1
|
Xiao JL, Liu HY, Sun CC, Tang CF. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol Biol Rep 2024; 51:809. [PMID: 39001962 DOI: 10.1007/s11033-024-09771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.
Collapse
Affiliation(s)
- Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Heng-Yuan Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Chen-Chen Sun
- Institute of Physical Education, Hunan First Normal University, Changsha, Hunan, 410205, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China.
| |
Collapse
|
2
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
3
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
4
|
Donkor GY, Anderson GM, Stadler M, Tawiah PO, Orellano CD, Edwards KA, Dahl JU. A novel ruthenium-silver based antimicrobial potentiates aminoglycoside activity against Pseudomonas aeruginosa. mSphere 2023; 8:e0019023. [PMID: 37646510 PMCID: PMC10597350 DOI: 10.1128/msphere.00190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
The rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments in novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX, a broad-spectrum antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to the connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogen Pseudomonas aeruginosa, we screened possible synergistic effects of AGXX on several antibiotic classes. We found that the combination of AGXX and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored the sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally, P. aeruginosa strains deficient in ROS detoxifying/repair genes were more susceptible to AGXX/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with a significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials. IMPORTANCE The emergence of drug-resistant bacteria coupled with the decline in antibiotic development highlights the need for novel alternatives. Thus, new strategies aimed at repurposing conventional antibiotics have gained significant interest. The necessity of these interventions is evident especially in gram-negative pathogens as they are particularly difficult to treat due to their outer membrane. This study highlights the effectiveness of the antimicrobial AGXX in potentiating aminoglycoside activities against P. aeruginosa. The combination of AGXX and aminoglycosides not only reduces bacterial survival rapidly but also significantly re-sensitizes aminoglycoside-resistant P. aeruginosa strains. In combination with gentamicin, AGXX induces increased endogenous oxidative stress, membrane damage, and iron-sulfur cluster disruption. These findings emphasize AGXX's potential as a route of antibiotic adjuvant development and shed light on potential targets to enhance aminoglycoside activity.
Collapse
Affiliation(s)
- Gracious Yoofi Donkor
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Greg M. Anderson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Michael Stadler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Patrick Ofori Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Carl D. Orellano
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Cell Biology, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| |
Collapse
|
5
|
Dirks T, Krewing M, Vogel K, Bandow JE. The cold atmospheric pressure plasma-generated species superoxide, singlet oxygen and atomic oxygen activate the molecular chaperone Hsp33. J R Soc Interface 2023; 20:20230300. [PMID: 37876273 PMCID: PMC10598452 DOI: 10.1098/rsif.2023.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Cold atmospheric pressure plasmas are used for surface decontamination or disinfection, e.g. in clinical settings. Protein aggregation has been shown to significantly contribute to the antibacterial mechanisms of plasma. To investigate the potential role of the redox-activated zinc-binding chaperone Hsp33 in preventing protein aggregation and thus mediating plasma resistance, we compared the plasma sensitivity of wild-type E. coli to that of an hslO deletion mutant lacking Hsp33 as well as an over-producing strain. Over-production of Hsp33 increased plasma survival rates above wild-type levels. Hsp33 was previously shown to be activated by plasma in vitro. For the PlasmaDerm source applied in dermatology, reversible activation of Hsp33 was confirmed. Thiol oxidation and Hsp33 unfolding, both crucial for Hsp33 activation, occurred during plasma treatment. After prolonged plasma exposure, however, unspecific protein oxidation was detected, the ability of Hsp33 to bind zinc ions was decreased without direct modifications of the zinc-binding motif, and the protein was inactivated. To identify chemical species of potential relevance for plasma-induced Hsp33 activation, reactive oxygen species were tested for their ability to activate Hsp33 in vitro. Superoxide, singlet oxygen and potentially atomic oxygen activate Hsp33, while no evidence was found for activation by ozone, peroxynitrite or hydroxyl radicals.
Collapse
Affiliation(s)
- Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Vogel
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Donkor GY, Anderson GM, Stadler M, Tawiah PO, Orellano CD, Edwards KA, Dahl JU. The Novel Silver-Containing Antimicrobial Potentiates Aminoglycoside Activity Against Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532855. [PMID: 36993297 PMCID: PMC10055142 DOI: 10.1101/2023.03.15.532855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments into novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX®, a broad-spectrum silver containing antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX® could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogen Pseudomonas aeruginosa, we screened possible synergistic effects of AGXX® on several antibiotic classes. We found that the combination of AGXX® and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX®/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally, P. aeruginosa strains deficient in ROS detoxifying/repair genes were more susceptible to AGXX®/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX®/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials.
Collapse
|
7
|
The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Aging. Cells 2023; 12:cells12050763. [PMID: 36899898 PMCID: PMC10001413 DOI: 10.3390/cells12050763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.
Collapse
|
8
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Bazyar H, Moradi L, Zaman F, Zare Javid A. The effects of rutin flavonoid supplement on glycemic status, lipid profile, atherogenic index of plasma, brain-derived neurotrophic factor (BDNF), some serum inflammatory, and oxidative stress factors in patients with type 2 diabetes mellitus: A double-blind, placebo-controlled trial. Phytother Res 2023; 37:271-284. [PMID: 36101997 DOI: 10.1002/ptr.7611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/06/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effects of rutin flavonoid in type 2 diabetes mellitus (T2DM) patients. In this trial (double-blind, placebo-controlled), 50 T2DM patients (supplement, n = 25 and placebo, n = 25) were randomized and supplemented with 500 mg rutin or placebo per day for 3-months. At the beginning and at the end of the study, metabolic parameters including fasting blood glucose (FBG), insulin, glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMO-IR), quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment of β-cell function (HOMA-β), triglyceride (TG), total cholesterol (CHOL), high-density and low-density lipoprotein cholesterol (HDL-c and LDL-c), and atherogenic index of plasma (AIP), inflammatory and oxidative stress markers such as interleukin 6 (IL-6), total antioxidant capacity (TAC), and malondialdehyde (MDA) and brain-derived neurotrophic factor (BDNF) were assessed. The results showed a significant decrease in FBG, insulin, HbA1c, HOMO-IR, LDL-c, TG, VLDL, CHOL, LDL-c.HDL-c ratio, AIP, IL-6, and MDA and a significant increase in HDL-c, QUICKI index, BDNF, and TAC compared with the initial value (p for all <.05). In the adjusted model, the mean changes of FBG, insulin, HbA1c, HOMO-IR, LDL-c, CHOL, LDL.HDL ratio, AIP, MDA, and IL-6 were significantly lower and mean changes of QUICKI index, HDL-c, and TAC were significantly higher in the rutin group compared with the placebo group (adjusted p for all <.05). It seems that rutin may have beneficial effects on improving metabolic parameters, BDNF, and inflammatory and oxidative stress factors in T2DM patients.
