1
|
Heydari F, Nasiri M, Haroabadi A, Fahanik Babaei J, Pestehei SK. Efficacy of melatonin in alleviating disorders arising from repeated exposure to sevoflurane in males and females of the Wistar rats during preadolescence. Sci Rep 2024; 14:11889. [PMID: 38789558 PMCID: PMC11126601 DOI: 10.1038/s41598-024-62170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatricians use sevoflurane due to its fast action and short recovery time. However, studies have shown that repeated exposure to anesthesia can affect learning and memory. Melatonin, an indole-type neuroendocrine hormone, has significant anti-inflammatory, and neuroprotective properties. Melatonin's impact on cognitive behavior in sevoflurane-anesthetized males and females of the Wistar rats during preadolescence was examined in this research. The cognitive function was evaluated by shuttle box and morris water maze tests, while interleukin-10, Catalase (CAT), Malondialdehyde (MDA), and Tumor Necrosis Factor-α (TNF-α) were evaluated using ELISA kits. The expression levels of the apoptosis-linked proteins, Bax, Bcl-2, and caspase-3, were determined using the western blotting technique. The learning and memory latencies of the rats were more significant in the sevoflurane groups than in the control group; however, the latencies were significantly shorter in the sevoflurane and melatonin groups than in the control group. The levels of MDA, TNF-α, Bax, and caspase-3 were significantly higher in the sevoflurane groups than in the control group. We also found that the levels of CAT and Bcl-2 were significantly reduced in the sevoflurane groups compared to the control group. Increasing levels of CAT, Bcl-2, and decreasing levels of MDA, TNF-α, Bax, and caspase-3 in response to melatonin indicate a possible contribution to the recovery from the sevoflurane impairment. Melatonin shows neuroprotective effects in male and female rats with sevoflurane-induced cognitive impairment. This suggests melatonin could be a valuable treatment for learning and memory deficits resulting from repeated exposure to sevoflurane, possibly by controlling apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Fatemeh Heydari
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Nasiri
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Haroabadi
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Khalil Pestehei
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran.
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ghosh P, Chhetri G, Mandal A, Chen Y, Hersh WH, Das S. C(sp 2)-H selenylation of substituted benzo[4,5]imidazo[2,1- b]thiazoles using phenyliodine(iii)bis(trifluoroacetate) as a mediator. RSC Adv 2024; 14:4462-4470. [PMID: 38312731 PMCID: PMC10835571 DOI: 10.1039/d4ra00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Herein, an expeditious metal-free regioselective C-H selenylation of substituted benzo[4,5]imidazo[2,1-b]thiazole derivatives was devised to synthesize structurally orchestrated selenoethers with good to excellent yields. This PIFA [bis(trifluoroacetoxy)iodobenzene]-mediated protocol operates under mild conditions and offers broad functional group tolerance. In-depth mechanistic investigation supports the involvement of radical pathways. Furthermore, the synthetic utility of this methodology is portrayed through gram-scale synthesis.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Gautam Chhetri
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Anirban Mandal
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - William H Hersh
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - Sajal Das
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| |
Collapse
|
3
|
Liu LQ, Fang YL, Lin JX, Wang YC. Aerobic Copper-Catalyzed Four-Component Reaction of O-Phenylenediamines, Isocyanides, and Selenium Powder for the Assembly of Benzo[4,5]imidazo[2,1- c][1,2,4]selenadiazol-3-imine Derivatives. J Org Chem 2022; 87:15120-15128. [DOI: 10.1021/acs.joc.2c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Li-Qiu Liu
- College of Chemistry and Chemical Engineering, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Yi-Ling Fang
- Department of Chemistry and Pharmacy Guilin Normal College, Gulin 541199, People’s Republic of China
| | - Jun-Xu Lin
- College of Chemistry and Chemical Engineering, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| |
Collapse
|
4
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
5
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
6
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
7
|
Access to 3-alkylselenindoles by multicomponent reaction of indoles, selenium powder and unactivated alkyl halides under transition-metal-free conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Ghosh P, Chhetri G, Perl E, Das S. [Bis(trifluoroacetoxy)iodo]benzene Mediated C‐3 Selenylation of Pyrido[1,2‐
a
]Pyrimidin‐4‐Ones Under Ambient Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry University of North Bengal India Darjeeling 734013
| | - Gautam Chhetri
- Department of Chemistry University of North Bengal India Darjeeling 734013
| | - Eliyahu Perl
- University of Cincinnati College of Medicine USA
| | - Sajal Das
- Department of Chemistry University of North Bengal India Darjeeling 734013
| |
Collapse
|
9
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
10
|
