1
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, Mohammadi-Bardbori A. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice. Toxicol Res (Camb) 2021; 11:147-161. [PMID: 35237419 PMCID: PMC8882790 DOI: 10.1093/toxres/tfab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Mohammadi
- Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Afsaneh Ghaedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Afshin Mohammadi-Bardbori
- Correspondence address. Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran. Tel.: +98(71)32425374; Fax: +98(71)32424326; E-mail:
| |
Collapse
|
3
|
Gileadi TE, Swamy AK, Hore Z, Horswell S, Ellegood J, Mohan C, Mizuno K, Lundebye AK, Giese KP, Stockinger B, Hogstrand C, Lerch JP, Fernandes C, Basson MA. Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57002. [PMID: 33956508 PMCID: PMC8101924 DOI: 10.1289/ehp7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.
Collapse
Affiliation(s)
- Talia E. Gileadi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Abhyuday K. Swamy
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Zoe Hore
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | | | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
4
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
5
|
Prenatal dioxin exposure and neuropsychological functioning in the Seveso Second Generation Health Study. Int J Hyg Environ Health 2019; 222:425-433. [PMID: 30638868 DOI: 10.1016/j.ijheh.2018.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 12/20/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prenatal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure has been shown to alter sexual differentiation of the brain in animal models, impacting pubertal development, behavior, cortical dominance, and cognition. The effects of early life exposure to dioxin-like compounds on human neurodevelopment, however, are less clear and warrant further investigation. METHODS The Seveso Women's Health Study (SWHS), initiated in 1996, is a well-characterized cohort of 981 Italian women who lived in proximity to an industrial accident in July 1976 that resulted in one of the highest residential TCDD exposures on record. In 2014-2016, we enrolled offspring born after the accident into the Seveso Second Generation Health Study. Children aged 7-17 years old (n = 161) completed a neuropsychological assessment spanning executive function and reverse learning (Wisconsin Card Sort), non-verbal intelligence (Raven's Progressive Matrices), attention and hyperactivity (Connor's Continuous Performance (CPT), and memory (Rey's Auditory Verbal Learning). We used multivariate regression with robust standard error estimates accounting for clustering of siblings to model the associations between these outcomes and prenatal exposure defined as TCDD measured in maternal serum collected soon after the explosion and estimated to pregnancy. RESULTS The children (82 male, 79 female) averaged 13.1 (±2.9) years of age. Adjusting for covariates, a 10-fold increase in maternal serum TCDD was not adversely associated with reverse learning/set-shifting, memory, attention/impulsivity, or non-verbal intelligence. In sex-stratified models, prenatal TCDD was associated with more non-perseverative errors in boys but not in girls (pint = 0.04). TCDD was also associated with attention deficits on the CPT but only among children with the shortest breastfeeding histories. CONCLUSIONS While overall, there were no significant associations, the observed differential neurotoxic sensitivities to TCDD by sex and lactation history may warrant confirmation in future studies.
Collapse
|
6
|
Guo Z, Xie HQ, Zhang P, Luo Y, Xu T, Liu Y, Fu H, Xu L, Valsami-Jones E, Boksa P, Zhao B. Dioxins as potential risk factors for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2018; 121:906-915. [PMID: 30347373 DOI: 10.1016/j.envint.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) has emerged as a major public health concern due to its fast-growing prevalence in recent decades. Environmental factors are thought to contribute substantially to the variance in ASD. Interest in environmental toxins as causes of ASD has arisen due to the high sensitivity of the developing human brain to toxic chemicals, particularly to dioxin and certain dioxin-like compounds (dioxins). As a group of typical persistent organic pollutants, dioxins have been found to exert adverse effects on human brain development. In this paper, we review the evidence for association of exposure to dioxins with neurodevelopmental abnormalities related to ASD based on both human epidemiological and animal studies. It has been documented that exposure to dioxins during critical developmental periods increased risk for ASD. This notion has been demonstrated in different populations exposed to high or background level of dioxins. Furthermore, the effects and mechanisms of action of dioxins relevant to the pathophysiology and pathogenesis of ASD are summarized, describing potential underlying mechanisms linking dioxin exposure with ASD onset. Further studies focusing on effects of prenatal/perinatal exposure to individual dioxin congeners or to mixtures of dioxins on ASD-associated behavioral and neurobiological consequences in animal models, and on the mechanisms of actions of dioxins, are needed in order to better understand how dioxin exposure might contribute to increased risk for ASD.