Collapse
Affiliation(s)
- Hadi Bazyar
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Leila Moradi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ferdows Zaman
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Rodriguez-Sevilla JJ, Calvo X, Arenillas L. Causes and Pathophysiology of Acquired Sideroblastic Anemia. Genes (Basel) 2022; 13:1562. [PMID: 36140729 PMCID: PMC9498732 DOI: 10.3390/genes13091562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by anemia and the presence of ring sideroblasts in the bone marrow. Ring sideroblasts are abnormal erythroblasts with iron-loaded mitochondria that are visualized by Prussian blue staining as a perinuclear ring of green-blue granules. The mechanisms that lead to the ring sideroblast formation are heterogeneous, but in all of them, there is an abnormal deposition of iron in the mitochondria of erythroblasts. Congenital sideroblastic anemias include nonsyndromic and syndromic disorders. Acquired sideroblastic anemias include conditions that range from clonal disorders (myeloid neoplasms as myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms with ring sideroblasts) to toxic or metabolic reversible sideroblastic anemia. In the last 30 years, due to the advances in genomic techniques, a deep knowledge of the pathophysiological mechanisms has been accomplished and the bases for possible targeted treatments have been established. The distinction between the different forms of sideroblastic anemia is based on the study of the characteristics of the anemia, age of diagnosis, clinical manifestations, and the performance of laboratory analysis involving genetic testing in many cases. This review focuses on the differential diagnosis of acquired disorders associated with ring sideroblasts.
Collapse
Affiliation(s)
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
- Group of Translational Research on Hematological Neoplasms (GRETNHE), IMIM-Hospital del Mar, 08003 Barcelona, Spain
| | - Leonor Arenillas
- Laboratori de Citologia Hematològica, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
- Group of Translational Research on Hematological Neoplasms (GRETNHE), IMIM-Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
11
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
12
|
Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, Xin Y, Jiang X. Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms. Front Pharmacol 2022; 13:921070. [PMID: 35935861 PMCID: PMC9355528 DOI: 10.3389/fphar.2022.921070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress refers to the imbalance between oxidation and antioxidant activity in the body. Oxygen is reduced by electrons as part of normal metabolism leading to the formation of various reactive oxygen species (ROS). ROS are the main cause of oxidative stress and can be assessed through direct detection. Oxidative stress is a double-edged phenomenon in that it has protective mechanisms that help to destroy bacteria and pathogens, however, increased ROS accumulation can lead to host cell apoptosis and damage. Glioma is one of the most common malignant tumors of the central nervous system and is characterized by changes in the redox state. Therapeutic regimens still encounter multiple obstacles and challenges. Glioma occurrence is related to increased free radical levels and decreased antioxidant defense responses. Oxidative stress is particularly important in the pathogenesis of gliomas, indicating that antioxidant therapy may be a means of treating tumors. This review evaluates oxidative stress and its effects on gliomas, describes the potential targets and therapeutic drugs in detail, and clarifies the effects of radiotherapy and chemotherapy on oxidative stress. These data may provide a reference for the development of precise therapeutic regimes of gliomas based on oxidative stress.
Collapse
Affiliation(s)
- Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
13
|
Pospíšil P, Kumar A, Prasad A. Reactive oxygen species in photosystem II: relevance for oxidative signaling. PHOTOSYNTHESIS RESEARCH 2022; 152:245-260. [PMID: 35644020 DOI: 10.1007/s11120-022-00922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
14
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
15
|
Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome. Proc Natl Acad Sci U S A 2022; 119:2023328119. [PMID: 34969852 PMCID: PMC8740578 DOI: 10.1073/pnas.2023328119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cu/Zn superoxide dismutase (Sod1) is a key antioxidant enzyme, and its importance is underscored by the fact that its ablation in cell and animal models results in oxidative stress; metabolic defects; and reductions in cell proliferation, viability, and lifespan. Curiously, Sod1 detoxifies superoxide radicals (O2•−) in a manner that produces an oxidant as byproduct, hydrogen peroxide (H2O2). While much is known about the necessity of scavenging O2•−, it is less clear what the physiological roles of Sod1-derived H2O2 are. We discovered that Sod1-derived H2O2 plays an important role in antioxidant defense by stimulating the production of NADPH, a vital cellular reductant required for reactive oxygen species scavenging enzymes, as well as redox regulating a large network of enzymes. Cu/Zn superoxide dismutase (Sod1) is a highly conserved and abundant antioxidant enzyme that detoxifies superoxide (O2•−) by catalyzing its conversion to dioxygen (O2) and hydrogen peroxide (H2O2). Using Saccharomyces cerevisiae and mammalian cells, we discovered that a major aspect of the antioxidant function of Sod1 is to integrate O2 availability to promote NADPH production. The mechanism involves Sod1-derived H2O2 oxidatively inactivating the glycolytic enzyme, GAPDH, which in turn reroutes carbohydrate flux to the oxidative phase of the pentose phosphate pathway (oxPPP) to generate NADPH. The aerobic oxidation of GAPDH is dependent on and rate-limited by Sod1. Thus, Sod1 senses O2 via O2•− to balance glycolytic and oxPPP flux, through control of GAPDH activity, for adaptation to life in air. Importantly, this mechanism for Sod1 antioxidant activity requires the bulk of cellular Sod1, unlike for its role in protection against O2•− toxicity, which only requires <1% of total Sod1. Using mass spectrometry, we identified proteome-wide targets of Sod1-dependent redox signaling, including numerous metabolic enzymes. Altogether, Sod1-derived H2O2 is important for antioxidant defense and a master regulator of metabolism and the thiol redoxome.
Collapse
|
16
|
When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol 2021; 19:774-785. [PMID: 34183820 PMCID: PMC9191689 DOI: 10.1038/s41579-021-00583-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The defining trait of obligate anaerobes is that oxygen blocks their growth, yet the underlying mechanisms are unclear. A popular hypothesis was that these microorganisms failed to evolve defences to protect themselves from reactive oxygen species (ROS) such as superoxide and hydrogen peroxide, and that this failure is what prevents their expansion to oxic habitats. However, studies reveal that anaerobes actually wield most of the same defences that aerobes possess, and many of them have the capacity to tolerate substantial levels of oxygen. Therefore, to understand the structures and real-world dynamics of microbial communities, investigators have examined how anaerobes such as Bacteroides, Desulfovibrio, Pyrococcus and Clostridium spp. struggle and cope with oxygen. The hypoxic environments in which these organisms dwell - including the mammalian gut, sulfur vents and deep sediments - experience episodic oxygenation. In this Review, we explore the molecular mechanisms by which oxygen impairs anaerobes and the degree to which bacteria protect their metabolic pathways from it. The emergent view of anaerobiosis is that optimal strategies of anaerobic metabolism depend upon radical chemistry and low-potential metal centres. Such catalytic sites are intrinsically vulnerable to direct poisoning by molecular oxygen and ROS. Observations suggest that anaerobes have evolved tactics that either minimize the extent to which oxygen disrupts their metabolism or restore function shortly after the stress has dissipated.