Landgraf AD, Alsegiani AS, Alaqel S, Thanna S, Shah ZA, Sucheck SJ. Neuroprotective and Anti-neuroinflammatory Properties of Ebselen Derivatives and Their Potential to Inhibit Neurodegeneration. ACS Chem Neurosci 2020; 11:3008-3016. [PMID: 32840996 DOI: 10.1021/acschemneuro.0c00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ebselen (EBS) is an organo-selenium-containing compound that has anti-inflammatory, antitumor, and antibacterial properties. EBS is being explored as a possible treatment for reperfusion injury and stroke and is under clinical trials as a mimetic of lithium for the treatment of bipolar disorder [Mota et al. Synapse 2020, 74 (7), 1-6] and noise-induced hearing loss as a result of these actives [Martini et al. J. Psychiatr. Res. 2019, 109, 107-117. Slusarczyk et al. Neural Regener. Res. 2019, 17 (7), 1255-1261. Thangamani et al. PLoS One 2015, 10 (7), e0133877. Kil et al. Lancet 2017, 390 (10098), 969-979]. However, we wanted to characterize derivatives of EBS as neuroprotective, anti-neuroinflammatory, and antioxidant compounds. Recently, we have reported on a new thermal and photoinduced copper-mediated cross-coupling between potassium selenocyanate (KSeCN) and N-substituted ortho-halobenzamides to form ebselen derivatives with increased synthetic efficiency [Thanna et al. J. Org. Chem. 2017, 82 (7), 3844-3854]. Our synthesis allows for the varying of the remote benzene ring with various substituents or replacing that ring with heterocyclic rings such as pyridine, pyrrole, thiophene, etc. In this study, we synthesized seven new heterocyclic EBS derivatives to further diversify our EBS library. These 21 compounds were then evaluated for their neuroprotective properties, with four compounds showing an equal or better neuroprotective profile than EBS. Compounds 5, 9, 23, and 27 showed 73, 86, 80, 84% cell viability, respectively, at a 10 μM concentration. These studies were performed using human neuroblastoma SH-SY5Y cells in an oxygen and glucose deprivation (OGD) model of ischemia. At the same concentration, these compounds significantly inhibited lipopolysaccharide-induced nitric oxide and tumor necrosis factor alpha release from Human microglia clone 3 microglial cells. Compounds 9 and 27 showed significantly increased cell viability (84 and 80%, respectively) for SH-SY5Y cells exposed to microglia-activated media. These compounds showed only mild GPx-like reductive activity, with compounds 2, 7, 12, and 14 (115, 96, 95, and 82%, respectively) showing a higher percent rate of oxidation of NADPH in a coupled reaction assay compared to ebselen. This research highlights several derivatives of ebselen that show improved activity as neuroprotective agents over the parent compound.
Collapse
Affiliation(s)
- Alexander D. Landgraf
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Amsha Saud Alsegiani
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Saleh Alaqel
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Sandeep Thanna
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
11
|
Yamakawa GR, Eyolfson E, Weerawardhena H, Mychasiuk R. Administration of diphenyl diselenide (PhSe)2 following repetitive mild traumatic brain injury exacerbates anxiety-like symptomology in a rat model. Behav Brain Res 2020; 382:112472. [DOI: 10.1016/j.bbr.2020.112472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
|
12
|
Kalaramna P, Bhatt D, Sharma H, Goswami A. An Expeditious and Environmentally-Benign Approach to 2-Aryl/Heteroaryl Selenopyridines via Ruthenium Catalyzed [2+2+2] Cycloadditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratibha Kalaramna
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Divya Bhatt
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Himanshu Sharma
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| |
Collapse
|
13
|
Slusarczyk W, Olakowska E, Larysz-Brysz M, Woszczycka-Korczyńska I, de Carrillo DG, Węglarz WP, Lewin-Kowalik J, Marcol W. Use of ebselen as a neuroprotective agent in rat spinal cord subjected to traumatic injury. Neural Regen Res 2019; 14:1255-1261. [PMID: 30804257 PMCID: PMC6425832 DOI: 10.4103/1673-5374.251334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spinal cord injury (SCI) causes disturbances of motor skills. Free radicals have been shown to be essential for the development of spinal cord trauma. Despite some progress, until now no effective pharmacological therapies against SCI have been verified. The purpose of our experiment was to investigate the neuroprotective effects of ebselen on experimental SCI. Twenty-two rats subjected to SCI were randomly subjected to SCI with no further treatment (n = 10) or intragastric administration of ebselen (10 mg/kg) immediately and 24 hours after SCI. Behavioral changes were assessed using the Basso, Beattie, and Bresnahan locomotor scale and footprint test during 12 weeks after SCI. Histopathological and immunohistochemical analyses of spinal cords and brains were performed at 12 weeks after SCI. Magnetic resonance imaging analysis of spinal cords was also performed at 12 weeks after SCI. Rats treated with ebselen presented only limited neurobehavioral progress as well as reduced spinal cord injuries compared with the control group, namely length of lesions (cysts/scars) visualized histopathologically in the spinal cord sections was less but cavity area was very similar. The same pattern was found in T2-weighted magnetic resonance images (cavities) and diffusion-weighted images (scars). The number of FluoroGold retrogradely labeled neurons in brain stem and motor cortex was several-fold higher in ebselen-treated rats than in the control group. The findings suggest that ebselen has only limited neuroprotective effects on injured spinal cord. All exprimental procedures were approved by the Local Animal Ethics Committee for Experiments on Animals in Katowice (Katowice, Poland) (approval No. 19/2009).
