1
|
Affolter VK. Cytotoxic dermatitis: Review of the interface dermatitis pattern in veterinary skin diseases. Vet Pathol 2023; 60:770-782. [PMID: 37650259 DOI: 10.1177/03009858231195080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Interface dermatitis or lichenoid interface dermatitis refers to a cutaneous inflammatory pattern in which keratinocyte cell death is the essential feature. These terms have evolved from the originally described lichenoid tissue reaction. These lesions are the basis for an important group of skin diseases in animals and people where cytotoxic T-cell-mediated epidermal damage is a major pathomechanism. Yet, for largely historical reasons these commonly used morphological diagnostic terms do not reflect the essential nature of the lesion. An emphasis on subsidiary lesions, such as the presence of a lichenoid band, and definitions based on anatomical features, such as location at the dermo-epidermal location, may cause confusion and even misdiagnosis. This review covers historical aspects of the terminology, including the origin of terms such as "lichenoid." The types of cell death involved and the histopathologic lesions are described. Etiopathogenesis is discussed in terms of aberrations of immune/inflammatory mechanisms focusing on cutaneous lupus erythematosus, erythema multiforme, and Stevens-Johnson syndrome/toxic epidermal necrolysis. Mechanisms have most extensively been studied in humans and laboratory animals and the discussion is centered on these species. As interface dermatitis is firmly entrenched in dermatological parlance, rather than using "cytotoxic" as its substitute, the terminologies "interface cytotoxic dermatitis" and "panepidermal cytotoxic dermatitis" are recommended, based on location and extent of epithelium affected.
Collapse
|
2
|
Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens 2023; 12:pathogens12020220. [PMID: 36839492 PMCID: PMC9963182 DOI: 10.3390/pathogens12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus-vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus-vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus-vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape.
Collapse
|
3
|
Hegazy AM, Chen N, Lin H, Babu V S, Li F, Yang Y, Qin Z, Shi F, Li J, Lin L. Induction of apoptosis in SSN-1cells by Snakehead Fish Vesiculovirus (SHVV) via Matrix protein dependent intrinsic pathway. FISH & SHELLFISH IMMUNOLOGY 2021; 113:24-34. [PMID: 33757800 DOI: 10.1016/j.fsi.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
An increasing important area in immunology is the process cell death mechanism, enabling the immune system triggered thru extrinsic or intrinsic signals to effectively remove unwanted or virus infected cells called apoptosis. A recently isolated infectious Snakehead fish vesiculovirus (SHVV), comprising negative strand RNA and encoded viral matrix (M) proteins, is responsible for causing cytopathic effects in infected fish cells. However, the mechanism by which viral M protein mediates apoptosis has not been elucidated. Therefore, in the present experiments, it was investigated the regulatory potential of apoptosis signals during SHVV infection. By employing the model of SHVV infection in SSN-1 cells, the accelerated apoptosis pathway involves an intrinsic pathway requiring the activation of caspase-9 but not caspase-3 or -8. In the groups of infection (SHVV) or treatment (hydrogen peroxide) were induced apoptotic morphological changes and indicated the activation of the main caspases, i.e.; executioner caspase-3, initiators caspase-8 and caspase-9 using colorimetric assays. Turning to the role of viral M protein when it was overexpressed in SSN-1 cells, it was indicated that the viral M gene alone has the ability to induce apoptosis. To elucidate the mechanism of apoptosis in SSN-1 cells, the activation inhibitors of main caspases were used showing that inhibiting of caspase-3 or caspase-8 activation did not seize induction of apoptosis in virus-infected SSN-1 cells. However, the inhibiting of caspase-9 activation reduced significantly the apoptosis initiation process and sharply the expression of viral M gene, suggesting that SHVV plays a major role in the early induction of apoptosis by caspase-9. Interestingly, there were also differences in the mitochondrial membrane potential after the apoptotic induction of caspases, which confirm that caspase-9 is primarily responsible for the cleavage of caspases during apoptosis. Taken together, these findings can therefore be assumed that viral M protein induces apoptosis via the intrinsic apoptotic pathway in SHVV infecting SSN-1 cells.
Collapse
Affiliation(s)
- Abeer M Hegazy
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Central Laboratory of Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzuo Lin
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, V6T1W9, Canada
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Feng Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Youcheng Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
4
|
Wang JY, Zhang H, Siemann E, Fan NN, Ji XY, Chen YJ, Jiang JX, Wan NF. Plants impact cellular immunity of caterpillars to an entomovirus. PEST MANAGEMENT SCIENCE 2021; 77:2415-2424. [PMID: 33432688 DOI: 10.1002/ps.6270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tri-trophic interactions among plants, insect herbivores and entomopathogens are one of the hot topics in ecology. Although plants have been shown to impact the interactions between herbivores and entomopathogens, it is still unclear how plants affect the cellular immunity of herbivores to entomopathogens. RESULTS The number of hemocytes and the proportion of two main cell types (granular hemocytes and plasmatocytes), plasmatocyte-spreading rate, apoptosis rate, two Spodoptera exigua caspase (SeCasp-1, SeCasp-5) activities and gene expressions were all higher and the activities and gene expression of S. exigua inhibitor of apoptosis protein (SeIAP) were lower in nucleopolyhedrovirus (NPV)-infected caterpillars fed Ipomoea aquatica than those fed other plants or artificial diet. Scanning electron microscopy images were consistent with molecular patterns of immune responses. CONCLUSION This study suggests that host plants affect the immune responses of herbivores to entomopathogens by manipulating the composition, morphology and apoptosis of herbivore hemocytes, which sheds light on the mechanisms that allow host plants to influence multi-trophic interactions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Hao Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Neng-Neng Fan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Yi-Juan Chen
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Nian-Feng Wan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| |
Collapse
|
5
|
Song H, Guo X, Sun L, Wang Q, Han F, Wang H, Wray GA, Davidson P, Wang Q, Hu Z, Zhou C, Yu Z, Yang M, Feng J, Shi P, Zhou Y, Zhang L, Zhang T. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol 2021; 19:15. [PMID: 33487168 PMCID: PMC7831173 DOI: 10.1186/s12915-020-00943-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. RESULTS Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. CONCLUSIONS Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.