Collapse
|
17
|
Christmann A, Gries M, Scholz P, Stahr PL, Law JKY, Schulte S, Martin M, Lilischkis R, Ingebrandt S, Keck CM, Schäfer KH. The antioxidant Rutin counteracts the pathological impact of α-synuclein on the enteric nervous system in vitro. Biol Chem 2021; 403:103-122. [PMID: 34582634 DOI: 10.1515/hsz-2021-0259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
Motoric disturbances in Parkinson's disease (PD) derive from the loss of dopaminergic neurons in the substantia nigra. Intestinal dysfunctions often appear long before manifestation of neuronal symptoms, suggesting a strong correlation between gut and brain in PD. Oxidative stress is a key player in neurodegeneration causing neuronal cell death. Using natural antioxidative flavonoids like Rutin, might provide intervening strategies to improve PD pathogenesis. To explore the potential effects of micro (mRutin) compared to nano Rutin (nRutin) upon the brain and the gut during PD, its neuroprotective effects were assessed using an in vitro PD model. Our results demonstrated that Rutin inhibited the neurotoxicity induced by A53T α-synuclein (Syn) administration by decreasing oxidized lipids and increasing cell viability in both, mesencephalic and enteric cells. For enteric cells, neurite outgrowth, number of synaptic vesicles, and tyrosine hydroxylase positive cells were significantly reduced when treated with Syn. This could be reversed by the addition of Rutin. nRutin revealed a more pronounced result in all experiments. In conclusion, our study shows that Rutin, especially the nanocrystals, are promising natural compounds to protect neurons from cell death and oxidative stress during PD. Early intake of Rutin may provide a realizable option to prevent or slow PD pathogenesis.
Collapse
Affiliation(s)
- Anne Christmann
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Manuela Gries
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Patrik Scholz
- Formulation Development, BAYER AG, R&D, D-51373Leverkusen, Germany
| | - Pascal L Stahr
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, D-35037Marburg, Germany
| | - Jessica Ka Yan Law
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Steven Schulte
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Monika Martin
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Rainer Lilischkis
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering, RWTH Aachen University, D-52074Aachen, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, D-35037Marburg, Germany
| | - Karl-Herbert Schäfer
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, D-68167Mannheim, Germany
| |
Collapse
|
18
|
Qin H, Cui T, Liu Z, Zhou Y, Niu J, Ren J, Qu X. Engineering Amyloid Aggregation as a New Way to Eliminate Cancer Stem Cells by the Disruption of Iron Homeostasis. NANO LETTERS 2021; 21:7379-7387. [PMID: 34436904 DOI: 10.1021/acs.nanolett.1c02734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer stem cells (CSCs) play crucial roles in tumor initiation. Amyloid β (Aβ), which is associated with Alzheimer's disease (AD), has been identified to induce cytotoxicity in tumor cells besides brain cells. Herein, we find that oligomeric Aβ1-42 and Aβ1-40 (OAβ1-42 and OAβ1-40) can repress the viability of breast CSCs. Intriguingly, OAβ1-42 and OAβ1-40 preferentially induce the growth arrest of breast CSCs by contrast with the bulk cancer cells. Further studies indicate that OAβ1-42 and OAβ1-40 disturb iron homeostasis, which results in iron accumulation in lysosomes. The iron in lysosomes then induces ROS production by Fenton reaction, leading to breast CSC death. In vivo experiments show that the tumorigenesis of breast CSCs pretreated with OAβ1-42 is inhibited. These results reveal that OAβ1-42 and OAβ1-40 are multifaceted players with the ability to eliminate CSCs. Our work may provide a new clue to better understand the biological functions of amyloid oligomers.
Collapse
Affiliation(s)
- Hongshuang Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1171] [Impact Index Per Article: 292.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Fulton RE, Pearson-Smith JN, Huynh CQ, Fabisiak T, Liang LP, Aivazidis S, High BA, Buscaglia G, Corrigan T, Valdez R, Shimizu T, Patel MN. Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response. Neurobiol Dis 2021; 158:105470. [PMID: 34371143 PMCID: PMC8939287 DOI: 10.1016/j.nbd.2021.105470] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
Mitochondrial superoxide (O2-) production is implicated in aging, neurodegenerative disease, and most recently epilepsy. Yet the specific contribution of neuronal O2- to these phenomena is unclear. Here, we selectively deleted superoxide dismutase-2 (SOD2) in neuronal basic helix-loop-helix transcription factor (NEX)-expressing cells restricting deletion to a subset of excitatory principle neurons primarily in the forebrain (cortex and hippocampus). This resulted in nSOD2 KO mice that lived into adulthood (2-3 months) with epilepsy, selective loss of neurons, metabolic rewiring and a marked mitohormetic gene response. Surprisingly, expression of an astrocytic gene, glial fibrillary acidic protein (GFAP) was significantly increased relative to WT. Further studies in rat primary neuron-glial cultures showed that increased mitochondrial O2-, specifically in neurons, was sufficient to upregulate GFAP. These results suggest that neuron-specific mitochondrial O2- is sufficient to drive a complex and catastrophic epileptic phenotype and highlights the ability of SOD2 to act in a cell-nonautonomous manner to influence an astrocytic response.