Collapse
Affiliation(s)
| | - Edyta Olakowska
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | - Wiesław Marcol
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Eltahan R, Guo F, Zhang H, Zhu G. The Action of the Hexokinase Inhibitor 2-deoxy-d-glucose on Cryptosporidium parvum and the Discovery of Activities against the Parasite Hexokinase from Marketed Drugs. J Eukaryot Microbiol 2018; 66:460-468. [PMID: 30222231 DOI: 10.1111/jeu.12690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum is one of the major species causing mild to severe cryptosporidiosis in humans and animals. We have previously observed that 2-deoxy-d-glucose (2DG) could inhibit both the enzyme activity of C. parvum hexokinase (CpHK) and the parasite growth in vitro. However, the action and fate of 2DG in C. parvum was not fully investigated. In the present study, we showed that, although 2DG could be phosphorylated by CpHK to form 2DG-6-phosphate (2DG6P), the anti-cryptosporidial activity of 2DG was mainly attributed to the action of 2DG on CpHK, rather than the action of 2DG or 2DG6P on the downstream enzyme glucose-6-phosphate isomerase (CpGPI) nor 2DG6P on CpHK. These observations further supported the hypothesis that CpHK could serve as a drug target in the parasite. We also screened 1,200 small molecules consisting of marketed drugs against CpHK, from which four drugs were identified as CpHK inhibitors with micromolar level of anti-cryptospordial activities at concentrations nontoxic to the host cells (i.e. hexachlorphene, thimerosal, alexidine dihydrochloride, and ebselen with EC50 = 0.53, 1.77, 8.1 and 165 μM, respectively). The anti-CpHK activity of the four existing drugs provided us new reagents for studying the enzyme properties of the parasite hexokinase.
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| |
Collapse
|
15
|
Ghosh P, Nandi AK, Chhetri G, Das S. Generation of ArS- and ArSe-Substituted 4-Quinolone Derivatives Using Sodium Iodide As an Inducer. J Org Chem 2018; 83:12411-12419. [DOI: 10.1021/acs.joc.8b01426] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, India
| | - Aritra Kumar Nandi
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, India
| | - Gautam Chhetri
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, India
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, India
| |
Collapse
|
16
|
Sands KN, Back TG. Key steps and intermediates in the catalytic mechanism for the reduction of peroxides by the antioxidant ebselen. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Jia ZQ, Li SQ, Qiao WQ, Xu WZ, Xing JW, Liu JT, Song H, Gao ZY, Xing BW, He XJ. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury. Neurosci Lett 2018; 678:110-117. [PMID: 29733976 DOI: 10.1016/j.neulet.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na+-K+-ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhi-Qiang Jia
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China; Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China.
| | - San-Qiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Wei-Qiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, PR China
| | - Wen-Zhong Xu
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Wu Xing
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Tao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Hui Song
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Zhong-Yang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Bing-Wen Xing
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xi-Jing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China.
