to hypoxia. These inhibitory responses were mediated by A1 receptor activation because the selective antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (100 nM) prevented them. In agreement with the biochemical analysis, the selective p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] (25 microM) blocked the inhibitory actions of A1 receptor activation, whereas both the inactive analog SB202474 [4-ethyl-2-(p-methoxyphenyl)-5-(4'-pyridyl)-1H-imidazole] (25 microM) and the ERK 1/2 (extracellular signal-regulated kinase 1/2) MAPK inhibitor PD98059 [2'-amino-3'-methoxyflavone] (50 microM) were ineffective. In contrast, the p38 MAPK inhibitors did not inhibit GABA(B)-mediated synaptic depression. These data suggest A1 receptor-mediated p38 MAPK activation is a crucial step underlying the presynaptic inhibitory effect of adenosine on CA3-CA1 synaptic transmission.
Collapse
Affiliation(s)
- Tyson B. Brust
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Francisco S. Cayabyab
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Ning Zhou
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Brian A. MacVicar
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
26
|
Turner CP, Pulciani D, Rivkees SA. Reduction in intracellular calcium levels induces injury in developing neurons. Exp Neurol 2002; 178:21-32. [PMID: 12460605 DOI: 10.1006/exnr.2002.8027] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neurotransmitter glutamate influences intracellular Ca(2+) levels and plays an essential role in maintaining neuronal viability during early development. Blockade of NMDA receptors induces cell death in the neonatal forebrain via mechanisms that are not understood. Other neuromodulators that can influence intracellular Ca(2+) levels include the nucleoside adenosine, which acts via A(1) adenosine receptors subtypes (A(1)ARs). Because A(1)AR activation inhibits glutamate release and action, A(1)AR activation may also contribute to neonatal brain injury. To examine this possibility, we treated primary neuronal cultures with the A(1)AR agonist CPA, the NMDAR antagonist MK801, or CPA + MK801. Combined MK801 + CPA treatment resulted in profound cellular injury, exceeding that seen in other groups. In keeping with the hypothesis that altered Ca(2+) signaling mediates CPA + MK801 injury, reduction of Ca(2+) levels with EGTA, thapsigargin, or BAPTA-AM enhanced CPA + MK801-induced neuronal damage. In contrast, increasing intracellular Ca(2+) using ionomycin reversed CPA + MK801 toxicity. Direct visualization of intracellular Ca(2+) by confocal microscopy revealed that CPA + MK801 inhibited KCl-evoked increases in intracellular Ca(2+). Supporting the concept that A(1)AR activation and NMDAR blockade results in brain injury, neonatal rats injected with A(1)AR agonists + MK801 showed widespread apoptosis in many brain regions. These observations show that A(1)AR activation and NMDAR blockade lead to early postnatal cell injury by mechanisms that involve inhibition of intracellular Ca(2+) signaling.
Collapse
Affiliation(s)
- Christopher P Turner
- Department of Pediatrics, Yale School of Medicine, YCHRC, 464 Congress Avenue, New Haven, CT 06520, USA
| | | | | |
Collapse
|
27
|
Tekkök SB, Godfraind JM, Krnjević K. Moderate hypoglycemia aggravates effects of hypoxia in hippocampal slices from diabetic rats. Neuroscience 2002; 113:11-21. [PMID: 12123680 DOI: 10.1016/s0306-4522(02)00154-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recorded the effects of hypoxia combined with relative hypoglycemia on pre- and post-synaptic potentials in the CA1 area of slices from 4-month-old control and diabetic (streptozotocin-treated) Wistar rats. In experiments on slices kept in 10 or 4 mM glucose (at 33 degrees C), hypoxia was applied until the pre-synaptic afferent volley disappeared--after 12-13 min in most slices, but much earlier (5+/-0.8 min) in diabetic slices kept in 4 mM glucose. When oxygenation was resumed, the afferent volley returned in all slices, for an overall mean recovery of 86.5% (+/-8.8%). Field post-synaptic potentials were fully blocked within 2-3 min of the onset of hypoxia. After the end of hypoxia, they failed to reappear in some slices: overall, their recovery varied between 62 and 68% in control slices, as well as in diabetic slices kept in 10 mM glucose; but recovery was very poor in diabetic slices kept in 4 mM glucose (only 15+/-0.94%). In the latter, hypoxic injury discharges occurred earlier (4.2+/-0.68 min vs. 6.5-8 min for other groups). We conclude that diabetes appears to make hippocampal slices more prone to irreversible loss of synaptic function and early block of axonal conduction when temporary hypoxia is combined with moderate hypoglycemia.