Collapse
Affiliation(s)
- Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eugenia Valsami-Jones
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Patricia Boksa
- Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, QC, Canada; Neuroscience Division, Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
8
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
9
|
|
10
|
Ames J, Warner M, Brambilla P, Mocarelli P, Satariano WA, Eskenazi B. Neurocognitive and physical functioning in the Seveso Women's Health Study. ENVIRONMENTAL RESEARCH 2018; 162:55-62. [PMID: 29287180 PMCID: PMC5811349 DOI: 10.1016/j.envres.2017.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is neurotoxic in animals but few studies have investigated its effects on the human brain. Related dioxin-like compounds have been linked to poorer cognitive and motor function in older adults, with effects more pronounced in women, perhaps due to the loss of neuro-protective estrogen in menopause. On 10 July 1976, a chemical explosion in Seveso, Italy, resulted in one of the highest known residential exposures to TCDD. In 1996, we initiated the Seveso Women's Health Study, a retrospective cohort study of the health of the women who were newborn to 40 years old in 1976. Here, we investigate whether TCDD exposure is associated with physical functioning and working memory more than 20 years later. Individual TCDD concentration (ppt) was measured in archived serum collected soon after the explosion. In 1996 and 2008, we measured physical functioning (n=154) and working memory (n=459), respectively. We examined associations between serum TCDD and motor and cognitive outcomes with multivariate linear regression and semi-parametric estimators. A 10-fold increase in serum TCDD was not associated with walking speed (adjusted β=0.0006ft/s, 95% Confidence Interval (CI): -0.13, 0.13), upper body mobility (adjusted β=-0.06, 95% CI: -0.36, 0.23), or manual dexterity (adjusted β=0.34, 95% CI: -0.65, 1.33). We observed an inverted U-shaped association in grip strength, with poorer strength in the lowest and highest TCDD exposure levels. There was no association between TCDD and the Wechsler digit and spatial span tests. Neither menopause status at assessment nor developmental timing of exposure modified associations between TCDD and working memory. Our findings, in one of the only studies of TCDD's effects on neuropsychological and physical functioning in women, do not indicate an adverse effect on these domains, with the exception of a U-shaped relationship with grip strength. Given the limited assessment and relative youth of the women at this follow-up, future work examining additional neuropsychological outcomes is warranted.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | | | - Brenda Eskenazi
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Xie HQ, Xia Y, Xu T, Chen Y, Fu H, Li Y, Luo Y, Xu L, Tsim KWK, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces alterations in myogenic differentiation of C2C12 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:965-973. [PMID: 29751400 DOI: 10.1016/j.envpol.2017.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/07/2017] [Accepted: 12/06/2017] [Indexed: 06/08/2023]
Abstract
Dioxin-induced toxicities that affect the development of the motor system have been proposed since many years. However, cellular evidence and the molecular basis for the effects are limited. In this study, a cultured mouse myoblast cell line, C2C12, was utilized to examine the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on myogenic differentiation and expression of acetylcholinesterase (AChE), a neuromuscular transmission-related gene. The results showed that TCDD exposure at 10-10 M repressed the myotube formation of C2C12 cells by disturbing the fusion process and suppressing the expression of myosin heavy chain, a myobute structural protein, and not by induction of cytotoxicity. Furthermore, TCDD dose dependently suppressed the transcriptional expression and enzymatic activity of AChE during the myogenic differentiation, particularly in the middle stage. However, the administration of aryl hydrocarbon receptor antagonists, CH223191 and alpha-naphthoflavone, did not completely reverse the TCDD-induced downregulation of muscular AChE during myogenic differentiation. These findings suggest that low dose exposure to dioxin may result in disturbances of muscle differentiation and neuromuscular transmission.
Collapse
Affiliation(s)
- Heidi Q Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Karl W K Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
12
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
AhR-dependent 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicity in human neuronal cell line SHSY5Y. Neurotoxicology 2016; 56:55-63. [DOI: 10.1016/j.neuro.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022]
|
14
|
Glazer L, Hahn ME, Aluru N. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior. Neurotoxicology 2015; 52:134-43. [PMID: 26616910 DOI: 10.1016/j.neuro.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant.
Collapse
Affiliation(s)
- Lilah Glazer
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Mark E Hahn
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
15
|
Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, Shafer TJ, Cowden J. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol 2015; 52:25-35. [PMID: 26476195 DOI: 10.1016/j.ntt.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans.
Collapse
Affiliation(s)
- William R Mundy
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joseph M Breier
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kevin M Crofton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David W Herr
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Karl F Jensen
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicholas M Radio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen C Raffaele
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
McCallister MM, Li Z, Zhang T, Ramesh A, Clark RS, Maguire M, Hutsell B, Newland MC, Hood DB. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene. Toxicol Sci 2015; 149:42-54. [PMID: 26420751 DOI: 10.1093/toxsci/kfv212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40-P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life.
Collapse
Affiliation(s)
- Monique M McCallister
- *Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Environmental-Health Disparities and Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Zhu Li
- *Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Environmental-Health Disparities and Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Tongwen Zhang
- Division of Environmental Health Sciences, College of Public Health; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208; and
| | - Ryan S Clark
- *Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Environmental-Health Disparities and Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Mark Maguire
- *Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Environmental-Health Disparities and Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Blake Hutsell
- Department of Psychology, Auburn University, Auburn, Alabama 36849, USA
| | | | - Darryl B Hood
- *Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Environmental-Health Disparities and Medicine, Meharry Medical College, Nashville, Tennessee 37208; Division of Environmental Health Sciences, College of Public Health; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
17
|
Feasibility of repeated testing for learning ability in juvenile primates for pediatric safety assessment. Regul Toxicol Pharmacol 2015; 73:571-7. [PMID: 26361857 DOI: 10.1016/j.yrtph.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 11/20/2022]
Abstract
Assessment of learning ability in nonhuman primate (NHP) models is sometimes requested by regulatory authorities. The double choice object discrimination task using a Wisconsin General Testing Apparatus (WGTA) approach is typically being applied. In this study, the WGTA approach was performed on 66 juvenile cynomolgus monkeys aged 8-9 months in the predose phase of juvenile toxicity assessment. In addition, reversal learning data of seven control animals/gender were obtained for the weeks 25 and 52 of dosing. Gender differences in the number of days required to pass the habituation, learning or reversal learning phases were statistically comparable, males and females may be combined for statistical analysis. At first instance, the habituation phase was passed on average after 6.4 days, and the learning test on average after 8.6 days with improvement to 2.0-2.6 days for habituation and 6.4-6.7 days for learning in weeks 52. Power analysis (α = 0.05, one-sided t-test) revealed a sample size of 8 and 41 to predict a 50% and 20% difference, respectively. In conclusion, examination for learning ability, but not for memory ability (during repeated testing) is feasible in juvenile NHPs using the WGTA approach.
Collapse
|
18
|
Kobayashi Y, Hirano T, Omotehara T, Hashimoto R, Umemura Y, Yuasa H, Masuda N, Kubota N, Minami K, Yanai S, Ishihara-Sugano M, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. Immunohistochemical analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the developmental dentate gyrus and hippocampal fimbria in fetal mice. J Vet Med Sci 2015; 77:1355-61. [PMID: 26096965 PMCID: PMC4667650 DOI: 10.1292/jvms.15-0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dioxins are widespread persistent environmental contaminants with adverse impacts on humans and experimental animals. Behavioral and cognitive functions are impaired by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. TCDD exerts its toxicity via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. The hippocampus, which plays important roles in episodic memory and spatial function, is considered vulnerable to TCDD-induced neurotoxicity, because it contains the AhR. We herein investigated the effects of TCDD toxicity on hippocampal development in embryonic mice. TCDD was administered to dams at 8.5 days postcoitum with a single dose of 20, 200, 2,000 and 5,000 ng/kg body weight (groups T20, T200, T2000 and T5000, respectively), and the brains were dissected from their pups at embryonic day 18.5. Immunohistochemical analysis demonstrated that the Glial Fibrillary Acidic Protein (GFAP) immunoreactivities in the dentate gyrus (DG) were reduced in the T5000 group. Granular GFAP immunoreactivity was observed in the hippocampal fimbria, and the number of immunoreactive fimbria was significantly decreased in the T5000 group. The number of Proliferating Cell Nuclear Antigen (PCNA)-positive cells was decreased in all TCDD-exposed groups and significantly reduced in the T20, T200 and T5000 groups. Together, these results demonstrate that maternal TCDD exposure has adverse impacts on neural stem cells (NSCs), neural precursor cells (NPCs) and granular cells in the DG and disrupts the NSC maintenance and timing of differentiation in the hippocampal fimbria, which in turn interrupt neuronal development in future generations of mice.