Collapse
Affiliation(s)
- Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer N Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Q Huynh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brigit A High
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Georgia Buscaglia
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy Corrigan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert Valdez
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Manisha N Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Shafiee RT, Snow JT, Hester S, Zhang Q, Rickaby REM. Proteomic response of the marine ammonia-oxidising archaeon Nitrosopumilus maritimus to iron limitation reveals strategies to compensate for nutrient scarcity. Environ Microbiol 2021; 24:835-849. [PMID: 33876540 DOI: 10.1111/1462-2920.15491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Dissolved iron (Fe) is vanishingly low in the oceans, with ecological success conferred to microorganisms that can restructure their biochemistry to maintain high growth rates during Fe scarcity. Chemolithoautotrophic ammonia-oxidising archaea (AOA) are highly abundant in the oceans, constituting ~30% of cells below the photic zone. Here we examine the proteomic response of the AOA isolate Nitrosopumilus maritimus to growth-limiting Fe concentrations. Under Fe limitation, we observed a significant reduction in the intensity of Fe-dense ferredoxins associated with respiratory complex I whilst complex III and IV proteins with more central roles in the electron transport chain remain unchanged. We concomitantly observed an increase in the intensity of Fe-free functional alternatives such as flavodoxin and plastocyanin, thioredoxin and alkyl hydroperoxide which are known to mediate electron transport and reactive oxygen species detoxification, respectively. Under Fe limitation, we found a marked increase in the intensity of the ABC phosphonate transport system (Phn), highlighting an intriguing link between Fe and P cycling in N. maritimus. We hypothesise that an elevated uptake of exogenous phosphonates under Fe limitation may either supplement N. maritimus' endogenous methylphosphonate biosynthesis pathway - which requires Fe - or enhance the production of phosphonate-containing exopolysaccharides known to efficiently bind environmental Fe.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Joseph T Snow
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Svenja Hester
- Department of Biochemistry, South Parks Road, University of Oxford, Oxfordshire, OX1 3QU, UK
| | - Qiong Zhang
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| |
Collapse
|
22
|
Thirupathi A, Pinho RA, Ugbolue UC, He Y, Meng Y, Gu Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front Physiol 2021; 11:610112. [PMID: 33551836 PMCID: PMC7854914 DOI: 10.3389/fphys.2020.610112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Exercise induced health benefits are limited by the overaccumulation of reactive oxygen species (ROS). ROS and further oxidative stress could potentially induce muscle damage which could result in poor exercise performance. However, predicting ROS induced oxidative stress in response to endurance training has several limitations in terms of selecting biomarkers that are used to measure oxidative stress. Objective: The purpose of this study was to systematically investigate the suitable biomarkers that predict oxidative stress status among runners. Methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, a search for relevant articles was carried out on PubMed/Medline, ISI Web of Science, and Google Scholar using related search terms such as oxidative damage, ROS, exercise, physical training, running, marathon, and ultramarathon. Results: Outcomes included (1) running programs like a half-marathon, ultramarathon, and iron-man race, (2) measuring biochemical assessment of oxidative damage markers such as malondialdehyde (MDA), protein carbonyl (PC), total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), 8-Oxo-2'-deoxyguanosine (8-OH-dG), 4-hydroxynonenal (HNE), and F1-isoprostones, and enzymatic and non-enzymatic antioxidants level. Conclusions: This study concluded that a running exercise does not elicit a response to specific biomarkers of oxidative stress, instead, oxidative damage markers of lipids, proteins, and various enzymatic and non-enzymatic antioxidants are expressed according to the training status of the individual.
Collapse
Affiliation(s)
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Ukadike C Ugbolue
- School of Health and Life Sciences, University of the West of Scotland, Scotland, United Kingdom
| | - Yuhuan He
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yao Meng
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Singh N, NaveenKumar SK, Geethika M, Mugesh G. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew Chem Int Ed Engl 2020; 60:3121-3130. [PMID: 33079465 DOI: 10.1002/anie.202011711] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Nanoparticles that functionally mimic the activity of metal-containing enzymes (metallo-nanozymes) are of therapeutic importance for treating various diseases. However, it is still not clear whether such nanozymes can completely substitute the function of natural enzymes in living cells. In this work, we show for the first time that a cerium vanadate (CeVO4 ) nanozyme can substitute the function of superoxide dismutase 1 and 2 (SOD1 and SOD2) in the neuronal cells even when the natural enzyme is down-regulated by specific gene silencing. The nanozyme prevents the mitochondrial damage in SOD1- and SOD2-depleted cells by regulating the superoxide levels and restores the physiological levels of the anti-apoptotic Bcl-2 family proteins. Furthermore, the nanozyme effectively prevents the mitochondrial depolarization, leading to a significant improvement in the cellular levels of ATP under oxidative stress.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Motika Geethika
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
24
|
Singh N, NaveenKumar SK, Geethika M, Mugesh G. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | | | - Motika Geethika
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
25
|
Chen MX, Zhang KL, Zhang M, Das D, Fang YM, Dai L, Zhang J, Zhu FY. Alternative splicing and its regulatory role in woody plants. TREE PHYSIOLOGY 2020; 40:1475-1486. [PMID: 32589747 DOI: 10.1093/treephys/tpaa076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional process to enhance proteome diversity in eukaryotic organisms. In plants, numerous reports have primarily focused on AS analysis in model plant species or herbaceous plants, leading to a notable lack of research on AS in woody plants. More importantly, emerging evidence indicates that many important traits, including wood formation and stress resistance, in woody plants are controlled by AS. In this review article, we summarize the current progress of all kinds of AS studies in different tree species at various stages of development and in response to various stresses, revealing the significant role played by AS in woody plants, as well as the similar properties and differential regulation within their herbaceous counterparts. Furthermore, we propose several potential strategies to facilitate the functional characterization of splicing factors in woody plants and evaluate a general pipeline for the systematic characterization of splicing isoforms in a complex AS regulatory network. The utilization of genetic studies and high-throughput omics integration approaches to analyze AS genes and splicing factors is likely to further advance our understanding of AS modulation in woody plants.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Debatosh Das
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Jiang SY, Gali NK, Ruan HD, Ning Z. Photo-oxidation of particle phase iron species dominates the generation of reactive oxygen species in secondary aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137994. [PMID: 32224395 DOI: 10.1016/j.scitotenv.2020.137994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
This study presents an experimental investigation on the photochemical transformation of iron species in aerosol including dissolution of insoluble iron species into soluble fraction, and soluble ferric oxidation to ferrous form. This process has significantly contributed to the aerosol oxidative potential in generation of reactive oxygen species (ROS). We conducted both laboratory experiment of UV irradiation and real world solar irradiation on large variation of aerosol samples for the characterization of iron speciation in insoluble and soluble fractions to investigate their transformation under photooxidation process. The results showed that the real world solar irradiation significantly increased the soluble Fe(II) fraction, and this is corroborated by laboratory simulation of UV irradiation showing increasing soluble Fe(II) fraction with elongating aging time. The results further exhibited that the dissolution of iron component into soluble fraction was a dominant process, followed by the conversion of soluble ferric to ferrous ions. Further, the study confirmed that the oxidative potential of particulate matter (PM) is attributed dominantly to the abundance of transition metals, i.e. Fe, and the incremental ROS generation after photochemical process is attributed largely to the transformation of solid phase iron species to soluble Fe(II). The results suggest that transition metals, for example by iron in this study, play an important role in secondary aerosol process.