Collapse
Affiliation(s)
- S B Tekkök
- Anaesthesia Research, McGill University, Room 1207, McIntyre Building, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
28
|
Gervitz LM, Lutherer LO, Hamilton ME, Fowler JC. Lack of central effects of peripherally administered adenosine A(1) agonists on synaptic transmission in the rat hippocampus. Brain Res 2002; 951:141-5. [PMID: 12231468 DOI: 10.1016/s0006-8993(02)03154-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral administration of adenosine A(1) receptor selective agonists is generally thought to protect the hippocampus against ischemic damage via central actions. We examined the effects of two peripherally administered A(1) agonists, cyclohexyladenosine (CHA) and adenosine amine congener (ADAC), on synaptic transmission in the hippocampus and on indices of cardiovascular function. We conclude that the permeability of these agonists is not sufficient to result in concentrations necessary to activate central adenosine A(1) receptors within the hippocampus.
Collapse
Affiliation(s)
- Leon M Gervitz
- Department of Physiology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
29
|
Gervitz LM, Nalbant D, Williams SC, Fowler JC. Adenosine-mediated activation of Akt/protein kinase B in the rat hippocampus in vitro and in vivo. Neurosci Lett 2002; 328:175-9. [PMID: 12133582 DOI: 10.1016/s0304-3940(02)00495-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adenosine is considered an endogenous neuroprotective metabolite that through activation of the A(1) receptor results in reduction of neuronal damage following cerebral ischemia. Protein kinase B, also known as Akt/PKB, is part of an endogenous pathway that exerts effective neuroprotection from both necrotic and apoptotic cell death. Using a rat model of unilateral common carotid artery occlusion coupled with hypoxia, and using in vitro rat hippocampal slices, we examined the ability of adenosine to directly activate Akt/PKB. Western blot analysis revealed that levels of phosphorylated Akt/PKB were elevated in vivo under ischemic conditions in an adenosine A(1)-dependent manner and elevated in hippocampal slices treated with an adenosine A(1) agonist. We conclude from these studies that the activation of an adenosine A(1) receptor-mediated signal transduction pathway, either by endogenous adenosine (in vivo) or by an adenosine A(1) agonist (in vitro), results in the activation of the neurotrophic kinase Akt/PKB.
Collapse
Affiliation(s)
- Leon M Gervitz
- Department of Physiology, School of Medicine, Texas Tech University Health Sciences Center, 36014th Street, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
30
|
Fujii S, Sasaki H, Ito KI, Kaneko K, Kato H. Temperature dependence of synaptic responses in guinea pig hippocampal CA1 neurons in vitro. Cell Mol Neurobiol 2002; 22:379-91. [PMID: 12507388 DOI: 10.1023/a:1021068919709] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Temperature-dependent properties of synaptic transmission were studied by recording orthodromic responses of the population spike and excitatory postsynaptic potential in CA1 pyramidal neurons of guinea pig hippocampal slices. 2. Increasing the temperature of the perfusing medium from 30 to 43 degrees C resulted in a decrease in the amplitude of the population spike (A-PS) and a reduced slope of the excitatory postsynaptic potential (S-EPSP). Bath application of the gamma-aminobutyric acid receptor antagonist, picrotoxin, or a change in the calcium concentration of the perfusate did not affect the A-PS during heating. 3. Increasing the strength of the synaptic input to that eliciting a PS with an amplitude 50, 75, or 100% of maximal at 30 degrees C resulted in a significant increase in the A-PS during the middle phase of hyperthermia (35-39 degrees C). 4. The long-term potentiation (LTP) induced at either 30 or 37 degrees C showed the same percentage increase in both the amplitude of the population spike and the S-EPSP after delivery of a tetanus (100 Hz. 100 pulses) to CA1 synapses. 5. The results of the present study, therefore, indicate that the decrease in CA1 field potential was linearly related to the temperature of the slice preparation, while LTP was induced in these responses during heating from 30 to 37 degrees C.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, 2-2-2 lida-Nishi, Yamagata 990-9585, Japan.
