1
|
Li DQ, Jiang F, Zhang HS, Zheng LJ, Wang QJ, Fu R, Liu XG, Gao PY. Network pharmacology-based approach to investigate the mechanisms of Zingiber officinale Roscoe in the treatment of neurodegenerative diseases. J Food Biochem 2022; 46:e14068. [PMID: 35128682 DOI: 10.1111/jfbc.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDDs) are chronic neurological disorders associated with cognitive or motor dysfunction. As a common spice, Zingiber officinale Roscoe has been used as a medicine to treat a variety of NDDs. However, at the molecular level, the mechanisms of Z. officinale in treating of NDDs have not been deeply investigated. In this study, network pharmacology method, molecular docking, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the mechanisms of Z. officinale in the treatment of NDDs. After a series of biological information analyses, five core targets were obtained, including heme oxygenase 1 (HMOX1), acetylcholinesterase (AChE), nitric oxide synthase (NOS), catechol-O-methyl-transferase (COMT), and metabotropic glutamate receptor 5 (mGluR5). Compounds 75, 68, 46, 67, 69, 49, 66, 50, 34, and 64 were identified as the main components of Z. officinale in the treatment of NDDs. The crucial pathways mainly include neuroactive ligand-receptor signaling pathways, cyclic adenosine monophosphate signaling pathways, dopamine synaptic signaling pathways, and so on. Besides, in vitro experiments by AChE inhibitory activities assay and neuroprotective activities against H2 O2 -induced injury in human neuroblastoma SH-SY5Y cells validated the reliability of the results of network analysis. PRACTICAL APPLICATIONS: Zingiber officinale Roscoe is widely used as a traditional spice and herbal medicine. It contains a number of active ingredients, which have shown activities on anti-neurodegenerative diseases (NDDs). In this paper, the potential mechanism of Z. officinale in the treatment of NDDs is explored through network pharmacology, and it was verified by in vitro experiments. The mechanism was not only clarified at the system level but also proved to be effective at the biological level. The results can be used as a reference for Z. officinale in the treating of NDDs.
Collapse
Affiliation(s)
- Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Fan Jiang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Han-Shuo Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Lian-Jun Zheng
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Qing-Jie Wang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Ran Fu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Pin-Yi Gao
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| |
Collapse
|
2
|
Neuroimmunomodulation in Major Depressive Disorder: Focus on Caspase 1, Inducible Nitric Oxide Synthase, and Interferon-Gamma. Mol Neurobiol 2018; 56:4288-4305. [PMID: 30306457 PMCID: PMC6505498 DOI: 10.1007/s12035-018-1359-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide, and its incidence is expected to increase. Despite tremendous efforts to understand its underlying biological mechanisms, MDD pathophysiology remains elusive and pharmacotherapy outcomes are still far from ideal. Low-grade chronic inflammation seems to play a key role in mediating the interface between psychological stress, depressive symptomatology, altered intestinal microbiology, and MDD onset. We review the available pre-clinical and clinical evidence of an involvement of pro-inflammatory pathways in the pathogenesis, treatment, and remission of MDD. We focus on caspase 1, inducible nitric oxide synthase, and interferon gamma, three inflammatory systems dysregulated in MDD. Treatment strategies aiming at targeting such pathways alone or in combination with classical therapies could prove valuable in MDD. Further studies are needed to assess the safety and efficacy of immune modulation in MDD and other psychiatric disorders with neuroinflammatory components.
Collapse
|
3
|
Gonzaga NA, Batistela MR, Padovan D, de Martinis BS, Tirapelli CR, Padovan CM. Ethanol withdrawal induces anxiety-like effects: Role of nitric oxide synthase in the dorsal raphe nucleus of rats. Alcohol 2016; 52:1-8. [PMID: 27139232 DOI: 10.1016/j.alcohol.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/30/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) mediated transmission in the dorsal raphe nucleus (DRN) has been shown to be involved in the modulation of anxiety-like behaviors. We investigated whether inhibition of nitric oxide synthase (NOS) in the DRN would prevent anxiety-like behavior induced by ethanol withdrawal. Male Wistar rats were treated with ethanol 2-6% (v/v) for a period of 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 h after ethanol discontinuation. Rats with a guide cannula aimed at the DRN received intra-DRN injections of the non-selective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME), selective neuronal NOS (nNOS) inhibitor N(ω)-propyl-l-arginine (NPLA), or selective inhibitor of inducible NOS (iNOS) N-([3-(aminomethyl)phenyl] methyl) ethanimidamidedihydrochloride (1400W). Five minutes later, the animals were tested in the elevated plus maze (EPM). Plasma ethanol levels were determined by gas chromatography. There was a reduction in plasma ethanol levels 48 h after ethanol withdrawal. Rats from the ethanol withdrawal group showed decreased exploration of the open arms of the EPM with no change in the exploration of enclosed arms. Intra-DRN treatment with l-NAME (100 nmoles/0.2 μL) and 1400W (1 nmol/0.2 μL), but not NPLA (10 nmoles/0.2 μL) in the DRN attenuated the decrease in the exploration of the open arms of the EPM induced by ethanol withdrawal. The major new finding of the present study is that iNOS in the DRN plays a role in the anxiety-like behavior induced by ethanol withdrawal.
Collapse
Affiliation(s)
- Natália Almeida Gonzaga
- Laboratório de Neurobiologia do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil; Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-900, Ribeirão Preto SP, Brazil
| | - Melissa Resende Batistela
- Laboratório de Neurobiologia do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil
| | - Diego Padovan
- Laboratório de Neurobiologia do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil
| | - Bruno Spinosa de Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-900, Ribeirão Preto SP, Brazil; Escola de Enfermagem de Ribeirão Preto - Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-902 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, 14049-901 Ribeirão Preto, SP, Brazil
| | - Cláudia Maria Padovan
- Laboratório de Neurobiologia do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, 14049-901 Ribeirão Preto, SP, Brazil; Núcleo de Pesquisa em Neurobiologia das Emoções (NUPNE), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 2014; 34:802-12. [PMID: 24473480 PMCID: PMC4013777 DOI: 10.1038/jcbfm.2014.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Abstract
The effect of recombinant human tissue plasminogen activator (rtPA) on neuroinflammation after stroke remains largely unknown. Here, we tested the effect of rtPA on expression of cellular adhesion molecules, chemokines, and cytokines, and compared those with levels of inflammatory cell recruitment, brain injury, and mortality over 3 days after transient middle cerebral artery occlusion (MCAO) in mice. Mortality was dramatically increased after rtPA treatment compared with saline treatment during the first day of reperfusion. Among the animals that survived, rtPA significantly increased CCL3 expression, microglia recruitment, and cerebral infarction 6 hours after MCAO. In contrast, the extent of neutrophils and macrophages infiltration in the brain was similar in both saline- and rtPA-treated animals. Recombinant human tissue plasminogen activator induced Il1b and Tnf expression, 6 and 72 hours after MCAO, respectively, and dramatically reduced interleukin 6 (IL-6) level 24 hours after reperfusion. A dose response study confirmed the effect of rtPA on CCL3 and Il1b expressions. The effect was similar at the doses of 1 and 10 mg/kg. In conclusion, we report for the first time that rtPA amplified microglia recruitment early after stroke in association with a rapid CCL3 production. This early response may take part in the higher susceptibility of rtPA-treated animals to reperfusion injury.
Collapse
|
5
|
Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N, Brinkmann V, Liao JK, Lo EH, Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 2010; 69:119-29. [PMID: 21280082 DOI: 10.1002/ana.22186] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/30/2010] [Accepted: 07/30/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.
Collapse
Affiliation(s)
- Ying Wei
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shin BY, Kim DH, Hyun SK, Jung HA, Kim JM, Park SJ, Kim SY, Cheong JH, Choi JS, Ryu JH. Alaternin attenuates delayed neuronal cell death induced by transient cerebral hypoperfusion in mice. Food Chem Toxicol 2010; 48:1528-36. [DOI: 10.1016/j.fct.2010.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/22/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
7
|
Wegener G, Volke V. Nitric Oxide Synthase Inhibitors as Antidepressants. Pharmaceuticals (Basel) 2010; 3:273-299. [PMID: 27713253 PMCID: PMC3991030 DOI: 10.3390/ph3010273] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/07/2010] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Abstract
Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Skovagervej 2, DK-8240 Risskov, Denmark.
| | - Vallo Volke
- Department of Physiology, University of Tartu, Ravila 19, EE-70111 Tartu, Estonia.
| |
Collapse
|
8
|
Whole-body periodic acceleration reduces brain damage in a focal ischemia model. Neuroscience 2008; 158:1390-6. [PMID: 19135137 DOI: 10.1016/j.neuroscience.2008.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/21/2008] [Accepted: 12/03/2008] [Indexed: 02/06/2023]
Abstract
Stroke is the second most common cause of death and major cause of disability worldwide. Actual treatment involves surgery and/or thrombolytic drugs, but there is an urgent need for new approaches. Periodic acceleration, a rocking headward to footward movement of the whole body, is a non-invasive method to induce pulsatile shear stress on the vascular endothelium eliciting an enhanced production and secretion of endothelium-derived products such as nitric oxide, prostacyclin, prostaglandin E2, tissue plasminogen activator (tPA), and adrenomedullin. All these products have been shown to protect the brain from ischemic injuries. A rat model of focal brain ischemia was treated with application of periodic acceleration for 3 h immediately after the onset of ischemia. Controls remained static for the same period of time. Brain damage was assessed by magnetic resonance imaging (MRI) and biochemical markers. A significant reduction in brain damage was observed, 7 days post-ischemia, in rocked rats when compared with the static controls, through MRI. Furthermore, rocked animals had significantly lower levels of Beclin 1 and fractin than their static counterparts, and some isoforms of nitric oxide synthase were regulated by periodic acceleration. Our results show that periodic acceleration may provide a novel, affordable, non-invasive therapeutic option for the treatment of stroke.