| |
Collapse
|
18
|
Hwang SN, Kim JC, Bhuiyan MIH, Kim JY, Yang JS, Yoon SH, Yoon KD, Kim SY. Black Rice ( Oryza sativa L., Poaceae) Extract Reduces Hippocampal Neuronal Cell Death Induced by Transient Global Cerebral Ischemia in Mice. Exp Neurobiol 2018; 27:129-138. [PMID: 29731679 PMCID: PMC5934544 DOI: 10.5607/en.2018.27.2.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
Rice is the most commonly consumed grain in the world. Black rice has been suggested to contain various bioactive compounds including anthocyanin antioxidants. There is currently little information about the nutritional benefits of black rice on brain pathology. Here, we investigated the effects of black rice (Oryza sativa L., Poaceae) extract (BRE) on the hippocampal neuronal damage induced by ischemic insult. BRE (300 mg/kg) was orally administered to adult male C57BL/6 mice once a day for 21 days. Bilateral common carotid artery occlusion (BCCAO) was performed for 23 min on the 8th day of BRE or vehicle administration. Histological analyses conducted on the 22nd day of BRE or vehicle administration revealed that administering BRE profoundly attenuated neuronal cell death, inhibited reactive astrogliosis, and prevented loss of glutathione peroxidase expression in the hippocampus when compared to vehicle treatment. In addition, BRE considerably ameliorated BCCAO-induced memory impairment on the Morris water maze test from the 15th day to the 22nd day of BRE or vehicle administration. These results indicate that chronic administration of BRE is potentially beneficial in cerebral ischemia.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jae-Cheon Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mohammad Iqbal Hossain Bhuiyan
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Joo Youn Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji Seon Yang
- Department of Physiology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
19
|
Wedding JL, Lai B, Vogt S, Harris HH. Investigation into the intracellular fates, speciation and mode of action of selenium-containing neuroprotective agents using XAS and XFM. Biochim Biophys Acta Gen Subj 2018; 1862:2393-2404. [PMID: 29631056 DOI: 10.1016/j.bbagen.2018.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND A variety of selenium compounds have been observed to provide protection against oxidative stress, presumably by mimicking the mechanism of action of the glutathione peroxidases. However, the selenium chemistry that underpins the action of these compounds has not been unequivocally established. METHODS The synchrotron based techniques, X-ray absorption spectroscopy and X-ray fluorescence microscopy were used to examine the cellular speciation and distribution of selenium in SH-SY5Y cells pretreated with one of two diphenyl diselenides, or ebselen, followed by peroxide insult. RESULTS Bis(2-aminophenyl)diselenide was shown to protect against oxidative stress conditions which mimic ischemic strokes, while its nitro analogue, bis(2-nitrophenyl)diselenide did not. This protective activity was tentatively assigned to the reductive cleavage of bis(2-aminophenyl)diselenide inside human neurocarcinoma cells, SH-SY5Y, while bis(2-nitrophenyl)diselenide remained largely unchanged. The distinct chemistries of the related compounds were traced by the changes in selenium speciation in bulk pellets of treated SH-SY5Y cells detected by X-ray absorption spectroscopy. Further, bis(2-aminophenyl)diselenide, like the known stroke mitigation agent ebselen, was observed by X-ray fluorescence imaging to penetrate into the nucleus of SH-SY5Y cells while bis(2-nitrophenyl)diselenide was observed to be excluded from the nuclear region. CONCLUSIONS The differences in activity were thus attributed to the varied speciation and cellular localisation of the compounds, or their metabolites, as detected by X-ray absorption spectroscopy and X-ray fluorescence microscopy. SIGNIFICANCE The work is significant as it links, for the first time, the protective action of selenium compounds against redox stress with particular chemical speciation using a direct measurement approach.
Collapse
Affiliation(s)
- Jason L Wedding
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
20
|
Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun (Camb) 2018; 53:3082-3085. [PMID: 28243649 DOI: 10.1039/c7cc00045f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GO-Se nanocomposites are fabricated with excellent glutathione peroxidase (GPx)-like properties to protect cells against oxidative stress. Compared with SeNPs, the GO-Se nanozymes exhibit higher GPx-mimic catalytic efficiency. Cell experiments further confirm their excellent cytoprotection capacity.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
21
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2016; 107:23-32. [PMID: 28043837 DOI: 10.1016/j.neuint.2016.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.
Collapse
|
23
|
Goldani B, Ricordi VG, Seus N, Lenardão EJ, Schumacher RF, Alves D. Silver-Catalyzed Synthesis of Diaryl Selenides by Reaction of Diaryl Diselenides with Aryl Boronic Acids. J Org Chem 2016; 81:11472-11476. [DOI: 10.1021/acs.joc.6b02108] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bruna Goldani
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| | - Vanessa G. Ricordi
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| | - Natália Seus
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| | - Eder J. Lenardão
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| | - Ricardo F. Schumacher
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| | - Diego Alves
- LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
24
|
Dietary Supplementation with Organoselenium Accelerates Recovery of Bladder Expression, but Does Not Improve Locomotor Function, following Spinal Cord Injury. PLoS One 2016; 11:e0147716. [PMID: 26824231 PMCID: PMC4732689 DOI: 10.1371/journal.pone.0147716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Selenium is an essential element required for activity of several antioxidant enzymes, including glutathione peroxidase. Because of the critical role of the antioxidant system in responding to traumatic events, we hypothesized that dietary selenium supplementation would enhance neuroprotection in a rodent model of spinal cord injury. Rats were maintained on either a control or selenium-enriched diet prior to, and following, injury. Dietary selenium supplementation, provided as selenized yeast added to normal rat chow, resulted in a doubling of selenium levels in the spinal cord. Dietary selenium reduced the time required for recovery of bladder function following thoracic spinal cord injury. However, this was not accompanied by improvement in locomotor function or tissue sparing.