Collapse
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, USA
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianghui Wang
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Fengming Han
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Haiyan Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Qing Wang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenglin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Meijie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ahn D, Prince A. Participation of Necroptosis in the Host Response to Acute Bacterial Pneumonia. J Innate Immun 2017; 9:262-270. [PMID: 28125817 PMCID: PMC5413418 DOI: 10.1159/000455100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus, as well as the host-adapted pathogens responsible for health care-associated pneumonias, such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcecsens, are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages, and, in so doing, contribute to host pathology through the loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and the eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore-forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are coregulated in the response to specific pulmonary pathogens remains a topic of active investigation, and it may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Tsalenchuck Y, Steiner I, Panet A. Innate defense mechanisms against HSV-1 infection in the target tissues, skin and brain. J Neurovirol 2016; 22:641-649. [PMID: 27098517 DOI: 10.1007/s13365-016-0440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initiates productive infection in mucocutaneous tissues to cause cold sores and establishes latent infection in the trigeminal ganglia. Under certain circumstances, HSV-1 may cause encephalitis. Here, we compared host innate defenses against HSV-1 in the two clinically relevant tissues, skin and brain, using a unique ex vivo system of organ culture. Upon HSV-1 infection and spread, apoptosis induction was observed in the skin, but not in brain tissues. While the two tissues elicited interferon (IFN-β) response upon HSV1 infection, IFN induction was more robust in the skin compared to the brain. Moreover, antiviral response to exogenous IFNβ treatment was much stronger in the skin compared to brain tissues. This observation was not related to the availability of the IFN receptor on cells' surface. Taken together, our study demonstrates differential innate antiviral responses to HSV-1 infection that may be exploited in future development of selective and tissue-specific anti-viral treatments.
Collapse
Affiliation(s)
- Yael Tsalenchuck
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
8
|
Chhabra R, Chantrey J, Ganapathy K. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens. Viral Immunol 2015; 28:478-88. [PMID: 26301315 DOI: 10.1089/vim.2015.0027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infectious bronchitis (IB) is an acute and highly contagious chicken viral disease, causing severe economic losses to poultry producers worldwide. In the last few decades, infectious bronchitis virus (IBV) has been extensively studied, but knowledge of immune responses to virulent or vaccine strains of IBVs remains limited. This review focuses on fundamental aspects of immune responses against IBV, including the role of pattern recognition receptors (PRRs) in identification of conserved viral structures and the role of different components of innate immunity (e.g., heterophils, macrophages, dendritic cells, acute phase protein, and cytokines). Studies on adaptive immune activation and the role of humoral and cellular immunity in IBV clearance are also reviewed. Multiple interlinking immune responses are essential for protection against virulent IBVs, including passive, innate, adaptive, and effector T cells active at mucosal surfaces. Although the development of approaches for chicken transcriptome and proteome analyses have greatly helped the understanding of the underlying genetic mechanisms for immunity, there are still major knowledge gaps, such as the role of mucosal and cellular responses to IBVs. In view of recent reports of emergent IBV variants in many countries, there is renewed interest in a more complete understanding of poultry immune responses to both virulent and vaccine strains of IBVs. This will be critical for developing new vaccine or vaccination strategies and other intervention programs.
Collapse
Affiliation(s)
- Rajesh Chhabra
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom .,2 College Central Laboratory, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS) , Hisar, India
| | - Julian Chantrey
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| | - Kannan Ganapathy
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| |
Collapse
|
9
|
Liu B, Behura SK, Clem RJ, Schneemann A, Becnel J, Severson DW, Zhou L. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog 2013; 9:e1003137. [PMID: 23408884 PMCID: PMC3567152 DOI: 10.1371/journal.ppat.1003137] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress–responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection. Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling arthropod susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. Although it was postulated that apoptosis (a genetically controlled form of cellular suicide) may play a very important role in insect innate immunity against viral infection, direct evidence has been lacking due to the lack of knowledge on the regulatory pathways responsible for the induction of apoptosis following viral infection. In this study, we found that there is a rapid induction of pro-apoptotic genes within 1–3 hours of exposure to virus. This rapid pro-apoptotic response was only observed in live animals but not in cultured cells. Genetic analysis indicated that animals lacking this rapid pro-apoptotic response were hypersensitive to viral infection. Thus our work provides unequivocal evidence indicating that rapid induction of apoptosis plays a very important role in mediating insect resistance to viral infection.
Collapse
Affiliation(s)
- Bo Liu
- Department of Molecular Genetics and Microbiology & UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Susanta K. Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Anette Schneemann
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Becnel
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, Florida, United States of America
| | - David W. Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology & UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Expression analysis of lipopolysaccharide-and/or concanavalin A/phorbol myristate acetate-stimulated black rockfish peripheral blood leukocytes using a cDNA microarray to identify up-regulated genes. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 2011; 5:e1385. [PMID: 22102922 PMCID: PMC3216916 DOI: 10.1371/journal.pntd.0001385] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/20/2011] [Indexed: 11/25/2022] Open
Abstract
Background The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. Methods and Results To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Conclusions Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes. Dengue virus is primarily transmitted by Aedes aegypti mosquitoes. Control of the vector mosquito is the major practice to prevent dengue. However, it is not well known how the virus can infect some mosquito strains but fail to do so with other refractory strains. To address that question, we conducted whole genome microarray based gene expression studies between susceptible and refractory strains of A. aegypti to identify gene expression patterns following challenge with dengue virus. Our analysis of the early infection periods reveals that a large number of genes are involved in a highly coordinated manner either to host or defend against the virus. Genes responding to dengue infection were clustered in seven expression modules. Genes associated with susceptibility to infection were largely clustered in one expression module, while those associated with refractoriness were distributed in four distinct modules. A common core set of genes expressed in both susceptible and refractory individuals were clustered in two expression modules. We identified genes and specific pathways that potentially regulate compatible or non-compatible interactions between dengue virus and the mosquito, most notably energy metabolism and DNA replication in the susceptible response in contrast to cell growth and death in the refractory response.
