1
|
Kim HR, Jeong JK, Young CN. Cellular Profile of Subfornical Organ Insulin Receptors in Mice. Biomolecules 2024; 14:1256. [PMID: 39456189 PMCID: PMC11506324 DOI: 10.3390/biom14101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Brain insulin receptor signaling is strongly implicated in cardiovascular and metabolic physiological regulation. In particular, we recently demonstrated that insulin receptors within the subfornical organ (SFO) play a tonic role in cardiovascular and metabolic regulation in mice. The SFO is a forebrain sensory circumventricular organ that regulates cardiometabolic homeostasis due to its direct exposure to the circulation and thus its ability to sense circulating factors, such as insulin. Previous work has demonstrated broad distribution of insulin receptor-expressing cells throughout the entire SFO, indirectly indicating insulin receptor expression in multiple cell types. Based on this, we sought to determine the cellular phenotypes that express insulin receptors within the SFO by combining immunohistochemistry with genetically modified reporter mouse models. Interestingly, SFO neurons, including both excitatory and inhibitory types, were the dominant cell site for insulin receptor expression, although a weak degree of insulin receptor expression was also detected in astrocytes. Moreover, SFO angiotensin type 1a receptor neurons also expressed insulin receptors. Collectively, these anatomical findings indicate the existence of potentially complex cellular networks within the SFO through which insulin signaling can influence physiology and further point to the SFO as a possible brain site for crosstalk between angiotensin-II and insulin.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.-R.K.); (J.-K.J.)
| |
Collapse
|
2
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04457-1. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
5
|
Adem MA, Decourt B, Sabbagh MN. Pharmacological Approaches Using Diabetic Drugs Repurposed for Alzheimer's Disease. Biomedicines 2024; 12:99. [PMID: 38255204 PMCID: PMC10813018 DOI: 10.3390/biomedicines12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are chronic, progressive disorders affecting the elderly, which fosters global healthcare concern with the growing aging population. Both T2DM and AD have been linked with increasing age, advanced glycosylation end products, obesity, and insulin resistance. Insulin resistance in the periphery is significant in the development of T2DM and it has been posited that insulin resistance in the brain plays a key role in AD pathogenesis, earning AD the name "type 3 diabetes". These clinical and epidemiological links between AD and T2DM have become increasingly pronounced throughout the years, and serve as a means to investigate the effects of antidiabetic therapies in AD, such as metformin, intranasal insulin, incretins, DPP4 inhibitors, PPAR-γ agonists, SGLT2 inhibitors. The majority of these drugs have shown benefit in preclinical trials, and have shown some promising results in clinical trials, with the improvement of cognitive faculties in participants with mild cognitive impairment and AD. In this review, we have summarize the benefits, risks, and conflicting data that currently exist for diabetic drugs being repurposed for the treatment of AD.
Collapse
Affiliation(s)
- Muna A. Adem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| |
Collapse
|
6
|
Sharma K, Puranik N, Yadav D. Neural Stem Cell-based Regenerative Therapy: A New Approach to Diabetes Treatment. Endocr Metab Immune Disord Drug Targets 2024; 24:531-540. [PMID: 37183465 DOI: 10.2174/1871530323666230512121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023]
Abstract
Diabetes mellitus (DM) is the most common metabolic disorder that occurs due to the loss, or impaired function of insulin-secreting pancreatic beta cells, which are of two types - type 1 (T1D) and type 2 (T2D). To cure DM, the replacement of the destroyed pancreatic beta cells of islet of Langerhans is the most widely practiced treatment. For this, isolating neuronal stem cells and cultivating them as a source of renewable beta cells is a significant breakthrough in medicine. The functions, growth, and gene expression of insulin-producing pancreatic beta cells and neurons are very similar in many ways. A diabetic patient's neural stem cells (obtained from the hippocampus and olfactory bulb) can be used as a replacement source of beta cells for regenerative therapy to treat diabetes. The same protocol used to create functional neurons from progenitor cells can be used to create beta cells. Recent research suggests that replacing lost pancreatic beta cells with autologous transplantation of insulin-producing neural progenitor cells may be a perfect therapeutic strategy for diabetes, allowing for a safe and normal restoration of function and a reduction in potential risks and a long-term cure.
Collapse
Affiliation(s)
- Kajal Sharma
- School of Sciences in Biotechnology, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | - Nidhi Puranik
- Department of Bio-logical Sciences, Bharathiar University, Tamil Nadu, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
7
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Buzsáki G, Tingley D. Cognition from the Body-Brain Partnership: Exaptation of Memory. Annu Rev Neurosci 2023; 46:191-210. [PMID: 36917822 PMCID: PMC10793243 DOI: 10.1146/annurev-neuro-101222-110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Examination of cognition has historically been approached from language and introspection. However, human language-dependent definitions ignore the evolutionary roots of brain mechanisms and constrain their study in experimental animals. We promote an alternative view, namely that cognition, including memory, can be explained by exaptation and expansion of the circuits and algorithms serving bodily functions. Regulation and protection of metabolic and energetic processes require time-evolving brain computations enabling the organism to prepare for altered future states. Exaptation of such circuits was likely exploited for exploration of the organism's niche. We illustrate that exploration gives rise to a cognitive map, and in turn, environment-disengaged computation allows for mental travel into the past (memory) and the future (planning). Such brain-body interactions not only occur during waking but also persist during sleep. These exaptation steps are illustrated by the dual, endocrine-homeostatic and memory, contributions of the hippocampal system, particularly during hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Center for Neural Science, New York University, New York, NY, USA
| | - David Tingley
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Dakic T, Jevdjovic T, Lakic I, Ruzicic A, Jasnic N, Djurasevic S, Djordjevic J, Vujovic P. The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? Int J Mol Sci 2023; 24:ijms24076586. [PMID: 37047558 PMCID: PMC10095302 DOI: 10.3390/ijms24076586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