Collapse
|
9
|
Lee EJ, Hung YC, Chen HY, Wu TS, Chen TY. Delayed Treatment with Carboxy-PTIO Permits a 4-h Therapeutic Window of Opportunity and Prevents Against Ischemia-Induced Energy Depletion Following Permanent Focal Cerebral Ischemia in Mice. Neurochem Res 2008; 34:1157-66. [DOI: 10.1007/s11064-008-9892-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2008] [Indexed: 11/28/2022]
|
10
|
Akula KK, Dhir A, Kulkarni SK. Nitric oxide signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol-induced seizure threshold in mice. Eur J Pharmacol 2008; 587:129-34. [PMID: 18457833 DOI: 10.1016/j.ejphar.2008.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
The present study was performed to examine the involvement of nitric oxide (NO) signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol seizure threshold in mice. Minimal dose of pentylenetetrazol (i.v., mg/kg) needed to induce different phases (myoclonic jerks, generalized clonus and tonic extension) of convulsions was recorded as an index of seizure threshold. Adenosine (100 or 200 mg/kg i.p.) produced a significant increase in the seizure threshold for convulsions induced by pentylenetetrazol i.v. infusion. The anti-convulsant effect of adenosine (100 mg/kg i.p.) was prevented by either L-arginine (50 mg/kg i.p.) [substrate for nitric oxide synthase (NOS)] or sodium nitroprusside (3 mg/kg i.p.) [a NO donor]. On the other hand, N(G)-nitro-L-arginine methyl ester (L-NAME, 2.5 mg/kg i.p.) [a non-selective NOS inhibitor] or 7-nitroindazole (7-NI) (25 mg/kg i.p.) [a specific neuronal nitric oxide synthase (nNOS) inhibitor] potentiated the anti-convulsant action of sub-effective dose of adenosine (50 mg/kg i.p.). Aminoguanidine (100 mg/kg i.p.) [a specific inducible NOS (iNOS) inhibitor] pre-treatment was not effective in inducing anti-convulsant effect with sub-effective dose of adenosine (50 mg/kg i.p.). Furthermore, the increase in seizure threshold elicited by adenosine (100 mg/kg i.p.) was also inhibited by concomitant administration with sildenafil (5 mg/kg i.p.) [phosphodiesterase 5 inhibitor]. In contrast, treatment of mice with methylene blue (1 mg/kg i.p.) [a direct inhibitor of both nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC)] failed to induce anti-convulsant action with adenosine (50 mg/kg i.p.) against pentylenetetrazol i.v. infusion. The results demonstrated that the anti-convulsant action of adenosine in the pentylenetetrazol i.v. seizure threshold paradigm may possibly involve an interaction with the L-arginine-NO-cGMP pathway which may be secondary to the activation of adenosine receptors.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
11
|
Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2008; 28:526-39. [PMID: 17851454 DOI: 10.1038/sj.jcbfm.9600550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Experimental Neurology, Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moreira TJTP, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S. Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 2007; 27:1710-23. [PMID: 17406657 DOI: 10.1038/sj.jcbfm.9600479] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pronounced hyperglycemia provoked by extradural compression (EC) of the sensorimotor cortex was recently described in the non-insulin dependent Goto-Kakizaki (GK) diabetic rat. Compared with control Wistar rats, GK rats exhibited more extensive brain damage after cortical ischemia at 48 h of reperfusion (Moreira et al, 2007). We hypothesized that the enhanced brain injury in GK rats could be caused by differential regulation of the heme degrading enzyme heme oxygenase (HO)-1, known to interact with the expression of other target genes implicated in antioxidant defense, inflammation and neurodegeneration, such as superoxide dismutase (SOD)-1, -2, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNFalpha). At 48 h after ischemia, relative mRNA expression of such target genes was compared between ipsilateral (compressed) and contralateral (uncompressed) hemispheres of GK rats, along with baseline comparison of sham, uncompressed GK and Wistar rats. Immunohistochemistry was performed to detect cellular and regional localization of HO-1 at this time point. Baseline expression of HO-1, iNOS, and TNFalpha mRNA was increased in the cortex of sham GK rats. GK rats showed pronounced hyperglycemia during EC and transient attenuation of regional cerebral blood flow recovery. At 48 h after reperfusion, HO-1 mRNA expression was 7- to 8-fold higher in the ischemic cortex of both strains, being the most upregulated gene under study. Heme oxygenase-1 protein expression was significantly reduced in diabetic rats and was found in perilesional astrocytes and rare microglial cells, in both strains. The reduced HO-1 protein expression in GK rats at 48 h after reperfusion combined with more extensive neurodegeneration induced by EC, provides further in vivo evidence for a neuroprotective role of HO after brain ischemia.
Collapse
Affiliation(s)
- Tiago J T P Moreira
- Division of Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Bosnak M, Ayyildiz M, Yildirim M, Agar E. The role of nitric oxide in the anticonvulsant effects of pyridoxine on penicillin-induced epileptiform activity in rats. Epilepsy Res 2007; 76:49-59. [PMID: 17681452 DOI: 10.1016/j.eplepsyres.2007.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
The present study was conducted to identify the role of nitric oxide (NO) in the anticonvulsant effects of pyridoxine hydrochloride on penicillin-induced epileptiform activity in rats. A single microinjection of penicillin (500 units) into the left sensorimotor cortex induced epileptiform activity within 2-4 min, progressing to full seizure activity lasting about 3-5h. Thirty minutes after penicillin injection, 20, 40, 80, and 160 mg/kg of pyridoxine hydrochloride was administered intraperitoneally (i.p.). Pyridoxine significantly reduced the frequency of penicillin-induced epileptiform activity. A low dose of pyridoxine (40 mg/kg) was the most effective in reducing both the frequency and amplitude of epileptiform activity. The effect of systemic administration of nitric oxide synthase (NOS) inhibitors, non-selective N(G)-nitro-L-arginine methyl ester (L-NAME), selective neuronal NOS inhibitor, 7-nitroindazole (7-NI) and NO substrate, L-arginine on anticonvulsive effects of pyridoxine was investigated. The administration of L-arginine (500 mg/kg, i.p.) and 7-NI (25 and 50 mg/kg, i.p.) significantly decreased the frequency of epileptiform electrocorticographical (ECoG) activity while administration of L-NAME (60 mg/kg, i.p.) and the inactive form of arginine (D-arginine) did not influence it. The administration of L-NAME (60 mg/kg, i.p.) 15 min before pyridoxine (40 mg/kg i.p.) application reversed the anticonvulsant effects of pyridoxine whereas 7-NI (25 and 50 mg/kg, i.p.) did not influence it. The same dose of its inactive enantiomer N(G)-nitro-D-arginine methyl ester (d-NAME) failed to reverse the anticonvulsant effects of pyridoxine. The administration of L-arginine (500 mg/kg, i.p.) did not affect the frequency of epileptiform ECoG activity in the pyridoxine administered group. L-arginine did not reverse the anticonvulsant effect of 7-NI in the penicillin and pyridoxine administered groups. The results of present study indicate that the inhibitory effect on the anticonvulsant activity of pyridoxine against penicillin-induced epileptiform activity was produced by L-NAME, not by 7-NI, and is probably not related to the decrease of NOS activity in the brain.
Collapse
Affiliation(s)
- Mehmet Bosnak
- Department of Physiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | | | | | | |
Collapse
|
14
|
Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 2007; 1138:86-94. [PMID: 17274961 DOI: 10.1016/j.brainres.2006.12.064] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/17/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.
Collapse
Affiliation(s)
- Yong-Qiu Zheng
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1, Xi Yuan yard Road, Haidian District, Beijing 100091, PR China.
| | | | | | | |
Collapse
|
15
|
Martínez-Murillo R, Fernández AP, Serrano J, Rodrigo J, Salas E, Mourelle M, Martínez A. The nitric oxide donor LA 419 decreases brain damage in a focal ischemia model. Neurosci Lett 2007; 415:149-53. [PMID: 17239538 DOI: 10.1016/j.neulet.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 01/09/2023]
Abstract
Stroke affects a large number of people, especially in developed countries, but treatment options are limited. Over the years, it has become clear that nitric oxide (NO) plays a major role in this pathology and that treatments that either reduce or increase NO presence may provide an alternative route for reducing the sequelae of brain ischemia. The NO donor LA 419 previously has been shown to protect the brain tissue from ischemic damage in an experimental model of global brain ischemia. Here we study whether this holds true for focal ischemia, a condition closer to the more common form of human stroke. Ischemia was induced in rats by a stereotaxic injection of endothelin-1, a potent vasoconstrictor, in the striatum. Seven days after the injection, magnetic resonance imaging (MRI) found a significant elevation in apparent diffusion coefficient (ADC) in the injected striatum of untreated rats, due to ischemia-induced vascular edema. Animals that received LA 419 prior to injection with endothelin-1 showed an ADC undistinguishable from the contralateral striatum or from the striatum of rats not treated with LA 419. In addition, immunohistochemistry with antibodies against neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and nitrotyrosine showed a marked increase in the expression of these markers of NO production following ischemic treatment that was dampened by treatment with LA 419. In summary, our results clearly show that the NO donor LA 419 may be a useful compound for the prevention and/or treatment of focal brain ischemia.