Collapse
|
12
|
Bulat N, Widmann C. Caspase substrates and neurodegenerative diseases. Brain Res Bull 2009; 80:251-67. [DOI: 10.1016/j.brainresbull.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 02/08/2023]
|
13
|
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects alveolar macrophages following aerosol transmission. Lung macrophages provide a critical intracellular niche that is required for Mtb to establish infection in the human host. This parasitic relationship is made possible by the capacity of Mtb to block phagosome maturation following entry into the host macrophage, creating an environment that supports bacillary replication. Apoptosis is increasingly understood to play a role in host defense against intracellular pathogens including viruses, fungi, protozoa and bacteria. In the last 15 years an understanding of the role that macrophage apoptosis plays in TB has begun to emerge. Here we review the history and current state of the art of this topic and we offer a model of the macrophage-pathogen interaction that takes into the account the complexities of programmed cell death and the relationship between various death signaling pathways and host defense in TB.
Collapse
Affiliation(s)
- Jinhee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michelle Hartman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hardy Kornfeld
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
14
|
Lee SH, Kim YK, Kim CS, Seol SK, Kim J, Cho S, Song YL, Bartenschlager R, Jang SK. E2 of hepatitis C virus inhibits apoptosis. THE JOURNAL OF IMMUNOLOGY 2006; 175:8226-35. [PMID: 16339562 DOI: 10.4049/jimmunol.175.12.8226] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is the major causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and can be involved in very long chronic infections up to 30 years or more. Therefore, it has been speculated that HCV possesses mechanisms capable of modulating host defense systems such as innate and adaptive immunity. To investigate this virus-host interaction, we generated HCV replicons containing various HCV structural proteins and then analyzed the sensitivity of replicon-containing cells to the apoptosis-inducing agent, TRAIL. TRAIL-induced apoptosis was monitored by cleavage of procaspase-3 and procaspase-9 as well as that of their substrate poly(ADP-ribose) polymerase. TRAIL-induced apoptosis was inhibited in cells expressing HCV E2. Moreover, expression of HCV E2 enhanced the colony forming efficiency of replicon-containing cells by 25-fold. Blockage of apoptosis by E2 seems to be related to inhibition of TRAIL-induced cytochrome c release from the mitochondria. Based on these results, we propose that E2 augments persistent HCV infection by blocking host-induced apoptosis of infected cells.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burnham DK, Keall SN, Nelson NJ, Daugherty CH. T cell function in tuatara (Sphenodon punctatus). Comp Immunol Microbiol Infect Dis 2005; 28:213-22. [PMID: 15857660 DOI: 10.1016/j.cimid.2005.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2005] [Indexed: 11/21/2022]
Abstract
Tuatara are the sole survivors of an entire order of reptiles that thrived during the age of the dinosaurs. Therefore, knowledge of their physiology is critical to understanding the phylogeny of reptiles. Previous studies of the immune system of the tuatara did not assess T cell function. We analyzed T cell function among six captive tuatara by assessing concanavalin A (Con A), phytohemagglutinin (PHA) and mixed lymphocyte reaction (MLR) induced T cell proliferation. Peripheral blood mononuclear cells from six out of six and four out of four tuatara tested exhibited significant proliferative responses to Con A and PHA, respectively, as measured by an MTT reduction assay. A lower level of proliferation was detected in an MLR. However, Con A activated lymphocytes were not cytotoxic for a xenogeneic murine mastocytoma cell line (P815).
Collapse
Affiliation(s)
- D Kim Burnham
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | |
Collapse
|
16
|
Girard YA, Popov V, Wen J, Han V, Higgs S. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:429-44. [PMID: 15962797 DOI: 10.1093/jmedent/42.3.429] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ultrastructural features of West Nile virus (WNV) replication and dissemination in orally infected Culex pipiens quinquefasciatus Say were analyzed over a 25-d infection period. To investigate the effects of virus replication on membrane induction, cellular organization, and cell viability in midgut and salivary gland tissues, midguts were dissected on days 3, 7, 14, and 21, and salivary glands were collected on days 7, 14, 21, and 25 postinfection (d.p.i.) for examination by transmission electron microscopy (TEM). Whole mosquito heads were embedded for TEM analysis 14 d.p.i. to localize WNV particles and to investigate the effects of replication on nervous tissues of the brain. Membrane proliferation was induced by WNV in the midgut epithelium, midgut muscles, and salivary glands, although extensive endoplasmic reticulum swelling was a unique feature of salivary gland infection. TEM revealed WNV-induced pathology in salivary glands at 14, 21, and 25 d.p.i., and we hypothesize that long-term virus infection of this tissue results in severe cellular degeneration and apoptotic-like cell death. This finding indicates that the efficiency of WNV transmission may decrease with mosquito age postinfection.