After being discovered over a century ago, insulin was long considered to be a hormone exclusively produced by the pancreas. Insulin presence was later discovered in the brain, which was originally accounted for by its transport across the blood-brain barrier. Considering that both insulin mRNA and insulin were detected in the central nervous system (CNS), it is now known that this hormone is also synthesized in several brain regions, including the hypothalamus, hippocampus, cerebral and cerebellar cortex, and olfactory bulb. Although many roles of insulin in the CNS have been described, it was initially unknown which of them could be attributed to brain-derived and which to pancreatic insulin or whether their actions in the brain overlap. However, more and more studies have been emerging lately, focusing solely on the roles of brain-derived insulin. The aim of this review was to present the latest findings on the roles of brain-derived insulin, including neuroprotection, control of growth hormone secretion, and regulation of appetite and neuronal glucose uptake. Lastly, the impairment of signaling initiated by brain-derived insulin was addressed in regard to memory decline in humans.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Sinisa Djurasevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Jelena Djordjevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
11
|
Contreras CM, Gutiérrez-García AG. Insulin and fluoxetine produce opposite actions on lateral septal nucleus-infralimbic region connection responsivity. Behav Brain Res 2023; 437:114146. [PMID: 36202146 DOI: 10.1016/j.bbr.2022.114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Some diabetes patients develop depression, the main treatment for which is antidepressants. Pharmacological interactions between insulin and antidepressants (e.g., fluoxetine) are controversial in the literature. Some authors reported hypoglycemic actions of fluoxetine, whereas others reported antidepressant-like actions. In healthy rats, insulin produces an antidespair-like action in rats through an increase in locomotor and exploratory activity, but differences in actions of insulin and fluoxetine on neuronal activity are unknown. The present study evaluated Wistar healthy rats that were treated with saline, insulin, fluoxetine, or fluoxetine + insulin for 3 days (short-term) or 21 days (long-term). The model consisted of electrical stimulation of the lateral septal nucleus (LSN) while we performed single-unit extracellular response recordings in the prelimbic cortex (PL) and infralimbic cortex (IL) subregions of the medial prefrontal cortex (mPFC). Stimulation of the LSN produced an initial brief excitatory paucisynaptic response and then a long-lasting inhibitory afterdischarge in the PL and IL. Treatment with saline and fluoxetine, but not insulin, minimally affected the paucisynaptic response. Differences were found in LSN-IL responsivity. The inhibitory afterdischarge was clearly enhanced in the long-term fluoxetine group but not by insulin alone or fluoxetine + insulin. These findings suggest that insulin produces some actions that are opposite to fluoxetine on LSN-mPFC connection responsivity, with no synergistic actions between the actions of insulin and fluoxetine.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz 91190, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico
| |
Collapse
|
12
|
Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain 2023; 146:75-90. [PMID: 36280236 PMCID: PMC9897197 DOI: 10.1093/brain/awac309] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-β plaques and β-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRβ that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with β-amyloid pathology.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Camille Sugère
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Highet B, Wiseman JA, Mein H, Parker R, Ryan B, Turner CP, Jing Y, Singh-Bains MK, Liu P, Dragunow M, Faull RLM, Murray HC, Curtis MA. PSA-NCAM Regulatory Gene Expression Changes in the Alzheimer's Disease Entorhinal Cortex Revealed with Multiplexed in situ Hybridization. J Alzheimers Dis 2023; 92:371-390. [PMID: 36744342 DOI: 10.3233/jad-220986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and is characterized by a substantial reduction of neuroplasticity. Our previous work demonstrated that neurons involved in memory function may lose plasticity because of decreased protein levels of polysialylated neural cell adhesion molecule (PSA-NCAM) in the entorhinal cortex (EC) of the human AD brain, but the cause of this decrease is unclear. OBJECTIVE To investigate genes involved in PSA-NCAM regulation which may underlie its decrease in the AD EC. METHODS We subjected neurologically normal and AD human EC sections to multiplexed fluorescent in situ hybridization and immunohistochemistry to investigate genes involved in PSA-NCAM regulation. Gene expression changes were sought to be validated in both human tissue and a mouse model of AD. RESULTS In the AD EC, a cell population expressing a high level of CALB2 mRNA and a cell population expressing a high level of PST mRNA were both decreased. CALB2 mRNA and protein were not decreased globally, indicating that the decrease in CALB2 was specific to a sub-population of cells. A significant decrease in PST mRNA expression was observed with single-plex in situ hybridization in middle temporal gyrus tissue microarray cores from AD patients, which negatively correlated with tau pathology, hinting at global loss in PST expression across the AD brain. No significant differences in PSA-NCAM or PST protein expression were observed in the MAPT P301S mouse brain at 9 months of age. CONCLUSION We conclude that PSA-NCAM dysregulation may cause subsequent loss of structural plasticity in AD, and this may result from a loss of PST mRNA expression. Due PSTs involvement in structural plasticity, intervention for AD may be possible by targeting this disrupted plasticity pathway.
Collapse
Affiliation(s)
- Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - James A Wiseman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Hannah Mein
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Remai Parker
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand.,Department of Anatomical Pathology, LabPlus, Auckland City Hospital, New Zealand
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Malvindar K Singh-Bains
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
14
|
Xue CY, Gao T, Mao E, Kou ZZ, Dong L, Gao F. Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance. ASN Neuro 2023; 15:17590914231206657. [PMID: 37908089 PMCID: PMC10621302 DOI: 10.1177/17590914231206657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
It is well known that the hippocampus is a vital brain region playing a key role in both episodic and spatial memory. Insulin receptors (InsRs) are densely distributed in the hippocampus and are important for its function. However, the effects of InsRs on the function of the specific hippocampal cell types remain elusive. In this study, hippocampal InsRs knockout mice had impaired episodic and spatial memory. GABAergic neurons and glutamatergic neurons in the hippocampus are involved in the balance between excitatory and inhibitory (E/I) states and participate in the processes of episodic and spatial memory. InsRs are located mainly at excitatory neurons in the hippocampus, whereas 8.5% of InsRs are glutamic acid decarboxylase 2 (GAD2)::Ai9-positive (GABAergic) neurons. Next, we constructed a transgenic mouse system in which InsR expression was deleted from GABAergic (glutamate decarboxylase 2::InsRfl/fl, GAD2Cre::InsRfl/fl) or glutamatergic neurons (vesicular glutamate transporter 2::InsRfl/fl,Vglut2Cre::InsRfl/fl). Our results showed that in comparison to the InsRfl/fl mice, both episodic and spatial memory were lower in GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl. In addition, both GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl were associated with more anxiety and lower glucose tolerance. These findings reveal that hippocampal InsRs might be crucial for episodic and spatial memory through E/I balance hippocampal regulation.