Collapse
Affiliation(s)
- Ricardo Martínez-Murillo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Avenida del Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Ko SY, Kang S, Chang YS, Park EA, Park WS. Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets. KOREAN JOURNAL OF PEDIATRICS 2006. [DOI: 10.3345/kjp.2006.49.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sun Young Ko
- Department of Pediatrics, Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ae Park
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Nakaya K, Hasegawa T, Flickinger JC, Kondziolka DS, Fellows-Mayle W, Gobbel GT. Sensitivity to radiation-induced apoptosis and neuron loss declines rapidly in the postnatal mouse neocortex. Int J Radiat Biol 2005; 81:545-54. [PMID: 16263658 DOI: 10.1080/09553000500280492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Therapeutic brain irradiation can cause progressive decline in cognitive function, particularly in children, but the reason for this effect is unclear. The study explored whether age-related differences in apoptotic sensitivity might contribute to the increased vulnerability of the young brain to radiation. Postnatal day 1 (P1) to P30 mice were treated with 0-16 Gy whole-body X-irradiation. Apoptotic cells were identified and quantified up to 48 h later using the TdT-UTP nick end-labelling method (TUNEL) and immunohistochemistry for activated caspase-3. The number of neuron-specific nuclear protein (NeuN)-positive and -negative cells were also counted to measure neuronal and non-neuronal cell loss. Significantly greater TUNEL labelling occurred in the cortex of irradiated P1 animals relative to the other age groups, but there was no difference among the P7, P14 and P30 groups. Irradiation decreased the %NeuN-positive cells in the mice irradiated on P1, whereas in P14 animals, irradiation led to an increase in the %NeuN-positive cells. These data demonstrate that neocortical neurons of very young mice are more susceptible to radiation-induced apoptosis. However, this sensitivity decreases rapidly after birth. By P14, acute cell loss due to radiation occurs primarily in non-neuronal populations.
Collapse
Affiliation(s)
- K Nakaya
- Department of Neurological Surgery, University of Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
18
|
van den Tweel ERW, Nijboer C, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F. Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia-ischemia in the neonatal rat brain. J Neuroimmunol 2005; 167:64-71. [PMID: 16112751 DOI: 10.1016/j.jneuroim.2005.06.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/17/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Production of nitric oxide is thought to play an important role in neuroinflammation. Previously, we have shown that combined inhibition of neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) can reduce hypoxia-ischemia-induced brain injury in 12-day-old rats. The aim of this study was to analyze changes in expression of nNOS, iNOS and endothelial NOS (eNOS), and nitrotyrosine (NT) formation in proteins in neonatal rats up to 48 h after cerebral hypoxia-ischemia. METHODS Twelve-day-old rats were subjected to unilateral carotid artery occlusion and hypoxia, resulting in unilateral cerebral damage. NOS and nitrotyrosine expression were determined by immunohistochemistry and Western blot analysis at 30 min-48 h after hypoxia-ischemia. RESULTS nNOS was increased in both hemispheres from 30 min to 3 h after hypoxia-ischemia. In the contralateral hemisphere, eNOS was decreased 1-3 h after hypoxia-ischemia. In the ipsilateral hemisphere, eNOS was decreased at 0.5 h after hypoxia-ischemia, normalized at 1-3 h and was increased 6-12 h after hypoxia-ischemia. At 24 and 48 h after hypoxia-ischemia, eNOS levels normalized. Surprisingly, iNOS expression did not change from 30 min up to 48 h after hypoxia-ischemia in the ipsi- or contralateral hemisphere. In addition, the regional expression of iNOS in the brain as determined by immunohistochemistry did not change after hypoxia-ischemia. Expression of nitrotyrosine was slightly increased in both hemispheres only at 30 min after hypoxia-ischemia. CONCLUSION In 12-day-old rat pups, cerebral hypoxia-ischemia induced a transient increase in nNOS, eNOS, and nitrotyrosine in proteins, but no change in iNOS expression up to 48 h after the insult.
Collapse
Affiliation(s)
- Evelyn R W van den Tweel
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K. Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci 2005; 78:1884-91. [PMID: 16266725 DOI: 10.1016/j.lfs.2005.08.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/27/2005] [Indexed: 12/21/2022]
Abstract
Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity. Here, we examined the in vivo effect of Cp-Mn and DiAc-Cp-Mn on NO levels enhanced by kainic acid (KA) and L-arginine (L-Arg) in the hippocampi of awake rats using a microdialysis technique. Injection of KA (10 mg/kg, i.p.) and L-Arg (1000 mg/kg, i.p.) significantly increased the concentration of NO and Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly reversed the effects of KA and L-Arg without affecting the basal NO concentration. Following KA-induced seizures, severe neuronal cell damage was observed in the CA1 and CA3 subfields of hippocampal 3 days after KA administration. Pretreatment with Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly attenuated KA-induced neuronal cell death in both CA1 and CA3 regions of rat hippocampus compared with vehicle control, and Cp-Mn and DiAc-Cp-Mn showed more potent neuroprotective effect than their parent compounds, curcumin and diacetylcurcumin. These results suggest that Cp-Mn and DiAc-Cp-Mn protect against KA-induced neuronal cell death by suppression of KA-induced increase in NO levels probably by their NO scavenging activity and antioxidative activity. Cp-Mn and DiAc-Cp-Mn have an advantage to be neuroprotective agents in the treatment of acute brain pathologies associated with NO-induced neurotoxicity and oxidative stress-induced neuronal damage such as epilepsy, stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Yaowared Sumanont
- Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Lerouet D, Jafarian-Tehrani M, Louin G, Palmier B, Bonnefont-Rousselot D, Plotkine M, Margaill I. Lack of iNOS induction in a severe model of transient focal cerebral ischemia in rats. Exp Neurol 2005; 195:218-28. [PMID: 15935350 DOI: 10.1016/j.expneurol.2005.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 04/20/2005] [Accepted: 05/01/2005] [Indexed: 11/24/2022]
Abstract
Calcium-independent nitric oxide synthase (NOS) activity has been reported in ischemic brains and usually attributed to the inducible isoform, iNOS. Because calcium-independent mechanisms have recently been shown to regulate the constitutive calcium-dependent NOS, we proposed to confirm the presence of iNOS activity in our model of transient focal cerebral ischemia in rats. Our initial results showed that, in our model, ischemia induced an important increase in brain calcium concentration. Consequently, the determination of calcium-independent NOS activity required a higher concentration of calcium chelator than classically used in the NOS assay. In these conditions, calcium-independent NOS activity was not observed after ischemia. Moreover, our ischemia was associated with neither iNOS protein expression, measured by Western blotting, nor increased NO production, evaluated by its metabolites (nitrate/nitrite). Our results demonstrate that iNOS activity may be overestimated due to increased brain calcium concentration in ischemic conditions and also that iNOS is not systematically induced after cerebral ischemia.
Collapse
Affiliation(s)
- Dominique Lerouet
- Laboratoire de Pharmacologie (UPRES EA 2510), Université René Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhu Y, Ohlemiller KK, McMahan BK, Park TS, Gidday JM. Constitutive nitric oxide synthase activity is required to trigger ischemic tolerance in mouse retina. Exp Eye Res 2005; 82:153-63. [PMID: 16045907 DOI: 10.1016/j.exer.2005.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/16/2005] [Accepted: 06/02/2005] [Indexed: 01/08/2023]
Abstract
Profound morphologic and functional protection against retinal ischemic injury can be achieved if the tissue is 'preconditioned' one day earlier with a brief, noninjurious ischemic challenge. To begin to address the mechanistic basis of this 'ischemic tolerance', we used genetic and pharmacologic approaches to test the hypothesis that nitric oxide (NO) derived from one of the three NO synthase (NOS) isoforms was responsible for triggering the adaptive response to brief preconditioning ischemia. Retinae of adult mice were preconditioned with 5-min preconditioning ischemia and subjected to 45-min injurious ischemia 24 hr later. Some animals were treated with the constitutive NOS inhibitor L-nitroarginine (5 mg/kg, i.p.) 1 hr before preconditioning. Retinal layer thicknesses and cell counts were determined one week postischemia in 5-mum thin sections, and flash electroretinograms were obtained at 1 and 7 days postischemia. We confirmed that ischemic preconditioning afforded morphologic and functional protection in the strains of wild-type mice studied. Histopathologic analyses of inducible NOS (iNOS) knockout mice revealed that ischemic preconditioning was completely effective, whereas ischemic tolerance was not achieved in the retinae of endothelial NOS (eNOS) and neuronal NOS (nNOS) knockout mice. The participation of the constitutive NOS enzymes in preconditioning-induced tolerance was confirmed by the finding that administration of the NOS inhibitor L-NA to wild-type mice prior to ischemic preconditioning blocked the development of ischemic tolerance. These cross-validating genetic and pharmacologic findings indicate that NO derived from both eNOS and nNOS is a required molecular signal in the adaptive response to ischemic preconditioning in the retina.
