1
|
Yadav A, Rani S. Role of differential food treatment on hypothalamic NPY expression and migratory phenology of redheaded bunting ( Emberiza bruniceps). Chronobiol Int 2024; 41:1503-1515. [PMID: 39588758 DOI: 10.1080/07420528.2024.2429659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
The present study explores the effect of differential food treatment on the migratory phenology of redheaded bunting (Emberiza bruniceps). Birds were divided into four groups (N = 10 each) on the basis of the food provided. Group I was fed with seeds of Setaria italica (kakuni), while group II was provided with protein-rich diet (combination of; 3 parts egg white and 1 part kakuni seeds). Likewise, group III birds received fat-rich food (i.e. 3 parts sesame seeds and 1 part kakuni seeds). Birds in group IV were provided with all three food items mentioned above separately. The experiment continued until the appearance of 7 cycles of zugunruhe. The results reveal a significant impact of food on locomotor activity and food intake behavior of birds, although the physiological response as demonstrated by a gain in body mass, fat score, and gonadal recrudescence was mainly influenced by the LHS. Besides the behavioral and physiological responses, the hypothalamic expression of neuropeptide Y (NPY) in infundibular complex (INc) was significantly high for group IV, highlighting the importance of "variety" in food intake. Thus, the present study suggests a significant role of food in influencing seasonal responses via hypothalamic NPY stimulation.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, India
| | - Sangeeta Rani
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
2
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549873. [PMID: 37503039 PMCID: PMC10370212 DOI: 10.1101/2023.07.20.549873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking differences in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely 'everted' telencephalon, which has made it challenging to compare brain regions in fish to those in other vertebrates. Here we combine spatial transcriptomics and single-nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell populations in the fish telencephalon and subpallial, hippocampal, and cortical cell populations in tetrapods. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30329
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
4
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
5
|
Senft RA, Dymecki SM. Neuronal pericellular baskets: neurotransmitter convergence and regulation of network excitability. Trends Neurosci 2021; 44:915-924. [PMID: 34565612 PMCID: PMC8551026 DOI: 10.1016/j.tins.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.
Collapse
Affiliation(s)
- Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Sharma S, Chaube R. Molecular cloning and characterization of secretogranin II in the catfish Heteropneustes fossilis: Sex and seasonal brain regional variations and its gonadotropin regulation. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:13-27. [DOI: 10.1016/j.cbpa.2019.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
|
7
|
Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, Izumi H, Tsuneoka Y, Suto F, Murakami Y, Ichijo H. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol 2018; 527:874-900. [PMID: 30516281 DOI: 10.1002/cne.24547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/10/2022]
Abstract
Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.
Collapse
Affiliation(s)
- Masahumi Kawaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Hanako Hagio
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hironori Izumi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Fumikazu Suto
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Porter DT, Roberts DA, Maruska KP. Distribution and female reproductive state differences in orexigenic and anorexigenic neurons in the brain of the mouth brooding African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2017. [PMID: 28649723 DOI: 10.1002/cne.24268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide-containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AGRP) and appetite-inhibiting (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, pomc1a) neurons in the brain. NPY, AGRP, CART, and pomc1a somata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had larger pomc1a neurons compared to gravid females. Hypothalamic agrp mRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite-stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while larger pomc1a neurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status in A. burtoni females during varying metabolic and reproductive demands.
Collapse
Affiliation(s)
- Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - David A Roberts
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
9
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Robertson GN, Croll RP, Smith FM. The structure of the caudal wall of the zebrafish (Danio rerio) swim bladder: Evidence of localized lamellar body secretion and a proximate neural plexus. J Morphol 2014; 275:933-48. [DOI: 10.1002/jmor.20274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
Affiliation(s)
- George N. Robertson
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
- Department of Biology; Saint Francis Xavier University; Antigonish Nova Scotia Canada B2G 2W5
| | - Roger P. Croll
- Department of Physiology and Biophysics; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| | - Frank M. Smith
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| |
Collapse
|
11
|
Yokobori E, Azuma M, Nishiguchi R, Kang KS, Kamijo M, Uchiyama M, Matsuda K. Neuropeptide Y stimulates food intake in the Zebrafish, Danio rerio. J Neuroendocrinol 2012; 24:766-73. [PMID: 22250860 DOI: 10.1111/j.1365-2826.2012.02281.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in mammals. However, except for the case of the goldfish, the involvement of NPY in the feeding behaviour of teleost fish has not well been studied. Therefore, we investigated the role of NPY in food intake using a zebrafish (Danio rerio) model because the molecular bases of NPY and its receptor have been well studied in this species. We examined the effect of feeding status on NPY-like immunoreactivity and the expression level of the NPY transcript in the brain. The number of neuronal cells showing NPY-like immunoreactivity in the hypothalamic regions, including the periventricular nucleus of posterior tuberculum and the posterior tuberal nucleus, was significantly increased in fish fasted for 7 days. NPY mRNA levels in the hypothalamus, but not the telencephalon, obtained from fish fasted for 7 days were higher than those in fish that had been fed normally. We then investigated the effect of i.c.v. administration of NPY on food intake. Cumulative food intake was significantly increased by i.c.v. administration of NPY (at 1 and 10 pmol/g body weight; BW) during a 60-min observation period. The NPY-induced orexigenic action (at 10 pmol/g BW) was blocked by treatment with a NPY Y1 receptor antagonist, BIBP-3226, at 100 pmol/g BW. These results indicate that NPY acts as an orexigenic factor in the zebrafish.
Collapse
Affiliation(s)
- E Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kamijo M, Kojima K, Maruyama K, Konno N, Motohashi E, Ikegami T, Uchiyama M, Shioda S, Ando H, Matsuda K. Neuropeptide Y in tiger puffer (Takifugu rubripes): distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zoolog Sci 2012; 28:882-90. [PMID: 22132785 DOI: 10.2108/zsj.28.882] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropeptide tyrosine (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in rodents. However, the involvement of NPY in feeding behavior has not well been studied in fish. Therefore, we investigated the role of NPY in food intake using a tiger puffer (Takifugu rubripes) model. We observed the distribution of NPY-like immunoreactivity in the brain. Neuronal cell bodies containing NPY were located in the telencephalon, hypothalamus, mesencephalon, and medulla oblongata, and their nerve fibers were also found throughout the brain. We cloned two cDNAs, encoding NPYa and NPYb orthologs, respectively, from the brain, and also confirmed two genes encoding these NPYs in the Takifugu genome database. We examined the distribution of these transcripts in the brain using real-time PCR. Levels of NPYa mRNA in the telencephalon, mesencephalon and hypothalamus were much higher than in the medulla oblongata and cerebellum, whereas levels of NPYb mRNA in the medulla oblongata were higher than in other regions. We also examined prandial effects on the expression level of these transcripts in the telencephalon and hypothalamus. NPYa mRNA levels in the hypothalamus, but not in the telencephalon, obtained from fish fasted for one week were higher than those in fish that had been fed normally. The level was decreased at 2 h after feeding. Levels of NPYb mRNA were not affected by prandial conditions. These results suggest that NPY is present throughout the brain, and that NPYa, but not NPYb, in the hypothalamus is involved in the feeding regulation in the tiger puffer.