Collapse
Affiliation(s)
- Yoshihiro Kobayashi
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
20
|
Nishijo M, Pham TT, Nguyen ATN, Tran NN, Nakagawa H, Hoang LV, Tran AH, Morikawa Y, Ho MD, Kido T, Nguyen MN, Nguyen HM, Nishijo H. 2,3,7,8-Tetrachlorodibenzo-p-dioxin in breast milk increases autistic traits of 3-year-old children in Vietnam. Mol Psychiatry 2014; 19:1220-6. [PMID: 24637425 DOI: 10.1038/mp.2014.18] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/18/2014] [Accepted: 02/03/2014] [Indexed: 01/29/2023]
Abstract
Dioxin levels in the breast milk of mothers residing near a contaminated former airbase in Vietnam remain much higher than in unsprayed areas, suggesting high perinatal dioxin exposure for their infants. The present study investigated the association of perinatal dioxin exposure with autistic traits in 153 3-year-old children living in a contaminated area in Vietnam. The children were followed up from birth using the neurodevelopmental battery Bayley-III. The high-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposed groups (⩾3.5 pg per g fat) showed significantly higher Autism Spectrum Rating Scale (ASRS) scores for both boys and girls than the mild-TCDD exposed groups, without differences in neurodevelopmental scores. In contrast, the high total dioxin-exposed group, indicated by polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs)--the toxic equivalents (TEQ) levels⩾17.9 pg-TEQ per g fat, had significantly lower neurodevelopmental scores than the mild-exposed group in boys, but there was no difference in the ASRS scores. The present study demonstrates a specific impact of perinatal TCDD on autistic traits in childhood, which is different from the neurotoxicity of total dioxins (PCDDs/Fs).
Collapse
Affiliation(s)
- M Nishijo
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - T T Pham
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - A T N Nguyen
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - N N Tran
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - H Nakagawa
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - L V Hoang
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - A H Tran
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Y Morikawa
- School of Nursing, Kanazawa Medical University, Ishikawa, Japan
| | - M D Ho
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - T Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - M N Nguyen
- 1] Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam [2] System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - H M Nguyen
- 1] Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam [2] System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - H Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Reyhanian Caspillo N, Volkova K, Hallgren S, Olsson PE, Porsch-Hällström I. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:35-42. [PMID: 24747828 DOI: 10.1016/j.cbpc.2014.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment.
Collapse
Affiliation(s)
- Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Per-Erik Olsson
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Inger Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
22
|
Jiang J, Duan Z, Nie X, Xi H, Li A, Guo A, Wu Q, Jiang S, Zhao J, Chen G. Activation of neuronal nitric oxide synthase (nNOS) signaling pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:119-130. [PMID: 24930124 DOI: 10.1016/j.etap.2014.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been reported to cause alterations in cognitive and motor behavior during both development and adulthood. In this study, the neuronal nitric oxide synthase (nNOS) signaling pathway was investigated in differentiated pheochromocytoma (PC12) cells to better understand the mechanisms of TCDD-induced neurotoxicity. TCDD exposure induced a time- and dose-dependent increase in nNOS expression. High levels of nitric oxide (NO) production by nNOS activation induced mitochondrial cytochrome c (Cyt-c) release and down-regulation of Bcl-2. Additionally, TCDD increased the expression of active caspase-3 and significantly led to apoptosis in PC12 cells. However, these effects above could be effectively inhibited by the addition of 7-nitroindazole (7-NI), a highly selective nNOS inhibitor. Moreover, in the brain cortex of Sprague-Dawley (SD) rats, nNOS was also found to have certain relationship with TCDD-induced neuronal apoptosis. Together, our findings establish a role for nNOS as an enhancer of TCDD-induced apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Hanqing Xi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aihong Li
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aisong Guo
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Duan Z, Zhao J, Fan X, Tang C, Liang L, Nie X, Liu J, Wu Q, Xu G. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells. Neurotoxicology 2014; 44:149-59. [PMID: 24932542 DOI: 10.1016/j.neuro.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xikang Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China; Xinglin College, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 2014; 226:294-302. [DOI: 10.1016/j.toxlet.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
|
25
|
Zhang Y, Nie X, Tao T, Qian W, Jiang S, Jiang J, Li A, Guo A, Xu G, Wu Q. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes astrocyte activation and the secretion of tumor necrosis factor-α via PKC/SSeCKS-dependent mechanisms. J Neurochem 2014; 129:839-49. [PMID: 24673440 DOI: 10.1111/jnc.12696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental pollutant that could induce significant toxic effects in the human nervous system. However, the underlying molecular mechanism has not been entirely elucidated. Reactive astrogliosis has implicated in various neurological diseases via the production of a variety of pro-inflammatory mediators. Herein, we investigated the potential role of TCDD in facilitating astrocyte activation and the underlying molecular mechanisms. We showed that TCDD induced rapid astrocyte activation following TCDD exposure, which was accompanied by significantly elevated expression of Src-Suppressed-C Kinase Substrate (SSeCKS), a protein involved in protein kinase C (PKC)-mediated Nuclear Factor kappa B signaling, suggesting a possible involvement of PKC-induced SSeCKS activation in TCDD-triggered reactive astroglia. In keeping with the finding, we found that the level of phosphorylated Nuclear Factor kappa B p65 was remarkably increased after TCDD treatment. Furthermore, interference of SSeCKS attenuated TCDD-induced inducible nitric oxide synthase, glial fibrillary acidic protein, phospho-p65 expression, and tumor necrosis factor-α secretion in astrocytes. In addition, pre-treatment with PKC inhibitor also attenuated TCDD-induced astrocyte activation, as well as SSeCKS expression. Interestingly, we found that TCDD treatment could lead to SSeCKS perinuclear localization, which could be abolished after treatment with PKC inhibitor. Finally, we showed that inhibition of PKC activity or SSeCKS expression would impair TCDD-triggered tumor necrosis factor-α secretion. Our results suggested that TCDD exposure could lead to astrocyte activation through PKC/SSeCKS-dependent mechanisms, highlighting that astrocytes might be important target of TCDD-induced neurotoxicity. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits neurotoxic effects. Here, we show TCDD induces pro-inflammatory responses in astrocytes. TCDD initiates an increase of [Ca2+]i, followed by the activation of PKC, which then induces the activation of Src-suppressed C-kinase substrate (SSeCKS). SSeCKS promotes NF-κB activation and the secretion of TNF-α and nitric oxide in astrocytes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis 2014; 17:1170-81. [PMID: 22986482 DOI: 10.1007/s10495-012-0760-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P < 0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P < 0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.