Collapse
Affiliation(s)
- Sabrina Yanan Jiang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong; Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, China
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | - Huada Daniel Ruan
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, China
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong.
| |
Collapse
|
27
|
García-Romo JS, Noguera-Artiaga L, Gálvez-Iriqui AC, Hernández-Zazueta MS, Valenzuela-Cota DF, González-Vega RI, Plascencia-Jatomea M, Burboa-Zazueta MG, Sandoval-Petris E, Robles-Sánchez RM, Juárez J, Hernández-Martínez J, Santacruz-Ortega HDC, Burgos-Hernández A. Antioxidant, antihemolysis, and retinoprotective potentials of bioactive lipidic compounds from wild shrimp (Litopenaeus stylirostris) muscle. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1719210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| | - Luis Noguera-Artiaga
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Grupo Calidad y Seguridad Alimentaria, Alicante, Spain
| | | | | | | | | | | | | | - Edgar Sandoval-Petris
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
28
|
Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells 2019; 8:cells8111377. [PMID: 31683970 PMCID: PMC6912421 DOI: 10.3390/cells8111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5’,8-cyclopurines (cPu) lesions (i.e., 5′R-cdG, 5′S-cdG, 5′R-cdA and 5′S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82–2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10–4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5′R/5′S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.
Collapse
|
29
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
30
|
Xie L, Solhaug KA, Song Y, Brede DA, Lind OC, Salbu B, Tollefsen KE. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:23-34. [PMID: 31085442 DOI: 10.1016/j.scitotenv.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
High dose rates of ionizing radiation have been reported to cause adverse effects such as reduction in reproduction and growth, and damage to protein and lipids in primary producers. However, the relevant effects of ionizing radiation are still poorly understood in aquatic plants. This study was intended to characterize the biological effects and modes of action (MoAs) of ionizing radiation using gamma radiation as the prototypical stressor and duckweed Lemna minor as a model organism. Lemna minor was exposed to 1, 14, 24, 46, 70 mGy/h gamma radiation dose rates from a cobalt-60 source for 7 days following the testing principles of the OECD test guideline 221. A suite of bioassays was applied to assess the biological effects of gamma radiation at multiple levels of biological organization, including detection of reactive oxygen species (ROS), oxidative stress responses (total glutathione, tGSH; lipid peroxidation, LPO), DNA damage, mitochondrial dysfunctions (mitochondrial membrane potential, MMP), photosynthetic parameters (chlorophyll a, chl a; chlorophyll b, chl b; carotenoids; Photosystem II (PSII) performance; CO2 uptake), intercellular signaling (Ca2+ release) and growth. Gamma radiation increased DNA damage, tGSH level and Ca2+ content together with reduction in chlorophyll content, maximal PSII efficiency and CO2 uptake at dose rates between 1 and 14 mGy/h, whereas increases in cellular ROS and LPO, inhibition of MMP and growth were observed at higher dose rates (≥24 mGy/h). A network of toxicity pathways was proposed to portray the causal relationships between gamma radiation-induced physiological responses and adverse outcomes to support the development of Adverse Outcome Pathways (AOPs) for ionizing radiation-mediated effects in primary producers.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
31
|
Bajracharya R, Youngson NA, Ballard JWO. Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20081850. [PMID: 30991634 PMCID: PMC6514887 DOI: 10.3390/ijms20081850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction has been demonstrated to play an important role in the pathogenesis of Parkinson’s disease (PD). The products of several PD-associated genes, including alpha-synuclein, parkin, pink1, protein deglycase DJ-1, and leucine rich repeat kinase 2, have important roles in mitochondrial biology. Thus, modifying mitochondrial function could be a potential therapeutic strategy for PD. Dietary management can alter mitochondrial function as shifts in dietary macronutrients and their ratios in food can alter mitochondrial energy metabolism, morphology and dynamics. Our studies have established that a low protein to carbohydrate (P:C) ratio can increase lifespan, motor ability and mitochondrial function in a parkin mutant Drosophila model of PD. In this review, we describe mitochondrial dysfunction in PD patients and models, and dietary macronutrient management strategies to reverse it. We focus on the effects of protein, carbohydrate, fatty acids, and their dietary ratios. In addition, we propose potential mechanisms that can improve mitochondrial function and thus reverse or delay the onset of PD.
Collapse
Affiliation(s)
- Rijan Bajracharya
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Neil A Youngson
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Lafin JT, Sarsour EH, Kalen AL, Wagner BA, Buettner GR, Goswami PC. Methylseleninic Acid Induces Lipid Peroxidation and Radiation Sensitivity in Head and Neck Cancer Cells. Int J Mol Sci 2019; 20:ijms20010225. [PMID: 30626124 PMCID: PMC6337472 DOI: 10.3390/ijms20010225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Combination radiation and chemotherapy are commonly used to treat locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Aggressive dosing of these therapies is significantly hampered by side effects due to normal tissue toxicity. Selenium represents an adjuvant that selectively sensitizes cancer cells to these treatments modalities, potentially by inducing lipid peroxidation (LPO). This study investigated whether one such selenium compound, methylseleninic acid (MSA), induces LPO and radiation sensitivity in HNSCC cells. Results from 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene (BODIPY) C11 oxidation and ferric thiocyanate assays revealed that MSA induced LPO in cells rapidly and persistently. Propidium iodide (PI) exclusion assay found that MSA was more toxic to cancer cells than other related selenium compounds; this toxicity was abrogated by treatment with α-tocopherol, an LPO inhibitor. MSA exhibited no toxicity to normal fibroblasts at similar doses. MSA also sensitized HNSCC cells to radiation as determined by clonogenic assay. Intracellular glutathione in cancer cells was depleted following MSA treatment, and supplementation of the intracellular glutathione pool with N-acetylcysteine sensitized cells to MSA. The addition of MSA to a cell-free solution of glutathione resulted in an increase in oxygen consumption, which was abrogated by catalase, suggesting the formation of H2O2. Results from this study identify MSA as an inducer of LPO, and reveal its capability to sensitize HNSCC to radiation. MSA may represent a potent adjuvant to radiation therapy in HNSCC.