Collapse
Affiliation(s)
- Motoki Kamijo
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Canosa L, Lopez G, Scharrig E, Lesaux-Farmer K, Somoza G, Kah O, Trudeau V. Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J Comp Neurol 2011; 519:3748-65. [DOI: 10.1002/cne.22688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
|
15
|
Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS One 2010; 5:e15201. [PMID: 21151928 PMCID: PMC2997068 DOI: 10.1371/journal.pone.0015201] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/31/2010] [Indexed: 01/08/2023] Open
Abstract
Background Nesfatin-1 is a recently discovered anorexigen encoded in the precursor peptide, nucleobindin-2 (NUCB2) in mammals. To date, nesfatin-1 has not been described in any non-mammalian species, although some information is available in the sequenced genomes of several species. Our objective was to characterize nesfatin-1 in fish. Methodology/Principal Findings In the present study, we employed molecular, immunohistochemical, and physiological studies to characterize the structure, distribution, and appetite regulatory effects of nesfatin-1 in a non-mammalian vertebrate. A very high conservation in NUCB2 sequences, especially in the nesfatin-1 region was found in lower vertebrates. Abundant expression of NUCB2 mRNA was detected in several tissues including the brain and liver of goldfish. Nesfatin-1-like immunoreactive cells are present in the feeding regulatory nucleus of the hypothalamus and in the gastrointestinal tract of goldfish. Approximately 6-fold increase in NUCB2 mRNA levels was found in the liver after 7-day food-deprivation, and a similar increase was also found after short-term fasting. This points toward a possible liver specific role for NUCB2 in the control of metabolism during food-deprivation. Meanwhile, ∼2-fold increase at 1 and 3 h post-feeding and an ∼3-fold reduction after a 7-day food-deprivation was observed in NUCB2 mRNA in the goldfish hypothalamus. In vivo, a single intraperitoneal injection of the full-length native (goldfish; gf) nesfatin-1 at a dose of 50 ng/g body weight induced a 23% reduction of food intake one hour post-injection in goldfish. Furthermore, intracerebroventricular injection of gfnesfatin-1 at a dose of 5 ng/g body weight resulted in ∼50% reduction in food intake. Conclusions/Significance Our results provide molecular, anatomical and functional evidences to support potential anorectic and metabolic roles for endogenous nesfatin-1 in goldfish. Collectively, we provide novel information on NUCB2 in non-mammals and an anorexigenic role for nesfatin-1 in goldfish.
Collapse
Affiliation(s)
- Ronald Gonzalez
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Brent Kerbel
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Alexander Chun
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Kojima K, Amiya N, Kamijo M, Kageyama H, Uchiyama M, Shioda S, Matsuda K. Relationship between alpha-melanocyte-stimulating hormone- and neuropeptide Y-containing neurons in the goldfish hypothalamus. Gen Comp Endocrinol 2010; 167:366-72. [PMID: 20005228 DOI: 10.1016/j.ygcen.2009.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/27/2009] [Accepted: 12/04/2009] [Indexed: 12/14/2022]
Abstract
Intracerebroventricular (ICV) injection of alpha-melanocyte-stimulating hormone (alpha-MSH) inhibits, whereas ICV injection of neuropeptide Y (NPY) stimulates food intake in the goldfish. However, there is little information about the functional relationship between alpha-MSH-induced anorexigenic and NPY-induced orexigenic actions in the goldfish. In this study we examined the relationship between alpha-MSH- and NPY-containing neurons in the goldfish hypothalamus to investigate whether these alpha-MSH- and NPY-containing neurons have direct mutual inputs. alpha-MSH- and NPY-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. In particular, alpha-MSH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). NPY-containing nerve fibers or endings also lay in close apposition to alpha-MSH-containing neurons specifically in the interior part of the nucleus lateralis tuberis (NLTi). We also investigated the effect of ICV injection of melanocortin 4 receptor agonist (melanotan II) at 100 pmol/g body weight (BW), which is enough to suppress food intake, or NPY at 10 pmol/g BW, which is enough to enhance food intake, on expression levels of mRNA for NPY or proopiomelanocortin (POMC) in the hypothalamus. ICV injection of melanotan II and NPY induced a significant decrease in the expression levels for NPY and POMC mRNA, respectively. These observations suggest that alpha-MSH- and NPY-containing neurons share direct mutual inputs in the NPPv and the NLTi of the hypothalamus, and that alpha-MSH and NPY functionally interact or exhibit mutual inhibition to regulate feeding behavior in the goldfish.
Collapse
Affiliation(s)
- Kenji Kojima
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Matsuda K, Kojima K, Shimakura SI, Miura T, Uchiyama M, Shioda S, Ando H, Takahashi A. Relationship between melanin-concentrating hormone- and neuropeptide Y-containing neurons in the goldfish hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:3-7. [DOI: 10.1016/j.cbpa.2008.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
19
|
Kojima K, Kamijo M, Kageyama H, Uchiyama M, Shioda S, Matsuda K. Neuronal relationship between orexin-A- and neuropeptide Y-induced orexigenic actions in goldfish. Neuropeptides 2009; 43:63-71. [PMID: 19261328 DOI: 10.1016/j.npep.2009.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/13/2022]
Abstract
Orexin-induced orexigenic action is mediated by neuropeptide Y (NPY) in goldfish and rodents. A previous study indicated that NPY-induced orexigenic action may also be mediated by orexin-A in goldfish. However, there is little information about the mutual actions of orexin-A and NPY in the goldfish. Therefore, using their specific receptor antagonists, we examined whether the orexigenic actions of orexin-A and NPY mutually interact in the goldfish. The stimulatory effect of intracerebroventricular injection of NPY at 1 pmol/g body weight (BW) on food intake was abolished by treatment with the orexin receptor-1 antagonist, SB334867, at 10 pmol/g BW whereas the NPY Y1-receptor antagonist, BIBP3226, at 100 pmol/g BW attenuated orexin-A (at 2.8 pmol/g BW)-stimulated feeding. This led us, using a double-immunostaining method and confocal laser scanning microscopy, to investigate whether orexin-A- and NPY-containing neurons in the goldfish brain have direct mutual inputs. Orexin-A- and NPY-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. Orexin-A- and NPY-containing neurons were located in a region of the hypothalamus, the nucleus posterioris periventricularis (NPPv), in close proximity to each other: NPY-containing nerve fibers or endings lay in close apposition to orexin-A-containing neurons in the NPPv, and orexin-A-containing nerve fibers or endings also lay in close apposition to NPY-containing neurons in the same region. These results indicate that, in goldfish, orexin-A- and NPY-induced orexigenic actions are mediated by mutual signaling pathways.
Collapse
Affiliation(s)
- Kenji Kojima
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Singru PS, Mazumdar M, Barsagade V, Lechan RM, Thim L, Clausen JT, Subhedar N. Association of cocaine- and amphetamine-regulated transcript and neuropeptide Y in the forebrain and pituitary of the catfish, Clarias batrachus: a double immunofluorescent labeling study. J Chem Neuroanat 2008; 36:239-50. [PMID: 18675898 DOI: 10.1016/j.jchemneu.2008.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 11/25/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) are involved in the regulation of food intake, body weight, pituitary hormones, and reproduction. While CART and NPY occupy overlapping fields in the brain of mammals, little is known about the interaction between these peptide-containing systems in other vertebrates. We explored neuroanatomical associations between CART and NPY in the olfactory system, forebrain and pituitary of the catfish, Clarias batrachus, using double immunofluorescence method. NPY-containing fascicles from olfactory receptor neurons innervated the olfactory glomeruli and mitral cell layer in close association with CART-containing terminal fields. Distinct CART- or NPY-containing fibers were seen in the medial olfactory tract. In the dorsal telencephalon, CART- and NPY-immunoreactive axons were closely associated in area dorsalis telencephali/pars lateralis dorsalis (Dld), and posterioris (Dlp). In the ventral telencephalon, while most of the cells of nucleus entopeduncularis (NE) showed the presence of CART as well as NPY, a few cells with only NPY-immunoreactivity were observed. Similarly, a CART and NPY colocalized cell population was prominent in the preoptic area (POA); and a small population of cells with NPY-immunoreactivity was also evident. Other areas where CART and NPY were colocalized included fibers in the tuberal area, inferior lobe, neurohypophysis, proximal pars distalis and pars intermedia of the pituitary. No association between CART and NPY was observed in the thalamus and habenular ganglion. These results suggest that CART- and NPY-peptidergic systems may interact in NE, POA, tuberal area, certain telencephalic areas and pituitary and jointly process information relating to reproduction, feeding and neuroendocrine regulation.