Collapse
Affiliation(s)
- Yanli Zhu
- Department of Neurosurgery, Washington University School of Medicine, Box 8057, 660 S. Euclid Ave., St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Bayir H, Kagan VE, Borisenko GG, Tyurina YY, Janesko KL, Vagni VA, Billiar TR, Williams DL, Kochanek PM. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J Cereb Blood Flow Metab 2005; 25:673-84. [PMID: 15716856 DOI: 10.1038/sj.jcbfm.9600068] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Studies in experimental traumatic brain injury (TBI) suggest both deleterious and protective effects of inducible nitric oxide synthase (iNOS). Early after injury, iNOS may be detrimental via formation of peroxynitrite and iNOS inhibitors are protective. In contrast, we reported impaired long-term functional outcome after TBI in iNOS knockout (ko) versus wild-type (wt) mice. To elucidate potential neuroprotective and neurotoxic mechanisms for iNOS, we studied nitric oxide formation by electron paramagnetic resonance (EPR) spectroscopy using diethyldithiocarbamate-iron (DETC-Fe) as a spin trap and markers of nitrosative (S-nitrosothiol (RSNO, Fluorescent assay); nitrotyrosine (3NT, ELISA)) and oxidative stress (ascorbate, HPLC) at 72 h after controlled cortical impact (CCI) in iNOS ko and wt and in uninjured iNOS ko and wt mice. 3NT immunostaining with macrophage and myeloperoxidase (MPO) dual labeling was also assessed in brain sections. Brain DETC-Fe-NO low-temperature EPR signal intensity was approximately 2-fold greater in wt versus iNOS ko at 72 h after CCI. Ascorbate levels decreased in injured hemisphere in wt and iNOS ko versus uninjured -this decrease was more pronounced in iNOS ko. In wt mice, RSNO and 3NT levels were increased after CCI versus uninjured (50% and 400%, respectively, P < 0.05). RSNO levels were not increased in iNOS ko after CCI. Nitrotyrosine levels increased after CCI in wt and ko versus respective uninjured -this increase was more pronounced in wt (2.34 +/- 0.95 versus 1.27 +/- 0.49 pmol/mg protein, P < 0.05). Increased 3NT immunoreactivity was detected in wt versus iNOS ko at 72 h after CCI, and colocalized with macrophage marker and MPO. Our data support a role for iNOS-derived NO as an endogenous antioxidant after CCI. iNOS also contributes protein nitrosylation and nitration. Colocalization of 3NT with macrophages and MPO suggests generation of nitrating agents by macrophages and/or phagocytosis of nitrated proteins.
Collapse
Affiliation(s)
- Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pennslyvania 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gürsoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004; 35:1449-53. [PMID: 15073398 DOI: 10.1161/01.str.0000126044.83777.f4] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Use of thrombolysis in stroke is limited by a short therapeutic window because delayed reperfusion may cause brain hemorrhage and edema. Available evidence suggests a role for superoxide, NO, and peroxynitrite in reperfusion-induced injury. However, depending on their cellular origin and interactions between them, these molecules may exert protective or deleterious actions, neither of which is characterized in the intact brain. METHODS Using fluorescent probes, we determined superoxide and peroxynitrite formation within neurons, astrocytes, and endothelium, and the association between oxidative/nitrative stress and vascular injury in mice brains subjected to 2-hour middle cerebral artery occlusion and 3 or 5 hours of reperfusion. RESULTS Both signals were colocalized, suggesting that the main source of peroxynitrite in the reperfused brain was a reaction between superoxide and NO. Superoxide and peroxynitrite formation was particularly intense in microvessels and astrocytic end-feet surrounding them, and overlapped with dense mitochondrial labeling. Sites of oxidative/nitrative stress on microvessels were colocalized with markers of vascular injury such as Evans blue (EB) leakage and matrix metalloproteinase-9 (MMP-9) expression, suggesting an association between peroxynitrite and microvascular injury. Supporting this idea, partial inhibition of endothelial NO synthesis at reperfusion with a low dose of L-nitroarginine (1 mg/kg IP) reduced 3-nitrotyrosine formation in microvessels and EB extravasation. CONCLUSIONS During reperfusion, intense superoxide, NO, and peroxynitrite formation on microvessels and surrounding end-feet may lead to cerebral hemorrhage and edema by disrupting microvascular integrity. Combination of thrombolysis with agents diminishing oxidative/nitrative stress may reduce reperfusion-induced injury and extend the therapeutic window for thrombolysis.
Collapse
Affiliation(s)
- Yasemin Gürsoy-Ozdemir
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Turkey
| | | | | |
Collapse
|
24
|
Haga KK, Gregory LJ, Hicks CA, Ward MA, Beech JS, Bath PW, Williams SCR, O'Neill MJ. The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotective agent: effects in models of cerebral ischaemia using histological and magnetic resonance imaging techniques. Brain Res 2004; 993:42-53. [PMID: 14642829 DOI: 10.1016/j.brainres.2003.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most neuroprotective compounds that appear promising in the pre-clinical phase of testing are subsequently dismissed as relatively ineffective when entered into large-scale clinical trials. Many pre-clinical studies of potential neuroprotective candidates evaluate efficacy in only one or possibly two different models of ischaemia. In this study we examined the effects of 1,2-trifluoromethylphenyl imidazole (TRIM), a novel neuronal nitric oxide synthase (nNOS) inhibitor, in three models of cerebral ischaemia (global gerbil, global rat and focal rat). In addition, to follow the progression of the pathology, we also compared traditional histology methods with more advanced magnetic resonance imaging (MRI) as endpoint measures for neurological damage and neuroprotection. TRIM (50 mg/kg i.p.) prevented ischaemia-induced hippocampal damage following global ischaemia in gerbils when administered before or immediately post-occlusion, but failed to protect when administration was delayed until 30 min post-occlusion. Further studies indicated that the compound (administered at 50 mg/kg, i.p., immediately after occlusion) also protected in a rat four-vessel occlusion (4-VO) model using both histological and diffusion-weighted (DW) imaging techniques. In a final study, TRIM (50 mg/kg i.p. 30 min after occlusion) provided a significant reduction in infarct volume at 4 and 24 h as measured using diffusion-weighted (DW) and proton density (PD)-weighted magnetic resonance imaging (MRI). This was confirmed using histological techniques. These studies confirm that nNOS inhibitors may have utility in stroke and provide evidence that combined magnetic resonance and histological methods can provide a powerful method of assessing neuronal damage in rodent models of cerebral ischaemia.
Collapse
Affiliation(s)
- Kristin K Haga
- Department of Clinical Neuroscience, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schroeter M, Küry P, Jander S. Inflammatory gene expression in focal cortical brain ischemia: differences between rats and mice. ACTA ACUST UNITED AC 2003; 117:1-7. [PMID: 14499475 DOI: 10.1016/s0169-328x(03)00255-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of species-specific factors on postischemic brain inflammation is largely unknown. In this study, we used quantitative real-time polymerase chain reaction in a highly standardized model of focal cortical brain ischemia for the comparison of cytokine and inducible nitric oxide synthase (iNOS) gene expression in rats and mice. In rats, we found rapid and strong induction of tumor necrosis factor-alpha (TNF-alpha) mRNA reaching its peak at 4 h after ischemia, followed by a slightly delayed peak of interleukin-1beta (IL-1beta) and iNOS mRNA at 16 h. Inflammatory gene induction in mice was overall weaker and considerably more protracted. Both TNF-alpha and IL-1beta transcripts reached their peak around 24 h. In addition, iNOS mRNA exhibited a rather variable, delayed increase between days 3 and 14. Accordingly, immunocytochemistry revealed strong iNOS immunoreactivity in the infarct borderzone at days 1 and 3 in rats whereas only a few iNOS-positive cells were detectable in mice. Taken together, our study demonstrates considerable species differences in inflammatory gene induction after focal brain ischemia.
Collapse
Affiliation(s)
- Michael Schroeter
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
26
|
Shin CY, Lee NI, Je HD, Kim JS, Sung JH, Kim DS, Lee DW, Bae KL, Sohn UD. Cardiovascular responses and nitric oxide production in cerebral ischemic rats. Arch Pharm Res 2002; 25:697-703. [PMID: 12433208 DOI: 10.1007/bf02976947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of Ca2+ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that Ca2+ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.