| | | | | | | | | |
Collapse
|
31
|
Bolay H, Gürsoy-Ozdemir Y, Sara Y, Onur R, Can A, Dalkara T. Persistent defect in transmitter release and synapsin phosphorylation in cerebral cortex after transient moderate ischemic injury. Stroke 2002; 33:1369-75. [PMID: 11988617 DOI: 10.1161/01.str.0000013708.54623.de] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Synaptic transmission is highly vulnerable to metabolic perturbations. However, the long-term consequences of transient metabolic perturbations on synapses are not clear. We studied the long-lasting changes in synaptic transmission and phosphorylation of presynaptic proteins in penumbral cortical neurons after transient moderate ischemia. METHODS Rats were subjected to 1 hour of middle cerebral artery occlusion. After reperfusion, electric activity of neurons in the peri-infarct region was recorded intracellularly and extracellularly in situ. Phosphorylation of synapsin-I and tyrosine residues was studied by immunohistochemistry. RESULTS Neurons in the penumbra displayed no postsynaptic potentials 1 to 3 hours after recirculation. However, these cells were able to generate action potentials and were responsive to glutamate, suggesting that postsynaptic excitability was preserved but the synaptic transmission was blocked because of a presynaptic defect. The synaptic transmission was still depressed 24 hours after recirculation in neurons in the peri-infarct area that survived ischemia. The amount of immunoreactive synapsin-I, synaptophysin, and synaptotagmin was not appreciably changed for 72 hours after reperfusion. However, phosphorylation of synapsin-l was significantly decreased, whereas phosphotyrosine immunoreactivity was increased, suggesting a selective defect in synapsin-I phosphorylation. CONCLUSIONS These data demonstrate that synaptic transmission may be permanently impaired after transient moderate brain injury. Since postsynaptic excitability is preserved, the transmission failure is likely to be caused by presynaptic mechanisms, one of which may be impaired phosphorylation of presynaptic proteins.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Takeya M, Hasuo H, Akasu T. Effects of temperature increase on the propagation of presynaptic action potentials in the pathway between the Schaffer collaterals and hippocampal CA1 neurons. Neurosci Res 2002; 42:175-85. [PMID: 11900827 DOI: 10.1016/s0168-0102(01)00317-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Effects of temperature increase on the neuronal activity of hippocampal CA2-CA1 regions were examined by using optical and electrophysiological recording techniques. Stimulation of the Schaffer collaterals at the CA2 region evoked depolarizing optical signals that spread toward the CA1 region at 32 degrees C. The optical signal recorded by 49 pixels was characterized by fast and slow components that were closely related to presynaptic action potentials and excitatory postsynaptic responses, respectively. The optical signal was depressed by temperature increase to 38-40 degrees C. The temperature increase to 38 degrees C produced a hyperpolarization and a depression of the excitatory postsynaptic potential (EPSP) in single hippocampal CA1 pyramidal neurons. The depression of the neuronal activity induced by temperature increase was attenuated by application of glucose (22 mM) or pyruvate (22 mM). Adenosine (200 microM) did not block the presynaptic action potential but strongly depressed the excitatory postsynaptic response. 8-Cyclopentyl-1,3-dimethylxanthine (8-CPT) (10 microM), an antagonist for adenosine A(1) receptors, attenuated the depression of the excitatory postsynaptic response but not the inhibition of the presynaptic action potential at 38 degrees C. These results suggest that adenosine mediates the high-temperature-induced depression of the excitatory synaptic transmission but not that of action potential propagation in rat CA1 neurons.
Collapse
Affiliation(s)
- Mitsue Takeya
- Health Sciences, Kurume University Graduate School of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | |
Collapse
|
33
|
Stutzmann GE, Marek GJ, Aghajanian GK. Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex. Neuroscience 2001; 105:55-69. [PMID: 11483300 DOI: 10.1016/s0306-4522(01)00170-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serotonin induces 'spontaneous' (non-electrically evoked) excitatory postsynaptic currents in layer V pyramidal neurons in the prefrontal cortex. This is likely due to a serotonin2A receptor-mediated focal release of glutamate onto apical dendrites. In addition, activation of the serotonin2A receptor selectively enhances late components of electrically evoked excitatory postsynaptic currents. In this study, using in vitro intracellular and whole-cell recording in rat brain slices, we examined the role of adenosine in modulating serotonin2A-enhanced 'spontaneous' and electrically evoked excitatory postsynaptic currents in layer V pyramidal neurons in the medial prefrontal cortex. Adenosine and N6-cyclopentyladenosine, an A1 adenosine agonist, markedly suppressed the serotonin2A-induced ('spontaneous') excitatory postsynaptic currents. However, adenosine had no effect on spontaneous miniature (tetrodotoxin-insensitive) postsynaptic potentials. Adenosine also blocked the late excitatory postsynaptic currents induced by the serotonin2A/2C agonist R(-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride. Surprisingly, in contrast to other regions, adenosine had a relatively small effect on electrically evoked fast excitatory postsynaptic currents. These findings represent a novel demonstration of adenosine's ability to preferentially modulate serotonin2A-mediated synaptic events in the medial prefrontal cortex. As the serotonin2A receptor is closely linked with the effects of atypical antipsychotics and hallucinogens, further understanding of the modulators of this receptor such as adenosine may provide useful therapeutic applications.