Collapse
Affiliation(s)
- Cai-Yan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tian Gao
- Division of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - E Mao
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
16
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Insulin receptor activation by proinsulin preserves synapses and vision in retinitis pigmentosa. Cell Death Dis 2022; 13:383. [PMID: 35444190 PMCID: PMC9021205 DOI: 10.1038/s41419-022-04839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.
Collapse
|
19
|
Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res 2022; 12:862-880. [PMID: 34731414 PMCID: PMC8888512 DOI: 10.1007/s13346-021-01086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
There is a growing number of biomolecules, including peptides, proteins, monoclonal antibodies and RNA, that could be potentially used for the treatment of central nervous system (CNS) diseases. However, the realization of their potential is being hampered by the extraordinary difficulties these complex biomolecules have to reach the brain in therapeutically meaningful amounts. Nose-to-brain (N-to-B) delivery is now being investigated as a potential option for the direct transport of biomolecules from the nasal cavity to different brain areas. Here, we discuss how different technological approaches enhance this N-to-B transport, with emphasis on those that have shown a potential for clinical translation. We also analyse how the physicochemical properties of nanocarriers and their modification with cell-penetrating peptides (CPPs) and targeting ligands affect their efficacy as N-to-B carriers for biomolecules.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
20
|
El Idrissi A, Alonso ADC. Pathological Human Tau Induces Alterations in the Brain Insulin Signaling Cascade. Front Neurosci 2022; 16:805046. [PMID: 35264925 PMCID: PMC8899662 DOI: 10.3389/fnins.2022.805046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
The process of neurodegeneration in Alzheimer's disease has been associated with a disruption of insulin signaling cascade in neurons, and to insulin resistance. T2DM correlates with Alzheimer's disease, but mechanisms of interaction are unknown. We have developed a mouse model of tau induced neurodegeneration expressing pseudo-phosphorylated tau [Pathological Human Tau (PH-Tau)] in neurons. This model (PH-Tau-Tg) recapitulated cognitive decline and neurodegeneration observed in AD. In this study we examined if expression of PH-Tau could affect neuronal excitability and insulin receptor signaling. Neuronal excitability was investigated using intracerebral recordings of extracellular field potentials from prefrontal cortex after insulin and kainic acid (KA) injection. Analysis of baseline recordings indicated an increased excitability of PH-Tau-Tg as evidenced by higher spectrum densities (PSDs) of high frequencies brain waves. Injection of insulin (1IU, s.c) led to a decrease of fast ripples PSDs, more pronounced in PH-Tau-Tg mice than controls. Subsequent injection of kainic acid (KA, 5 mg/kg, s.c) led to significant increase in firing rate, amplitude of extracellular field potentials and PSDs of high frequency brain waves in control mice only. To further investigate the role of insulin in PH-Tau-Tg mice, we subjected mice to a glucose tolerance test. We found that PH-Tau-Tg mice were significantly hyperglycemic prior to glucose injection. Interestingly, the PH-Tau-Tg mice showed a moderate increase at 30 min due to the higher baseline, indicating a low sensitivity of insulin receptor in these mice. This is consistent with increased levels of activated insulin receptors in the brain and the inhibitory effect of insulin on ictal activity post KA injection in PH-Tau-Tg mice. We suggest that these mice have reduced insulin sensitivity (hyperglycemia) and as a compensatory mechanism there is overactivation/expression of insulin receptor in the brain rendering neuronal circuits resistant to seizure induction after injection of insulin. These data indicate that insulin signal transduction pathway is altered in PH-Tau-Tg mice, and that injection of exogenous insulin reduces hypersynchronous bursting activity of field potentials recorded from cortical neuronal circuits. We propose that the appearance of abnormal tau might potentiate the toxic environment by interfering with the insulin signaling cascade in the brain of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Abdeslem El Idrissi
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, New York, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States,*Correspondence: Abdeslem El Idrissi,
| | - Alejandra del Carmen Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, New York, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States,Alejandra del Carmen Alonso,
| |
Collapse
|
21
|
Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis). PLoS Comput Biol 2021; 17:e1009618. [PMID: 34928939 PMCID: PMC8751982 DOI: 10.1371/journal.pcbi.1009618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
How we interact with our environment largely depends on both the external cues presented by our surroundings and the internal state from within. Internal states are the ever-changing physiological conditions that communicate the immediate survival needs and motivate the animal to behaviorally fulfill them. Satiety level constitutes such a state, and therefore has a dynamic influence on the output behaviors of an animal. In predatory insects like the praying mantis, hunting tactics, grooming, and mating have been shown to change hierarchical organization of behaviors depending on satiety. Here, we analyze behavior sequences of freely hunting praying mantises (Tenodera sinensis) to explore potential differences in sequential patterning of behavior as a correlate of satiety. First, our data supports previous work that showed starved praying mantises were not just more often attentive to prey, but also more often attentive to further prey. This was indicated by the increased time fraction spent in attentive bouts such as prey monitoring, head turns (to track prey), translations (closing the distance to the prey), and more strike attempts. With increasing satiety, praying mantises showed reduced time in these behaviors and exhibited them primarily towards close-proximity prey. Furthermore, our data demonstrates that during states of starvation, the praying mantis exhibits a stereotyped pattern of behavior that is highly motivated by prey capture. As satiety increased, the sequenced behaviors became more variable, indicating a shift away from the necessity of prey capture to more fluid presentations of behavior assembly.