Collapse
Affiliation(s)
- Yvette A Girard
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
17
|
Spira A, Carroll JD, Liu G, Aziz Z, Shah V, Kornfeld H, Keane J. Apoptosis genes in human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis: a pivotal role for tumor necrosis factor. Am J Respir Cell Mol Biol 2003; 29:545-51. [PMID: 12748057 DOI: 10.1165/rcmb.2002-0310oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha-dependent apoptosis of alveolar macrophages (AM) after infection with avirulent Mycobacterium tuberculosis (Mtb) results in bacillary death and the destruction of a growth niche for the pathogen. This response is minimized after infection with virulent strains of Mtb. To study the genetic control of Mtb-induced apoptosis, we used microarrays to interrogate the expression profile of infected human AM. Although we found variation in gene expression between different donors of AM, a set of genes were constant for each condition. A group of proapoptotic genes were downregulated after infection by virulent Mtb strain H37Rv, whereas infection with avirulent Mtb H37Ra led to a gene expression profile that would favor macrophage apoptosis. Neutralizing TNF in macrophage cultures infected with H37Ra changed the gene expression profile to one that resembled the profile of macrophages infected with H37Rv. These data reveal that apoptosis-related genes are regulated differently by virulent or attenuated Mtb strains, and are consistent with the hypothesis that virulent Mtb interfere with TNF death signaling. Given the importance of TNF in host defense against tuberculosis, the ability to repress the expression of genes activated by TNF may constitute a bacillary virulence mechanism.
Collapse
Affiliation(s)
- Avrum Spira
- St. James's Hospital, James's St., Dublin 3, Ireland
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- C Jungwirth
- Institute for Virology and Immunobiology, University of Würzburg, D-97078 Würzburg, Germany
| |
Collapse
|
19
|
Ameisen JC, Pleskoff O, Lelièvre JD, De Bels F. Subversion of cell survival and cell death: viruses as enemies, tools, teachers and allies. Cell Death Differ 2003; 10 Suppl 1:S3-6. [PMID: 12655336 DOI: 10.1038/sj.cdd.4401117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| | | | | | | |
Collapse
|
20
|
Abstract
All known apoptosis modulators in poxviruses have been shown to function as inhibitors. The mechanistic classes of these poxvirus-encoded inhibitors are quite diverse, and indicate that a wide variety of distinct host proteins in cellular apoptotic pathways have been targeted for inhibition by individual poxviruses.
Collapse
Affiliation(s)
- Helen Everett
- Department of Biochemistry, University of Alberta, 4-63 Medical Sciences Building, Edmonton, T6G 2H7, Alberta, Canada.
| | | |
Collapse
|
21
|
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367-93. [PMID: 11965491 DOI: 10.1038/sj.cdd.4400950] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.
Collapse
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| |
Collapse
|
22
|
|
23
|
Bellows DS, Howell M, Pearson C, Hazlewood SA, Hardwick JM. Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol 2002; 76:2469-79. [PMID: 11836425 PMCID: PMC153809 DOI: 10.1128/jvi.76.5.2469-2479.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular BCL-2 family proteins can inhibit or induce programmed cell death in part by counteracting the activity of other BCL-2 family members. All sequenced gammaherpesviruses encode a BCL-2 homologue that potently inhibits apoptosis and apparently escapes some of the regulatory mechanisms that govern the functions of their cellular counterparts. Examples of these protective proteins include BHRF1 of Epstein-Barr virus (EBV) and KSBcl-2 of Kaposi's sarcoma-associated herpesvirus, also known as human herpesvirus 8. The gamma-1 subgroup of these viruses, such as EBV, encodes a second BCL-2 homologue. We have now found that this second BCL-2 homologue encoded by EBV, BALF1, inhibits the antiapoptotic activity of EBV BHRF1 and of KSBcl-2 in several transfected cell lines. However, BALF1 failed to inhibit the cellular BCL-2 family member, BCL-x(L). Thus, BALF1 acts as a negative regulator of the survival function of BHRF1, similar to the counterbalance observed between cellular BCL-2 family members. Unlike the cellular BCL-2 family antagonists, BALF1 lacked proapoptotic activity and could not be converted into a proapoptotic factor in a manner similar to cellular BCL-2 proteins by caspase cleavage or truncation of the N terminus. Coimmunoprecipitation experiments and immunofluorescence assays suggest that a minimal amount, if any, of the BHRF1 and BALF1 proteins colocalizes inside cells, suggesting that mechanisms other than direct interaction explain the suppressive function of BALF1.
Collapse
Affiliation(s)
- David S Bellows
- Department of Pharmacology and Molecular Science, The Johns Hopkins University Schools of Medicine and Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Regulated cell death by apoptosis constitutes a primary host defense for counteracting invading viral pathogens. In recent years, advances in the field of apoptosis research have revealed that mitochondria and mitochondria-derived factors play a central role in regulating cellular commitment to apoptosis. Here we explore the role of viral proteins in modulating cell death pathways that are relayed via this mitochondrial checkpoint.
Collapse
Affiliation(s)
- H Everett
- Biochemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
25
|
Clem RJ. Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ 2001; 8:137-43. [PMID: 11313715 DOI: 10.1038/sj.cdd.4400821] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 11/09/2022] Open
Abstract
Since 1991, when a baculovirus was first shown to inhibit apoptosis of its host insect cells, considerable contributions to our knowledge of apoptosis have arisen from the study of these viruses and the anti-apoptotic genes they encode. Baculovirus anti-apoptotic genes include p35, which encodes the most broadly acting caspase inhibitor protein known, and iap (inhibitor of apoptosis) genes, which were the first members of an evolutionarily conserved gene family involved in regulation of apoptosis and cytokinesis in organisms ranging from yeast to humans. Baculoviruses also provide an ideal system to study the effects of an apoptotic response on viral pathogenesis in an animal host. In this review, I discuss a number of interesting recent developments in the areas of apoptotic regulation by baculoviruses and the effects of apoptosis on baculovirus replication and pathogenesis.