Collapse
Affiliation(s)
- G E Stutzmann
- Department of Psychiatry, Yale School of Medicine and the Connecticut Mental Health Center, New Haven 06508, USA
| | | | | |
Collapse
|
34
|
Abstract
Adenosine is a modulator that has a pervasive and generally inhibitory effect on neuronal activity. Tonic activation of adenosine receptors by adenosine that is normally present in the extracellular space in brain tissue leads to inhibitory effects that appear to be mediated by both adenosine A1 and A2A receptors. Relief from this tonic inhibition by receptor antagonists such as caffeine accounts for the excitatory actions of these agents. Characterization of the effects of adenosine receptor agonists and antagonists has led to numerous hypotheses concerning the role of this nucleoside. Previous work has established a role for adenosine in a diverse array of neural phenomena, which include regulation of sleep and the level of arousal, neuroprotection, regulation of seizure susceptibility, locomotor effects, analgesia, mediation of the effects of ethanol, and chronic drug use.
Collapse
Affiliation(s)
- T V Dunwiddie
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
35
|
Eschke D, Brand A, Scheibler P, Hess S, Eger K, Allgaier C, Nieber K. Effect of an adenosine A(1) receptor agonist and a novel pyrimidoindole on membrane properties and neurotransmitter release in rat cortical and hippocampal neurons. Neurochem Int 2001; 38:391-8. [PMID: 11222919 DOI: 10.1016/s0197-0186(00)00113-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of adenosine A(1) receptors by endogenous adenosine plays a neuroprotective role under various pathophysiological conditions including hypoxia. Intracellular recordings were made in rat pyramidal cells of the somatosensory cortex. Hypoxia (5 min) induced a membrane depolarization and a decrease of input resistance. The A(1) receptor agonist N(6)-cyclopentyladenosine (CPA, 100 microM) reversibly inhibited the hypoxic depolarization. The inhibition was also present after blockade of the A(2A), A(2B) and A(3) receptor subtypes by selective antagonists. CPA had no effect on the hypoxic decrease of input resistance. 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX), a selective A(1) receptor antagonist, which did not alter hypoxic depolarization when given alone abolished the inhibitory effect of CPA. Neither CPA nor DPCPX influenced membrane potential or apparent input resistance under normoxic conditions. The novel pyrimidoindole (R)-9-(1-methylbenzyl)-2-(4'-pyridyl)-9H-pyrimido[4,5-b]indole-4-amine (APPPI, 1 and 10 microM) reversibly diminished hypoxic depolarization but had no significant effect on input resistance. The effect of APPPI at a concentration of 1 microM, but not at 10 microM, was blocked by DPCPX (0.1 microM). CPA (100 microM) inhibited [(3)H]-noradrenaline ([(3)H]-NA) release from rat hippocampal brain slices significantly only in the presence of rauwolscine (0.1 microM), an alpha(2)-adrenoceptor antagonist. APPPI (1 and 10 microM) exhibited an inhibitory effect similar to that observed with CPA. The effects of both CPA and APPPI were antagonized by DPCPX (0.1 microM). The present data suggest that mainly presynaptic mechanisms prevent neurons from hypoxic changes by an inhibition of transmitter release. However, in contrast to CPA, APPPI exhibited additional effects, which require further investigation.
Collapse
Affiliation(s)
- D Eschke
- Institute of Pharmacy, University of Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Gervitz LM, Lutherer LO, Davies DG, Pirch JH, Fowler JC. Adenosine induces initial hypoxic-ischemic depression of synaptic transmission in the rat hippocampus in vivo. Am J Physiol Regul Integr Comp Physiol 2001; 280:R639-45. [PMID: 11171640 DOI: 10.1152/ajpregu.2001.280.3.r639] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the role of adenosine in the hypoxic depression of synaptic transmission in rat hippocampus. An in vivo model of hypoxic synaptic depression was developed in which the common carotid artery was occluded on one side in the urethane-anesthetized rat. Inspired oxygen levels were controlled through a tracheal cannula. Rats were placed in a stereotaxic apparatus for stimulation and recording of bilateral hippocampal field excitatory postsynaptic potentials. The percent inspired oxygen could be reduced to levels that produced a reversible and repeatable depression of evoked synaptic transmission restricted to the hippocampus ipsilateral to the occlusion. Further reduction in the level of inspired oxygen depressed synaptic transmission recorded from both hippocampi. The adenosine nonselective antagonist caffeine and the A(1) selective antagonist 8-cyclopentyltheophylline prevented the initial depression in synaptic transmission. We conclude that the initial depression of synaptic transmission observed in the rat hippocampus in vivo is due to endogenous adenosine acting at neuronal adenosine A(1) receptors.