Collapse
Affiliation(s)
- John T Lafin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | - Ehab H Sarsour
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Amanda L Kalen
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Brett A Wagner
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Garry R Buettner
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Prabhat C Goswami
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Qi S, Feng Z, Li Q, Qi Z, Zhang Y. Inhibition of ROS-mediated activation Src-MAPK/AKT signaling by orientin alleviates H 2O 2-induced apoptosis in PC12 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3973-3984. [PMID: 30510405 PMCID: PMC6248275 DOI: 10.2147/dddt.s178217] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose Reactive oxygen species (ROS) are considered a direct cause of neurodegenerative diseases (NDDs). Drugs developed to target ROS are effective for the treatment of NDDs. Orientin is a pyrone glucoside extracted from Polygonum orientale, and it exhibits many pharmacological activities. In this study, we aimed to determine whether orientin could relieve hydrogen peroxide (H2O2)-induced neuronal apoptosis and to investigate the specific target of orientin. Materials and methods In this study, the neuroprotective effect and its possible mechanisms of orientin in mouse pheochromocytoma cell line (PC12) cells stimulated by H2O2, establishing an oxidative stress model, were investigated. And we further tested the role of ROS in the neuroprotective effects of orientin. Results Orientin (5-100 µg/mL) did not cause toxicity in PC12 cells but significantly decreased H2O2-induced reduction in PC12 cell viability, cell apoptosis rates, and nuclear condensation. It also inhibited the activation of caspase-3 and degradation of poly(ADP-ribose) polymerase (PARP). Under the stimulation of H2O2, MAPKs (ERK, JNK, and p38), AKT, and Src signaling proteins in PC12 cells were activated in a time-dependent manner. The application of inhibitors that were specific for MAPKs, AKT, and Src effectively alleviated H2O2-induced cell apoptosis. In addition, the Src inhibitor decreased the activation of MAPKs and AKT signaling. More importantly, orientin effectively decreased H2O2-induced phosphorylation of MAPKs, AKT, and Src signaling proteins. Finally, we confirmed that orientin effectively inhibited H2O2-induced accumulation of ROS in cells. In addition, ROS inhibitors blocked the Src-MAPKs/AKT signaling pathway-dependent cell apoptosis stimulated by H2O2. Conclusion These results indicate that alleviation of H2O2-induced cell apoptosis by orientin is Src-MAPKs/AKT dependent. Overall, our study confirms that orientin alleviates H2O2-induced cell apoptosis by inhibiting the ROS-mediated activation of Src-MAPKs/AKT signaling.
Collapse
Affiliation(s)
- Shimei Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zunyong Feng
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Forensic Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Qiang Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zhilin Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| |
Collapse
|
34
|
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17:121. [PMID: 30170601 PMCID: PMC6117983 DOI: 10.1186/s12933-018-0763-3] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The incidence and prevalence of diabetes mellitus is rapidly increasing worldwide at an alarming rate. Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, accounting for approximately 90-95% of the total diabetes cases worldwide. Besides affecting the ability of body to use glucose, it is associated with micro-vascular and macro-vascular complications. Augmented atherosclerosis is documented to be the key factor leading to vascular complications in T2DM patients. The metabolic milieu of T2DM, including insulin resistance, hyperglycemia and release of excess free fatty acids, along with other metabolic abnormalities affects vascular wall by a series of events including endothelial dysfunction, platelet hyperactivity, oxidative stress and low-grade inflammation. Activation of these events further enhances vasoconstriction and promotes thrombus formation, ultimately resulting in the development of atherosclerosis. All these evidences are supported by the clinical trials reporting the importance of endothelial dysfunction and platelet hyperactivity in the pathogenesis of atherosclerotic vascular complications. In this review, an attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM.
Collapse
Affiliation(s)
- Raminderjit Kaur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
35
|
Zhang L, Zou X, Zhang B, Cui L, Zhang J, Mao Y, Chen L, Ji M. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy. Theranostics 2018; 8:4129-4140. [PMID: 30128041 PMCID: PMC6096394 DOI: 10.7150/thno.26946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022] Open
Abstract
The degradation of hemoglobin in brain tissues results in the deposition of hemosiderin, which is a major form of iron-storage protein and closely related to neurological disorders such as epilepsy. Optical detection of hemosiderin is vitally important yet challenging for the understanding of disease mechanisms, as well as improving surgical resection of brain lesions. Here, we provide the first label-free microscopy study of sensitive hemosiderin detection in both an animal model and human brain tissues. Methods: We applied spectrally and temporally resolved femtosecond pump-probe microscopy, including transient absorption (TA) and stimulated Raman scattering (SRS) techniques, to differentiate hemoglobin and hemosiderin in brain tissues. The label-free imaging results were compared with Perls' staining to evaluate our method for hemosiderin detection. Results: Significant differences between hemoglobin and hemosiderin transient spectra were discovered. While a strong ground-state bleaching feature of hemoglobin appears in the near-infrared region, hemosiderin demonstrates pure excited-state absorption dynamics, which could be explained by our proposed kinetic model. Furthermore, simultaneous imaging of hemoglobin and hemosiderin can be rapidly achieved in both an intracerebral hemorrhage (ICH) rat model and human brain surgical specimens, with perfect correlation with Perls' staining. Conclusion: Our results suggest that rapid, label-free detection of hemosiderin in brain tissues could be realized by femtosecond pump-probe microscopy. Our method holds great potential in providing a new tool for intraoperative detection of hemosiderin during brain surgeries.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyuan Cui
- State Key Laboratory of Medical Neurobiology, Institute of Bain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Bain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Cardiomyocyte diffusible redox mediators control Trypanosoma cruzi infection: role of parasite mitochondrial iron superoxide dismutase. Biochem J 2018; 475:1235-1251. [PMID: 29438066 DOI: 10.1042/bcj20170698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Chagas disease (CD), caused by the protozoa Trypanosoma cruzi, is a chronic illness in which parasites persist in the host-infected tissues for years. T. cruzi invasion in cardiomyocytes elicits the production of pro-inflammatory mediators [TNF-α, IL-1β, IFN-γ; nitric oxide (·NO)], leading to mitochondrial dysfunction with increased superoxide radical (O2·-), hydrogen peroxide (H2O2) and peroxynitrite generation. We hypothesize that these redox mediators may control parasite proliferation through the induction of intracellular amastigote programmed cell death (PCD). In this work, we show that T. cruzi (CL-Brener strain) infection in primary cardiomyocytes produced an early (24 h post infection) mitochondrial dysfunction with H2O2 generation and the establishment of an oxidative stress evidenced by FoxO3 activation and target host mitochondrial protein expression (MnSOD and peroxiredoxin 3). TNF-α/IL-1β-stimulated cardiomyocytes were able to control intracellular amastigote proliferation compared with unstimulated cardiomyocytes. In this condition leading to oxidant formation, an enhanced number of intracellular apoptotic amastigotes were detected. The ability of H2O2 to induce T. cruzi PCD was further confirmed in the epimastigote stage of the parasite. H2O2 treatment induced parasite mitochondrial dysfunction together with intra-mitochondrial O2·- generation. Importantly, parasites genetically engineered to overexpress mitochondrial Fe-superoxide dismutase (Fe-SODA) were more infective to TNF-α/IL-1β-stimulated cardiomyocytes with less apoptotic amastigotes; this result underscores the role of this enzyme in parasite survival. Our results indicate that cardiomyocyte-derived diffusible mediators are able to control intracellular amastigote proliferation by triggering T. cruzi PCD and that parasite Fe-SODA tilts the process toward survival as part of an antioxidant-based immune evasion mechanism.