Collapse
Affiliation(s)
- R J Clem
- Division of Biology, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
26
|
Schmidt M, Afione S, Kotin RM. Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 2000; 74:9441-50. [PMID: 11000213 PMCID: PMC112373 DOI: 10.1128/jvi.74.20.9441-9450.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated virus (AAV) type 2 Rep78 is a multifunctional protein required for AAV DNA replication, integration, and gene regulation. The biochemical activities of Rep78 have been described, but the effects of Rep proteins on the cell have not been characterized. We have analyzed Rep-mediated cytotoxicity. We demonstrated that Rep78 expression is sufficient to induce cell death and disruption of the cell cycle. Cell death was found to be mediated by apoptosis. Rep78 expression resulted in the activation of caspase-3, a terminal caspase directly involved in the execution of cell death. A peptidic inhibitor of caspase-3, Z-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), abrogated Rep78-induced apoptosis, indicating that Rep78-mediated apoptosis is caspase-3 dependent. Rep78 induced apoptosis in wild-type p53-containing human embryonal carcinoma NT-2 cells and in p53-null promyelocytic human HL-60 cells, indicating that at least one pathway of Rep78-induced apoptosis is p53 independent. Apoptosis was shown to occur during the G(1) and early S phases of the cell cycle. By analyzing the effects of Rep78 mutations on cell viability, the cause of cell death was attributed in part to two biochemical activities of Rep78, DNA binding and ATPase/helicase activity. The endonuclease activity of Rep78 did not contribute to apoptosis induction.
Collapse
Affiliation(s)
- M Schmidt
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
27
|
Eléouët JF, Slee EA, Saurini F, Castagné N, Poncet D, Garrido C, Solary E, Martin SJ. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. J Virol 2000; 74:3975-83. [PMID: 10756009 PMCID: PMC111911 DOI: 10.1128/jvi.74.9.3975-3983.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.
Collapse
Affiliation(s)
- J F Eléouët
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Apoptosis is widely recognized as being a host defense against viral infections, since viruses require live cells. There has been increasing acceptance of the view that apoptosis is also a defense against other intracellular pathogens and even against pathogens that adhere to host cells. An implication of apoptosis being a host defense is a need to reassess to what extent the cell death at infection sites may constitute a protective host response. A concept stressed here is that infected cells are a hazard to other cells and to the individual, so the benefits of early apoptosis are emphasized. Therefore, promoting the survival of infected cells, even though still functional, may carry risks. A further consideration is the possibility that the apoptotic stimulus of nutrient restriction may be acting in infection-induced anorexia to promote apoptosis of infected cells, thereby serving as a non-specific host defense.
Collapse
Affiliation(s)
- E K LeGrand
- Pathology Department, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ 08869, USA.
| |
Collapse
|
29
|
Human Immunodeficiency Virus Type 1 Protease Inhibitor Modulates Activation of Peripheral Blood CD4+ T Cells and Decreases Their Susceptibility to Apoptosis In Vitro and In Vivo. Blood 1999. [DOI: 10.1182/blood.v94.3.1021.415k29_1021_1027] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4+ T cells from patients with human immunodeficiency virus (HIV) infection undergo apoptosis at an increased rate, which leads to their depletion during disease progression. Both the Fas-Receptor (Fas-R) and interleukin-1β (IL-1β)–converting enzyme (ICE; caspase 1) appear to play a role in the mechanism of apoptosis of CD4+ lymphocytes. Although Fas-R is upregulated on both CD4+ and CD8+ cells in HIV-infected patients, results from our laboratory and others indicate that, in patients with advanced disease, CD4+ cells preferentially express ICE. Protease inhibitors have successfully halted the progression of HIV disease and increased CD4+ T counts. In this study, we examined the effect of protease inhibitors on Fas-R (CD95), ICE (caspase 1) expression, apoptosis, and cell death in CD4+ T cells of (1) HIV-infected patients who were receiving protease inhibitors, and (2) normal and patient CD4+ T cells cultured with a protease inhibitor in vitro. Fifteen patients with advanced HIV disease on treatment showed dramatically decreased CD4+ T-cell ICE expression, diminished apoptosis, and increased numbers of CD4+ cells within 6 weeks of institution of protease inhibitor therapy, and before down-modulation of Fas-R (CD95) expression was evident. To determine the role of HIV infection, we studied the effect of ritonavir, a protease inhibitor, on normal and patient cells in vitro. Stimulated and unstimulated normal CD4+ T cells, cultured with protease inhibitor, demonstrated markedly decreased apoptosis and ICE expression (P = .01). While Fas-R expression was not significantly altered during short-term culture by such treatment, Fas-Ligand (Fas-L) membrane expression of phytohemagglutinin (PHA)-stimulated blood lymphocytes was decreased by protease inhibitor. In the presence of ritonavir, CD4+ T cells from HIV-infected patients showed similar changes in ICE intracellular levels without alteration of Fas expression. In conclusion, protease inhibitors appear to decrease CD4+ T-cell ICE expression and apoptosis before they affect Fas-R expression in HIV-infected patients. This action was independent of HIV infection, as similar effects were seen in CD4+ T cells from normal controls. Some of the benefit of protease inhibitors may be related to modification of programmed cell death, which increases CD4+ T-cell number. Whether this is due to directly to the changes effected in the caspase system remains to be determined.
Collapse
|
30
|
Abstract
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.
Collapse
Affiliation(s)
- H Everett
- Dept of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
31
|
Li XL, Blackford JA, Hassel BA. RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. J Virol 1998; 72:2752-9. [PMID: 9525594 PMCID: PMC109719 DOI: 10.1128/jvi.72.4.2752-2759.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1997] [Accepted: 12/22/1997] [Indexed: 02/06/2023] Open
Abstract
The 2',5'-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A.