Collapse
Affiliation(s)
- Chang Yell Shin
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li L, Shen YM, Yang XS, Wu WL, Wang BG, Chen ZH, Hao XJ. Effects of spiramine T on antioxidant enzymatic activities and nitric oxide production in cerebral ischemia-reperfusion gerbils. Brain Res 2002; 944:205-9. [PMID: 12106682 DOI: 10.1016/s0006-8993(02)02892-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spiramine T, an atisine-type diterpene alkaloid isolated from the Chinese herbal medicine Spiraea japonica var. acuta (Rosaceae), was shown to have neuroprotective effects on cerebral ischemia-reperfusion injury. In this study, the effects of spiramine T on antioxidant enzymes and nitric oxide production were evaluated in gerbils subjected to global forebrain ischemia (10 min) and reperfusion (5 days). Spiramine T (1.0 and 2.0 mg kg(-1) i.p.) markedly reduced the content of lipid peroxide (LPO), increased the glutathione peroxidase (GSH-PX) activity, and inhibited the increase of nitric oxidase (NOS) activity and nitric oxide production in the cortex during ischemia-reperfusion in gerbils. These results suggested that the neuroprotective effects of spiramine T were related to modulation of endogenous antioxidant enzymatic activities and reduction of the formation of nitric oxide.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Yunnan, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Elibol B, Söylemezoglu F, Unal I, Fujii M, Hirt L, Huang PL, Moskowitz MA, Dalkara T. Nitric oxide is involved in ischemia-induced apoptosis in brain: a study in neuronal nitric oxide synthase null mice. Neuroscience 2001; 105:79-86. [PMID: 11483302 DOI: 10.1016/s0306-4522(01)00159-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide can promote or inhibit apoptosis depending on the cell type and coexisting metabolic or experimental conditions. We examined the impact of nitric oxide on development of apoptosis 6, 24, and 72 h after permanent middle cerebral artery occlusion in mutant mice that lack the ability to generate nitric oxide from neuronal nitric oxide synthase. Adjacent coronal sections passing through the anterior commissure were stained with hematoxylin and eosin or terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Immunoblotting was used to identify changes in the anti- and proapoptotic proteins Bcl-2 and Bax, respectively. Activation of caspases was assessed by appearance of actin cleavage products using a novel antiserum directed against 32-kDa actin fragment (fractin). In the neuronal nitric oxide synthase mutant mouse, infarct size and TUNEL positive apoptotic neurons were reduced compared to the wild-type controls. At 6 h, Bcl-2 levels in the ischemic hemisphere were increased in mutants but decreased in the wild-type strain. Bax levels did not change significantly. Caspase-mediated actin cleavage appeared in the ischemic hemisphere at this time point, and was significantly less in mutant brains at 72 h compared to the wild-type. The reduction in the number of TUNEL and fractin positive apoptotic cells appears far greater than anticipated based on the smaller lesion size in mutant mice.Hence, from these data we suggest that a deficiency in neuronal nitric oxide production slows the development of apoptotic cell death after ischemic injury and is associated with preserved Bcl-2 levels and delayed activation of effector caspases.
Collapse
Affiliation(s)
- B Elibol
- Department of Neurology, Faculty of Medicine, and Institute of neurological Sciences and Psychiatry, Hacettepe university, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ishida A, Ishiwa S, Trescher WH, Nakajima W, Lange MS, Blue ME, Johnston MV. Delayed increase in neuronal nitric oxide synthase immunoreactivity in thalamus and other brain regions after hypoxic-ischemic injury in neonatal rats. Exp Neurol 2001; 168:323-33. [PMID: 11259120 DOI: 10.1006/exnr.2000.7606] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the response of neuronal nitric oxide synthase (nNOS)-containing CNS neurons in rats exposed to a unilateral hypoxic-ischemic insult at 7 days of age. Animals were sacrificed at several time points after the injury, up to and including 7 days (Postnatal Day 14). Brain regions ipsilateral to the injury (including cerebral cortex, caudate-putamen, and thalamus) exhibited delayed, focal increases in nNOS immunoreactivity. The increase in nNOS immunoreactive fiber staining was prominent in areas adjacent to severe neuronal damage, especially in the cortex and the thalamus, regions that are also heavily and focally injured in term human neonates with hypoxic-ischemic encephalopathy. In cerebral cortex, these increases occurred despite modest declines in nNOS catalytic activity and protein levels. Proliferation of surviving nNOS immunoreactive fibers highlights regions of selective vulnerability to hypoxic-ischemic insult in the neonatal brain and may also contribute to plasticity of neuronal circuitry during recovery.
Collapse
Affiliation(s)
- A Ishida
- Kennedy Krieger Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Yasuda H, Fujii M, Fujisawa H, Ito H, Suzuki M. Changes in nitric oxide synthesis and epileptic activity in the contralateral hippocampus of rats following intrahippocampal kainate injection. Epilepsia 2001; 42:13-20. [PMID: 11207780 DOI: 10.1046/j.1528-1157.2001.083032.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the effects of nitric oxide (NO) on seizure activity observed in brain areas that are remote from a primary epileptic focus. METHODS Following an injection of kainate (concentration 1 mg/ml, volume 1 microl) in the rat hippocampus, we measured NO synthesis in the contralateral hippocampus and epileptic activity by electroencephalogram (EEG). The NO end products, nitrite and nitrate, were measured by in vivo microdialysis combined with an automated NO end-product analyzer and then used as indices of NO synthesis. We also assessed the effect of a specific inhibitor of neuronal NO synthase (NOS) on both the epileptic activity and NO synthesis in the contralateral hippocampus. For this assessment, we administered 7-nitroindazole (7-NI) (50 mg/kg) intraperitoneally 30 min before the kainate injection. RESULTS Epileptic discharges in the contralateral hippocampus were frequently observed 90 min after unilateral hippocampus kainate injection. The duration of these discharges gradually increased until 240 min after the kainate injection. The NO end-product levels increased immediately after kainate injection and continued to increase gradually throughout the experiments, to a maximum of 213% of the base level. This elevation of NO end products was followed by epileptic discharges. Both the seizure activity and the elevation of contralateral hippocampus NO end-product levels were markedly attenuated in the animals that received 7-NI. CONCLUSIONS The results suggest that remote seizure activity caused by the transneuronal spread of kainate-induced discharges may be related to NO derived from neuronal NOS.
Collapse
Affiliation(s)
- H Yasuda
- Department of Neurosurgery, Yamaguchi University School of Medicine 1144, Kogushi Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | |
Collapse
|
31
|
Shibata M, Hisahara S, Hara H, Yamawaki T, Fukuuchi Y, Yuan J, Okano H, Miura M. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J Clin Invest 2000; 106:643-53. [PMID: 10974017 PMCID: PMC381288 DOI: 10.1172/jci10203] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although oligodendrocytes (OLGs) are thought to be vulnerable to hypoxia and ischemia, little is known about the detailed mechanism by which these insults induce OLG death. From the clinical viewpoint, it is imperative to protect OLGs as well as neurons against ischemic injury (stroke), because they are the only myelin-forming cells of the central nervous system. Using the Cre/loxP system, we have established a transgenic mouse line that selectively expresses p35, a broad-spectrum caspase inhibitor, in OLGs. After hypoxia, cultured OLGs derived from wild-type mice exhibited significant upregulation of caspase-11 and substantial activation of caspase-3, which led to cell loss. Expression of p35 or elimination of caspase-11 suppressed the caspase-3 activation and conferred significant protection against hypoxic injury. Expression of p35 in OLGs in vivo resulted in significant protection from ischemia-induced cell injury, thus indicating that caspases are involved in the ischemia-induced cell death of OLGs. Furthermore, the induction of caspase-11 was evident in the ischemic brains of wild-type mice, and OLGs exhibited resistance to brain ischemia in mice deficient in caspase-11, suggesting that caspase-11 is critically implicated in the mechanism(s) underlying ischemia-induced OLG death. Caspases may therefore offer a good therapeutic target for reducing ischemia-induced damage to OLGs.
Collapse
Affiliation(s)
- M Shibata
- Division of Neuroanatomy, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gürsoy-Ozdemir Y, Bolay H, Saribaş O, Dalkara T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 2000; 31:1974-80; discussion 1981. [PMID: 10926966 DOI: 10.1161/01.str.31.8.1974] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Reperfusion injury is one of the factors that unfavorably affects stroke outcome and shortens the window of opportunity for thrombolysis. Surges of nitric oxide (NO) and superoxide generation on reperfusion have been demonstrated. Concomitant generation of these radicals can lead to formation of the strong oxidant peroxynitrite during reperfusion. METHODS We have examined the role of NO generation and peroxynitrite formation on reperfusion injury in a mouse model of middle cerebral artery occlusion (2 hours) and reperfusion (22 hours). The infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride staining; blood-brain barrier permeability was evaluated by Evans blue extravasation. Nitrotyrosine formation and matrix metalloproteinase-9 expression were detected by immunohistochemistry. RESULTS Infarct volume was significantly decreased (47%) in animals treated with the nonselective nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine (L-NA) at reperfusion. The specific inhibitor of neuronal NOS, 7-nitroindazole (7-NI), given at reperfusion, showed no protection, although preischemic treatment with 7-NI decreased infarct volume by 40%. Interestingly, prereperfusion administration of both NOS inhibitors decreased tyrosine nitration (a marker of peroxynitrite toxicity) in the ischemic area. L-NA treatment also significantly reduced vascular damage, as indicated by decreased Evans blue extravasation and matrix metalloproteinase-9 expression. CONCLUSIONS These data support the hypothesis that in addition to the detrimental action of NO formed by neuronal NOS during ischemia, NO generation at reperfusion plays a significant role in reperfusion injury, possibly through peroxynitrite formation. Contrary to L-NA, failure of 7-NI to protect against reperfusion injury suggests that the source of NO is the cerebrovascular compartment.