Collapse
Affiliation(s)
- Praful S Singru
- Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Pirone A, Lenzi C, Marroni P, Betti L, Mascia G, Giannaccini G, Lucacchini A, Fabiani O. Neuropeptide Y in the Brain and Retina of the Adult Teleost Gilthead Seabream (Sparus aurata L.). Anat Histol Embryol 2008; 37:231-40. [DOI: 10.1111/j.1439-0264.2007.00836.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Adrio F, Anadón R, Rodríguez-Moldes I. Distribution of somatostatin immunoreactive neurons and fibres in the central nervous system of a chondrostean, the Siberian sturgeon (Acipenser baeri). Brain Res 2008; 1209:92-104. [PMID: 18400215 DOI: 10.1016/j.brainres.2008.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 11/18/2022]
Abstract
Somatostatin (SOM) is a neuropeptide that is widely distributed in the central nervous system of vertebrates. Two isoforms of somatostatin (SS1 and SS2) have been characterized in sturgeon and in situ hybridisation studies in the sturgeon brain have demonstrated that mRNAs of the two somatostatin precursors (PSS1 and PSS2) are differentially expressed in neurons [Trabucchi, M., Tostivint, H., Lihrmann, I., Sollars, C., Vallarino, M., Dores, R.M., Vaudry, H., 2002. Polygenic expression of somatostatin in the sturgeon Acipenser transmontanus: molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. J. Comp. Neurol. 443, 332-345.]. However, neither the morphology of somatostatinergic neurons nor the patterns of innervation have yet been characterized. To gain further insight into the evolution of this system in primitive bony fishes, we studied the distribution of somatostatin-immunoreactive (SOM-ir) cells and fibres in the brain of the Siberian sturgeon (Acipenser baeri). Most SOM-ir cells were found in the preoptic area and hypothalamus and abundant SOM-ir fibres coursed along the hypothalamic floor towards the median eminence, suggesting a hypophysiotrophic role for SOM in sturgeon. In addition, SOM-ir cells and fibres were observed in extrahypothalamic regions such as the telencephalon thalamus, rhombencephalon and spinal cord, which also suggests neuromodulatory and/or neurotransmitter functions for this peptide. Overall there was a good correlation between the distribution of SOM-ir neurons throughout the brain of A. baeri and that of PSS1 mRNA in Acipenser transmontanus. Comparative analysis of the results with those obtained in other groups of fishes and tetrapods indicates that widespread distribution of this peptide in the brain is shared by early vertebrate lines and that the general organization of the somatostatinergic systems has been well-conserved during evolution.
Collapse
Affiliation(s)
- Fátima Adrio
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | | | | |
Collapse
|
24
|
Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol 2007; 151:1-26. [PMID: 17286975 DOI: 10.1016/j.ygcen.2006.12.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/12/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. Accordingly, the regulatory network for GH is complex and includes many endocrine and environmental factors. In fish, the neuroendocrine control of GH is multifactorial with multiple inhibitors and stimulators of pituitary GH secretion. In fish, GH release is under a tonic negative control exerted mainly by somatostatin. Sex steroid hormones and nutritional status influence the level of brain expression and effectiveness of some of these GH neuroendocrine regulatory factors, suggesting that their relative importance differs under different physiological conditions. At the pituitary level, some, if not all, somatotropes can respond to multiple regulators. Therefore, ligand- and function-specificity, as well as the integrative responses to multiple signals must be achieved at the level of signal transduction mechanisms. Results from investigations on a limited number of stimulatory and inhibitory GH-release regulators indicate that activation of different but convergent intracellular pathways and the utilization of specific intracellular Ca(2+) stores are some of the strategies utilized. However, more work remains to be done in order to better understand the integrative mechanisms of signal transduction at the somatotrope level and the relevance of various GH regulators in different physiological circumstances.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9
| | | | | |
Collapse
|
25
|
Trainor BC, Hofmann HA. Somatostatin and somatostatin receptor gene expression in dominant and subordinate males of an African cichlid fish. Behav Brain Res 2007; 179:314-20. [PMID: 17374406 PMCID: PMC2696992 DOI: 10.1016/j.bbr.2007.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/30/2007] [Accepted: 02/15/2007] [Indexed: 12/19/2022]
Abstract
Somatostatin is a neuropeptide best known for its inhibitory effects on growth hormone secretion and has recently been implicated in the control of social behavior. Several somatostatin receptor subtypes have been identified in vertebrates, but the functional basis for this diversity is still unclear. Here we investigate the expression levels of the somatostatin prepropeptide and two of its receptors, sstR2, and sstR3, in the brains of socially dominant and subordinate Astatotilapia burtoni males using real-time PCR. Dominant males had higher somatostatin prepropeptide and sstR3 expression in hypothalamus compared to subordinate males. Hypothalamic sstR2 expression did not differ. There were no differences in gene expression in the telencephalon. We also observed an interesting difference between dominants and subordinates in the relationship between hypothalamic sstR2 expression and body size. As would be predicted based on the inhibitory effects of somatostatin on somatic growth, sstR2 expression was negatively correlated with body size in dominant males. In contrast sstR2 expression was positively correlated with body size in subordinate males. These results suggest that in A. burtoni social status affects the relationships between somatostatin prepropeptide and receptor gene expression in the hypothalamus and the control of somatic growth.
Collapse
Affiliation(s)
- Brian C. Trainor
- Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138
| | - Hans A. Hofmann
- Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138
- Section for Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
26
|
Mazumdar M, Sakharkar AJ, Singru PS, Subhedar N. Reproduction phase-related variations in neuropeptide Y immunoreactivity in the olfactory system, forebrain, and pituitary of the female catfish,Clarias batrachus (Linn.). J Comp Neurol 2007; 504:450-69. [PMID: 17701999 DOI: 10.1002/cne.21462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to determine whether neuropeptide Y (NPY) immunoreactivity in the cells and fibers in the forebrain and pituitary of Clarias batrachus is linked to the annual reproductive cycle. A steady rise in luteinizing hormone (LH) immunoreactivity was seen in the pituitary through preparatory (February-April) and prespawning (May-June) phases; it was greatly reduced during spawning (July-August; P < 0.001) and partially replenished during postspawning (September-November; P < 0.01) through resting (December-January) phases. Although NPY immunoreactivity in olfactory receptor neurons and olfactory nerve layer in olfactory bulb was gradually augmented during resting through prespawning phases (P < 0.001), attaining a peak in spawning phase (P < 0.001), a dramatic decline was encountered during postspawning phase (P < 0.001). A similar pattern was also observed in NPY-containing fibers of the medial olfactory tract (MOT) and pituitary. However, a different pattern of NPY immunoreactivity was observed in the neurons of nucleus entopeduncularis (NE) and nucleus preopticus periventricularis (NPP). Whereas these neurons and fibers in the forebrain showed significant augmentation during the resting through prespawning phases (P < 0.001), the immunoreactivity dramatically declined during spawning (P < 0.001) and was partially replenished in the postspawning phase. Testosterone injection of juveniles significantly augmented (P < 0.001) NPY immunoreactivity in NE neurons. We suggest that NPY cells of NE and NPP, and related fiber systems, might be involved in processing of sex steroid-borne information and regulation of the gonadotropin-releasing hormone-LH axis.