Collapse
|
37
|
Mabekou SS, Lee SC, Dinh TH, Won K, Mitchell RJ. Enhanced sensitivity and responses to viologens from a whole-cell bacterial bioreporter treated with branched polyethyleneimines. J Appl Microbiol 2017; 123:1478-1487. [PMID: 28944557 DOI: 10.1111/jam.13592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022]
Abstract
AIMS Evaluate the use of polyethyleneimines (PEIs) as membrane permeabilizers to improve the responses and sensitivity of a bacterial bioreporter strain to viologens. METHODS AND RESULTS The responses from E. coli str. EBS, i.e., E. coli BW25113 carrying plasmid pSDS, when exposed to five different viologens were characterized, as were the toxicities of seven different PEIS, including two linear and five branched species. Based on these results, benzyl viologen led to the greatest responses, and 0·8-kDa branched PEI (BPEI) was the least toxic of the PEIs tested and, therefore, both were selected for the subsequent tests. The bioluminescence and relative responses from E. coli str. EBS exposed to various concentrations of 0·8 kDa BPEI identified 400 mg l-1 as the optimal concentration. Using this concentration, tests were performed with all five of the viologens. CONCLUSIONS The responses from E. coli str. EBS to the viologens were improved, with the maximum relative bioluminescence values increasing between 5·6 and 16·5-fold. The minimum detectable levels for four of the viologens were likewise improved 2- to 4-fold. SIGNIFICANCE AND IMPACT OF STUDY Improving bacterial membrane permeability in a controlled manner using BPEIs can improve biosensing of toxic compounds, as well as be used in biofuel and bioenergy applications where membrane permeability to a solute is important.
Collapse
Affiliation(s)
- S S Mabekou
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - S C Lee
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, Korea
| | - T H Dinh
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, Korea
| | - K Won
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, Korea
| | - R J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
38
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
39
|
Abstract
The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.
Collapse
Affiliation(s)
- Humaira Aziz Sawal
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad
| | - Kashif Asghar
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Matthias Bureik
- Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nasir Jalal
- Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China
| |
Collapse
|
40
|
Abstract
Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; however, continued telomere erosion is unsustainable and must be mitigated to ensure cancer cell survival and unlimited replication potential. Prostate cancers predominantly maintain telomeres by activating telomerase, but alternative mechanisms of telomere extension can occur in metastatic disease. Telomerase activity and telomere length assessment might be useful in prostate cancer diagnosis and prognosis. Telomere shortening in normal stromal cells has been associated with prostate cancer, whereas variable telomere lengths in prostate cancer cells and telomere shortening in cancer-associated stromal cells correlated with lethal disease. Single-agent telomerase-targeted treatments for solid cancers were ineffective in clinical trials but have not been investigated in prostate cancer and might be useful in combination with established regimens. Telomere-directed strategies have not been explored as extensively. Telomere deprotection strategies have the advantage of being effective in both telomerase-dependent and telomerase-independent cancers. Disruption of androgen receptor function in prostate cancer cells results in telomere dysfunction, indicating telomeres and telomerase as potential therapeutic targets in prostate cancer.
Collapse
|
41
|
Denny AP, Heather AK. Are Antioxidants a Potential Therapy for FSHD? A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7020295. [PMID: 28690764 PMCID: PMC5485364 DOI: 10.1155/2017/7020295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy affecting approximately 1 in 7500 individuals worldwide. It is a progressive disease characterised by skeletal muscle weakness and wasting. A genetic mutation on the 4q35 chromosome results in the expression of the double homeobox 4 gene (DUX4) which drives oxidative stress, inflammation, toxicity, and atrophy within the skeletal muscle. FSHD is characterised by oxidative stress, and there is currently no cure and a lack of therapies for the disease. Antioxidants have been researched for many years, with investigators aiming to use antioxidants therapeutically for oxidative stress-associated diseases. This has included both natural and synthetic antioxidants. The use of antioxidants in preclinical or clinical models has been largely successful with a plethora of research reporting positive results. However, when translated to clinical trials, the use of antioxidants as a therapeutic intervention for a variety of disease has been largely unsuccessful. Moreover, specifically focusing on FSHD, limited research has been conducted on the use of antioxidants as a therapy in either preclinical or clinical models. This review summarises the current state of antioxidant use in the treatment of FSHD and discusses their potential avenue for therapeutic use for FSHD patients.
Collapse
Affiliation(s)
- Adam Philip Denny
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alison Kay Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 2017; 63:895-907. [DOI: 10.1007/s00294-017-0689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
|
43
|
Peinado-Guevara LI, López-Meyer M, López-Valenzuela JA, Maldonado-Mendoza IE, Galindo-Flores H, Campista-León S, Medina-Godoy S. Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis. Symbiosis 2017. [DOI: 10.1007/s13199-016-0470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Zou X, Jiang S, Wu Z, Shi Y, Cai S, Zhu R, Chen L. Effectiveness of deferoxamine on ferric chloride-induced epilepsy in rats. Brain Res 2017; 1658:25-30. [PMID: 28063856 DOI: 10.1016/j.brainres.2017.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/01/2017] [Indexed: 11/26/2022]
Abstract
Iron overload has been regarded as a common cause for refractory epilepsies in patients after hemorrhagic strokes. This study is to examine the potential epilepsy control effect of deferoxamine (DFO), an iron chelator, on a ferric chloride-induced epilepsy rat model. Twenty four rats were divided into 4 groups: group I is blank control group, group II is sham group with intracortical injection of saline, group III is epilepsy group with intracortical injection of iron and saline treatment, group IV is treatment group with intracortical injection of iron and DFO treatment. For the DFO intervention group, a daily dose of 100mg/kg DFO via peritoneal injection was applied for 14days. Outcomes were evaluated by behavioral study, electroencephalography (EEG), magnetic resonance imaging (MRI) scan and tissue analysis. Epilepsies according to behavioral observations and EEG analysis were significantly suppressed after intervention of DFO. Reduction of iron content in the brain cortex was proved by diminished low signal area on T2-MRI images (p=0.006) and tissue analysis (p<0.001), simultaneously the superoxide dismutase (SOD) activity increased (p<0.001). Western blot analysis demonstrated the decreasing of local transferrin after DFO treatment. DFO is efficient at Fe clearance, thus helpful in epilepsy control. This finding implies potential therapeutic value of DFO in patients with refractory epilepsy after hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Shize Jiang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Yimin Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Shengyong Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Renqing Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Wu Lu Mu Qi Road, No. 12, Shanghai 200040, China.
| |
Collapse
|
45
|
Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016; 31:63-74. [PMID: 27771494 DOI: 10.1016/j.mito.2016.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/24/2016] [Accepted: 10/17/2016] [Indexed: 01/12/2023]
Abstract
Several commonly used medications impair mitochondrial function resulting in adverse effects or toxicities. Drug induced mitochondrial dysfunction may be a consequence of increased production of reactive oxygen species, altered mitochondrial permeability transition, impaired mitochondrial respiration, mitochondrial DNA damage or inhibition of beta-oxidation of fatty acids. The clinical manifestation depends on the specific drug and its effect on mitochondria. Given the ubiquitous presence of mitochondria and its central role in cellular metabolism, drug-mitochondrial interactions may manifest clinically as hepatotoxicity, enteropathy, myelosuppression, lipodystrophy syndrome or neuropsychiatric adverse effects, to name a few. The current review focuses on specific drug groups which adversely affect mitochondria, the mechanisms involved and the clinical consequences based on the data available from experimental and clinical studies. Knowledge of these adverse drug-mitochondrial interactions may help the clinicians foresee potential issues in individual patients, prevent adverse drug reactions or alter drug regimens to enhance patient safety.