Collapse
|
27
|
Tanida T, Tasaka K, Akahoshi E, Ishihara-Sugano M, Saito M, Kawata S, Danjo M, Tokumoto J, Mantani Y, Nagahara D, Tabuchi Y, Yokoyama T, Kitagawa H, Kawata M, Hoshi N. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain. J Appl Toxicol 2013; 34:117-26. [DOI: 10.1002/jat.2839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Takashi Tanida
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Ken Tasaka
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Eiichi Akahoshi
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Mitsuko Ishihara-Sugano
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Michiko Saito
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Shigehisa Kawata
- Laboratory of Molecular Oncology, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Megumi Danjo
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Junko Tokumoto
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Youhei Mantani
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Daichi Nagahara
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center; University of Toyama; 2630 Sugitani Toyama 930-0194 Japan
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Hiroshi Kitagawa
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| |
Collapse
|
28
|
Nguyen AT, Nishijo M, Hori E, Nguyen NM, Pham TT, Fukunaga K, Nakagawa H, Tran AH, Nishijo H. Influence of Maternal Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Socioemotional Behaviors in Offspring Rats. ENVIRONMENTAL HEALTH INSIGHTS 2013; 7:1-14. [PMID: 23493046 PMCID: PMC3588853 DOI: 10.4137/ehi.s10346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Effects of dioxins on cognitive functions were reported in previous studies conducted in humans and animals. In the present study, we investigated the influence of dioxin exposure during pregnancy on social interaction and on the activity of offspring, which are related to neurodevelopmental disturbances. In addition, we analyzed neurochemical alterations of the limbic system of rat brains to suggest one mechanism of dioxin effects on brain function. We believe that this manuscript is suitable for publication in "Environmental Health Insights" because it provides an interesting topic for a wide global audience. To clarify the relationships between maternal dioxin exposure and socioemotional functions of rat offspring, dams were given TCDD (1.0 μg/kg) on gestational day 15. Social interactions and forced swimming time were compared between TCDD-exposed and control offspring in each gender. Frequency and duration of locomotion were higher, and durations per one behavior of proximity and social contact were significantly lower in the exposed males, while only the duration of proximity was lower in the exposed females. Forced swimming time on the first day was significantly longer in the exposed males. In the limbic system of the rat brain, the levels and/or activity of CaMKIIα were decreased in males and were increased in females in the exposed offspring. These results suggest that prenatal TCDD exposure induces hyperactivity and socioemotional deficits, particularly in the male offspring due to alterations in CaMKIIα activity in the limbic system of the brain.
Collapse
Affiliation(s)
- Anh T.N. Nguyen
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
- Corresponding author
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Nui M. Nguyen
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tai T. Pham
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
- Biomedical Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Miyagi, Japan
| | - Hideaki Nakagawa
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Anh H. Tran
- Department of Physiology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Tomasini MC, Beggiato S, Ferraro L, Tanganelli S, Marani L, Lorenzini L, Antonelli T. Prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin produces alterations in cortical neuron development and a long-term dysfunction of glutamate transmission in rat cerebral cortex. Neurochem Int 2012; 61:759-66. [DOI: 10.1016/j.neuint.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
30
|
Volkova K, Reyhanian N, Kot-Wasik A, Olsén H, Porsch-Hällström I, Hallgren S. Brain circuit imprints of developmental 17α-Ethinylestradiol exposure in guppies (Poecilia reticulata): persistent effects on anxiety but not on reproductive behaviour. Gen Comp Endocrinol 2012; 178:282-90. [PMID: 22687331 DOI: 10.1016/j.ygcen.2012.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/21/2012] [Accepted: 05/27/2012] [Indexed: 11/16/2022]
Abstract
The effects of endocrine disruptors may vary with the timing of exposure. The physiological implications of adult exposure are present during and shortly after exposure while embryonic exposure can imprint changes manifested in adulthood. In this study, guppy (Poecilia reticulata) embryos were exposed to 2 and 20 ng/L of 17α-ethinylestradiol during development via the mother and reared in clean water from gestation until 6 months of age. As adults, fish exposed to 20 ng/L during development showed significantly altered behaviour in the Novel Tank test, where anxiety is determined as the tendency to remain at the bottom upon introduction into an unfamiliar tank. 17α-ethinylestradiol treatment increased the latency time before swimming to the upper half of the tank and decreased the number of transitions to the upper half. In control females the basal stress behaviour responses were significantly higher than in males, as indicated by longer latency period and fewer and shorter visits to the upper half, supporting the importance of gonadal hormones for the behaviour. The anxiety increased, however, with treatment in both sexes, suggesting that the observed response is not entirely due to feminisation of the males. Shoaling behaviour, analysed as tendency to leave a shoal of littermates, was neither sex-differentiated nor changed by treatment. Also male reproductive behaviour, brain aromatase activity and testes histology, previously shown to respond to oestrogen exposure in adult guppy, were unaffected by the developmental treatment. This suggests that the stress system in the guppy is very sensitive to 17α-ethinylestradiol, which possibly causes an early organisational imprint on the brain circuit that regulates stress reactions.