Collapse
Affiliation(s)
- Minakshi Mazumdar
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University Campus, Nagpur-440033, India
| | | | | | | |
Collapse
|
27
|
Sakharkar AJ, Singru PS, Sarkar K, Subhedar NK. Neuropeptide Y in the forebrain of the adult male cichlid fishOreochromis mossambicus: Distribution, effects of castration and testosterone replacement. J Comp Neurol 2005; 489:148-65. [PMID: 15984003 DOI: 10.1002/cne.20614] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone.
Collapse
Affiliation(s)
- Amul J Sakharkar
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur-440 033, India
| | | | | | | |
Collapse
|
28
|
Canosa LF, Cerdá-Reverter JM, Peter RE. Brain mapping of three somatostatin encoding genes in the goldfish. J Comp Neurol 2004; 474:43-57. [PMID: 15156578 DOI: 10.1002/cne.20097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study the brain distribution of three somatostatin (SRIF)-encoding genes, PSS-I, PSS-II, and PSS-III, was analyzed by in situ hybridization (ISH) in the goldfish. The PSS-I mRNA showed the widest distribution throughout the brain, whereas PSS-II transcripts were restricted to some hypothalamic nuclei. On the other hand, PSS-III presents an intermediate distribution pattern. All SRIF encoding genes are expressed in hypophysiotropic nuclei supporting the idea that, in addition to SRIF-14, [Pro(2)] SRIF-14, and gSRIF-28 have pituitary-controlling functions. Moreover, each of the genes is expressed in nuclei directly associated with feeding behavior, suggesting a role for SRIF peptides in the central control of food intake and energy balance. Alternatively, they might have a role in processing sensory information related with feeding behavior, since PSS genes are expressed in the main gustatory, olfactory, and visual centers, which project to the hypothalamic feeding center in teleost fish.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
29
|
Pirone A, Lenzi C, Betti L, Giannaccini G, Lucacchini A, Marroni P, Fabiani O. Immunohistochemical distribution of neuropeptide Y in the mesencephalon and rhombencephalon of carp, Cyprinus carpio L. (Cyprinidae: Teleostei). Comp Biochem Physiol A Mol Integr Physiol 2004; 138:175-85. [PMID: 15275652 DOI: 10.1016/j.cbpb.2004.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 02/09/2004] [Accepted: 03/12/2004] [Indexed: 01/22/2023]
Abstract
The localization of neuropeptide Y (NPY)-immunoreactive elements was investigated in the mesencephalon and rhombencephalon of carp, Cyprinus carpio, by using antisera raised against porcine NPY and the immunoperoxidase technique. Concurrently, to identify the distribution of NPY-immunoreactivity, we developed an atlas of the studied areas based on Nissl-stained sections. The NPY-immunoreactive (NPY-ir) elements were located in many zones of the mesencephalon and rhombencephalon. In the mesencephalon, positive fibers were the most abundant elements while neurons were scarce. The rhombencephalon rostral part was characterized by a low to moderate fiber density, distributed in the ventro-medial and ventro-lateral region. Differently the caudal part of the rhombencephalon exhibited several NPY-ir elements. In particular, a high density of immunoreactivity was located in the gustatory area at the level of the nucleus (n.) originis nervi glossopharyngei, in the n. nervi vagi, and in the vagal lobe. The latter can be considered a valid neuroanatomical model for the study of gustatory signal processing in vertebrates. Our results regarding the primary gustatory centers give neuroanatomical support to the view that NPY may act as a neurotransmitter and/or a neuromodulator in a wide neural network for feeding behavior control.
Collapse
Affiliation(s)
- Andrea Pirone
- Section of Anatomy, Department of Animal Production, University of Pisa, V. le delle Piagge 2, Pisa 56100, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Unniappan S, Cerdá-Reverter JM, Peter RE. In situ localization of preprogalanin mRNA in the goldfish brain and changes in its expression during feeding and starvation. Gen Comp Endocrinol 2004; 136:200-7. [PMID: 15028523 DOI: 10.1016/j.ygcen.2003.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 12/01/2003] [Accepted: 12/16/2003] [Indexed: 11/21/2022]
Abstract
In this paper, we report (i) the in situ localization, and (ii) meal time related and starvation induced changes in preprogalanin mRNA expression in the goldfish brain. The specific brain nuclei that express galanin mRNA are the area ventralis telencephali pars ventralis, nucleus preopticus periventricularis, nucleus lateralis tuberis, and the nucleus recessus lateralis. No changes in preprandial preprogalanin mRNA expression were found in the brain regions studied. No changes in postprandial preprogalanin mRNA expression were found compared to the preprandial levels. However, in unfed fish, a significant increase in preprogalanin mRNA expression was found in the telencephalon (1 and 3 h) and hypothalamus (3 h) after the scheduled feeding time. The postprandial preprogalanin mRNA expression in the telencephalon and hypothalamus of fed fish at 1 and 3 h were significantly lower than the mRNA expression levels in the unfed fish at the same time. Preprogalanin mRNA expression levels remain unaltered during 7 days of starvation. The presence of preprogalanin mRNA in brain nuclei involved in the regulation of food intake and pituitary hormone secretion suggests important physiological roles for galanin in goldfish.
Collapse
Affiliation(s)
- Suraj Unniappan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|
31
|
Gaikwad A, Biju KC, Saha SG, Subhedar N. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus. J Chem Neuroanat 2004; 27:55-70. [PMID: 15036363 DOI: 10.1016/j.jchemneu.2003.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/14/2003] [Accepted: 11/29/2003] [Indexed: 11/15/2022]
Abstract
Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.
Collapse
Affiliation(s)
- Archana Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|
32
|
Cerdá-Reverter JM, Ling MK, Schiöth HB, Peter RE. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J Neurochem 2004; 87:1354-67. [PMID: 14713292 DOI: 10.1046/j.1471-4159.2003.02107.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The melanocortin 5 receptor (MC5R) is activated by melanocyte-stimulating hormones (MSHs) and has a widespread tissue distribution, while its detailed central expression pattern and brain functions are fairly unknown. We report cloning, pharmacological characterization, tissue distribution and detailed brain mapping of melanocortin 5 receptor in goldfish (gMC5R). The goldfish orthologue protein is 69% identical to human MC5R and is conserved in important functional domains. The gMC5R showed similar potency to alpha-, beta- and gamma-MSH peptides in radioligand binding as the mammalian orthologues, while MTII and HS024 were both agonists at this receptor. The gMC5R-mRNA was found in the peripheral tissues including kidney, spleen, skin and retina, with low expression levels in the intestine, fat, muscle, gill, pituitary and ovary. In situ hybridization studies demonstrated that gMC5R transcripts are widely distributed in the goldfish brain. The gMC5R expression was found in ventral telencephalon, pre-optic area, dorsal and ventral thalamus, infundibular hypothalamus, posterior tuberculum, tectum and tegmentum mesencephali, reticular formation, vagal and facial lobes and spinal cord. The cloning and characterization of this receptor provides an important tool to elucidate its participation in neuroendocrine and behavioural control.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Southern
- Brain/anatomy & histology
- Brain/metabolism
- Brain Mapping
- Cell Line
- Cloning, Molecular
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Embryo, Nonmammalian
- Female
- Goldfish
- Humans
- In Situ Hybridization
- Kidney/metabolism
- Male
- RNA, Messenger/biosynthesis
- Radioligand Assay
- Receptor, Melanocortin, Type 4/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Melanocortin
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Skin/metabolism
- Spleen/metabolism
- Transfection
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacokinetics
Collapse
|
33
|
Cerdá-Reverter JM, Peter RE. Endogenous melanocortin antagonist in fish: structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene. Endocrinology 2003; 144:4552-61. [PMID: 12960082 DOI: 10.1210/en.2003-0453] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related protein (AGRP) is a naturally occurring antagonist of melanocortin. In mammals, central AGRP expression is restricted to the arcuate nucleus in which it plays a key role in the control of energy balance by antagonizing melanocortin effects at melanocortin 4 receptors. In goldfish, melanocortin 4 receptor is profusely expressed within the main brain areas for the control of energy balance, and central administration of agonist or antagonist analogs inhibits or stimulates food intake, respectively. Here we demonstrate that the goldfish genome has a homologous gene to mammalian AGRP. Detailed brain mapping by in situ hybridization shows that AGRP is exclusively expressed in the ventrobasal hypothalamic lateral tuberal nucleus, the teleostean homolog of the arcuate nucleus. Fasting up-regulates its mRNA levels in the lateral tuberal nucleus. In the periphery, AGRP is expressed in several tissues including ovary, muscle, and ventral skin, suggesting that AGRP might regulate peripheral actions of melanocortin peptides. The results provide the first evidence for an endogenous melanocortin antagonist in nontetrapod species and suggest that hypothalamic overexpression during fasting might regulate the inhibitory effects of melanocortin peptides on food intake in goldfish.