Collapse
Affiliation(s)
- X L Li
- Greenebaum Cancer Center, Program in Oncology and Department of Microbiology and Immunology, University of Maryland at Baltimore, 21201, USA
| | | | | |
Collapse
|
32
|
Sloand EM, Maciejewski JP, Sato T, Bruny J, Kumar P, Kim S, Weichold FF, Young NS. The role of interleukin-converting enzyme in Fas-mediated apoptosis in HIV-1 infection. J Clin Invest 1998; 101:195-201. [PMID: 9421482 PMCID: PMC508556 DOI: 10.1172/jci530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Apoptosis of CD4+ lymphocytes is partially responsible for the depletion of these cells in HIV-infected individuals. CD4+ lymphocytes from HIV-1-infected patients express higher membrane levels of the Fas receptor, and are particularly susceptible to apoptosis after Fas triggering. IL-1beta- converting enzyme (ICE) is a key enzyme of the apoptotic machinery involved in Fas-mediated apoptosis of normal lymphocytes. The role of ICE in mediating the increased susceptibility of CD4+ lymphocytes from HIV-1-infected patients to apoptosis has not been examined. In this study, we found that ICE mRNA was present in T cells from both HIV-1-infected patients and controls. Active ICE proteins, p10 and p20, were demonstrated by immunoblot in lymphocytes from HIV-1-infected patients and in normal lymphocytes after treatment with Fas agonist, CH11 mAb. Cocultivation of lymphocytes from HIV-1-infected persons with Fas antagonist, antibody ZB4, resulted in decreased expression of ICE protein in lymphocytes from HIV-infected patients, and decreased apoptosis. Similar effects were obtained when cells were treated with synthetic ICE inhibitors, which blocked apoptosis in response to Fas triggering. When CD4+ and CD8+ cells were sorted by flow cytometry and analyzed by reverse transcriptase PCR, ICE mRNA was present in both CD8+ and CD4+ cells. However, flow cytometric analysis of lymphocytes with intracellular staining for ICE demonstrated ICE protein in the CD4+ but not the CD8+ cell fraction derived from blood of HIV-1-infected patients. These data suggest that activation of ICE occurs in vivo in CD4+ lymphocytes from HIV-1-infected individuals, and may account for the increased susceptibility of CD4+ cells to apoptosis.
Collapse
Affiliation(s)
- E M Sloand
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- B V Harmon
- School of Life Science, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
34
|
Abstract
Viruses from several different families are able to exploit their host's cell death programmes so as to maximize viral fitness. Consideration of the evolution of such strategies has lead to the suggestion that the virus should inhibit apoptosis, in order to prolong the life of the cell and thereby maximize the number of progeny virions. The host, on the other hand, should stimulate apoptosis thereby inhibiting viral growth and blocking viral spread. For example, the function of the latent membrane protein I (LMPI) of the Epstein-Barr virus and the bcl-2 homologue gene A179L of African swine fever virus is to inhibit apoptosis. However, in other cases it is the virus that stimulates cell death or the host that benefits from inhibiting apoptosis, such as in fatal alphavirus encephalitis. This has been explained by assuming that virus-induced apoptosis in non-regenerating cells would be detrimental to the host. We present a mathematical framework for understanding virus-induced apoptosis which accounts for these two opposite solutions to virus infection with respect to the mode of virus replication and the life cycle of the target cell.
Collapse
Affiliation(s)
- D C Krakauer
- Department of Zoology, University of Oxford, UK.
| | | |
Collapse
|
35
|
Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ. A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med 1997; 186:967-72. [PMID: 9294150 PMCID: PMC2199051 DOI: 10.1084/jem.186.6.967] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 2-5A system contributes to the antiviral effect of interferons through the synthesis of 2-5A and its activation of the ribonuclease, RNase L. RNase L degrades viral and cellular RNA after activation by unique, 2'-5' phosphodiester-linked, oligoadenylates [2-5A, (pp)p5' A2'(P5'A2')]n, n >=2. Because both the 2-5A system and apoptosis can serve as viral defense mechanisms and RNA degradation occurs during both processes, we investigated the potential role of RNase L in apoptosis. Overexpression of human RNase L by an inducible promoter in NIH3T3 fibroblasts decreased cell viability and triggered apoptosis. Activation of endogenous RNase L, specifically with 2-5A or with dsRNA, induced apoptosis. Inhibition of RNase L with a dominant negative mutant suppressed poly (I).poly (C)-induced apoptosis in interferon-primed fibroblasts. Moreover, inhibition of RNase L suppressed apoptosis induced by poliovirus. Thus, increased RNase L levels induced apoptosis and inhibition of RNase L activity blocked viral-induced apoptosis. Apoptosis may be one of the antiviral mechanisms regulated by the 2-5A system.
Collapse
Affiliation(s)
- J C Castelli
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodgers SE, Barton ES, Oberhaus SM, Pike B, Gibson CA, Tyler KL, Dermody TS. Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2. J Virol 1997; 71:2540-6. [PMID: 9032397 PMCID: PMC191370 DOI: 10.1128/jvi.71.3.2540-2546.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.
Collapse
Affiliation(s)
- S E Rodgers
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Tsunoda I, Kurtz CI, Fujinami RS. Apoptosis in acute and chronic central nervous system disease induced by Theiler's murine encephalomyelitis virus. Virology 1997; 228:388-93. [PMID: 9123847 DOI: 10.1006/viro.1996.8382] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apoptosis has been observed in neural development and in various neurological diseases, including viral infection and multiple sclerosis. Theiler's murine encephalomyelitis virus is divided into two subgroups based on neurovirulence: the highly neurovirulent GDVII strain produces an acute fatal polioencephalomyelitis in mice, whereas the attenuated DA strain produces demyelination with virus persistence preceded by an acute infection. TUNEL combined with immunocytochemistry was used to detect apoptosis in the central nervous system and to characterize which cell types were involved during the acute stage in both GDVII and DA virus infection and during the chronic stage in DA virus infection. We found that during the acute stage, apoptosis was induced in neurons in both virus infections. However, the number of apoptotic neurons was much greater in GDVII virus-infected mice than in DA virus-infected mice (P < 0.01). During the chronic stage of DA virus infection, apoptotic cells were detected only in the spinal cord white matter. Some of these cells were dual labeled for fragmented DNA and carbonic anhydrase II, an oligodendrocyte marker. Our results indicate that apoptosis of neurons could be responsible for the fatal outcome in GDVII virus infection. In contrast, apoptosis of oligodendrocytes can contribute to the chronic demyelinating DA virus infection.