Collapse
Affiliation(s)
- Kristina Volkova
- School of Life Sciences, Södertörn University, SE-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Cappon GD, Bowman CJ, Hurtt ME, Grantham LE. Object discrimination reversal as a method to assess cognitive impairment in nonhuman primate enhanced pre- and postnatal developmental (ePPND) studies: statistical power analysis. ACTA ACUST UNITED AC 2012; 95:354-62. [PMID: 22930561 DOI: 10.1002/bdrb.21025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/08/2012] [Indexed: 11/08/2022]
Abstract
An important aspect of the enhanced pre- and postnatal developmental (ePPND) toxicity study in nonhuman primates (NHP) is that it combines in utero and postnatal assessments in a single study. However, it is unclear if NHP ePPND studies are suitable to perform all of the evaluations incorporated into rodent PPND studies. To understand the value of including cognitive assessment in a NHP ePPND toxicity study, we performed a power analysis of object discrimination reversal task data using a modified Wisconsin General Testing Apparatus (ODR-WGTA) from two NHP ePPND studies. ODR-WGTA endpoints evaluated were days to learning and to first reversal, and number of reversals. With α = 0.05 and a one-sided t-test, a sample of seven provided 80% power to predict a 100% increase in all three of the ODR-WGTA endpoints; a sample of 25 provided 80% power to predict a 50% increase. Similar power analyses were performed with data from the Cincinnati Water Maze (CWM) and passive avoidance tests from three rat PPND toxicity studies. Groups of 5 and 15 in the CWM and passive avoidance test, respectively, provided 80% power to detect a 100% change. While the power of the CWM is not far superior to the NHP ODR-WGTA, a clear advantage is the routine use of larger sample size, with a group of 20 rats the CWM provides ~90% power to detect a 50% change. Due to the limitations on the number of animals, the ODR-WGTA may not be suitable for assessing cognitive impairment in NHP ePPND studies.
Collapse
Affiliation(s)
- Gregg D Cappon
- Worldwide Research & Development, Pfizer Inc., Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
32
|
Walker MK, Boberg JR, Walsh MT, Wolf V, Trujillo A, Duke MS, Palme R, Felton LA. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicol Appl Pharmacol 2012; 260:65-9. [PMID: 22326784 DOI: 10.1016/j.taap.2012.01.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuously for 5h after treatment, and feces collected 6-10h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5h, while MAP returned to normal within 2h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2-5h post dosing. MAP and heart rate did not differ 24h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic-pituitary-adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage.
Collapse
Affiliation(s)
- Mary K Walker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ostrea EM, Reyes A, Villanueva-Uy E, Pacifico R, Benitez B, Ramos E, Bernardo RC, Bielawski DM, Delaney-Black V, Chiodo L, Janisse JJ, Ager JW. Fetal exposure to propoxur and abnormal child neurodevelopment at 2 years of age. Neurotoxicology 2011; 33:669-75. [PMID: 22155319 DOI: 10.1016/j.neuro.2011.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Our aim was to determine the effects of fetal exposure to propoxur and pyrethroids, on child neurodevelopment at 2 years of age. PATIENTS AND METHODS Mothers were prospectively recruited during mid-pregnancy in Bulacan, Philippines where multiple pesticides including propoxur, cyfluthrin, chlorpyrifos, cypermethrin, pretilachlor, bioallethrin, malathion, diazinon and transfluthrin are used. To detect prenatal exposure to these pesticides, maternal hair and blood, infant's hair, cord blood, and meconium were analyzed for the pesticides by gas chromatography/mass spectrometry. Infants were examined at 2 years of age with 95.1% follow up rate and their neurodevelopment outcome was assessed by the Griffiths mental developmental scale (N=754). RESULTS Meconium analysis was the most sensitive method to detect fetal exposure to pesticides and exposure was highest for propoxur (21.3%) and the grouped pyrethroids (2.5% - bioallethrin, transfluthrin, cyfluthrin and cypermethrin). Path analysis modeling was performed to determine the effects of fetal exposure to propoxur and pyrethroids on the child's neurodevelopment at 24 months of age while controlling for confounders. Only singletons and those with complete data for the path analysis were included (N=696). Using a path analysis model, there was a significant negative (β=-0.14, p<0.001) relationship between prenatal pesticide exposure to propoxur and motor development at 2 years of age after controlling for confounders, e.g., infant gender, socioeconomic status, maternal intelligence, home stimulation (HOME), postnatal exposure to propoxur and blood lead level at 2 years of age. CONCLUSION At 2 years of age, prenatal exposure to propoxur was associated with poorer motor development in children.
Collapse
Affiliation(s)
- Enrique M Ostrea
- Department of Pediatrics, Hutzel Women's Hospital, the Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sánchez-Martín FJ, Fernández-Salguero PM, Merino JM. Aryl hydrocarbon receptor-dependent induction of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells from mouse. J Neurochem 2011; 118:153-62. [PMID: 21534955 DOI: 10.1111/j.1471-4159.2011.07291.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.