Collapse
|
34
|
Mathieu M, Tagliafierro G, Bruzzone F, Vallarino M. Neuropeptide tyrosine-like immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:255-65. [PMID: 12480140 DOI: 10.1016/s0165-3806(02)00577-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactivity was investigated in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development and in juvenile specimens, by using the indirect immunofluorescence and the peroxidase-antiperoxidase methods. In 60 h post fertilization (hpf) embryos, NPY-like immunoreactive cell bodies appeared in the hypothalamus, within the posterior periventricular nucleus. Few positive nerve fibers were found in the hypothalamus and in the tegmentum of the mesencephalon. In 72 hpf embryos, a new group of NPY-like immunoreactive cells was found in the olfactory pit. At day 4 of development, NPY-like immunoreactive cell bodies were detected between the olfactory pit and the olfactory organ. In the hypothalamus the location of positive cell bodies was similar to that reported in the previous developmental stages. A few positive nerve fibers appeared in the tegmentum of the rhombencephalon. At days 7 and 15 of development, the distribution of NPY-like immunoreactivity was very similar to that reported at day 4. However, at day 15, NPY-like immunoreactivity appeared for the first time in amacrine cells of the retina and in nerve fibers of the tectum of the mesencephalon. In 1-month/3-month-old animals, additional groups of NPY-like immunoreactive cell bodies appeared in the glomerular layer of the olfactory bulbs, the terminal nerve, the lateral nucleus of the ventral telencephalic area, the entopeduncular nucleus and in the medial region of the reticular formation of the rhombencephalon. These results show that NPY-like immunoreactive structures appear early during ontogeny of zebrafish. The distribution of the immunoreactive system increases during the ontogeny, the juvenile stages, and reaches the complete development in mature animals. The location of NPY-like immunoreactivity indicates that, during development, NPY could be involved in several neuromodulatory functions, including the processing of visual and olfactory information. In 1-month/3-month-old animals, NPY-like immunoreactive nerve fibers are present in the pituitary, suggesting that, from these stages onward, NPY may influence the secretion of pituitary hormones.
Collapse
Affiliation(s)
- Maura Mathieu
- Dipartimento di Biologia Sperimentale, DIBISAA, Università di Genova, Viale Benedetto XV, 5, 16132 Genoa, Italy
| | | | | | | |
Collapse
|
35
|
Farrell WJ, Böttger B, Ahmadi F, Finger TE. Distribution of cholecystokinin, calcitonin gene-related peptide, neuropeptide Y, and galanin in the primary gustatory nuclei of the goldfish. J Comp Neurol 2002; 450:103-14. [PMID: 12124755 DOI: 10.1002/cne.10317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholecystokinin (CCK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and galanin all are known to have central effects on food intake. Immunocytochemistry was used to examine the presence of these substances within the primary gustatory nuclei of the goldfish, including the vagal lobe, which is a large, laminated structure composed of discrete sensory, fiber, and motor layers. The vagal lobes receive primary afferent input from the gustatory portion of the vagus nerve and contain reflex circuitry involved in the ingestion or rejection of potential food items. Immunohistochemistry indicates a heavy concentration of CCK-, CGRP-, NPY-, and galanin-immunoreactive fibers in the capsular fiber layer as well as in deeper sensory layers of the vagal lobe. CGRP immunoreactivity throughout the sensory layers and capsular immunoreactivity for CCK are greatly reduced 1-2 weeks following vagus nerve transection, indicating that the majority of these fibers are primary sensory afferents. In contrast, NPY and galanin immunoreactivity in the capsular fiber layer and reactivity for CCK, NPY, and galanin in the deeper sensory and fiber layers are relatively unaffected by vagus transection. CCK-, NPY-, and galanin-immunoreactive fibers and puncta also were present in the motor layers, as were CGRP-immunoreactive motor somata. CCK-immunoreactive cell bodies are present in layer III and layer VII/VIII of the vagal lobe and in the superficial granular layer of the lateral subnucleus of the commissural nucleus of Cajal, which is caudally contiguous with the vagal lobe.
Collapse
Affiliation(s)
- William J Farrell
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
36
|
Rodríguez-Gómez FJ, Rendón-Unceta C, Sarasquete C, Muñoz-Cueto JA. Distribution of neuropeptide Y-like immunoreactivity in the brain of the Senegalese sole (Solea senegalensis). THE ANATOMICAL RECORD 2001; 262:227-37. [PMID: 11241192 DOI: 10.1002/1097-0185(20010301)262:3<227::aid-ar1027>3.0.co;2-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present the results of an immunohistochemical study aimed at localizing the neuropeptide Y (NPY) in the brain of the Senegalese sole, Solea senegalensis, using an antiserum raised against porcine NPY and the streptavidin-biotin-peroxidase method. In this species, we have identified immunoreactive cells in the ventral and dorsal telencephalon, caudal preoptic area, ventrocaudal hypothalamus, optic tectum, torus longitudinalis, synencephalon and isthmic region. NPY-immunoreactive fibers were profusely distributed throughout the brain, also reaching the adenohypophysis. The extensive distribution of NPY suggests an important role for this neuropeptide in a variety of physiological processes, including the neuroendocrine control of adenohypophyseal functions. Our results are compared with those obtained in other teleosts and discussed in relation to putative functions of NPY in the control of metabolism and reproduction in the Senegalese sole.
Collapse
Affiliation(s)
- F J Rodríguez-Gómez
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Marine Sciences, University of Cádiz, Polígono Río San Pedro, Puerto Real, Cádiz, Spain
| | | | | | | |
Collapse
|
37
|
Lin X, Otto CJ, Cardenas R, Peter RE. Somatostatin family of peptides and its receptors in fish. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-100] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatostatin (SRIF or SS) is a phylogenetically ancient, multigene family of peptides. SRIF-14 is conserved with identical primary structure in species of all classes of vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species and could extend to tetrapods. Three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro2]SRIF-14, is also present in sturgeon and African lungfish, and is closely associated with amphibian [Pro2,Met13]SRIF-14 gene and mammalian cortistatin gene. The post-translational processing of SRIF precursors could result in multiple forms of mature SRIF peptides, with differential abundance and tissue- or cell type-specific patterns. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type 1 and type 2 SRIF receptors have been identified from goldfish and a type 3 SRIF receptor has been identified from an electric fish. Fish SRIF receptors display considerable homology with mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. Although additional types of receptors remain to be determined, identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF action in fish.Key words: somatostatin, somatostatin receptor, growth hormone, fish.