Collapse
Affiliation(s)
- I Tsunoda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | |
Collapse
|
38
|
Affiliation(s)
- A G Uren
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
39
|
Schwartz LM, Milligan CE. Cold thoughts of death: the role of ICE proteases in neuronal cell death. Trends Neurosci 1996; 19:555-62. [PMID: 8961485 DOI: 10.1016/s0166-2236(96)10067-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While there has been extensive work describing the timing, location and probable signals responsible for regulating programmed cell death (PCD) in the nervous system, relatively little is known about the molecular mechanisms that mediate this process. Several investigators have demonstrated that PCD in general, and neuronal PCD in particular, can be inhibited by drugs that arrest RNA or protein synthesis. These data have been interpreted as suggesting that de novo gene expression is required for cells to commit suicide. The general picture emerging from a number of experimental systems is that a variety of proteins can mediate the coupling of extracellular signals to a resident cell-death program. In this model, some of the components required for death are more or less constitutively present in the cell and await lineage-specific signals for their activation. A recent flood of papers has presented convincing evidence that the resident program for apoptosis in numerous cell types works via a series of essential proteases belonging to the CED-3/ICE family.
Collapse
Affiliation(s)
- L M Schwartz
- Dept of Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
40
|
Digby MR, Kimpton WG, York JJ, Connick TE, Lowenthal JW. ITA, a vertebrate homologue of IAP that is expressed in T lymphocytes. DNA Cell Biol 1996; 15:981-8. [PMID: 8945639 DOI: 10.1089/dna.1996.15.981] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apoptosis plays a crucial role in both the development and the control of the immune system. During T lymphocyte development, thymocytes undergo apoptosis as part of the process of elimination of self-reactive clones. Mature T cells also undergo apoptosis following antigen-stimulated proliferation as part of a mechanism that controls the immune response. Apoptosis also provides a defense mechanism against viruses whereby the rapid death of virus-infected cells reduces virus spread. Viruses, on the other hand, often express proteins that inhibit apoptosis of their host cells, thereby enhancing their infectivity. We have isolated a novel gene, ita (inhibitor of T cell apoptosis), which is a vertebrate homologue of the viral apoptosis inhibitor IAP. Expression of ita appears to be restricted to cells of the T lymphocyte lineage, and high levels of ita mRNA are induced within 4-8 hr of T cell activation. Immunohistologic studies show that medullary and cortical thymocytes express detectable levels of ITA. ITA is a 69 kDa protein that contains a C-terminal ring-finger motif that is found in several oncogenic proteins and N-terminal repeat elements that have only been reported in other apoptosis inhibitors. These findings suggest that ITA may play a role in controlling apoptosis in T cells.
Collapse
Affiliation(s)
- M R Digby
- CSIRO Division of Animal Health, Geelong, Vic., Australia
| | | | | | | | | |
Collapse
|
41
|
Abstract
All multicellular organisms have mechanisms for killing their own cells, and use physiological cell death for defence, development, homeostasis, and aging. Apoptosis is a morphologically recognizable form of cell death that is implemented by a mechanism that has been conserved throughout evolution from nematode to man. Thus homologs of the genes that implement cell death in nematodes also do so in mammals, but in mammals the process is considerably more complex, involving multiple isoforms of the components of the cell death machinery. In some circumstances this allows independent regulation of pathways that converge upon a common end point. A molecular understanding of this mechanism may allow design of therapies that either enhance or block cell death at will.
Collapse
Affiliation(s)
- D L Vaux
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
42
|
Tyler KL, Squier MK, Rodgers SE, Schneider BE, Oberhaus SM, Grdina TA, Cohen JJ, Dermody TS. Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 1995; 69:6972-9. [PMID: 7474116 PMCID: PMC189616 DOI: 10.1128/jvi.69.11.6972-6979.1995] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reoviruses are important models for studies of viral pathogenesis; however, the mechanisms by which these viruses produce cytopathic effects in infected cells have not been defined. In this report, we show that murine L929 (L) cells infected with prototype reovirus strains type 1 Lang (TIL) and type 3 Dearing (T3D) undergo apoptosis and that T3D induces apoptosis to a substantially greater extent than T1L. Using T1L x T3D reassortant viruses, we found that differences in the capacity of T1L and T3D to induce apoptosis are determined by the viral S1 gene segment, which encodes the viral attachment protein sigma 1 and the non-virion-associated protein sigma 1s. Apoptosis was induced by UV-inactivated, replication-incompetent reovirus virions, which do not contain sigma 1s and do not mediate its synthesis in infected cells. Additionally, T3D-induced apoptosis was inhibited by anti-reovirus monoclonal antibodies that inhibit T3D cell attachment and disassembly. These results indicate that sigma 1, rather than sigma 1s, is required for induction of apoptosis by the reovirus and suggest that interaction of virions with cell surface receptors is an essential step in this mechanism of cell killing.