Collapse
Affiliation(s)
- Y Gürsoy-Ozdemir
- Department of Neurology, Faculty of Medicine, and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
33
|
O'Neill MJ, Murray TK, McCarty DR, Hicks CA, Dell CP, Patrick KE, Ward MA, Osborne DJ, Wiernicki TR, Roman CR, Lodge D, Fleisch JH, Singh J. ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res 2000; 871:234-44. [PMID: 10899290 DOI: 10.1016/s0006-8993(00)02471-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present studies, we have evaluated the effects of N-[4-(2-¿[(3-Chlorophenyl)methyl]amino¿ethyl)phenyl]-2-thiophenecarbo ximidamide dihydrochloride (ARL 17477) on recombinant human neuronal NOS (nNOS) and endothelial NOS (eNOS). We then carried out pharmacokinetic studies and measured cortical nitric oxide synthase (NOS) inhibition to determine that the compound crossed the blood brain barrier. Finally, the compound was evaluated in a model of global ischaemia in the gerbil and two models of transient focal ischaemia in the rat. The IC(50) values for ARL 17477 on human recombinant human nNOS and eNOS were 1 and 17 microM, respectively. ARL 17477 (50 mg/kg i.p.) produced a significant reduction in the ischaemia-induced hippocampal damage following global ischaemia when administered immediately post-occlusion, but failed to protect when administration was delayed until 30 min post-occlusion. In the endothelin-1 model of focal ischaemia, ARL 17477 (1 mg/kg i.v.) significantly attenuated the infarct volume when administered at either 0, 1 or 2 h post-endothelin-1 (P<0.05). In the intraluminal suture model, ARL 17477 at both 1 and 3 mg/kg i.v. failed to reduce the infarct volume measured at 1, 3 or 7 days post-occlusion. These results demonstrate that ARL 17477 protects against global ischaemia in gerbils and provides some reduction in infarct volume following transient middle cerebral artery occlusion in rats, indicating that nNOS inhibition may be a useful treatment of ischaemic conditions.
Collapse
Affiliation(s)
- M J O'Neill
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, GU20 6PH, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu J, He L, Ahmed SH, Chen SW, Goldberg MP, Beckman JS, Hsu CY. Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. Stroke 2000; 31:1744-51. [PMID: 10884482 DOI: 10.1161/01.str.31.7.1744] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The cerebral endothelial cells (ECs) are a primary target of hypoxic or ischemic brain insults. EC damage may contribute to postischemic secondary injury. Massive production of NO after inducible NO synthase (iNOS) expression has been implicated in cell death. This study aimed to characterize bovine cerebral EC death in relation to iNOS expression after oxygen-glucose deprivation (OGD) in vitro. METHODS OGD in bovine cerebral ECs in culture was induced by deleting glucose in the medium and by incubating the cells in a temperature-controlled anaerobic chamber. The extent of cell death was assessed by trypan blue exclusion, MTT assay, and LDH release. ELISA, gel electrophoresis, and staining by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling were used to examine DNA fragmentation. The expression of iNOS mRNA and protein was detected by reverse transcription-polymerase chain reaction and Western blotting, respectively. Nitrotyrosine expression was confirmed with Western blot analysis and immunostaining. RESULTS Bovine cerebral EC death was dependent on the duration of OGD and showed selected biochemical, morphological, and pharmacological features suggestive of apoptosis. OGD also induced the expression of iNOS mRNA and protein in bovine cerebral ECs. Increased expression of nitrotyrosine, the product formed by peroxynitrite reaction with proteins, was also detected after OGD. The involvement of iNOS in EC death was suggested by partial reduction of cell death by NO synthase inhibitors, including L-N(G)-(1-iminoethyl)ornithine and nitro-L-arginine, and an NO scavenger, the Fe(2+)-N-methyl-D-glucamine dithiocarbamate complex. CONCLUSIONS OGD-induced bovine cerebral EC death involves an apoptotic process. Induction of iNOS with subsequent peroxynitrite formation may contribute to bovine cerebral EC death caused by OGD.
Collapse
Affiliation(s)
- J Xu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6:797-801. [PMID: 10888929 DOI: 10.1038/77528] [Citation(s) in RCA: 498] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington disease is an autosomal dominant neurodegenerative disease with no effective treatment. Minocycline is a tetracycline derivative with proven safety. After ischemia, minocycline inhibits caspase-1 and inducible nitric oxide synthetase upregulation, and reduces infarction. As caspase-1 and nitric oxide seem to play a role in Huntington disease, we evaluated the therapeutic efficacy of minocycline in the R6/2 mouse model of Huntington disease. We report that minocycline delays disease progression, inhibits caspase-1 and caspase-3 mRNA upregulation, and decreases inducible nitric oxide synthetase activity. In addition, effective pharmacotherapy in R6/2 mice requires caspase-1 and caspase-3 inhibition. This is the first demonstration of caspase-1 and caspase-3 transcriptional regulation in a Huntington disease model.
Collapse
Affiliation(s)
- M Chen
- Neuroapoptosis Laboratory, Neurosurgical Service, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pluta RM, Afshar JK, Thompson BG, Boock RJ, Harvey-White J, Oldfield EH. Increased cerebral blood flow but no reversal or prevention of vasospasm in response to L-arginine infusion after subarachnoid hemorrhage. J Neurosurg 2000; 92:121-6. [PMID: 10616090 DOI: 10.3171/jns.2000.92.1.0121] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The reduction in the level of nitric oxide (NO) is a purported mechanism of delayed vasospasm after subarachnoid hemorrhage (SAH). Evidence in support of a causative role for NO includes the disappearance of nitric oxide synthase (NOS) from the adventitia of vessels in spasm, the destruction of NO by hemoglobin released from the clot into the subarachnoid space, and reversal of vasospasm by intracarotid NO. The authors sought to establish whether administration of L-arginine, the substrate of the NO-producing enzyme NOS, would reverse and/or prevent vasospasm in a primate model of SAH. METHODS The study was composed of two sets of experiments: one in which L-arginine was infused over a brief period into the carotid artery of monkeys with vasospasm, and the other in which L-arginine was intravenously infused into monkeys over a longer period of time starting at onset of SAH. In the short-term infusion experiment, the effect of a 3-minute intracarotid infusion of L-arginine (intracarotid concentration 10(-6) M) on the degree of vasospasm of the right middle cerebral artery (MCA) and on regional cerebral blood flow (rCBF) was examined in five cynomolgus monkeys. In the long-term infusion experiment, the effect of a 14-day intravenous infusion of saline (control group, five animals) or L-arginine (10(-3) M; six animals) on the occurrence and degree of cerebral vasospasm was examined in monkeys. The degree of vasospasm in all experiments was assessed by cerebral arteriography, which was performed preoperatively and on postoperative Days 7 (short and long-term infusion experiments) and 14 (long-term infusion experiment). In the long-term infusion experiment, plasma levels of L-arginine were measured at these times in the monkeys to confirm L-arginine availability. Vasospasm was not affected by the intracarotid infusion of L-arginine (shown by the reduction in the right MCA area on an anteroposterior arteriogram compared with preoperative values). However, intracarotid L-arginine infusion increased rCBF by 21% (p < 0.015; PCO2 38-42 mm Hg) in all vasospastic monkeys compared with rCBF measured during the saline infusions. In the long-term infusion experiment, vasospasm of the right MCA occurred with similar intensity with or without continuous intravenous administration of L-arginine on Day 7 and had resolved by Day 14. The mean plasma L-arginine level increased during infusion from 12.7+/-4 microg/ml on Day 0 to 21.9+/-13.1 microg/ml on Day 7 and was 18.5+/-3.1 microg/ml on Day 14 (p < 0.05). CONCLUSIONS Brief intracarotid and continuous intravenous infusion of L-arginine did not influence the incidence or degree of cerebral vasospasm. After SAH, intracarotid infusion of L-arginine markedly increased rCBF in a primate model of SAH. These findings discourage the use of L-arginine as a treatment for vasospasm after SAH.
Collapse
Affiliation(s)
- R M Pluta
- Surgical Neurology Branch and Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Chapter IX Response of nitric oxide synthase to neuronal injury. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Abstract
Roles proposed for nitric oxide (NO) in CNS pathophysiology are increasingly diverse and range from intercellular signaling, through necrotic killing of cells and invading pathogens, to the involvement of NO in apoptosis and tissue remodeling. In vitro evidence and observations from experimental animal models of a variety of human neuropathologies, including stroke, indicate that glial cells can produce NO. Regulation of at least one of the NO synthase genes (NOS-2) in glia has been well described; however, apart from hints emerging out of co-culture studies and extrapolation based upon the reactivity of NO, we are a long way from identifying functions for glial-derived NO in the CNS. Although the assumption is that NO is very often cytotoxic, it is evident that NO production does not always equate with tissue damage, and that both the cellular source of NO and the timing of NO production are important factors in terms of its effects. With the development of strategies to transfer or manipulate expression of the NOS genes in specific cells in situ, the ability to deliver NO into the CNS via long-lived chemical donors, and the emergence of more selective NOS inhibitors, an appreciation of the significance of glial-derived NO will change.