Collapse
|
38
|
Marchetti G, Cozzi B, Tavanti M, Russo V, Pellegrini S, Fabiani O. The distribution of neuropeptide Y-immunoreactive neurons and nerve fibers in the forebrain of the carp Cyprinus carpio L. J Chem Neuroanat 2000; 20:129-39. [PMID: 11118806 DOI: 10.1016/s0891-0618(00)00082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports the distribution of Neuropeptide Y (NPY)-immunoreactive neurons and fibers in the forebrain of the adult carp Cyprinus carpio L. Serial Nissl-stained sections were used for cytoarchitecture and identification of anatomical structures. Immunostaining of NPY-containing neurons and fibers was used as neurochemical marker and tool for comparison with other species, including the goldfish. The general outline of the cytoarchitecture of the carp forebrain is similar to that of other Cypriniformes. However, using NPY immunohistochemistry, we found several specific differences with the goldfish, especially in the diencephalon. In the hypothalamus of the carp NPY-immunoreactive (NPYir) neurons were identified in the n. dorsolateralis thalami, and in the n. ventralis lateralis thalami. In the same location, we observed the n. anterior hypothalami and the n. preglomerulosus pars lateralis, described in the goldfish, as parts of n. prerotundus. However, in the carp we were not able to identify a n. preglomerulosus pars medialis, a n. preglomerulosus pars medialis commissuralis and a n. glomerulosus. We describe a n. rotundus, in which we did not find substructures typical of the goldfish. Further differences with the goldfish, trout and salmon were also noted.
Collapse
Affiliation(s)
- G Marchetti
- Department of Animal Production, Section of Anatomy, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Cerdá-Reverter JM, Anglade I, Martínez-Rodríguez G, Mazurais D, Muñoz-Cueto JA, Carrillo M, Kah O, Zanuy S. Characterization of neuropeptide Y expression in the brain of a perciform fish, the sea bass (Dicentrarchus labrax). J Chem Neuroanat 2000; 19:197-210. [PMID: 11036237 DOI: 10.1016/s0891-0618(00)00063-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of neuropeptide Y (NPY) gene expression was mapped in the brain of the sea bass (Dicentrarchus labrax) by in situ hybridization with 35S-UTP labeled cRNA probes. Gene expression was mainly detected within the forebrain, although NPY mRNA transcripts were also localized in the tectum and tegmentum mesencephali and posterior brain. New NPY-expressing nuclei were found in the dorsal and ventral telencephalon, preoptic area, tuberal hypothalamus, synencephalon, tegmentum mesencephali and posterior brain. The profuse NPY gene expression within the main neuroendocrine areas of the teleost fish further supports a physiological role in the control of the pituitary secretion. In addition, NPY gene was expressed within the primary visual, olfactory and gustatory circuits of teleost which, subsequently, project to hypothalamic feeding center in teleost fish. Our results extend the NPY-expressing areas known in teleost species.
Collapse
Affiliation(s)
- J M Cerdá-Reverter
- Department of Reproductive Physiology of Fish, Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, Ribera de Cabanes, 12595, Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Söderberg C, Wraith A, Ringvall M, Yan YL, Postlethwait JH, Brodin L, Larhammar D. Zebrafish genes for neuropeptide Y and peptide YY reveal origin by chromosome duplication from an ancestral gene linked to the homeobox cluster. J Neurochem 2000; 75:908-18. [PMID: 10936170 DOI: 10.1046/j.1471-4159.2000.0750908.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) and peptide YY (PYY) are related 36-amino acid peptides. NPY is widely distributed in the nervous system and has several physiological roles. PYY serves as an intestinal hormone as well as a neuropeptide. We report here cloning of the npy and pyy genes in zebrafish (Danio rerio). NPY differs at only one to four amino acid positions from NPY in other jawed vertebrates. Zebrafish PYY differs at three positions from PYY from other fishes and at 10 positions from mammals. In situ hybridization showed that neurons containing NPY mRNA have a widespread distribution in the brain, particularly in the telencephalon, optic tectum, and rhombencephalon. PYY mRNA was found mainly in brainstem neurons, as reported previously for vertebrates as divergent as the rat and the lamprey, suggesting an essential role for PYY in these neurons. PYY mRNA was observed also in the telencephalon. These results were confirmed by immunocytochemistry. As in the human, the npy gene is located adjacent to homeobox (hox) gene cluster A (copy a in zebrafish), whereas the pyy gene is located close to hoxBa. This suggests that npy and pyy arose from a common ancestral gene in a chromosomal duplication event that also involved the hox gene clusters. As zebrafish has seven hox clusters, it is possible that additional NPY family genes exist or have existed. Also, the NPY receptor system seems to be more complex in zebrafish than in mammals, with at least two receptor genes without known mammalian orthologues.
Collapse
Affiliation(s)
- C Söderberg
- Unit of Pharmacology, Department of Neuroscience, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Cardenas R, Lin X, Chavez M, Aramburo C, Peter RE. Characterization and distribution of somatostatin binding sites in goldfish brain. Gen Comp Endocrinol 2000; 117:117-28. [PMID: 10620428 DOI: 10.1006/gcen.1999.7396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Somatostatin (SRIF) binding sites were characterized in goldfish brain. Binding of (125)I-[Tyr(11)]-SRIF-14 to a brain membrane preparation was found to be saturable, reversible, and time-, temperature-, and pH-dependent. Binding was also displaceable by different forms of SRIF. Under optimal conditions (22 degrees C, pH 7.2), the equilibrium binding of (125)I-[Tyr(11)]-SRIF-14 to goldfish brain membranes was achieved after 60 min incubation. Analysis of saturable equilibrium binding revealed a one-site model fit with K(a) of 1.3 nM. SRIF-14, mammalian SRIF-28, and salmon SRIF-25 displaced (125)I-[Tyr(11)]-SRIF-14 binding with similar affinity, whereas other neuropeptides, e.g., substance P, were unable to displace (125)I-[Tyr(11)]-SRIF-14. Autoradiography studies demonstrated that (125)I-[Tyr(11)]-SRIF-14 binding sites are found throughout the goldfish brain. A high density of (125)I-[Tyr(11)]-SRIF-14 binding sites was found in the forebrain, including the nucleus preopticus, nucleus preopticus periventricularis, nucleus anterioris periventricularis, nucleus lateralis tuberis, nucleus dorsomedialis thalami, nucleus dorsolateralis thalami, nucleus ventromedialis thalami, and nucleus diffusus lobi inferioris. In midbrain, (125)I-[Tyr(11)]-SRIF-14 binding sites were found in the optic tectum. The facial and vagal lobes and the mesencephalic-cerebellar tract were found to have a high density of binding sites. This study provides the first characterization and distribution of specific binding sites for SRIF in a fish brain.