Collapse
Affiliation(s)
- L M Gervitz
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | |
Collapse
|
37
|
Brand A, Vissiennon Z, Eschke D, Nieber K. Adenosine A(1) and A(3) receptors mediate inhibition of synaptic transmission in rat cortical neurons. Neuropharmacology 2001; 40:85-95. [PMID: 11077074 DOI: 10.1016/s0028-3908(00)00117-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intracellular recordings were made in rat brain slice preparations containing pyramidal cells of the associative frontal cortex in order to characterize the action of selective adenosine A(1) and A(3) receptor ligands on synaptic neurotransmission. The selective A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) inhibited concentration-dependently the excitatory postsynaptic potentials (PSPs) which were evoked by focal electrical stimulation. The CPA-mediated inhibition was blocked by 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), a highly A(1) receptor-selective antagonist. The A(3) receptor agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) inhibited concentration-dependently the evoked PSPs while the A(1) receptors were blocked continuously by DPCPX. Under these conditions, the A(3) receptor antagonist 9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino]-1,2,4-triazolo[1, 5-c]quinazoline (MRS 1220) did not influence the PSPs but inhibited completely the effect of IB-MECA. The inhibitory effect of IB-MECA was unaffected by DPCPX. CPA additionally inhibited the PSPs when applied after IB-MECA. Pharmacological dissociation of the N-methyl-D-aspartate (NMDA) and non-NMDA receptor components of the PSPs showed that CPA as well as IB-MECA reduced both. We conclude that adenosine A(1) and A(3) receptors are present on cortical pyramidal cells and involved in the inhibition of excitatory neurotransmission. Our results indicate no interplay between the two receptor subtypes. The separate inhibition may become particularly evident in situations where there are high levels of endogenously released adenosine, as seen in hypoxia.
Collapse
Affiliation(s)
- A Brand
- Department of Pharmacy, University of Leipzig, Brüderstrasse 34, D-04103, Leipzig, Germany
| | | | | | | |
Collapse
|
38
|
McCool BA, Farroni JS. A1 adenosine receptors inhibit multiple voltage-gated Ca2+ channel subtypes in acutely isolated rat basolateral amygdala neurons. Br J Pharmacol 2001; 132:879-88. [PMID: 11181429 PMCID: PMC1572624 DOI: 10.1038/sj.bjp.0703884] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The anticonvulsant properties of 2-chloroadenosine (CADO) in the basolateral amygdala rely on the activation of adenosine-specific heptahelical receptors. We have utilized whole-cell voltage-clamp electrophysiology to examine the modulatory effects of CADO and other adenosine receptor agonists on voltage-gated calcium channels in dissociated basolateral amygdala neurons. 2. CADO, adenosine, and the A1 subtype-selective agonists N6-(L-2-Phenylisopropyl)adenosine (R-PIA) and 2-chloro-N6-cyclopentyladenosine (CCPA) reversibly modulated whole cell Ba2+ currents in a concentration-dependent fashion. CADO inhibition of barium currents was also sensitive to the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). 3. The A2A-selective agonist 4-[2-[[6-Amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS21680) was without effect. 4. CADO inhibition was predominantly voltage-dependent and sensitive to the sulphydryl-modifying reagent N:-ethylmaleimide, implicating a membrane-delimited, G(i/o)-coupled signal transduction pathway in the channel regulation. 5. Using Ca2+ channel subtype-selective antagonists, CADO inhibition appeared to target multiple channel subtypes, with the inhibition of omega-conotoxin GVIA-sensitive calcium channels being more prominent. 6. Our results indicate that the anti-convulsant effects CADO in the basolateral amygdala may be mediated, in part, by the A1 receptor-dependent inhibition of voltage gated calcium channels.
Collapse
Affiliation(s)
- B A McCool
- Department of Medical Pharmacology and Toxicology, The Texas A&M University System Health Science Center, College Station, Texas, TX 77843, USA.