Collapse
|
25
|
Ebselen reduces autophagic activation and cell death in the ipsilateral thalamus following focal cerebral infarction. Neurosci Lett 2015; 600:206-12. [DOI: 10.1016/j.neulet.2015.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/19/2022]
|
26
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
27
|
Aras M, Altaş M, Meydan S, Nacar E, Karcıoğlu M, Ulutaş KT, Serarslan Y. Effects of ebselen on ischemia/reperfusion injury in rat brain. Int J Neurosci 2014; 124:771-6. [PMID: 24405262 DOI: 10.3109/00207454.2013.879581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. MATERIAL AND METHODS The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). RESULTS Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p < 0.001 and p < 0.01). Superoxide dismutase (SOD) activity was significantly lower in I/R group in comparison to both Sham (p < 0.001) and I/R+Ebselen (p < 0.01) groups. Similarly, SOD activity was decreased in I/R+Ebselen group when compared with Sham group (p < 0.001). Sham and I/R groups were similar in terms of nitric oxide (NO) levels. In contrast, the NO level was lower in I/R+Ebselen group when compared with Sham (p < 0.001) and I/R (p < 0.01) groups. There was no significant difference among the groups in terms of glutathione peroxidase and catalase activities. In histopathological examination, the brain tissues of rats that received Ebselen showed morphological improvement. CONCLUSION Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.
Collapse
Affiliation(s)
- M Aras
- 1Department of Neurosurgery, Tayfur Ata Sökmen Medical Faculty, Mustafa Kemal University , Hatay , Turkey
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The pathogenesis of acute brain ischemia (ABI) is highly complex and involves multiple mechanisms including free radical generation. Imbalance between the cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. Oxidative stress is one of the mechanisms contributing to neuronal damage, potentially induced through the ABI. Through interactions with a large number of molecules, reactive oxygen species may irreversibly destroy or alter the function of the cellular lipids, proteins, and nucleic acids and initiate cell signaling pathways after cerebral ischemia. Future investigations should focus on the understanding of oxidative stress mechanisms and neuroprotection in order to discover new treatment targets.
Collapse
Affiliation(s)
- Djordje Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Resanovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Mouithys-Mickalad Mareque A, Faez JM, Chistiaens L, Kohnen S, Deby C, Hoebeke M, Lamy M, Deby-Dupont G. In vitroevaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of some Ebselen analogues. Redox Rep 2013; 9:81-7. [PMID: 15231062 DOI: 10.1179/135100004225004788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Four analogues of Ebselen were synthesized and their glutathione peroxidase activity and antioxidant property evaluated and compared to Ebselen. Among the studied compounds, only diselenide [3] exhibited both glutathione peroxidase activity and radical-scavenging capability. Compounds [3] and [4] showed a strong inhibitory effect (53% and 43%, respectively) on the lipid peroxidation of linoleic acid compared to Ebselen and selenide derivatives ([1] and [2]) which were less active (28%, 26% and 18% inhibition, respectively). A concentration-dependent inhibitory effect was also found in the model of the formation of ABTS*+ radical cation: 65% and 89% inhibition for compound [3] at 10(-4) M and 5 x 10(-5) M, respectively, and 68% and 90% for compound [4], compared to 14% and 52% inhibition for Ebselen and the diselenides [1] and [2] (29%, 46% and 45%, 68%, respectively). By EPR spin trapping technique, the following inhibitory profile of the Ebselen analogues was observed towards the formation of thiyl radicals: Ebselen = [3]>[1]>[2]>[4]. Studies with compound [3] are in progress on oxidative stress cell models.
Collapse
|
30
|
Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, Sato H, Tahara Y, Ogura K, Nagashima K, Inagaki N. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction. Diabetes 2013; 62:1996-2003. [PMID: 23349483 PMCID: PMC3661648 DOI: 10.2337/db12-0903] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.