Collapse
|
22
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
23
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
24
|
Medina-Vera D, Navarro JA, Tovar R, Rosell-Valle C, Gutiérrez-Adan A, Ledesma JC, Sanjuan C, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Decara J. Activation of PI3K/Akt Signaling Pathway in Rat Hypothalamus Induced by an Acute Oral Administration of D-Pinitol. Nutrients 2021; 13:2268. [PMID: 34209137 PMCID: PMC8308282 DOI: 10.3390/nu13072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Alfonso Gutiérrez-Adan
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain;
| | - Juan Carlos Ledesma
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain;
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| |
Collapse
|
25
|
Zhao J, Imai R, Ukon N, Shimoyama S, Tan C, Maejima Y, Omiya Y, Takahashi K, Nan G, Zhao S, Ito H, Shimomura K. Evaluation of Effect of Ninjin'yoeito on Regional Brain Glucose Metabolism by 18F-FDG Autoradiography With Insulin Loading in Aged Mice. Front Nutr 2021; 8:657663. [PMID: 34055854 PMCID: PMC8152663 DOI: 10.3389/fnut.2021.657663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: A recent clinical study revealed that Ninjin'yoeito (NYT) may potentially improve cognitive outcome. However, the mechanism by which NYT exerts its effect on elderly patients remains unclear. The aim of this study is to evaluate the effect of Ninjin'yoeito on regional brain glucose metabolism by 18F-FDG autoradiography with insulin loading in aged wild-type mice. Materials and Methods: After 12 weeks of feeding NYT, mice were assigned to the control and insulin-loaded groups and received an intraperitoneal injection of human insulin (2 U/kg body weight) 30 min prior to 18F-FDG injection. Ninety minutes after the injection, brain autoradiography was performed. Results: After insulin loading, the 18F-FDG accumulation showed negative changes in the cortex, striatum, thalamus, and hippocampus in the control group, whereas positive changes were observed in the NYT-treated group. Conclusions: Ninjin'yoeito may potentially reduce insulin resistance in the brain regions in aged mice, thereby preventing age-related brain diseases.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryota Imai
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan.,Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Saki Shimoyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Ibaraki, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Pathophysiology, Basic Medical College of Jilin University, Changchun, China
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
26
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
28
|
Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021; 41:2360-2372. [PMID: 33514676 PMCID: PMC7984597 DOI: 10.1523/jneurosci.3216-18.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission. SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.
Collapse
|
29
|
Głuchowska K, Pliszka M, Szablewski L. Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 2021; 540:8-15. [PMID: 33429199 DOI: 10.1016/j.bbrc.2020.12.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The central nervous system (CNS) plays an important role in the human body. It is involved in the receive, store and participation in information retrieval. It can use several substrates as a source of energy, however, the main source of energy is glucose. Cells of the central nervous system need a continuous supply of energy, therefore, transport of glucose into these cells is very important. There are three distinct families of glucose transporters: sodium-independent glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and uniporter, SWEET protein. In the human brain only GLUTs and SGLTs were detected. In neurodegenerative diseases was observed hypometabolism of glucose due to decreased expression of glucose transporters, in particular GLUT1 and GLUT3. On the other hand, animal studies revealed, that increased levels of these glucose transporters, due to for example by the increased copy number of SLC2A genes, may have a beneficial effect and may be a targeted therapy in the treatment of patients with AD, HD and PD.
Collapse
Affiliation(s)
- Kinga Głuchowska
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Monika Pliszka
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Leszek Szablewski
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
30
|
Kim YJ, Kim SM, Jeong DH, Lee SK, Ahn ME, Ryu OH. Associations between metabolic syndrome and type of dementia: analysis based on the National Health Insurance Service database of Gangwon province in South Korea. Diabetol Metab Syndr 2021; 13:4. [PMID: 33407809 PMCID: PMC7789546 DOI: 10.1186/s13098-020-00620-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome is a cluster of conditions that occur together, increasing the risk of cardiovascular disease. However, the relationship between metabolic syndrome and dementia has remained controversial. Using nationwide population cohort data, we investigated the association between metabolic syndrome and dementia, according to the dementia type. METHODS We analyzed data of 84,144 individuals, in the aged group of more than 60 years, between January 1, 2009, to December 31, 2009, at Gangwon province by using the information of the (Korean) National Health Insurance Service. After eight years of gap, in 2017, we investigated the relationship between metabolic syndrome and dementia. We classified Dementia either as dementia of the Alzheimer type (AD) or vascular dementia (VD). AD and VD were defined as per the criteria of International Classification of Disease, Tenth Revision, Clinical Modification codes. Multiple logistic regression analyses examined the associations between metabolic syndrome or five metabolic syndrome components and dementia. Analyses included factors like age, sex, smoking, alcohol, physical inactivity, previous stroke, and previous cardiac disease. RESULTS Metabolic syndrome was associated with AD (OR = 11.48, 95% CI 9.03-14.59), not with VD. Each of five components of metabolic syndrome were also associated with AD. (high serum triglycerides: OR = 1.87, 95% CI 1.60-2.19; high blood pressure: OR = 1.85, 95% CI 1.55-2.21; high glucose: OR = 1.77, 95% CI 1.52-2.06; abdominal obesity: OR = 1.88, 95% CI 1.57-2.25; low serum high-density lipoprotein cholesterol: OR = 1.91, 95% CI 1.63-2.24) However, among components of metabolic syndrome, only the high glucose level was associated with VD. (OR = 1.26, 95% CI 1.01-1.56) body mass index (BMI), fasting glucose, and smoking were also associated with AD. (BMI: OR = 0.951, 95% CI 0.927-0.975; fasting glucose: OR = 1.003, 95% CI 1.001-1.005; smoking: OR = 1.020, 95% CI 1.003-1.039) A history of the previous stroke was associated with both AD and VD. (AD: OR = 1.827, 95% CI 1.263-2.644; VD: OR 2.775, 95% CI 1.747-4.406) CONCLUSIONS: Metabolic syndrome was associated with AD but not with VD. Patients with metabolic syndrome had an 11.48 times more likeliness to develop AD compared to those without metabolic syndrome. VD was associated only with several risk factors that could affect the vascular state rather than a metabolic syndrome. We suggested that the associations between metabolic syndrome and dementia would vary depending on the type of dementia.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Neurology, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do Republic of Korea