| | | |
Collapse
|
39
|
Hsu KS, Liang YC, Huang CC. Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices. J Neurosci Res 2000; 62:403-15. [PMID: 11054810 DOI: 10.1002/1097-4547(20001101)62:3<403::aid-jnr11>3.0.co;2-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effects of extracellular acidification on the synaptic function and neuronal excitability were investigated on the hippocampal CA1 neurons. A decrease of extracellular pH from 7.4 to 6.7 did not alter either the resting membrane potential or the neuronal membrane input resistance. Extracellularly recorded field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) were significantly reduced by acidosis. Additionally, the amplitude of presynaptic fiber volley was also reduced. The sensitivity of postsynaptic neurons to N-methyl-D-aspartate, but not to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, was depressed by acidosis. Lowering of extracellular pH did not significantly affect the magnitude of paired-pulse facilitation (PPF) of synaptic transmission. Acidosis also reversibly limited the sustained repetitive firing (RF) of Na(+)-dependent action potentials elicited by injection of depolarizing current pulses into the pyramidal cells. The limitation of RF by extracellular acidification was accompanied by the reduction of the maximal rate of rise (;V(max)) of the action potentials and the amplitude of afterhyperpolarization. Neither the Na (+)/H (+) antiporter blocker 5-(N -ethyl -N -isopropyl)-amiloride nor the selective adenosine A (1) receptor antagonist 1,3-dipropyl -8-cyclopentylxanthine, however, affected the acidosis -induced synaptic depression. It was also found that acidosis did not affect either the induction r maintenance of long -term potentiation (LTP) at Schaffer collateral -CA 1 synapses. These results suggest that the extracellular acidosis -induced synaptic depression is likely to result from an inhibition of presynaptic Na (+) conductance, thereby decreasing the amplitude of action potentials in individual afferent fibers or the number of afferent fiber activation to stimuli and then indirectly affecting the signaling processes contributing to trigger neurotransmitter release.
Collapse
Affiliation(s)
- K S Hsu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan.
| | | | | |
Collapse
|
40
|
Dale N, Pearson T, Frenguelli BG. Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 2000; 526 Pt 1:143-55. [PMID: 10878107 PMCID: PMC2269993 DOI: 10.1111/j.1469-7793.2000.00143.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 03/31/2000] [Indexed: 11/28/2022] Open
Abstract
We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 microM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 +/- 43 pA (mean +/- s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 +/- 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 +/- 6.5 %; n = 9) by coformycin (0.5-2 microM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 +/- 1.2 microM (n = 16) with an IC(50) for the depression of transmission of approximately 3 microM. In slices pre-incubated for 3-6 h in nominally Ca(2+)-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 +/- 17.7 microM; n = 6). High extracellular Ca(2+) (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 +/- 0.6 microM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission.
Collapse
Affiliation(s)
- N Dale
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
41
|
Rego AC, Agostinho P, Melo J, Cunha RA, Oliveira CR. Adenosine A2A receptors regulate the extracellular accumulation of excitatory amino acids upon metabolic dysfunction in chick cultured retinal cells. Exp Eye Res 2000; 70:577-87. [PMID: 10870516 DOI: 10.1006/exer.1999.0815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of endogenous extracellular adenosine as a tonic modulator of the extracellular accumulation of excitatory amino acids (glutamate and aspartate) caused by metabolic inhibition was investigated in cultured retinal cells. The selective adenosine A2A receptor antagonist, 4-[2-[7-amino-2-(2-furyl)(1,2,4)-triazin-5-ylamino]-ethyl]ph enol (ZM241385) (50 nM), increased the release of glutamate (three- to four-fold) and of aspartate (nearly two-fold) upon iodoacetic acid-induced glycolysis inhibition, in the presence or in the absence of Ca2+. Blockade of tonic activation of A2A receptors by ZM241385 also increased (nearly two-fold) the ischemia-induced release of glutamate and aspartate. Furthermore, another selective A2A receptor antagonist, 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5- c] pyrimidine (SCH58261), also increased the release of aspartate and glutamate by about two-fold in cells submitted to glycolysis inhibition. In contrast, the selective adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (100 nM), did not significantly modify the extracellular accumulation of either glutamate or aspartate caused by inducers of chemical ischemia or glycolytic inhibitors. Inhibition of glycolysis also increased (about three-fold) the extracellular accumulation of GABA, which was virtually unchanged by ZM241385. Furthermore, the GABAA receptor antagonist, bicuculline (10 microM), only increased (nearly two-fold) the iodoacetic acid-induced Ca(2+)-dependent release of glutamate, whereas the GABAB receptor antagonist, 3-aminopropyl(diethoxymethyl) phosphinic acid, CGP35348 (100 microM), was devoid of effects on the extracellular accumulation of glutamate and aspartate. These results show that endogenous extracellular adenosine, which rises under conditions of inhibited glycolysis, tonically inhibits the extracellular accumulation of excitatory amino acid through the activation of A2A, but not A1, adenosine receptors, and this effect is independent of GABAA and GABAB functions in the cultured retinal cells.