Collapse
Affiliation(s)
- S Murphy
- Department of Pharmacology and the Neuroscience Program, University of Iowa College of Medicine, Iowa City, USA.
| |
Collapse
|
39
|
Rothe F, Huang PL, Wolf G. Ultrastructural localization of neuronal nitric oxide synthase in the laterodorsal tegmental nucleus of wild-type and knockout mice. Neuroscience 1999; 94:193-201. [PMID: 10613509 DOI: 10.1016/s0306-4522(99)00263-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular and subcellular distribution of neuronal nitric oxide synthase and its related reduced beta-nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was compared in wild-type and homozygous knockout mice, in which the gene for neuronal nitric oxide synthase has been disrupted, resulting in a lack of the predominant splice isoform alpha. In the laterodorsal tegmental nucleus, used as a model structure, the cholinergic principal neurons also exhibited an intensive neuronal nitric oxide synthase immunoreactivity. Using the tetrazolium salt 2-(2-benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl)-tetrazo++ +-lium chloride (BSPT), these neurons were filled with NADPH-diaphorase reaction product, whereas the equivalent neurons of knockout mice showed, if at all, only traces of neuronal nitric oxide synthase immunoreactivity in parallel to a diminished NADPH-diaphorase labelling. Subcellularly, the neuronal nitric oxide synthase-related diaminobenzidine product was, apparently owing to diffusion artifact, more or less evenly distributed in the cytosol of the neuronal perikarya and dendrites of wild-type mice. In contrast, the BSPT reaction product formazan was closely and discretely attached to endocellular membranes. In the intensely NADPH-diaphorase stained neurons of wild-type mice, 85% of the mitochondria were, at least partly, labelled for BSPT-formazan, whilst in the equivalent neurons of mutant mice, only 13% of mitochondria were NADPH-diaphorase positive. Related to the NADPH-diaphorase activity in the principal neurons of wild-type mice, only 10% of membranes of the endoplasmic reticulum, 27% of mitochondrial membranes and 26% of the nuclear envelope exhibited NADPH-diaphorase activity in the mutant mice. Our findings with the BSPT histochemistry suggest that residues of NADPH-diaphorase positivity in mutant mice are attributed to the alternative splice isoforms beta and/or gamma of neuronal nitric oxide synthase. The splice isoform a is located predominantly at the membranes of the endoplasmic reticulum.
Collapse
Affiliation(s)
- F Rothe
- Institute of Medical Neurobiology, University of Magdeburg, Germany.
| | | | | |
Collapse
|
40
|
Ryba MS, Gordon-Krajcer W, Walski M, Chalimoniuk M, Chrapusta SJ. Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage in the rat brain and improves neurological outcome. Brain Res 1999; 850:225-33. [PMID: 10629768 DOI: 10.1016/s0006-8993(99)02161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Some of the neurological deficits that emerge after aneurysmal subarachnoid hemorrhage (SAH) in humans are presumably caused by ischemic brain damage consequential to SAH-induced delayed cerebral vasospasm. This vasospasm probably results from an imbalance among vasoactive factors released from both the clot formed by extravasated blood and adjacent tissues, and in particular from a decrease in the endothelium-derived relaxing factor nitric oxide (NO). Brain ischemia is also known to elevate brain production and deposition of beta-amyloid, and to induce a delayed increase in total NO synthase (NOS) activity due to induction of expression of so-called induced NOS isoform, phenomena that may secondarily contribute to SAH-related brain damage. The aim of this study was to investigate the effects of treatment with the intracellular NO donor hydroxylamine on: (i) basilar arterial wall that remained in a direct contact with the clot, (ii) formation of the beta-amyloid precursor protein (beta-APP), (iii) total brain NOS activity, and (iv) neurological outcome in a 'two-hemorrhage' rat SAH model. Intraperitoneal (i.p.) administration of 0.18 mmol/kg hydroxylamine hydrochloride (12.5 mg/kg) twice daily for 7 days beginning immediately after the first 'hemorrhage' (intracisternal blood injection) reduced basilar arterial wall damage and attenuated post-SAH neurological deficit. It also reduced the SAH-related increases in hippocampal and cortical beta-APP immunoreactivities and hippocampal NOS activity measured 24 h after commencement of the treatment. These results indicate that intracellular NO donors that yield NO through the action of widely distributed enzymes in brain cells (cytochromes, catalase) can attenuate detrimental effects of SAH.
Collapse
Affiliation(s)
- M S Ryba
- Laboratory of Experimental Pharmacology, Polish Academy of Sciences Medical Research Centre, Warsaw, Poland
| | | | | | | | | |
Collapse
|
41
|
Meng W, Wang X, Asahi M, Kano T, Asahi K, Ackerman RH, Lo EH. Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1999; 19:1316-21. [PMID: 10598935 DOI: 10.1097/00004647-199912000-00004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tissue type plasminogen activator (tPA) can be effective therapy for embolic stroke by restoring cerebral perfusion. However, a recent experimental study showed that tPA increased infarct size in a mouse model of transient focal ischemia, suggesting a possible adverse effect of tPA on ischemic tissue per se. In this report, the effects of tPA in two rat models of cerebral ischemia were compared. In experiment 1, rats were subjected to focal ischemia via injection of autologous clots into the middle cerebral artery territory. Two hours after clot injection, rats were treated with 10 mg/kg tPA or normal saline. Perfusion-sensitive computed tomography scanning showed that tPA restored cerebral perfusion in this thromboembolic model. Treatment with tPA significantly reduced ischemic lesion volumes measured at 24 hours by >60%. In experiment 2, three groups of rats were subjected to focal ischemia via a mechanical approach in which a silicon-coated filament was used intraluminally to occlude the origin of the middle cerebral artery. In two groups, the filament was withdrawn after 2 hours to allow for reperfusion, and then rats were randomly treated with 10 mg/kg tPA or normal saline. In the third group, rats were not treated and the filament was not withdrawn so that permanent focal ischemia was present. In this experiment, tPA did not significantly alter lesion volumes after 2 hours of transient focal ischemia. In contrast, permanent ischemia significantly increased lesion volumes by 55% compared with transient ischemia. These results indicate that in these rat models of focal cerebral ischemia, tPA did not have detectable negative effects. Other potentially negative effects of tPA may be dependent on choice of animal species and model systems.
Collapse
Affiliation(s)
- W Meng
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston 02129, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 1999. [PMID: 10407030 DOI: 10.1523/jneurosci.19-14-05910.1999] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is a new intercellular messenger that occurs naturally in the brain without causing overt toxicity. Yet, NO has been implicated as a mediator of cell death in cell death. One explanation is that ischemia causes overproduction of NO, allowing it to react with superoxide to form the potent oxidant peroxynitrite. To address this question, we used immunohistochemistry for citrulline, a marker for NO synthase activity, and 3-nitrotyrosine, a marker for peroxynitrite formation, in mice subjected to reversible middle cerebral artery occlusion. We show that ischemia triggers a marked augmentation in citrulline immunoreactivity but more so in the peri-infarct than the infarcted tissue. This increase is attributable to the activation of a large population (approximately 80%) of the neuronal isoform of NO synthase (nNOS) that is catalytically inactive during basal conditions, indicating a tight regulation of physiological NO production in the brain. In contrast, 3-nitrotyrosine immunoreactivity is restricted to the infarcted tissue and is not present in the peri-infarct tissue. In nNOS(Delta/Delta) mice, known to be protected against ischemia, no 3-nitrotyrosine immunoreactivity is detected. Our findings provide a cellular localization for nNOS activation in association with ischemic stroke and establish that NO is not likely a direct neurotoxin, whereas its conversion to peroxynitrite is associated with cell death.
Collapse
|
43
|
Groenendaal F, de Graaf RA, van Vliet G, Nicolay K. Effects of hypoxia-ischemia and inhibition of nitric oxide synthase on cerebral energy metabolism in newborn piglets. Pediatr Res 1999; 45:827-33. [PMID: 10367773 DOI: 10.1203/00006450-199906000-00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study was designed to examine the effects of inhibition of nitric oxide synthase on cerebral energy metabolism after hypoxia-ischemia in newborn piglets. Ten 1- to 3-d-old piglets received N(omega)-nitro-L-arginine (NNLA), an inhibitor of nitric oxide synthase (NNLA-hypoxia, n = 5), or normal saline (hypoxia, n = 5) 1 h before cerebral hypoxia-ischemia. After the infusion, hypoxia-ischemia was induced by bilateral occlusion of the carotid arteries and decreasing FiO2 to 0.07 and maintained for 60 min. Thereafter, animals were resuscitated and ventilated for another 3 h. Using 1H- and 31P-magnetic resonance spectroscopy, cerebral energy metabolism was measured in vivo at 15-min intervals throughout the experiment. Phosphocreatine to inorganic phosphate ratios decreased from 2.74 +/- 0.14 to 0.74 +/- 0.36 (hypoxia group) and 2.32 +/- 0.17 to 0.18 +/- 0.10 (NNLA-hypoxia group) during hypoxia-ischemia. Thereafter, phosphocreatine to inorganic phosphate ratios returned rapidly to baseline values in the hypoxia group, but remained below baseline values in the NNLA-hypoxia group. Intracellular pH decreased during hypoxia-ischemia and returned to baseline values on reperfusion in both groups. Intracellular pH values were lower in the NNLA-hypoxia group (p < 0.001, ANOVA). Lactate was not present during the baseline period. After hypoxia-ischemia, lactate to N-acetylaspartate ratios increased to 1.34 +/- 0.28 (hypoxia group) and 2.22 +/- 0.46 (NNLA-hypoxia group). Lactate had disappeared after 3 h of reperfusion in the hypoxia group, whereas lactate to N-acetylaspartate ratios were 1.37 +/- 1.37 in the NNLA-hypoxia group. ANOVA demonstrated a significant effect of NNLA on lactate to N-acetylaspartate ratios (p < 0.001). Inhibition of nitric oxide synthase by NNLA tended to compromise cerebral energy status during and after cerebral hypoxia-ischemia in newborn piglets.