Collapse
Affiliation(s)
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, India.
| |
Collapse
|
46
|
Zou X, Wu Z, Zhu W, Chen L, Mao Y, Zhao F. Effectiveness of minocycline in acute white matter injury after intracerebral hemorrhage. J Neurosurg 2016; 126:1855-1862. [PMID: 27494818 DOI: 10.3171/2016.5.jns152670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is a fatal disease with high morbidity and mortality, which may be followed by white matter injury (WMI) due to the local oxidizing reaction induced by iron (Fe). In this study, the authors examined the effect of the tetracycline antibiotic minocycline on Fe-induced WMI and c-Jun N-terminal kinase (JNK) activation in rats. METHODS Thirty-six male Sprague-Dawley rats underwent an intracaudate injection of saline, Fe, or Fe + minocycline. Another 36 rats had an intracaudate injection of autologous blood and were treated with minocycline or vehicle (saline). Biomarkers of both WMI and JNK activation were examined. RESULTS In the Fe-injection group, minocycline suppressed WMI labeled by β-amyloid precursor protein (β-APP) and degraded myelin basic protein (dMBP)/MBP ratio. Protein levels of phosphorylated-JNK were increased after Fe injection, and could be suppressed by minocycline treatment. In the autologous blood-injection group, β-APP and dMBP/MBP levels increased in the ipsilateral site compared with the contralateral site, which could be suppressed by 7 days of minocycline intervention. CONCLUSIONS Iron plays a critical role in WMI after ICH, which can be suppressed by minocycline through reducing the damage induced by Fe.
Collapse
Affiliation(s)
- Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Wright RM, Weigel LK, Repine JE. Aldehyde oxidase generates deoxyribonucleic acid single strand nicks in vitro. Redox Rep 2016; 1:349-55. [DOI: 10.1080/13510002.1995.11747010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
48
|
|
49
|
Popović-Bijelić A, Mojović M, Stamenković S, Jovanović M, Selaković V, Andjus P, Bačić G. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radic Biol Med 2016; 96:313-22. [PMID: 27130034 DOI: 10.1016/j.freeradbiomed.2016.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Extensive clinical investigations, in hand with biochemical and biophysical research, have associated brain iron accumulation with the pathogenesis of the amyotrophic lateral sclerosis (ALS) disease. The origin of iron is still not identified, but it is proposed that it forms redox active complexes that can participate in the Fenton reaction generating the toxic hydroxyl radical. In this paper, the state of iron in the neural tissues isolated from SOD1(G93A) transgenic rats was investigated using low temperature EPR spectroscopy and is compared with that of nontransgenic (NTg) littermates. The results showed that iron in neural tissues is present as high- and low-spin, heme and non-heme iron. It appears that the SOD1(G93A) rat neural tissues were most likely exposed in vivo to higher amounts of reactive oxygen species when compared to the corresponding NTg tissues, as they showed increased oxidized [3Fe-4S](1+) cluster content relative to [4Fe-4S](1+). Also, the activity of cytochrome c oxidase (CcO) was found to be reduced in these tissues, which may be associated with the observed uncoupling of heme a3 Fe and CuB in the O2-reduction site of the enzyme. Furthermore, the SOD1(G93A) rat spinal cords and brainstems contained more manganese, presumably from MnSOD, than those of NTg rats. The addition of potassium superoxide to all neural tissues ex vivo, led to the [4Fe-4S]→[3Fe-4S] cluster conversion and concurrent release of Fe. These results suggest that the superoxide anion may be the cause of the observed oxidative damage to SOD1(G93A) rat neural tissues and that the iron-sulfur clusters may be the source of poorly liganded redox active iron implicated in ALS pathogenesis. Low temperature EPR spectroscopy appears to be a valuable tool in assessing the role of metals in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Miloš Jovanović
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
50
|
Karademir LD, Dogruel F, Kocyigit I, Yazici C, Unal A, Sipahioglu MH, Oymak O, Tokgoz B. The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer. Ren Fail 2016; 38:806-14. [PMID: 27049176 DOI: 10.3109/0886022x.2016.1163154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cisplatin is a potent antineoplastic agent used and its major limiting side effect is nephrotoxicity. The aims of the study are early detection of acute kidney injury (AKI) with biomarkers and investigation of the potential nephron-protective effects of theophylline. METHODS Glomerular filtration rates (GFR), neutrophil gelatinase-associated lipocalin (NGAL), cystatin C were measured at 5th day of treatment in all of the patients. In addition, these parameters were measured repeatedly after the administration of cisplatin, at 2nd hour, 5th and 20th days. PATIENTS Sixty patients who are planned to receive cisplatin for the first time were included in the study. Patients were divided into two groups as Group 1 (n = 30) (standard treatment arm) and Group II (n = 30) (theophylline arm). RESULTS In both groups after the administration of cisplatin, GFR showed a significant decrease within time (p = 0.006). Urine NGAL levels were significantly high after 2 h of cisplatin administration (p < 0.001), no significant difference was observed between groups. However, when the time*group effects were considered together, higher NGAL levels were detected in the group not receiving theophylline (p = 0.025). After 5 days of cisplatin administration, urine protein levels were significantly higher in both groups (p < 0.001). CONCLUSION Results showed that urine NGAL level is a superior biomarker compared to serum creatinine and serum cystatin C in the detection of early AKI. Theophylline was found not to bring a complete protection for the kidneys, but less nephrotoxicity was developed when compared to the group not receiving theophylline.
Collapse
Affiliation(s)
| | - Fatma Dogruel
- a Department of Internal Medicine , Erciyes University Medical Faculty , Kayseri , Turkey
| | - Ismail Kocyigit
- b Department of Nephrology , Erciyes University Medical Faculty , Kayseri , Turkey
| | - Cevat Yazici
- c Department of Biochemistry , Erciyes University Medical Faculty , Kayseri , Turkey
| | - Aydin Unal
- b Department of Nephrology , Erciyes University Medical Faculty , Kayseri , Turkey
| | | | - Oktay Oymak
- b Department of Nephrology , Erciyes University Medical Faculty , Kayseri , Turkey
| | - Bulent Tokgoz
- b Department of Nephrology , Erciyes University Medical Faculty , Kayseri , Turkey
| |
Collapse
|