Collapse
Affiliation(s)
- Francisco J Sánchez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
35
|
Mitsui T, Taniguchi N, Kawasaki N, Kagami Y, Arita J. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces expression of the chemokine genes Cxcl4 and Cxcl7 in the perinatal mouse brain. J Appl Toxicol 2011; 31:279-84. [DOI: 10.1002/jat.1612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 12/14/2022]
|
36
|
Huang L, Huang R, Ran XR, Liu HY, Zhang Y, Dai LJ, Li B. Three-generation experiment showed female C57BL/6J mice drink drainage canal water containing low level of TCDD-like activity causing high pup mortality. J Toxicol Sci 2011; 36:713-24. [DOI: 10.2131/jts.36.713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Li Huang
- Experimental Animal Research center, Guangzhou Medical College, China
| | - Ren Huang
- Experimental Animal Monitoring Institute, Guangdong Province, China
| | - Xin-Ru Ran
- Department of Biotechnology, South China Agriculture University, China
| | - Han-Ying Liu
- Experimental Animal Research center, Guangzhou Medical College, China
| | - Yu Zhang
- Experimental Animal Monitoring Institute, Guangdong Province, China
| | - Li-Jun Dai
- Experimental Animal Research center, Guangzhou Medical College, China
| | - Bing Li
- Experimental Animal Research center, Guangzhou Medical College, China
| |
Collapse
|
37
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
38
|
Adekunte AO, Tiwari BK, O'Donnell CP. Exposure assessment of dioxins and dioxin-like PCBs in pasteurised bovine milk using probabilistic modelling. CHEMOSPHERE 2010; 81:509-516. [PMID: 20817255 DOI: 10.1016/j.chemosphere.2010.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/14/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
Quantitative exposure assessment is a useful technique to investigate the risk from contaminants in the food chain. The objective of this study was to develop a probabilistic exposure assessment model for dioxins (PCDD/Fs) and dioxin-like PCBs (DL-PCBs) in pasteurised bovine milk. Mean dioxins and DL-PCBs (non-ortho and mono-ortho PCBs) concentrations (pg WHO-TEQ g(-1)) in bovine milk were estimated as 0.06 ± 0.07 pg WHO-TEQ g(-1) for dioxins and 0.08 ± 0.07 pg WHO-TEQ g(-1) for DL-PCBs using Monte Carlo simulation. The simulated model estimated mean exposure for dioxins was 0.19 ± 0.29 pg WHO-TEQ kg(-1)bw d(-1) and 0.14 ± 0.22 pg WHO-TEQ kg(-1) bw d(-1) and for DL-PCBs was 0.25 ± 0.30 pg WHO-TEQ kg(-1) bw d(-1) and 0.19 ± 0.22 pg WHO-TEQ kg(-1) bw d(-1) for men and women, respectively. This study showed that the mean dioxins and DL-PCBs exposure from consumption of pasteurised bovine milk is below the provisional maximum tolerable monthly intake of 70 pg TEQ kg(-1) bw month(-1) (equivalent of 2.3 pg TEQ kg(-1) bw d(-1)) recommended by the Joint FAO/WHO Expert Committee on Food Additives and Contaminants (JECFA). Results from this study also showed that the estimated dioxins and DL-PCBs concentration in pasteurised bovine milk is comparable to those reported in previous studies.
Collapse
Affiliation(s)
- Adefunke O Adekunte
- Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine, University College, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
39
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in neural growth factor (NGF)-differentiated pheochromocytoma PC12 cells. Neurotoxicology 2010; 31:267-76. [PMID: 20302886 DOI: 10.1016/j.neuro.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that alters normal brain development and produces cognitive disability and motor dysfunction. However, after decades of intense study, the molecular mechanisms of TCDD-induced neurotoxicity, the signaling pathways involved and its molecular targets in neurons still remain unknown. TCDD acts as an exogenous ligand of the aryl hydrocarbon receptor (AhR) that becomes a key signaling molecule in the regulation of the toxic and carcinogenic properties of TCDD. We have used NGF-differentiated pheochromocytoma (dPC12) cells to determine the type of cell death that takes place by TCDD toxicity. TCDD induced cell death in dPC12 cultures with an EC(50) of 218+/-24 nM, similar to that obtained in undifferentiated PC12 cells, 171+/-31 nM. Nuclear fragmentation was observed after TCDD incubation in parallel to an increase in caspase-3 activity. Staurosporine, which readily induced apoptosis in dPC12 cells, showed a similar increase in caspase-3 activity and the characteristic pattern of nuclear fragmentation. Flow cytometry measurements showed that dPC12 cells in the presence of TCDD were positive for annexin V labeling but negative for propidium iodide staining. In addition, TCDD increased the area of the peak corresponding to hypodiploid (apoptotic) DNA content. All together these results support the hypothesis that TCDD toxicity in dPC12 cells takes place mainly through an apoptotic process.
Collapse
|
40
|
Li Y, Li T, Zhuang M, Wang K, Zhang J, Shi N. High-dose dibutyl phthalate improves performance of F1 generation male rats in spatial learning and increases hippocampal BDNF expression independent on p-CREB immunocontent. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:32-38. [PMID: 21787579 DOI: 10.1016/j.etap.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/15/2009] [Accepted: 09/02/2009] [Indexed: 05/31/2023]
Abstract
Dibutyl phthalate (DBP), an important representative of endocrine disrupting chemical, is suspected of affecting the cognitive function of humans and animals. In this study, effects of DBP on maze performance in male rats were evaluated by spatial learning tasks; the effects of DBP on the expression of brain-derived neurotrophic factor (BDNF) were also analyzed in both mRNA and mature protein levels in the hippocampus, with intent to investigate the possible mechanism underlying the behavioral findings. Pregnant Wistar rats were treated orally by gavage with 0, 25, 75, 225 and 675mgDBP/kgBW/day from gestational day (GD) 6 to postnatal day (PND) 21, and then the weaned offspring continued receiving the same treatment till PND 28. We found that male pups treated with high-dose DBP showed enhancement in spatial acquisition in a Morris water maze during PNDs 30-33, and displayed better retention of spatial memory in a probe trial after a reverse trail during PNDs 60-62. Real-time PCR and western blotting analysis of the hippocampus from DBP-treated male rats on PND 21 revealed an increase in BDNF expression, compared to the vehicle-matched control. BDNF variant III, a transcription promoted by active CREB (i.e. p-CREB), as well as the immunocontent of p-CREB, was scarcely altered by the treatment. Our results suggest that developmental treatment with high-dose DBP improves spatial memory in male rats, and this effect may be related to an increase in BDNF expression in the hippocampus in a p-CREB independent route.
Collapse
Affiliation(s)
- Yuanfeng Li
- Department of Health Toxicology, MOE Key Laboratory of Environmental and Health, Tongji Medical College of Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan 430030, Hubei, China
| | | | | | | | | | | |
Collapse
|
41
|
Akahoshi E, Yoshimura S, Uruno S, Ishihara-Sugano M. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study. Environ Health 2009; 8:24. [PMID: 19500377 PMCID: PMC2700084 DOI: 10.1186/1476-069x-8-24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/06/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR). This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. METHODS N2a-Rbeta cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA). RESULTS Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III) was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE), though AHRE-III was not identical to XRE, the conventional AhR-binding motif. CONCLUSION Our results suggest TCDD directly regulate the dopamine system by TH gene transactivation via an AhR-AHRE-III-mediated pathway. The AhR- mediated pathway could have a particular AhR-mediated genomic control pathway transmitting the effects of TCDD action to target cells in the development of dopaminergic disabilities.