Collapse
Affiliation(s)
- Mayumi Sasaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Fujimoto
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Yuichi Sato
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Nishi
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Eri Mukai
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Gen Yamano
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Sato
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumiko Tahara
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kasane Ogura
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuaki Nagashima
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Corresponding author: Nobuya Inagaki,
| |
Collapse
|
31
|
de Freitas AS, Rocha JBT. Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: A pathway for their neuroprotective effects. Neurosci Lett 2011; 503:1-5. [DOI: 10.1016/j.neulet.2011.07.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 02/05/2023]
|
32
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
33
|
Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JBT, Aschner M. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 2011; 32:291-9. [PMID: 21300091 PMCID: PMC3079013 DOI: 10.1016/j.neuro.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Azoles/pharmacology
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Cytoprotection
- Dose-Response Relationship, Drug
- Environmental Pollutants/toxicity
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glutamine/metabolism
- Isoindoles
- Membrane Potential, Mitochondrial/drug effects
- Mercury Poisoning, Nervous System/etiology
- Mercury Poisoning, Nervous System/metabolism
- Mercury Poisoning, Nervous System/pathology
- Methylmercury Compounds/toxicity
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neuroprotective Agents/pharmacology
- Organoselenium Compounds/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | - Mingwei Ni
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dejan Milatovic
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lu Rongzhu
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Joao B. T. Rocha
- Departamento de Bioquímica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
KOIZUMI H, FUJISAWA H, SUEHIRO E, SHIRAO S, SUZUKI M. Neuroprotective Effects of Ebselen Following Forebrain Ischemia: Involvement of Glutamate and Nitric Oxide. Neurol Med Chir (Tokyo) 2011; 51:337-43. [DOI: 10.2176/nmc.51.337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroyasu KOIZUMI
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | | | - Eiichi SUEHIRO
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | - Satoshi SHIRAO
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | - Michiyasu SUZUKI
- Department of Neurosurgery, Yamaguchi University School of Medicine
| |
Collapse
|
35
|
WONG CONNIEH, ABEYNAIKE LATASHAD, CRACK PETERJ, HICKEY MICHAELJ. Divergent Roles of Glutathione Peroxidase-1 (Gpx1) in Regulation of Leukocyte-Endothelial Cell Interactions in the Inflamed Cerebral Microvasculature. Microcirculation 2010; 18:12-23. [DOI: 10.1111/j.1549-8719.2010.00063.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Effects of ebselen versus nimodipine on cerebral vasospasm subsequent to experimental subarachnoid hemorrhage in rats. J Clin Neurosci 2010; 17:608-11. [DOI: 10.1016/j.jocn.2009.07.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022]
|
37
|
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460:525-42. [PMID: 20229265 DOI: 10.1007/s00424-010-0809-1] [Citation(s) in RCA: 808] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
Glutamate excitotoxicity is a hypothesis that states excessive glutamate causes neuronal dysfunction and degeneration. As glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), the implications of glutamate excitotoxicity are many and far-reaching. Acute CNS insults such as ischaemia and traumatic brain injury have traditionally been the focus of excitotoxicity research. However, glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease and others. Despite the continued research into the mechanisms of excitotoxicity, there are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury. This review addresses the current state of excitotoxic research, focusing on the structure and physiology of glutamate receptors; molecular mechanisms underlying excitotoxic cell death pathways and their interactions with each other; the evidence for glutamate excitotoxicity in acute neurologic diseases; laboratory and clinical attempts at modulating excitotoxicity; and emerging targets for excitotoxicity research.
Collapse
Affiliation(s)
- Anthony Lau
- Division of Applied and Interventional Research, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON, Canada, M5T 2S8
| | | |
Collapse
|
38
|
Sui H, Wang W, Wang PH, Liu LS. Effect of glutathione peroxidase mimic ebselen (PZ51) on endothelium and vascular structure of stroke‐prone spontaneously hypertensive rats. Blood Press 2009; 14:366-72. [PMID: 16403691 DOI: 10.1080/08037050500210781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To investigate whether extrinsic antioxidant seleno-glutathione peroxidase mimic ebselen (PZ51) can protect endothelium and vascular structure of stroke-prone spontaneously hypertensive rats (SHRsp) during the chronic process of hypertension. METHODS Twenty-two 8-week-old SHRsp were randomized into a PZ51 group and a control group, and administered by gavage for 6 weeks. We examined the level of nitric oxide (NO) and malonaldehyde (MDA) in plasma. The intima-media thickness (IMT) of the common carotid artery (CCA) was measured by an image-analysis system. The endothelium of the CCA was observed by scanning electron microscopy. The eNOS protein of the major artery was assayed by immunohistochemistry and western blotting. RESULTS Compared with the control group, PZ51 decreased plasma MDA (7.88+/-1.06 vs 10.88+/-1.73 nmol/l, p<0.001) and increased plasma NO (40.02+/-9.74 vs 22.22+/-10.05 micromol/l, p<0.001), increased eNOS protein expression (8.25+/-2.36 vs 4.46+/-3.14, p=0.026), decreased IMT (69.85+/-5.47 vs 76.60+/-6.53 microm, p<0.05) significantly and alleviated the damage to the endothelium of the CCA. CONCLUSION Administration of PZ51 for 6 weeks can protect the endothelium and inhibit vascular remodeling, maybe due to its suppression of lipid peroxide formation and increase in eNOS protein expression.
Collapse
Affiliation(s)
- Hui Sui
- Cardiovascular Institute & FuWai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
39
|
Wong CHY, Bozinovski S, Hertzog PJ, Hickey MJ, Crack PJ. Absence of glutathione peroxidase-1 exacerbates cerebral ischemia-reperfusion injury by reducing post-ischemic microvascular perfusion. J Neurochem 2008; 107:241-52. [DOI: 10.1111/j.1471-4159.2008.05605.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Glendenning ML, Lovekamp-Swan T, Schreihofer DA. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats. Neurosci Lett 2008; 445:188-92. [PMID: 18790008 DOI: 10.1016/j.neulet.2008.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.