| | - Sang Mi Kim
- Department of Big Data Analytics, Ewha Woman’s University, Seoul, Republic of Korea
| | - Dae Hyun Jeong
- Research Institute for Gangwon, Chuncheon, Gangwon-do Republic of Korea
| | - Sang-Kyu Lee
- Department of Psychiatry, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do Republic of Korea
| | - Moo-Eob Ahn
- Department of Emergency Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do Republic of Korea
| | - Ohk-Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon, Gangwon-do 24253 Republic of Korea
| |
Collapse
|
31
|
Bayne M, Alvarsson A, Devarakonda K, Li R, Jimenez-Gonzalez M, Garibay D, Conner K, Varghese M, Serasinghe MN, Chipuk JE, Hof PR, Stanley SA. Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness. JCI Insight 2020; 5:133488. [PMID: 33148883 PMCID: PMC7710320 DOI: 10.1172/jci.insight.133488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Hypoglycemia is a frequent complication of diabetes, limiting therapy and increasing morbidity and mortality. With recurrent hypoglycemia, the counterregulatory response (CRR) to decreased blood glucose is blunted, resulting in hypoglycemia-associated autonomic failure (HAAF). The mechanisms leading to these blunted effects are only poorly understood. Here, we report, with ISH, IHC, and the tissue-clearing capability of iDISCO+, that growth hormone releasing hormone (GHRH) neurons represent a unique population of arcuate nucleus neurons activated by glucose deprivation in vivo. Repeated glucose deprivation reduces GHRH neuron activation and remodels excitatory and inhibitory inputs to GHRH neurons. We show that low glucose sensing is coupled to GHRH neuron depolarization, decreased ATP production, and mitochondrial fusion. Repeated hypoglycemia attenuates these responses during low glucose. By maintaining mitochondrial length with the small molecule mitochondrial division inhibitor-1, we preserved hypoglycemia sensitivity in vitro and in vivo. Our findings present possible mechanisms for the blunting of the CRR, significantly broaden our understanding of the structure of GHRH neurons, and reveal that mitochondrial dynamics play an important role in HAAF. We conclude that interventions targeting mitochondrial fission in GHRH neurons may offer a new pathway to prevent HAAF in patients with diabetes. GHRH neurons in the arcuate nucleus are activated by glucose deprivation; however, repeated hypoglycemia blunts activation, remodels inputs, and disrupts mitochondrial fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, and
| | - Madhavika N Serasinghe
- Tisch Cancer Institute and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry E Chipuk
- Tisch Cancer Institute and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, and
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute.,Nash Family Department of Neuroscience and Friedman Brain Institute, and
| |
Collapse
|
32
|
Short-term fasting differentially regulates PI3K/AkT/mTOR and ERK signalling in the rat hypothalamus. Mech Ageing Dev 2020; 192:111358. [PMID: 32961167 DOI: 10.1016/j.mad.2020.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022]
Abstract
It is known that insulin secreted by pancreatic β-cells enters the brain by crossing the blood-brain barrier. However, it was demonstrated that insulin expression occurs in various brain regions as well. Albeit the list of insulin actions in the brain is long and it includes control of energy homeostasis, neuronal survival, maintenance of synaptic plasticity and cognition, not much is known about the adaptive significance of insulin synthesis in brain. We previously reported that short-term fasting promotes insulin expression and subsequent activation of insulin receptor in the rat periventricular nucleus. In order to uncover a physiological importance of the fasting-induced insulin expression in hypothalamus, we analyzed the effect of short-term food deprivation on the expression of several participants of PI3K/AKT/mTOR and Ras/MAPK signaling pathways that are typically activated by this hormone. We found that the hypothalamic content of total and activated IRS1, IRS2, PI3K, and mTOR remained unchanged, but phosphorylated AKT1/2/3 was decreased. The levels of activated ERK1/2 were increased after six-hour fasting. Moreover, activated ERK1/2 was co-expressed with activated insulin receptor in the nucleus arcuatus. Our previously published and current findings suggest that the ERK activation in hypothalamus was at least partially initiated by the centrally produced insulin.
Collapse
|
33
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
34
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, Mendenhall MD, Reagan LP, Craven RJ, Thibault O. Elevating Insulin Signaling Using a Constitutively Active Insulin Receptor Increases Glucose Metabolism and Expression of GLUT3 in Hippocampal Neurons. Front Neurosci 2020; 14:668. [PMID: 32733189 PMCID: PMC7358706 DOI: 10.3389/fnins.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRβ show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRβ treatment. Quantification of Western immunoblots show that IRβ is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.
Collapse
Affiliation(s)
- Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gabriel J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
35
|
Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients 2020; 12:nu12051267. [PMID: 32365676 PMCID: PMC7284632 DOI: 10.3390/nu12051267] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Various behavioral and physiological pathways follow a pre-determined, 24 hour cycle known as the circadian rhythm. Metabolic homeostasis is regulated by the circadian rhythm. Time-restricted eating (TRE) is a type of intermittent fasting based on the circadian rhythm. In this study, we aim to analyze systemically the effects of TRE on body weight, body composition, and other metabolic parameters. We reviewed articles from PubMed, EMBASE, and the Cochrane Library to identify clinical trials that compared TRE to a regular diet. We included 19 studies for meta-analysis. Participants following TRE showed significantly reduced body weight (mean difference (MD), -0.90; 95% confidence interval (CI): -1.71 to -0.10) and fat mass (MD: -1.58, 95% CI: -2.64 to -0.51), while preserving fat-free mass (MD, -0.24; 95% CI: -1.15 to 0.67). TRE also showed beneficial effects on cardiometabolic parameters such as blood pressure (systolic BP, MD, -3.07; 95% CI: -5.76 to -0.37), fasting glucose concentration (MD, -2.96; 95% CI, -5.60 to -0.33), and cholesterol profiles (triglycerides, MD: -11.60, 95% CI: -23.30 to -0.27). In conclusion, TRE is a promising therapeutic strategy for controlling weight and improving metabolic dysfunctions in those who are overweight or obese. Further large-scale clinical trials are needed to confirm these findings and the usefulness of TRE.