Collapse
Affiliation(s)
- Eiichi Akahoshi
- Functional Material Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Seiko Yoshimura
- Functional Material Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Saeko Uruno
- Functional Material Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Mitsuko Ishihara-Sugano
- Functional Material Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212-8582, Japan
| |
Collapse
|
42
|
Gohlke JM, Stockton PS, Sieber S, Foley J, Portier CJ. AhR-mediated gene expression in the developing mouse telencephalon. Reprod Toxicol 2009; 28:321-8. [PMID: 19465110 DOI: 10.1016/j.reprotox.2009.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/05/2009] [Accepted: 05/15/2009] [Indexed: 12/12/2022]
Abstract
We hypothesize that TCDD-induced developmental neurotoxicity is modulated through an AhR-dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR-/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR-dependent, as no statistically significant gene expression changes are evident after TCDD exposure in AhR-/- mice. Based on a gene regulatory network for neuronal specification in the developing telencephalon, the present analysis suggests differentiation of GABAergic neurons in the ventral telencephalon is compromised in TCDD exposed and AhR-/- mice. In addition, our analysis suggests Sox11 may be directly regulated by AhR based on gene expression and comparative genomics analyses. In conclusion, this analysis supports the hypothesis that AhR has a specific role in the normal development of the telencephalon and provides a mechanistic framework for neurodevelopmental toxicity of chemicals that perturb AhR signaling.
Collapse
Affiliation(s)
- Julia M Gohlke
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | | | | | | | | |
Collapse
|
43
|
Ostrea EM, Bielawski DM, Posecion NC, Corrion M, Villanueva-Uy E, Bernardo RC, Jin Y, Janisse JJ, Ager JW. Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides. ENVIRONMENTAL RESEARCH 2009; 109:116-22. [PMID: 19019354 PMCID: PMC2675278 DOI: 10.1016/j.envres.2008.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/20/2008] [Accepted: 09/29/2008] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The aim of this study was to determine optimum biomarkers to detect fetal exposure to environmental pesticides by the simultaneous analysis of maternal (hair and blood) and infant (cord blood, infant hair or meconium) matrices and to determine if a combination of these biomarkers will further increase the detection rate. PATIENTS AND METHODS Pregnant women were prospectively recruited from an agricultural site in the Philippines with substantial use at home and in the farm of the following pesticides: propoxur, cyfluthrin, chlorpyrifos, cypermethrin, pretilachlor, bioallethrin, malathion, diazinon and transfluthrin. Maternal hair and blood were obtained at midgestation and at delivery and infant hair, cord blood and meconium were obtained after birth. All samples were analyzed by gas chromatography/mass spectrometry (GC/MS) for the above pesticides and some of their metabolites. RESULTS A total of 598 mother/infant dyads were included in this report. The highest rates of pesticide exposure were detected in meconium (23.2% to propoxur, 2.0% to pretilachlor, 1.7% to cypermethrin, 0.8% to cyfluthrin, 0.7% to 1,1,1-trichloro-2,2-bis, p-chlorophenylethane (DDT) and 0.3% to malathion and bioallethrin) and in maternal hair (21.6% to propoxur, 14.5% to bioallethrin, 1.3% to malathion, 0.8% to DDT, 0.3% to chlorpyrifos and 0.2% to pretilachlor). Combined analysis of maternal hair and meconium increased detection rate further to 38.5% for propoxur and to 16.7% for pyrethroids. Pesticide metabolites were rarely found in any of the analyzed matrices. CONCLUSIONS There is significant exposure of the pregnant woman and her fetus to pesticides, particularly to the home pesticides, propoxur and pyrethroids. Analysis of meconium for pesticides was the single most sensitive measure of exposure. However, combined analysis of maternal hair and meconium significantly increased the detection rate. A major advantage of analyzing maternal hair is that prenatal pesticide exposure in the mother can be detected and intervention measures can be initiated to minimize further exposure of the fetus to pesticides.
Collapse
Affiliation(s)
- Enrique M Ostrea
- Department of Pediatrics, Hutzel Women's Hospital, Wayne State University, 3980 John R, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bergkvist C, Oberg M, Appelgren M, Becker W, Aune M, Ankarberg EH, Berglund M, Håkansson H. Exposure to dioxin-like pollutants via different food commodities in Swedish children and young adults. Food Chem Toxicol 2008; 46:3360-7. [PMID: 18789370 DOI: 10.1016/j.fct.2008.07.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 06/28/2008] [Accepted: 07/08/2008] [Indexed: 11/17/2022]
Abstract
The dietary intake of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in terms of toxic equivalents (TEQs) was investigated in Swedish children and young adults. Exposure was estimated from concentration data of six groups of individual food commodities (meat, fish, dairy products, egg, edible fats and other foodstuff) combined with food intake data from a 7-day record book obtained from 670 individuals aged 1-24 years. The results showed that Swedish boys and girls, up to the age of ten, had a median TEQ intake that exceeded the tolerable daily intake (TDI) of 2 pg TEQ/kg body weight. Children exceeding the TDI varied from almost all individuals among the youngest children to about 20% among young men and women. Dairy and fish products were the main sources of exposure for the average child, accounting for 59% of the total TEQ intake. The individuals most highly exposed were, on the other hand, characterized by a high consumption of fish. Since children constitute a vulnerable group, results obtained from the present study show that it is essential to perform age specific dietary intake assessments of pollutants and more carefully consider sensitive and/or highly exposed groups in the population in the risk management processes.