Collapse
Affiliation(s)
- A C Rego
- Center for Neurosciences of Coimbra, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
42
|
Kobayashi S, Zimmermann H, Millhorn DE. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport. J Neurochem 2000; 74:621-32. [PMID: 10646513 DOI: 10.1046/j.1471-4159.2000.740621.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Molecular and Cellular Physiology, University of Cincinnati, Ohio 45267-0576, USA
| | | | | |
Collapse
|
43
|
Madl JE, Royer SM. Glutamate in synaptic terminals is reduced by lack of glucose but not hypoxia in rat hippocampal slices. Neuroscience 1999; 94:417-30. [PMID: 10579205 DOI: 10.1016/s0306-4522(99)00340-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although excessive release of the neurotransmitter glutamate contributes to ischemic neuronal damage, immunocytochemical studies have not found a loss of glutamate from ischemic axon terminals. We examined the effects of two components of ischemia, hypoxia and hypoglycemia, on glutamate loss from rat hippocampal slices. In vitro hypoglycemia induced by incubation for 1 h without glucose depleted 50% of glutamate from slices when ATP levels were about 5 nmol/mg protein. Hypoxic slices aerated with N2 reached similar ATP levels without significant glutamate depletion. To induce 50% glutamate losses with chemical hypoxia, ATP had to be depleted to < 1 nmol/mg protein. Immunocytochemical staining indicated that glutamate-like immunoreactivity was reduced throughout slices by hypoglycemia. Hypoxia decreased glutamate-like immunoreactivity in neuronal perikarya and dendrites of pyramidal cells and granule cells. However, in contrast to hypoglycemia, hypoxia maintained or increased glutamate-like immunoreactivity in many terminals. Hypoxia and hypoglycemia induced similar, ATP-dependent releases of glutamate into supernatants, which could account for only part of the hypoglycemic losses. The additional hypoglycemic losses were consistent with increased catabolism of glutamate. Glutamate losses from hypoglycemic terminals were reduced by blockade of aspartate aminotransferase or the tricarboxylic acid cycle. Exogenous glutamate increased glutamate in hypoglycemic slices to hypoxic levels and returned glutamate-like immunoreactivity to terminals, suggesting that terminals maintained glutamate uptake during metabolic insults. Hypoglycemia induces a large loss of glutamate that does not occur during hypoxia. The greater loss of glutamate from terminals during hypoglycemia is consistent with increased metabolism of glutamate via aspartate aminotransferase and not increased release of glutamate. Continued uptake of glutamate by hypoxic terminals may help to maintain their levels of glutamate. Hypoglycemic metabolism of glutamate may decrease pathologic glutamate release and contribute to the prolonged neurologic abnormalities associated with recovery from hypoglycemia.
Collapse
Affiliation(s)
- J E Madl
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA.
| | | |
Collapse
|
44
|
Masino SA, Mesches MH, Bickford PC, Dunwiddie TV. Acute peroxide treatment of rat hippocampal slices induces adenosine-mediated inhibition of excitatory transmission in area CA1. Neurosci Lett 1999; 274:91-4. [PMID: 10553945 DOI: 10.1016/s0304-3940(99)00693-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brief exposure to conditions that generate free radicals inhibits synaptic transmission in hippocampal slices, most likely via a presynaptic mechanism. Because other physiologically stressful conditions that generate free radicals, such as hypoxia or ischemia, stimulate the release of adenosine from brain slices, we determined whether increases in extracellular adenosine mediate the presynaptic inhibition of excitatory transmission induced by peroxide treatment. Simultaneous addition of hydrogen peroxide (0.01%) and ferrous sulfate (100 microM) resulted in a >80% decrease in synaptic potentials recorded in the CA1 region of hippocampal slices of adult male rats. Treatment with theophylline (200 microM), a non-selective adenosine receptor antagonist, or 8-cyclopentyl-1,3-dipropylxanthine (100 nM), a selective adenosine A1 receptor antagonist, prior to and during hydrogen peroxide superfusion prevented the inhibition. These results demonstrate that acute exposure to hydrogen peroxide induces an adenosine-mediated decrease in synaptic transmission in hippocampal slices.
Collapse
Affiliation(s)
- S A Masino
- Department of Pharmacology and Neuroscience Program, UCHSC, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A1 receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|
46
|
Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 1999. [PMID: 10066246 DOI: 10.1523/jneurosci.19-06-01932.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although extracellular adenosine concentrations in brain are increased markedly by a variety of stimuli such as hypoxia and ischemia, it has been difficult to demonstrate large increases in adenosine with stimuli that do not result in pathological tissue damage. The present studies demonstrate that increasing the temperature at which rat hippocampal brain slices are maintained (typically from 32.5 to 38.5 degrees C) markedly inhibits excitatory synaptic transmission. This effect was reversible on cooling, readily repeatable, and was blocked by A1 receptor antagonists and by adenosine deaminase, suggesting that it was mediated by increased activation of presynaptic adenosine A1 receptors by endogenous adenosine. This increase in adenosinergic inhibition was not a response to hyperthermia per se, because it could be elicited by temperatures that remained entirely within the hypothermic range (e. g., from 32.5 to 35.5 degrees C). The increased activity at A1 receptors appeared to be attributable to the direct release of adenosine via nucleoside transporters; the release of adenine nucleotides, linked to either the activation of NMDA receptors or the increased efflux of cAMP, appeared not to be involved. These results suggest that changes in brain temperature can alter the regulation of extracellular adenosine in rat brain slices and that increased adenosine release may be an important regulatory mechanism for countering increased excitability consequent to increased brain temperature.