Collapse
|
36
|
Paiva L, Leng G. Peripheral insulin administration enhances the electrical activity of oxytocin and vasopressin neurones in vivo. J Neuroendocrinol 2020; 32:e12841. [PMID: 32180284 DOI: 10.1111/jne.12841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022]
Abstract
Oxytocin neurones are involved in the regulation of energy balance through diverse central and peripheral actions and, in rats, they are potently activated by gavage of sweet substances. Here, we test the hypothesis that this activation is mediated by the central actions of insulin. We show that, in urethane-anaesthetised rats, oxytocin cells in the supraoptic nucleus show prolonged activation after i.v. injections of insulin, and that this response is greater in fasted rats than in non-fasted rats. Vasopressin cells are also activated, although less consistently. We also show that this activation of oxytocin cells is independent of changes in plasma glucose concentration, and is completely blocked by central (i.c.v.) administration of an insulin receptor antagonist. Finally, we replicate the previously published finding that oxytocin cells are activated by gavage of sweetened condensed milk, and show that this response too is completely blocked by central administration of an insulin receptor antagonist. We conclude that the response of oxytocin cells to gavage of sweetened condensed milk is mediated by the central actions of insulin.
Collapse
Affiliation(s)
- Luis Paiva
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Kleinridders A, Pothos EN. Impact of Brain Insulin Signaling on Dopamine Function, Food Intake, Reward, and Emotional Behavior. Curr Nutr Rep 2020; 8:83-91. [PMID: 31001792 DOI: 10.1007/s13668-019-0276-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Dietary obesity is primarily attributed to an imbalance between food intake and energy expenditure. Adherence to lifestyle interventions reducing weight is typically low. As a result, obesity becomes a chronic state with increased co-morbidities such as insulin resistance and diabetes. We review the effects of brain insulin action and dopaminergic signal transmission on food intake, reward, and mood as well as potential modulations of these systems to counteract the obesity epidemic. RECENT FINDINGS Central insulin and dopamine action are interlinked and impact on food intake, reward, and mood. Brain insulin resistance causes hyperphagia, anxiety, and depressive-like behavior and compromises the dopaminergic system. Such effects can induce reduced compliance to medical treatment. Insulin receptor sensitization and dopamine receptor agonists show attenuation of obesity and improvement of mental health in rodents and humans. Modulating brain insulin and dopamine signaling in obese patients can potentially improve therapeutic outcomes.
Collapse
Affiliation(s)
- André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764, Neuherberg, Germany.
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
38
|
Sun C, Tang K, Wu J, Xu H, Zhang W, Cao T, Zhou Y, Yu T, Li A. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb. Acta Physiol (Oxf) 2019; 227:e13319. [PMID: 31144469 DOI: 10.1111/apha.13319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
AIM Leptin is an important peptide hormone that regulates food intake and plays a crucial role in modulating olfactory function. Although a few previous studies have investigated the effect of leptin on odor perception and discrimination in rodents, research on the neural basis underlying the behavioral changes is lacking. Here we study how leptin affects behavioral performance during a go/no-go task and how it modulates neural activity of mitral/tufted cells in the olfactory bulb, which plays an important role in odor information processing and representation. METHODS A go/no-go odor discrimination task was used in the behavioral test. For in vivo studies, single unit recordings, local field potential recordings and fiber photometry recordings were used. For in vitro studies, we performed patch clamp recordings in the slice of the olfactory bulb. RESULTS Behaviorally, leptin affects performance and reaction time in a difficult odor-discrimination task. Leptin decreases the spontaneous firing of single mitral/tufted cells, decreases the odor-evoked beta and high gamma local field potential response, and has bidirectional effects on the odor-evoked responses of single mitral/tufted cells. Leptin also inhibits the population calcium activity in genetically identified mitral/tufted cells and granule cells. Furthermore, in vitro slice recordings reveal that leptin inhibits mitral cell activity through direct modulation of the voltage-sensitive potassium channel. CONCLUSIONS The behavioral reduction in odor discrimination observed after leptin administration is likely due to decreased neural activity in mitral/tufted cells, caused by modulation of potassium channels in these cells.
Collapse
Affiliation(s)
- Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Keke Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Han Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yang Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- The Affiliated Changzhou NO.2 People's Hospital with Nanjing Medical University Changzhou China
| | - Tian Yu
- Department of Cell and Developmental Biology University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
39
|
Morita-Takemura S, Wanaka A. Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem Int 2019; 128:135-142. [DOI: 10.1016/j.neuint.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
|
40
|
Mazucanti CH, Kawamoto EM, Mattson MP, Scavone C, Camandola S. Activity-dependent neuronal Klotho enhances astrocytic aerobic glycolysis. J Cereb Blood Flow Metab 2019; 39:1544-1556. [PMID: 29493420 PMCID: PMC6681535 DOI: 10.1177/0271678x18762700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the β-glucuronidase protein α-Klotho have been associated with premature aging, and altered cognitive function. Although highly expressed in specific areas of the brain, Klotho functions in the central nervous system remain unknown. Here, we show that cultured hippocampal neurons respond to insulin and glutamate stimulation by elevating Klotho protein levels. Conversely, AMPA and NMDA antagonism suppress neuronal Klotho expression. We also provide evidence that soluble Klotho enhances astrocytic aerobic glycolysis by hindering pyruvate metabolism through the mitochondria, and stimulating its processing by lactate dehydrogenase. Pharmacological inhibition of FGFR1, Erk phosphorylation, and monocarboxylic acid transporters prevents Klotho-induced lactate release from astrocytes. Taken together, these data suggest Klotho is a potential new player in the metabolic coupling between neurons and astrocytes. Neuronal glutamatergic activity and insulin modulation elicit Klotho release, which in turn stimulates astrocytic lactate formation and release. Lactate can then be used by neurons and other cells types as a metabolic substrate.