Collapse
Affiliation(s)
- K L Tyler
- Department of Neurology, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vaux DL, Häcker G. Hypothesis: apoptosis caused by cytotoxins represents a defensive response that evolved to combat intracellular pathogens. Clin Exp Pharmacol Physiol 1995; 22:861-3. [PMID: 8593745 DOI: 10.1111/j.1440-1681.1995.tb01951.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Over 100 different agents have been shown, under certain circumstances, to cause apoptosis, a form of cell death with characteristic morphology. In most cases, the mechanism of cell death is likely to be the same, as expression of the cell death inhibitory gene bcl-2 can frequently prevent apoptotic changes and/or delay cell death. 2. These observations raise the question of how and why cells detect these agents and why they respond by implementing the suicide mechanism that bcl-2 can control. Our hypothesis is that apoptosis is used as an anti-viral strategy, and that cells interpret any metabolic disturbance as evidence of infection by a virus and thereby kill themselves in response to these toxins before they are killed by the action of the toxin itself. 3. Experiments on the effect of sodium azide upon growth factor-dependent cells support this idea. Bcl-2 can delay cell death caused by azide, and inhibit apoptotic changes seen by electron microscopy, but cannot prevent the eventual death of the cells. 4. These ideas suggest that drugs designed to regulate cell death may be useful for the treatment of ischaemic or neoplastic diseases. For example, human cells may activate a suicide pathway in response to sub-lethal amounts of anoxia following a stroke or heart attack and so blocking apoptosis may be a useful therapy to limit tissue damage. On the other hand, increasing the propensity of cells to activate their physiological cell death mechanisms may enhance the effectiveness of toxins designed to kill tumour cells.
Collapse
Affiliation(s)
- D L Vaux
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | |
Collapse
|
44
|
Affiliation(s)
- K S Sellins
- Department of Immunology, University of Colorado Medical School, Denver 80262, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- G Häcker
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
46
|
Houge G, Robaye B, Eikhom TS, Golstein J, Mellgren G, Gjertsen BT, Lanotte M, Døskeland SO. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol Cell Biol 1995; 15:2051-62. [PMID: 7891700 PMCID: PMC230432 DOI: 10.1128/mcb.15.4.2051] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bona fide apoptosis in rat and human leukemia cells, rat thymocytes, and bovine endothelial cells was accompanied by limited and specific cleavage of polysome-associated and monosome-associated 28S rRNA, with 18S rRNA being spared. Specific 28S rRNA cleavage was observed in all instances of apoptotic death accompanied by internucleosomal DNA fragmentation, with cleavage of 28S rRNA and of DNA being linked temporally. This indicates that 28S rRNA fragmentation may be as general a feature of apoptosis as internucleosomal DNA fragmentation and that concerted specific cleavage of intra- and extranuclear polynucleotides occurs in apoptosis. Apoptosis-associated cleavage sites were mapped to the 28S rRNA divergent domains D2, D6 (endothelial cells), and D8. The D2 cuts occurred in hairpin loop junctions considered to be buried in the intact ribosome, suggesting that this rRNA region becomes a target for RNase attack in apoptotic cells. D8 was cleaved in two exposed UU(U) sequences in bulge loops. Treatment with agents causing necrotic cell death or aging of cell lysates failed to produce any detectable limited D2 cleavage but did produce a more generalized cleavage in the D8 region. Of potential functional interest was the finding that the primary cuts in D2 exactly flanked a 0.3-kb hypervariable subdomain (D2c), allowing excision of the latter. The implication of hypervariable rRNA domains in apoptosis represents the first association of any functional process with these enigmatic parts of the ribosomes.
Collapse
Affiliation(s)
- G Houge
- Department of Anatomy and Cell Biology, University of Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ink BS, Gilbert CS, Evan GI. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes. J Virol 1995; 69:661-8. [PMID: 7815529 PMCID: PMC188626 DOI: 10.1128/jvi.69.2.661-668.1995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family.
Collapse
Affiliation(s)
- B S Ink
- Biochemistry of the Cell Nucleus Laboratory, Imperial Cancer Research Fund Laboratories, London, United Kingdom
| | | | | |
Collapse
|
48
|
|
49
|
Ameisen JC, Estaquier J, Idziorek T, De Bels F. Programmed cell death and AIDS pathogenesis: significance and potential mechanisms. Curr Top Microbiol Immunol 1995; 200:195-211. [PMID: 7634833 DOI: 10.1007/978-3-642-79437-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J C Ameisen
- Unité INSERM U 415 Pathogenèse du sida et des infections à tropisme immunitaire et nerveux, Institut Pasteur, Lille, France
| | | | | | | |
Collapse
|
50
|
Ameisen JC, Estaquier J, Idziorek T. From AIDS to parasite infection: pathogen-mediated subversion of programmed cell death as a mechanism for immune dysregulation. Immunol Rev 1994; 142:9-51. [PMID: 7698802 DOI: 10.1111/j.1600-065x.1994.tb00882.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Premature cell death can result either from cell injury or degeneration, leading to necrosis, or from the activation of a physiological cell-suicide process, termed programmed cell death or apoptosis, that is regulated by intercellular signalling. This process plays an essential role in the selection of developing lymphocytes, and is also involved in the function of the mature adaptative immune system. A growing number of experimental findings during the last 4 years has provided support to our hypothesis that inappropriate HIV-mediated dysregulation of programmed T-cell death is relevant to AIDS pathogenesis. A series of recent experimental results also supports the general concept that the persistence and pathogenesis of several infectious pathogens, ranging from retroviruses to parasites, may be related to their capacity to dysregulate programmed cell death in various cell populations including lymphocytes. Subversion by pathogens of the physiological control of programmed cell death provides a paradigm for the pathogenesis of a wide range of infectious diseases that involve immune dysregulation and suggests therapeutic potential for the in vivo modulation of cell signalling.
Collapse
Affiliation(s)
- J C Ameisen
- INSERM U415 Pathogenèse du sida et des infections à tropisme immunitaire et nerveux, Institut Pasteur, Lille, France
| | | | | |
Collapse
|