Collapse
|
47
|
Abstract
The rapid suppression of CNS function produced by cyanide (CN) was studied by field, intracellular, and whole-cell recording in hippocampal slices (at 33-34 degrees C). Population spikes and field EPSPs were depressed by 4-5 min bath applications of 50-100 microM CN (IC50 was 18 miroM for spikes and 72 microM for EPSPs). The actions of CN were reversibly suppressed by the adenosine antagonists 8-sulfophenyltheophylline (8-SPT; 10 microM) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 microM), potentiated by the adenosine transport inhibitor dipyridamole (0.5 microM), but unaffected by the KATP channel blocker glyburide (10 microM). Therefore the CN-induced reductions of synaptic efficacy and postsynaptic excitability-demonstrated by synaptic input:output plots-are mediated mainly by adenosine. In whole-cell or intracellular recordings, CN depressed EPSCs and elicited an increase in input conductance and an outward current, the reversal potential of which was approximately -90 mV (indicating that K+ was the major carrier). These effects also were attenuated by 8-SPT. In the presence of 1 mM Ba, CN had no significant postsynaptic action; Cs (2 mM) also prevented CN-induced outward currents but only partly blocked the increase in conductance. Another 8-SPT-sensitive action of CN was to depress hyperpolarization-activated slow inward relaxations (Q current). At room temperature (22-24 degrees C), although it did not change holding current and slow inward relaxations, CN raised the input conductance; this effect also was prevented by 8-SPT (10 microM), but not by glyburide (10 microM). Adenosine release thus appears to be the major link between acute CN poisoning and early depression of CNS synaptic function.
Collapse
|
48
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K Von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|
49
|
Tekkök S, Kriz J, Padjen AL, Krnjević K. Higher sensitivity of CA1 synapses to aglycemia in streptozotocin-diabetic rats is age-dependent. Brain Res 1998; 813:268-73. [PMID: 9838158 DOI: 10.1016/s0006-8993(98)01028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied conduction velocity in peripheral nerves and the block of synaptic transmission produced by lack of glucose in hippocampal slices from 4- and 12-month-old streptozotocin-induced diabetic rats and their age-matched controls. In sural nerves of young and old diabetic rats, the conduction velocity was reduced by 30-35%. In slices from young diabetics, CA1 synaptic transmission was more sensitive to aglycemia than in control slices. However, all slices from older rats showed comparable increases in CA1 synaptic sensitivity to aglycemia. We conclude that the cerebral adaptation to diabetic hyperglycemia apparent in the hippocampus of young rats is masked in older rats by an age-dependent increase in sensitivity to lack of glucose.
Collapse
Affiliation(s)
- S Tekkök
- Department of Anaesthesia Research, McGill University, 3655 Drummond Street, Montréal, Canada
| | | | | | | |
Collapse
|
50
|
Latini S, Bordoni F, Corradetti R, Pepeu G, Pedata F. Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Brain Res 1998; 794:325-8. [PMID: 9622666 DOI: 10.1016/s0006-8993(98)00304-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The temporal correlation between adenosine outflow and changes in field excitatory post synaptic potentials (fEPSP) occurring during ischemia-like conditions was investigated in rat hippocampal slices. Five-minute long ischemia-like conditions resulted in a 100% depression of fEPSP amplitude, followed by a complete recovery after 6-7 min of reperfusion. By reducing the duration of the ischemic insult to 2 min, fEPSP was depressed by 50%. During both 5 and 2 min of ischemia-like conditions, a significant increase in adenosine outflow was detected. During reperfusion, when fEPSP amplitude recovered completely, the adenosine level in the extracellular fluid returned to basal values. The strict relationship between the increase in adenosine outflow and fEPSP inhibition supports the hypothesis that adenosine is largely responsible for the synaptic transmission depression during cerebral ischemia.
Collapse
Affiliation(s)
- S Latini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Morgagni 65, 50134 Florence, Italy
| | | | | | | | | |
Collapse
|