Collapse
Affiliation(s)
- Caio H Mazucanti
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa M Kawamoto
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mark P Mattson
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,3 Department of Neurosciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristoforo Scavone
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simonetta Camandola
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
41
|
Jeong JK, Horwath JA, Simonyan H, Blackmore KA, Butler SD, Young CN. Subfornical organ insulin receptors tonically modulate cardiovascular and metabolic function. Physiol Genomics 2019; 51:333-341. [PMID: 31172876 DOI: 10.1152/physiolgenomics.00021.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin acts within the central nervous system through the insulin receptor to influence both metabolic and cardiovascular physiology. While a major focus has been placed on hypothalamic regions, participation of extrahypothalamic insulin receptors in cardiometabolic regulation remains largely unknown. We hypothesized that insulin receptors in the subfornical organ (SFO), a forebrain circumventricular region devoid of a blood-brain barrier, are involved in metabolic and cardiovascular regulation. Immunohistochemistry in mice revealed widespread insulin receptor-positive cells throughout the rostral to caudal extent of the SFO. SFO-targeted adenoviral delivery of Cre-recombinase in insulin receptorlox/lox mice resulted in sufficient ablation of insulin receptors in the SFO. Interestingly, when mice were maintained on a normal chow diet, deletion of SFO insulin receptors resulted in greater weight gain and adiposity, relative to controls, independently of changes in food intake. In line with this, ablation of insulin receptors in the SFO was associated with marked hepatic steatosis and hypertriglyceridemia. Selective removal of SFO insulin receptors also resulted in a lower mean arterial blood pressure, which was primarily due to a reduction in diastolic blood pressure, whereas systolic blood pressure remained unchanged. Cre-mediated targeting of SFO insulin receptors did not influence heart rate. These data demonstrate multidirectional roles for insulin receptor signaling in the SFO, with ablation of SFO insulin receptors resulting in an overall deleterious metabolic state while at the same time maintaining blood pressure at low levels. These novel findings further suggest that alterations in insulin receptor signaling in the SFO could contribute to metabolic syndrome phenotypes.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Julie A Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Katherine A Blackmore
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Scott D Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
42
|
Rhea EM, Banks WA. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Front Neurosci 2019; 13:521. [PMID: 31213970 PMCID: PMC6558081 DOI: 10.3389/fnins.2019.00521] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) mediates the communication between the periphery and the central nervous system (CNS). Recently, CNS insulin resistance has been elucidated to play a role in neurodegenerative disease. This has stimulated a wealth of information on the molecular impact of insulin in the brain, particularly in the improvement of cognition. Since the BBB regulates the transport of insulin into the brain and thus, helps to regulate CNS levels, alterations in the BBB response to insulin could impact CNS insulin resistance. In this review, we summarize the effect of insulin on some of the cell types that make up the BBB, including endothelial cells, neurons, astrocytes, and pericytes. We broadly discuss how these changes in specific cell types could ultimately impact the BBB. We also summarize how insulin can regulate levels of the pathological hallmarks of Alzheimer's disease, including amyloid beta (Aβ) and tau within each cell type. Finally, we suggest interventional approaches to overcome detrimental effects on the BBB in regards to changes in insulin transport.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Carvalho C, Cardoso SM, Correia SC, Moreira PI. Tortuous Paths of Insulin Signaling and Mitochondria in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:161-183. [PMID: 31062330 DOI: 10.1007/978-981-13-3540-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the exponential growth of aging population worldwide, neurodegenerative diseases became a major public health concern. Among them, Alzheimer's disease (AD) prevails as the most common in the elderly, rendering it a research priority. After several decades considering the brain as an insulin-insensitive organ, recent advances proved a central role for this hormone in learning and memory processes and showed that AD shares a high number of features with systemic conditions characterized by insulin resistance. Mitochondrial dysfunction has also been widely demonstrated to play a major role in AD development supporting the idea that this neurodegenerative disease is characterized by a pronounced metabolic dysregulation. This chapter is intended to discuss evidence demonstrating the key role of insulin signaling and mitochondrial anomalies in AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
45
|
Sposato V, Canu N, Fico E, Fusco S, Bolasco G, Ciotti MT, Spinelli M, Mercanti D, Grassi C, Triaca V, Calissano P. The Medial Septum Is Insulin Resistant in the AD Presymptomatic Phase: Rescue by Nerve Growth Factor-Driven IRS 1 Activation. Mol Neurobiol 2019; 56:535-552. [PMID: 29736736 PMCID: PMC6334735 DOI: 10.1007/s12035-018-1038-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.
Collapse
Affiliation(s)
- Valentina Sposato
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Nadia Canu
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of System Medicine, Section of Physiology, University of Rome “TorVergata”, Rome, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Monterotondo Outstation, Rome, Italy
| | - Maria Teresa Ciotti
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delio Mercanti
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Viviana Triaca
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| |
Collapse
|
46
|
Fan LW, Carter K, Bhatt A, Pang Y. Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 2019; 14:1046-1051. [PMID: 30762017 PMCID: PMC6404510 DOI: 10.4103/1673-5374.250624] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We previously reported that intranasal insulin protects substantia nigra dopaminergic neurons against 6-hydroxydopamine neurotoxicity in rats. This study aimed to assess insulin pharmacokinetics in the rat brain following intranasal application. Recombinant human insulin (rh-Ins) or phosphate buffer solution was administered to both nostrils of rats. Animals were sacrificed at 15 minutes, 1, 2, and 6 hours to determine insulin levels in different brain regions by an ultrasensitive, human-specific enzyme-linked immunosorbent assay kit. For fluorescence tracing study, rats were administered with intranasal florescence-tagged insulin (Alex546-Ins), and brains were fixed at 10 and 30 minutes to prepare sagittal sections. rh-Ins was detected in all brain regions examined except the cerebral cortex. The highest levels were detected in the brainstem, followed by the cerebellum, substantia nigra/ventral tegmental area, olfactory bulb, striatum, hippocampus, and thalamus/hypothalamus. Insulin levels reached a peak at 15 minutes and then declined gradually overtime, but remained significantly higher than baseline levels at 6 hours in most regions. Consistently, widespread Alex546-Ins-binding cells were detected in the brain at 10 and 30 minutes, with the olfactory bulb and brainstem showing the highest while the cerebral cortex showing lowest fluorescence signals. Double-immunostaining showed that Alex546-Ins-bindings were primarily co-localized with neuronal nuclei-positive neurons. In the subtantia nigra, phospho-Akt was found to be activated in a subset of Alex546-Ins and tyrosine hydroxylase double-labeled cells, suggesting activation of the Akt/PI3K pathway in these dopaminergic neurons. Data from this study suggest that intranasal insulin could effectively reach deep brain structures including the nigrostriatal pathways, where it binds to dopaminergic neurons and activates intracellular cell survival signaling. This study was approved by the Institutional Animal Care Committee at the University of Mississippi Medical Center (protocol 1333A) on June 29, 2015.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