Collapse
Affiliation(s)
- Michele L Glendenning
- Department of Physiology, CA3145, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000, United States
| | | | | |
Collapse
|
41
|
Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons RA, Lei XG. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia 2008; 51:1515-24. [PMID: 18560803 DOI: 10.1007/s00125-008-1055-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/30/2008] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS We previously observed hyperglycaemia, hyperinsulinaemia, insulin resistance and obesity in Gpx1-overexpressing mice (OE). Here we determined whether these phenotypes were eliminated by diet restriction, subsequently testing whether hyperinsulinaemia was a primary effect of Gpx1 overexpression and caused by dysregulation of pancreatic duodenal homeobox 1 (PDX1) and uncoupling protein-2 (UCP2) in islets. METHODS First, 24 male OE and wild-type (WT) mice (2 months old) were given 3 g (diet-restricted) or 5 g (full-fed) feed per day for 4 months to compare their glucose metabolism. Thereafter, several mechanistic experiments were conducted with pancreas and islets of the two genotypes (2 or 6 months old) to assay for beta cell mass, reactive oxygen species (ROS) levels, mitochondrial membrane potential (Deltapsi(m)) and expression profiles of regulatory proteins. A functional assay of islets was also performed. RESULTS Diet restriction eliminated obesity but not hyperinsulinaemia in OE mice. These mice had greater pancreatic beta cell mass (more than twofold) and pancreatic insulin content (40%) than the WT, along with an enhanced Deltapsi(m) and glucose-stimulated insulin secretion in islets. With diminished ROS production, the OE islets displayed hyperacetylation of H3 and H4 histone in the Pdx1 promoter, elevated PDX1 and decreased UCP2. CONCLUSIONS/INTERPRETATION Overproduction of the major antioxidant enzyme, glutathione peroxidase 1, caused seemingly beneficial changes in pancreatic PDX1 and UCP2, but eventually led to chronic hyperinsulinaemia by dysregulating islet insulin production and secretion.
Collapse
Affiliation(s)
- X D Wang
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yamagata K, Ichinose S, Miyashita A, Tagami M. Protective effects of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience 2008; 153:428-35. [DOI: 10.1016/j.neuroscience.2008.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/04/2008] [Accepted: 02/18/2008] [Indexed: 12/17/2022]
|
43
|
Parnham MJ. Section Review Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: The pharmaceutical potential of seleno-organic compounds. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.7.861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Posser T, Franco JL, dos Santos DA, Rigon AP, Farina M, Dafré AL, Teixeira Rocha JB, Leal RB. Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices. Brain Res 2008; 1199:138-47. [DOI: 10.1016/j.brainres.2008.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 01/05/2023]
|
45
|
Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007; 1181:83-92. [DOI: 10.1016/j.brainres.2007.08.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/17/2007] [Accepted: 08/25/2007] [Indexed: 12/20/2022]
|
46
|
Abstract
Acute ischaemic stroke is a leading cause of death in the majority of industrialised countries and also in many developing countries. Free radicals are generated in the brain during ischaemic injury and these radicals are involved in the secondary injury processes. Several free radical scavengers have been developed and some of them have progressed into clinical trials. One of them, edaravone, has been approved by the regulatory authority in Japan for the treatment of stroke patients. Another scavenger, disodium 4-[(tert-butylimino)methyl] benzene-1,3-disulfonate N-oxide (NXY-059; disufenton), has demonstrated efficacy in a phase III clinical trial (SAINT [Stroke Acute Ischaemic NXY-059 Treatment study]-I) involving a large number of stroke patients. Unfortunately, SAINT II did not show efficacy in the treatment of stroke patients. The purpose of this article is to review the current development of antioxidant strategies, update recent findings for NXY-059 in the treatment of stroke patients, and discuss the future development of neuroprotective agents. Although the development of neuroprotective strategies for the treatment of stroke is challenging, progress in molecular and cellular neuroscience will uncover new information about stroke mechanisms, which should result in the realisation of neuroprotective therapy for this disease.
Collapse
Affiliation(s)
- Chen X Wang
- Stroke Research Laboratory, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
47
|
Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9:775-806. [PMID: 17508906 DOI: 10.1089/ars.2007.1528] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The requirement of the trace element selenium for life and its beneficial role in human health has been known for several decades. This is attributed to low molecular weight selenium compounds, as well as to its presence within at least 25 proteins, named selenoproteins, in the form of the amino acid selenocysteine (Sec). Incorporation of Sec into selenoproteins employs a unique mechanism that involves decoding of the UGA codon. This process requires multiple features such as the selenocysteine insertion sequence (SECIS) element and several protein factors including a specific elongation factor EFSec and the SECIS binding protein 2, SBP2. The function of most selenoproteins is currently unknown; however, thioredoxin reductases (TrxR), glutathione peroxidases (GPx) and thyroid hormone deiodinases (DIO) are well characterised selenoproteins involved in redox regulation of intracellular signalling, redox homeostasis and thyroid hormone metabolism. Recent evidence points to a role for selenium compounds as well as selenoproteins in the prevention of some forms of cancer. A number of clinical trials are either underway or being planned to examine the effects of selenium on cancer incidence. In this review we describe some of the recent progress in our understanding of the mechanism of selenoprotein synthesis, the role of selenoproteins in human health and disease and the therapeutic potential of some of these proteins.