Collapse
Affiliation(s)
- F Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
44
|
Loihl AK, Asensio V, Campbell IL, Murphy S. Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene-deficient mice. Brain Res 1999; 830:155-64. [PMID: 10350569 DOI: 10.1016/s0006-8993(99)01388-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Considerable evidence implicates nitric oxide (NO) in the pathological events following cerebral ischemia and, depending on the enzyme/cell source, NO is considered to be either damaging or protective. As a role for the enzyme nitric oxide synthase (NOS)-2 in permanent focal ischemia is not clear, we examined its expression following permanent middle cerebral artery occlusion in mice. At 24 h after occlusion, NOS-2 was expressed in cells infiltrating the infarct, while at later times, there was also expression in astrocytes around the infarct. To reveal a role for NO derived from this source, we compared infarct size in male and female mice with littermates in which the NOS-2 gene was disrupted. No differences were found between gender and genotype at 24 h. At 72 h, the infarct was increased in male mice, but not in females or in either gender with the gene disruption. These results suggest that NOS-2 plays a role in the later development of the infarct in male mice. Female mice are protected either against the damaging effects of NO, or because NOS-2 expression/activity is modulated by steroids.
Collapse
Affiliation(s)
- A K Loihl
- Department of Pharmacology and the Neuroscience Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
45
|
Bolaños JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:415-36. [PMID: 10320673 DOI: 10.1016/s0005-2728(99)00030-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large body of evidence has appeared over the last 6 years suggesting that nitric oxide biosynthesis is a key factor in the pathophysiological response of the brain to hypoxia-ischemia. Whilst studies on the influence of nitric oxide in this phenomenon initially offered conflicting conclusions, the use of better biochemical tools, such as selective inhibition of nitric oxide synthase (NOS) isoforms or transgenic animals, is progressively clarifying the precise role of nitric oxide in brain ischemia. Brain ischemia triggers a cascade of events, possibly mediated by excitatory amino acids, yielding the activation of the Ca2+-dependent NOS isoforms, i.e. neuronal NOS (nNOS) and endothelial NOS (eNOS). However, whereas the selective inhibition of nNOS is neuroprotective, selective inhibition of eNOS is neurotoxic. Furthermore, mainly in glial cells, delayed ischemia or reperfusion after an ischemic episode induces the expression of Ca2+-independent inducible NOS (iNOS), and its selective inhibition is neuroprotective. In conclusion, it appears that activation of nNOS or induction of iNOS mediates ischemic brain damage, possibly by mitochondrial dysfunction and energy depletion. However, there is a simultaneous compensatory response through eNOS activation within the endothelium of blood vessels, which mediates vasodilation and hence increases blood flow to the damaged brain area.
Collapse
Affiliation(s)
- J P Bolaños
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | | |
Collapse
|
46
|
De Alba J, Cárdenas A, Moro MA, Leza JC, Lorenzo P, Boscá L, Lizasoain I. Down-regulation of neuronal nitric oxide synthase by nitric oxide after oxygen-glucose deprivation in rat forebrain slices. J Neurochem 1999; 72:248-54. [PMID: 9886076 DOI: 10.1046/j.1471-4159.1999.0720248.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.
Collapse
Affiliation(s)
- J De Alba
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD. Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 1998; 43:1427-36. [PMID: 9848857 DOI: 10.1097/00006123-199812000-00096] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE We investigated the time course of inducible nitric oxide synthase (iNOS) enzymatic activity and immunocytochemical localization of iNOS expression after traumatic brain injury (TBI), as well as the possible role of iNOS in the pathogenesis of TBI. METHODS Male Sprague-Dawley rats were anesthetized and underwent moderate parasagittal fluid-percussion brain injury. Rats were decapitated 5 minutes, 6 hours, 1 day, 3 days, 7 days, or 14 days later, and iNOS enzymatic activities were measured (n = 6-8). To determine whether nitric oxide produced by iNOS contributed to the histopathological consequences of TBI, inhibition of iNOS activity using aminoguanidine (intraperitoneal injections of 100 mg/kg aminoguanidine [n = 9] or vehicle [n = 8], twice each day) was conducted for 3 days. RESULTS Significantly elevated iNOS activity was detected at 3 days (276.8+/-72.3% of contralateral value, means +/- standard errors; P < 0.05), and the most robust increase occurred 7 days after TBI (608.0+/-127.0%, P < 0.01) in the injured parietal cerebral cortex. Immunostaining for iNOS and glial fibrillary acidic protein, at 3 and 7 days after TBI, revealed that the major cellular sources of iNOS expression were cortical Layer 1 astrocytes and macrophages within the subarachnoid space. Administration of aminoguanidine did not reduce contusion volume significantly; however, treatment reduced total cortical necrotic neuron counts (1367.6+/-210.3; P < 0.01, compared with vehicle, 2808.5+/-325.1). CONCLUSION These data indicate that iNOS is expressed after moderate parasagittal fluid-percussion brain injury, in a time-dependent manner, and that inhibition of iNOS synthesis improves histopathological outcomes. Thus, inhibition of iNOS activation may represent a potential therapeutic strategy for the treatment of TBI.
Collapse
Affiliation(s)
- K Wada
- Department of Neurology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
48
|
Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD. Inducible Nitric Oxide Synthase Expression after Traumatic Brain Injury and Neuroprotection with Aminoguanidine Treatment in Rats. Neurosurgery 1998. [DOI: 10.1227/00006123-199812000-00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
49
|
Rao AM, Dogan A, Hatcher JF, Dempsey RJ. Fluorometric assay of nitrite and nitrate in brain tissue after traumatic brain injury and cerebral ischemia. Brain Res 1998; 793:265-70. [PMID: 9630667 DOI: 10.1016/s0006-8993(98)00183-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide synthase (NOS) is distributed within the brain, and nitric oxide (NO) is felt to be involved in the pathophysiology of deterioration after head injury and cerebral ischemia. This study determined the levels of the stable end products of NOS (NOx=nitrite+nitrate) after traumatic brain injury (TBI) and transient cerebral ischemia. A fluorometric assay using nitrate reductase and the NADPH regenerating system was used to quantitate NOx in ultrafiltered (10-kDa cutoff) cortical and hippocampal extracts after reduction of nitrate. In TBI rats, both the plasma and tissue showed a sharp increase in NOx levels 5 min after injury. Plasma NOx returned to control levels by 2 h after injury. Ipsilateral-cortex NOx levels returned to control levels approximately 6 h after injury and remained constant from 6-24 h. Contralateral-cortex returned near to control levels after 1 h. Hippocampus also followed a similar trend. In gerbils, there was a significant elevation in tissue NOx levels immediately after 10 min transient cerebral ischemia, which gradually returned to control levels over 24 h reperfusion. This striking burst of NO synthesis immediately after injury is clearly evident whether the injury is head trauma or ischemia, or whether the measurements were performed on tissue or plasma. It is unknown whether endothelial NOS, neuronal NOS, or both caused the elevation of the NO end products seen after the CNS insults.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
50
|
Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and Penumbral Nitric Oxide Synthase Activity During Cerebral Ischemia and Reperfusion. Stroke 1998. [DOI: 10.1161/01.str.29.5.1037] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background and Purpose
—The present studies examined the hypothesis that the distribution of cerebral injury after a focal ischemic insult is associated with the regional distribution of nitric oxide synthase (NOS) activity.
Methods
—Based on previous studies that certain anatomically well-defined areas are prone to become either core or penumbra after middle cerebral artery occlusion (MCAO), we measured NOS activity in these areas from the right and left hemispheres in a spontaneously hypertensive rat filament model. Four groups were studied: (1) controls (immediate decapitation); (2) 1.5 hours of MCAO with no reperfusion (R0); (3) 1.5 hours of MCAO with 0.5 hour of reperfusion (R0.5); and (4) 1.5 hours of MCAO with 24 hours of reperfusion (R24). Three groups of corresponding isoflurane sham controls were also included: 1.5 (S1.5) or 2 (S2.0) hours of anesthesia and 1.5 hours of anesthesia+24 hours of observation (S24).
Results
—Control core NOS activity for combined right and left hemispheres was 129% greater than penumbral NOS activity (
P
<0.05). Combined core NOS activity was also greater (
P
<0.05) in the three sham groups: 208%, 122%, and 161%, respectively. In the three MCAO groups, ischemic and nonischemic core NOS remained higher than penumbral regions (
P
<0.05). However, NOS activity was lower in the ischemic than in the nonischemic core in all three groups: R0 (29% lower), R0.5 (48%), and R24 (86%) (
P
<0.05). Addition of cofactors (10 μmol/L tetrahydrobiopterin, 3 μmol/L flavin adenine dinucleotide, and 3 μmol/L flavin mononucleotide) increased NOS activity in all groups and lessened the decrease in ischemic core and penumbral NOS.
Conclusions
—Greater NOS activity in core regions could explain in part the increased vulnerability of that region to ischemia and could theoretically contribute to the progression of the infarct over time. The data also suggest that NOS activity during ischemia and reperfusion could be influenced by the availability of cofactors.
Collapse
Affiliation(s)
- Stephen Ashwal
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Beatriz Tone
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Hui Rou Tian
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Daniel J. Cole
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - William J. Pearce
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| |
Collapse
|