47
|
Dakic T, Jevdjovic T, Lakic I, Djurasevic SF, Djordjevic J, Vujovic P. Food For Thought: Short-Term Fasting Upregulates Glucose Transporters in Neurons and Endothelial Cells, But Not in Astrocytes. Neurochem Res 2018; 44:388-399. [PMID: 30460639 DOI: 10.1007/s11064-018-2685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Our group previously reported that 6-h fasting increased both insulin II mRNA expression and insulin level in rat hypothalamus. Given that insulin effects on central glucose metabolism are insufficiently understood, we wanted to examine if the centrally produced insulin affects expression and/or regional distribution of glucose transporters, and glycogen stores in the hypothalamus during short-term fasting. In addition to determining the amount of total and activated insulin receptor, glucose transporters, and glycogen, we also studied distribution of insulin receptors and glucose transporters within the hypothalamus. We found that short-term fasting did not affect the astrocytic 45 kDa GLUT1 isoform, but it significantly increased the amount of endothelial 55 kDa GLUT1, and neuronal GLUT3 in the membrane fractions of hypothalamic proteins. The level of GLUT2 whose presence was detected in neurons, ependymocytes and tanycytes was also elevated. Unlike hepatic glycogen which was decreased, hypothalamic glycogen content was not changed after 6-h fasting. Our findings suggest that neurons may be given a priority over astrocytes in terms of glucose supply even during the initial phase of metabolic response to fasting. Namely, increase in glucose influx into the brain extracellular fluid and neurons by increasing the translocation of GLUT1, and GLUT3 in the cell membrane may represent the first line of defense in times of scarcity. The absence of co-localization of these membrane transporters with the activated insulin receptor suggests this process takes place in an insulin-independent manner.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sinisa F Djurasevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Al Koborssy D, Palouzier-Paulignan B, Canova V, Thevenet M, Fadool DA, Julliard AK. Modulation of olfactory-driven behavior by metabolic signals: role of the piriform cortex. Brain Struct Funct 2018; 224:315-336. [PMID: 30317390 DOI: 10.1007/s00429-018-1776-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Olfaction is one of the major sensory modalities that regulates food consumption and is in turn regulated by the feeding state. Given that the olfactory bulb has been shown to be a metabolic sensor, we explored whether the anterior piriform cortex (aPCtx)-a higher olfactory cortical processing area-had the same capacity. Using immunocytochemical approaches, we report the localization of Kv1.3 channel, glucose transporter type 4, and the insulin receptor in the lateral olfactory tract and Layers II and III of the aPCtx. In current-clamped superficial pyramidal (SP) cells, we report the presence of two populations of SP cells: glucose responsive and non-glucose responsive. Using varied glucose concentrations and a glycolysis inhibitor, we found that insulin modulation of the instantaneous and spike firing frequency are both glucose dependent and require glucose metabolism. Using a plethysmograph to record sniffing frequency, rats microinjected with insulin failed to discriminate ratiometric enantiomers; considered a difficult task. Microinjection of glucose prevented discrimination of odorants of different chain-lengths, whereas injection of margatoxin increased the rate of habituation to repeated odor stimulation and enhanced discrimination. These data suggest that metabolic signaling pathways that are present in the aPCtx are capable of neuronal modulation and changing complex olfactory behaviors in higher olfactory centers.
Collapse
Affiliation(s)
- Dolly Al Koborssy
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Vincent Canova
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Marc Thevenet
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Andrée Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France.
| |
Collapse
|
49
|
Lázár BA, Jancsó G, Pálvölgyi L, Dobos I, Nagy I, Sántha P. Insulin Confers Differing Effects on Neurite Outgrowth in Separate Populations of Cultured Dorsal Root Ganglion Neurons: The Role of the Insulin Receptor. Front Neurosci 2018; 12:732. [PMID: 30364236 PMCID: PMC6191510 DOI: 10.3389/fnins.2018.00732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Apart from its pivotal role in the regulation of carbohydrate metabolism, insulin exerts important neurotrophic and neuromodulator effects on dorsal root ganglion (DRG) neurons. The neurite outgrowth-promoting effect is one of the salient features of insulin's action on cultured DRG neurons. Although it has been established that a significant population of DRG neurons express the insulin receptor (InsR), the significance of InsR expression and the chemical phenotype of DRG neurons in relation to the neurite outgrowth-promoting effect of insulin has not been studied. Therefore, in this study by using immunohistochemical and quantitative stereological methods we evaluated the effect of insulin on neurite outgrowth of DRG neurons of different chemical phenotypes which express or lack the InsR. Insulin, at a concentration of 10 nM, significantly increased total neurite length, the length of the longest neurite and the number of branch points of cultured DRG neurons as compared to neurons cultured in control medium or in the presence of 1 μM insulin. In both the control and the insulin exposed cultures, ∼43% of neurons displayed InsR-immunoreactivity. The proportions of transient receptor potential vanilloid type 1 receptor (TRPV1)-immunoreactive (IR), calcitonin gene-related peptide (CGRP)-IR and Bandeiraea simplicifolia isolectin B4 (IB4)-binding neurons amounted to ∼61%, ∼57%, and ∼31% of DRG neurons IR for the InsR. Of the IB4-positive population only neurons expressing the InsR were responsive to insulin. In contrast, TRPV1-IR nociceptive and CGRP-IR peptidergic neurons showed increased tendency for neurite outgrowth which was further enhanced by insulin. However, the responsiveness of DRG neurons expressing the InsR was superior to populations of DRG neurons which lack this receptor. The findings also revealed that besides the expression of the InsR, inherent properties of peptidergic, but not non-peptidergic nociceptive neurons may also significantly contribute to the mechanisms of neurite outgrowth of DRG neurons. These observations suggest distinct regenerative propensity for differing populations of DRG neurons which is significantly affected through insulin receptor signaling.
Collapse
Affiliation(s)
- Bence András Lázár
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Laura Pálvölgyi
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Ildikó Dobos
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - István Nagy
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Péter Sántha
- Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
50
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|