Collapse
Affiliation(s)
- R Cardenas
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | | | | | | | | |
Collapse
|
42
|
Castro A, Becerra M, Manso MJ, Anadón R. Development of immunoreactivity to neuropeptide Y in the brain of brown trout (Salmo trutta fario). J Comp Neurol 1999; 414:13-32. [PMID: 10494075 DOI: 10.1002/(sici)1096-9861(19991108)414:1<13::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of neuropeptide Y-immunoreactive (NPY-ir) neurons in the brain of the brown trout, Salmo trutta fario, was studied by using the streptavidin-biotin immunohistochemical method. Almost all NPY-ir neurons found in the brain of adults already appeared in embryonic stages. The earliest NPY-ir neurons were observed in the laminar nucleus, the locus coeruleus, and the vagal region of 9-mm-long embryos. In the lateral area of the ventral telencephalon, habenula, hypothalamus, optic tectum, and saccus vasculosus, NPY-ir cells appeared shortly after (embryos 12-14 mm in length). The finding of NPY-ir cells in the saccus vasculosus and the vagal region expand the NPY-ir structures known in teleosts. Among the regions of the trout brain most richly innervated by NPY-ir fibers are the hypothalamus, the isthmus, and the complex of the nucleus of the solitary tract/area postrema, suggesting a correlation of NPY with visceral functions. Two patterns of development of NPY-ir populations were observed: Some populations showed a lifetime increase in cell number, whereas, in other populations, cell number was established early in development or even diminished in adulthood. These developmental patterns were compared with those found in other studies of teleosts and with those found in other vertebrates. J. Comp. Neurol. 414:13-32, 1999.
Collapse
Affiliation(s)
- A Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
43
|
Lin X, Otto CJ, Peter RE. Expression of three distinct somatostatin messenger ribonucleic acids (mRNAs) in goldfish brain: characterization of the complementary deoxyribonucleic acids, distribution and seasonal variation of the mRNAs, and action of a somatostatin-14 variant. Endocrinology 1999; 140:2089-99. [PMID: 10218959 DOI: 10.1210/endo.140.5.6706] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, three somatostatin (SRIF) complementary DNAs (cDNAs) were characterized from goldfish brain. The cDNAs encode three distinct preprosomatostatins (PSS), designated as PSS-I, PSS-II, and PSS-III. The goldfish PSS-I, PSS-II, and PSS-III contain enzymatic cleavage recognition sites, potentially yielding SRIF-14 with sequence identical to mammalian SRIF-14, SRIF-28 with [Glu1, Tyr7, Gly10]SRIF-14 at its C-terminus, and [Pro2]SRIF-14, respectively. The brain distribution of the three SRIF messenger RNAs (mRNAs) were differential but overlapping in the telencephalon, hypothalamus and optic tectum-thalamus regions. Seasonal variations in the levels of the three mRNAs were observed, with differential patterns between the three mRNAs and differences between the sexes. However, only the seasonal alteration in the levels of the mRNA encoding PSS-I showed close association with the seasonal variation in brain contents of immunoreactive SRIF-14 and inversely correlated with the seasonal variation in serum GH levels described in the previous studies, suggesting that SRIF-14 is involved in the control of the seasonal variation in serum GH levels. The putative SRIF-14 variant, [Pro2]SRIF-14, inhibited basal GH secretion from in vitro perifused goldfish pituitary fragments, with similar potency to SRIF-14; [Pro2]SRIF-14 also inhibited stimulated GH release from the pituitary fragments, supporting that [Pro2] SRIF-14 is a biologically active form of SRIF in goldfish.
Collapse
Affiliation(s)
- X Lin
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
44
|
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:235-85. [PMID: 9858740 DOI: 10.1016/s0165-0173(98)00016-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163,
| | | | | |
Collapse
|
45
|
Lin XW, Otto CJ, Peter RE. Evolution of neuroendocrine peptide systems: gonadotropin-releasing hormone and somatostatin. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:375-88. [PMID: 9827009 DOI: 10.1016/s0742-8413(98)00025-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nine vertebrate and two protochordate gonadotropin-releasing hormone (GnRH) decapeptides have been identified and sequenced. Multiple molecular forms of GnRH peptide were present in the brain of most species examined, and cGnRH-II generally coexists with one or more GnRH forms in all the major vertebrate groups. The presence of multiple GnRH forms has been further confirmed by the deduced GnRH peptide structure from cDNA and/or gene sequences in several teleost species and tree shrew. High conservation of the primary structure of GnRH decapeptides and the overall structure of GnRH genes and precursors suggests that they are derived from a common ancestor. Somatostatin (SRIF) is a phylogenetically ancient, multigene family of peptides. A tetradecapeptide, SRIF (SRIF14) has been conserved, with the same amino acid sequence, in representative species of all classes of vertebrate. Four molecular variants of SRIF14 have been identified. SRIF14 is processed from preprosomatostatin-I, which contains SRIF14 at its C-terminus; preprosomatostatin-I is also processed to SRIF28 in mammals and SRIF26 in bowfin. Teleost fish possess a second somatostatin precursor, preprosomatostatin-II, containing [Tyr7, Gly10]-SRIF14 at the C-terminus, that is mainly processed into large forms of SRIF.
Collapse
Affiliation(s)
- X W Lin
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
46
|
Lee EY, Lee TS, Baik SH, Cha CI. Postnatal development of somatostatin- and neuropeptide Y-immunoreactive neurons in rat cerebral cortex: a double-labeling immunohistochemical study. Int J Dev Neurosci 1998; 16:63-72. [PMID: 9664223 DOI: 10.1016/s0736-5748(97)00040-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The postnatal development of somatostatin (SOM)- and neuropeptide Y (NPY)-immunoreactive (ir) neurons was examined in rat cerebral cortex, while considering their coexistence in cortical neurons. Using double immunohistochemical staining for SOM and NPY with diaminobenzidine and benzidine dihydrochloride as chromogens, we subdivided immunoreactive cells into double-labeled SOM/NPY-, SOM only-, and NPY only-ir neurons. SOM/NPY- and SOM only-ir neurons were detectable even at the day of birth, in contrast on NPY only-ir cells which first appeared in most cortices from week two. The morphological features of double-labeled SOM/NPY neurons differed with those of SOM only- and NPY only-ir neurons. No apparent changes in the shape and size of single-labeled neurons occurred with age; throughout their postnatal life they were round and ovoid, had a thin rim of perinuclear cytoplasm, and short processes. However, the features of SOM/NPY-ir neurons were not consistent according to postnatal age; by day P7, these neurons showed immature features and they began to show more advanced neuronal characteristics by week P2, when they had a larger and more intensely-stain cytoplasm. In addition, their processes were longer, thicker and more complex than at earlier ages. At this age, SOM/NPY-ir somata were close to their near maximum size. From week P4, they became smaller and were lightly labeled. SOM/NPY-ir somata were larger than SOM only- and NYP only-ir somata at and after two weeks of age. The present results, showing different postnatal maturation patterns such as time of appearance and morphological features, raise the possibilities that double-labeled SOM/NPY and single-labeled immunoreactive neurons may be different populations regulated by different mechanisms in their development, and with different functional properties during development.
Collapse
Affiliation(s)
- E Y Lee
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, Korea.
| | | | | | | |
Collapse
|
47
|
Kwong P, Chang JP. Somatostatin inhibition of growth hormone release in goldfish: possible targets of intracellular mechanisms of action. Gen Comp Endocrinol 1997; 108:446-56. [PMID: 9405121 DOI: 10.1006/gcen.1997.6995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have demonstrated that growth hormone (GH) release in goldfish is under the stimulatory control of gonadotropin-releasing hormone (GnRH) and dopamine and the inhibitory control of somatostatin (SRIF). GnRH stimulation is mediated through protein kinase C (PKC)- and calcium-dependent mechanisms, whereas dopamine D1 receptor activation increases GH secretion through cyclic (c) AMP-dependent intracellular signal transduction pathways. In this study, the mechanisms of SRIF inhibition on GH secretion were examined using primary cultures of dispersed goldfish pituitary cells in static incubation. Application of 1 microM SRIF inhibited the GH-release responses to 100 nM salmon GnRH, 100 nM chicken GnRH-II, and 1 microM SKF38393, a D1 agonist. These results indicate that inhibitory action of SRIF on stimulated GH release is direct, at the level of the pituitary cells. Addition of SRIF reduced the GH release responses to two activators of PKC (100 microM dioctanoyl glycerol and 100 nM tetradecanoyl phorbol acetate) and to two ionophores (10 microM A23187 and 10 microM ionomycin). Similarly, SRIF abolished the GH responses to an activator of adenylate cyclase (10 microM forskolin), a membrane-permeant cAMP analog (1 mM 8-bromo-cAMP), and a voltage-sensitive calcium channel agonist (1 microM Bay K 8644). Taken together, these observations indicate that the inhibitory actions of SRIF on D1- and GnRH-stimulated GH release can be exerted at sites distal to cAMP production and PKC activation, respectively. SRIF also exerts its effect at sites distal to calcium mobilization. Since SRIF inhibition was more effective against Bay K 8644-induced response than against ionophore-induced GH response, an inhibitory action at the level of extracellular calcium entry through voltage-sensitive channels is also possible.