Collapse
Affiliation(s)
- Laura Vanda Papp
- Queensland Institute of Medical Research, Cancer and Cell Biology Division, Herston, QLD, Australia
| | | | | | | |
Collapse
|
48
|
Moretto MB, Thomazi AP, Godinho G, Roessler TM, Nogueira CW, Souza DO, Wofchuk S, Rocha JBT. Ebselen and diorganylchalcogenides decrease in vitro glutamate uptake by RAT brain slices: Prevention by DTT and GSH. Toxicol In Vitro 2007; 21:639-45. [PMID: 17321101 DOI: 10.1016/j.tiv.2006.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/01/2006] [Accepted: 12/26/2006] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to investigate the possible involvement of the glutamatergic system in the neurotoxicity of diorganylchalcogenides or organochalcogenides from slices of cerebral cortex in different ages of development: 12- and 60-day-old rats. Glutamate uptake was evaluated in cortical slices of 12 and 60 days old rats. Cortex slices were incubated with three different organochalcogenides with or without reduced glutathione or dithiothreitol. At 100 microM, ebselen, diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in vitro inhibited the [3H]glutamate uptake in both age. Both 60-day-old rats and for 12-day-old rats, GSH and DTT prevented the (PhTe)2-induced inhibition of glutamate uptake but did not protect the inhibition caused by ebselen and (PhSe)2. These findings suggest that the neurotoxicity of organochalcogenides could be related to their effects on brain glutamate uptake, conceivably involving a redox modulation of reactive amino acids from the glutamate transporter proteins.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Xiong S, Markesbery WR, Shao C, Lovell MA. Seleno-L-methionine protects against beta-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxid Redox Signal 2007; 9:457-67. [PMID: 17280487 DOI: 10.1089/ars.2006.1363] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing evidence suggests a role for oxidative stress in several neurodegenerative diseases, including Alzheimer's disease (AD), and that selenium compounds may function as antioxidants. To evaluate the antioxidant mechanism of selenium, primary rat hippocampal neurons were pretreated with seleno-L-methionine (SeMet) for 16 h prior to treatment with iron/hydrogen peroxide (Fe(2+)/H(2)O(2)) or amyloid beta peptide (Abeta(2535)); free radical generation was assessed using laser confocal microscopy and CM-H(2)DCFDA and APF. Treatment with Fe(2+)/H(2)O(2) or Abeta significantly decreased cell survival and increased free radical generation compared to cultures treated with vehicle alone. In contrast, cultures pretreated with SeMet showed significantly (p < 0.05) increased survival and significantly lower CM-H(2)DCFDA and APF fluorescence compared to Fe(2+)/H(2)O(2) or Abeta treated cultures. To determine if SeMet protection was mediated by glutathione peroxidase (GPx), levels of GPx protein and activity were measured using confocal microscopy and a selenium-dependent GPx specific antibody and an activity assay. Pretreatment with SeMet significantly (p < 0.05) increased GPx protein and activity in Fe(2+)/H(2)O(2)- and Abeta-treated cultures compared to cultures treated with Fe(2+)/H(2)O(2) or Abeta alone. These data suggest that SeMet can decrease free radical generation induced by Fe(2+)/H(2)O(2) or Abeta through modulation of GPx and may be suitable as a potential therapeutic agent in neurodegenerative diseases where there is increased oxidative stress.
Collapse
Affiliation(s)
- Shuling Xiong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
50
|
Dhanasekaran M, Uthayathas S, Karuppagounder SS, Parameshwaran K, Suppiramaniam V, Ebadi M, Brown-Borg HM. Ebselen effects on MPTP-induced neurotoxicity. Brain Res 2006; 1118:251-4. [PMID: 16956591 DOI: 10.1016/j.brainres.2006.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/02/2006] [Accepted: 08/06/2006] [Indexed: 11/22/2022]
Abstract
We evaluated the effect of ebselen on human SH-SY5Y dopaminergic neuronal cells and determined whether ebselen, a glutathione peroxidase-mimetic, protected against MPTP-induced dopamine depletion in mice. Ebselen (10-100 microM) inhibited the proliferation of SH-SY5Y cells dose-dependently. Ebselen did not induce any behavioral changes and did not block MPTP-induced tremor and akinesia. Ebselen had no effect on the monoamine oxidase activity and did not protect against MPTP-induced dopamine depletion in striatum.
Collapse
Affiliation(s)
- Muralikrishnan Dhanasekaran
- Department of Pharmacal Sciences, Division of Pharmacology and Toxicology, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | |
Collapse
|