Collapse
Affiliation(s)
- P Kwong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | | |
Collapse
|
48
|
Rao PD, Murthy CK, Cook H, Peter RE. Sexual dimorphism of galanin-like immunoreactivity in the brain and pituitary of goldfish, Carassius auratus. J Chem Neuroanat 1996; 10:119-35. [PMID: 8783041 DOI: 10.1016/0891-0618(96)00110-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A sexually dimorphic distribution of galanin (GAL)-like immunoreactive (ir) neurons and fibers was found in the brain and pituitary of goldfish. The rostralmost GAL-ir perikarya were found in the area ventralis telencephali pars supracommissuralis dorsal to the anterior commissure. In the diencephalon, there was several GAL-ir perikarya in the nucleus preopticus periventricularis (NPP). Males had many GAL-ir perikarya in the nucleus preopticus pars parvocellularis (NPOpp) and isolated GAL-ir perikarya in the NPO pars magnocellularis, and lateral to the NPO; in females GAL-ir perikarya were not found in these sites. A large GAL-ir neuronal aggregation was observed in the nucleus lateralis tuberis pars posterioris (NLTp). Several ir perikarya were present in the nucleus posterioris tuberis; however, unlike in other regions the males revealed fewer neurons than females. Besides the established innervation of the pituitary gland by the NPP, NPO and NLT, the present study revealed GAL-ir perikarya of these nuclei apparently also innervating the telencephalon, thalamus, optic tectum, tegmentum and even some areas of the rhombencephalon. Isolated perikarya were found in the nucleus posterioris periventricularis, the dorsal vicinities of the nucleus recessus lateralis (NRL), nucleus recessus posterioris, and nucleus saccus vasculosus, and in the medulla oblongata ventral to the vagal lobes. In the pituitary gland, GAL-ir fibers ramify and terminate among the pars distalis cells. A small percentage of growth hormone-secreting cells colocalize GAL. In males, most GAL-ir cells of the proximal pars distalis (PPD) showed granular ir product in the entire cell, and some had one or two large granules; in females the ir PPD cells showed clusters of a few fine ir granules of uniform size in each. Sexual dimorphism was also found in the olfactory bulb, telencephalon, infundibulum, mesencephalic tegmentum, optic tectum and medulla oblongata, the males having a more extensive GAL-ir fiber system than the females. Galanin may play a role in both hypophysiotropic and motor functions.
Collapse
Affiliation(s)
- P D Rao
- Department of Zoology, Nagpur University, India
| | | | | | | |
Collapse
|
49
|
Brüning G, Katzbach R, Mayer B. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, carassius auratus. J Comp Neurol 1995; 358:353-82. [PMID: 7560292 DOI: 10.1002/cne.903580305] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of the neuronal type of nitric oxide synthase in the goldfish brain and spinal cord was investigated via NADPH-diaphorase histochemistry and immunocytochemistry using an antiserum raised against the purified mammalian enzyme. Many structures, including magnocellular neurosecretory cells, motoneurons, mesencephalic trigeminal neurons, and radial glial fibers, were stained by the NADPH-diaphorase reaction but were not immunoreactive. This nonspecific NADPH-diaphorase activity was strongly reduced after preincubation of the sections. Therefore, when sections were first reacted for immunofluorescence and, thereafter, stained for NADPH-diaphorase, a corresponding staining pattern was obtained that allowed the reliable localization of neuronal nitric oxide synthase based on both complementary staining methods. In the telencephalon, positive neurons were concentrated in the ventral and posterior parts of the area ventralis. Many intensely stained neurons were present in various diencephalic nuclei, including the nucleus centralis posterior and the ventromedial nucleus of the thalamus, the nucleus tori lateralis, the nucleus recessus lateralis, the nucleus tuberis posterior, and the central nucleus of the inferior lobe. In the midbrain, neurons containing nitric oxide synthase were located in the periventricular zone of the optic tectum, the nucleus vermiformis, and the nucleus reticularis mesencephali. Specific staining in the cerebellum was concentrated in Golgi cells. In the hindbrain, nitroxergic neurons were numerous in all four sensory nuclei of the trigeminus, in the facial lobe, the superior olive, the inferior reticular formation, and the medial general visceral nucleus of the vagus. The dorsal horn of the spinal cord was enriched with positive neurons. A few strongly stained cells were also present in the ventral horn. In conclusion, neurons capable of synthesizing nitric oxide occur throughout the teleost central nervous system. The presence of nitric oxide synthase in projection areas of most afferent nerves suggests a widespread involvement of nitric oxide in sensory information processing. The distribution of nitric oxide synthase-containing neurons in certain areas, e.g., the tectum opticum and the spinal cord, indicates an evolutionarily conserved pattern. Similar to the case in other vertebrates, there appears to be no comprehensive overlap between the distribution of nitric oxide synthase and that of any other chemically characterized neuronal population described thus far. However, strongly positive cell groups in the mesencephalic reticular formation suggest the idea of an evolutionarily conserved mesopontine cholinergic system coexpressing nitric oxide synthase.
Collapse
Affiliation(s)
- G Brüning
- Department of Anatomy, Free University of Berlin, Germany
| | | | | |
Collapse
|
50
|
Arévalo R, Alonso JR, García-Ojeda E, Briñón JG, Crespo C, Aijón J. NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J Comp Neurol 1995; 352:398-420. [PMID: 7535809 DOI: 10.1002/cne.903520307] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (ND)-positive cells and fibers in the tench central nervous system was mapped by using a direct histochemical method. This enzyme was observed in specific cell populations throughout all main divisions of the tench brain. In the telencephalon, we found strongly labeled olfactory fibers, as well as positive cells and fibers in the area ventralis of the telencephalic lobes. Positive staining was observed in the following diencephalic nuclei: nucleus preopticus magnocellularis pars magnocellularis, nucleus recessus lateralis, nucleus recessus posterioris, nucleus posterior tuberis, and nucleus diffusus torus lateralis, as well as small cells with a diffuse distribution surrounding the diencephalic ventricle. In the mesencephalon, heavily stained ND-positive neurons were observed in the nucleus fasciculi longitudinalis medialis, nucleus nervi oculomotorius, and nucleus nervi trochlearis. In the hindbrain the most evident staining was observed as large neurons located in the nuclei of the cranial nerves, scattered positive cells located between the negative fibers of the cranial nerves, and in the nucleus fasciculi solitari. Finally, in the spinal cord, ND-positive cells and fibers were mainly located in the ventral horn. This distribution of ND labeling in the brain of the tench is significantly different from previous data on ND activity in the brain of terrestrial vertebrates and does not correlate with the presence and distribution patterns of several neurotransmitters and neuroactive substances in the teleost brain.
Collapse
Affiliation(s)
- R Arévalo
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|