Collapse
Affiliation(s)
- Charlotte Bergkvist
- Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hojo R, Kakeyama M, Kurokawa Y, Aoki Y, Yonemoto J, Tohyama C. Learning behavior in rat offspring after in utero and lactational exposure to either TCDD or PCB126. Environ Health Prev Med 2008; 13:169-80. [PMID: 19568902 DOI: 10.1007/s12199-008-0026-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 01/04/2008] [Indexed: 01/21/2025] Open
Abstract
OBJECTIVES We studied and compared the possible effects of in utero and lactational exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) or 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) on learning behavior in offspring. METHODS Pregnant Long-Evans Hooded rats were administered either TCDD (50, 200, or 800 ng/kg) or PCB126 (500, 2,000 or 8,000 ng/kg) on gestational day 15. A procedure of schedule-controlled operant behavior was applied to examine learning behavior in the male and female offspring at 11 weeks of age for 30 days. Three indices, namely, response rates in a fixed ratio (FR) and in a differential reinforcement of low rates (DRL), and reward rate in the DRL component in multiple FR 20 DRL 20 s (mult-FR 20 DRL 20-s) test sessions, were used for the evaluation of learning behavior. RESULTS Toxic effects on learning behavior in male and female pups following in utero and lactational exposure to TCDD or PCB126 were observed mainly in the FR learning component. However, no linear dose-dependent effects of either of the two compounds were observed for the above three indices. The response rates of animals in the low-dose TCDD and PCB126 groups decreased and those in medium-dose TCDD and PCB126 groups appeared to induce hyperactive behavior. The high dose of PCB126 appeared to have a distinct toxicity from that of TCDD in terms of the acquisition of learning behavior. CONCLUSIONS Toxicities of PCB126 and TCDD in learning behavior might be similar to each other and the current toxic equivalency factor (TEF) of 0.1 for PCB126 can be considered to be appropriate for this endpoint.
Collapse
Affiliation(s)
- Rieko Hojo
- Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Ostrea EM, Bielawski DM, Posecion NC, Corrion M, Villanueva-Uy E, Jin Y, Janisse JJ, Ager JW. A comparison of infant hair, cord blood and meconium analysis to detect fetal exposure to environmental pesticides. ENVIRONMENTAL RESEARCH 2008; 106:277-83. [PMID: 17949707 PMCID: PMC2265250 DOI: 10.1016/j.envres.2007.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/14/2007] [Accepted: 08/28/2007] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The detection of fetal exposure to environmental pesticides is important because many of the pesticides are neurotoxicants and fetal exposure to these compounds can adversely affect prenatal and subsequent neurodevelopment. The aim of this study was to determine, by the comparative analysis of infant hair, cord blood and meconium, the most sensitive matrix to detect fetal exposure to pesticides. PATIENTS AND METHODS Pregnant women were prospectively recruited from an agricultural site in the Philippines where a preliminary survey indicated a substantial use at home and in the farm of the following pesticides: propoxur, cyfluthrin, chlorpyrifos, cypermethrin, pretilachlor, bioallethrin, malathion, diazinon and transfluthrin. Infant hair, cord blood and meconium were obtained after birth and were analyzed by gas chromatography/mass spectrometry for the above compounds, including lindane and 1,1,1-trichloro-2,2-bis, p-chlorophenylethane (DDT) and some of their known metabolites. RESULTS A total of 638 infants were included in the study. The highest exposure rate to pesticides was detected in meconium (23.8% to propoxur, 1.9% to pretilachlor, 1.9% to cypermethrin, 0.8% to cyfluthrin, 0.6% to DDT and 0.3% to malathion and bioallethrin). Cord blood was only positive for propoxur (1.9%) whereas infant hair was only positive for chlorpyrifos (0.2%). The highest exposure was to household pesticide (propoxur). The frequency and concentration of pesticides were compared in the three matrices and there was a significantly higher frequency and concentration of propoxur, pretilachlor, DDT, cyfluthrin and cypermethrin in meconium compared to cord blood and infant hair. Pesticide metabolites were not found in any of the matrices analyzed, except in one meconium sample which was positive for 4,4' dichlorodiphenyldichloro ethylene (DDE), a DDT metabolite. CONCLUSIONS There is significant exposure of the pregnant woman and her fetus to pesticides, particularly to the home pesticide, propoxur. Our study has demonstrated that among cord blood, meconium or infant hair, meconium is the most sensitive matrix to analyze for fetal exposure to pesticides. The accumulation of pesticides in meconium, the ease of meconium collection and the large amount of meconium that could be collected are factors that contribute to the increased sensitivity of this matrix.
Collapse
Affiliation(s)
- Enrique M Ostrea
- Department of Pediatrics, Hutzel Women's Hospital, the Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pohl HR, Abadin HG, Jones DE, De Rosa CT. The role of exposure versus body burden data in deriving health guidance values. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:401-15. [PMID: 17710608 DOI: 10.1080/10937400601188070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Agency for Toxic Substances and Disease Registry (ATSDR) derives health-based guidance values to estimate daily human exposure to hazardous substances that are likely to be without appreciable risk of adverse noncancer effects for specific routes and durations of exposure. Most of these guidance values are derived from data showing external dose/health effect relationships. However, for chemicals that persist in the body, information on body burdens may provide more accurate understanding of their toxicity. This article evaluates the exposure versus body burden approaches using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and lead as examples.
Collapse
Affiliation(s)
- Hana R Pohl
- U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
48
|
Paletz EM, Day JJ, Craig-Schmidt MC, Newland MC. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids. Neurotoxicology 2007; 28:707-19. [PMID: 17582499 PMCID: PMC2180833 DOI: 10.1016/j.neuro.2007.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/11/2007] [Accepted: 05/01/2007] [Indexed: 11/16/2022]
Abstract
Fish contain essential long chain polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), an omega-3 (or n-3) PUFA, but are also the main source of exposure to methylmercury (MeHg), a potent developmental neurotoxicant. Since n-3 PUFAs support neural development and function, benefits deriving from a diet rich in n-3s have been hypothesized to protect against deleterious effects of gestational MeHg exposure. To determine whether protection occurs at the behavioral level, female Long-Evans rats were exposed, in utero, to 0, 0.5, or 5ppm of Hg as MeHg via drinking water, approximating exposures of 0, 40, and 400 microgHg/kg/day and producing 0, 0.29, and 5.50ppm of total Hg in the brains of siblings at birth. They also received pre- and postnatal exposure to one of two diets, both based on the AIN-93 semipurified formulation. A "fish-oil" diet was high in, and a "coconut-oil" diet was devoid of, DHA. Diets were approximately equal in alpha-linolenic acid and n-6 PUFAs. As adults, the rats were first assessed with a spatial discrimination reversal (SDR) procedure and later with a visual (nonspatial) discrimination reversal (VDR) procedure. MeHg increased the number of errors to criterion for both SDR and VDR during the first reversal, but effects were smaller or non-existent on the original discrimination and on later reversals. No such MeHg-related deficits were seen when the rats were retested on SDR after 2 years of age. These results are consistent with previous reports and hypotheses that gestational MeHg exposure produces perseverative responding. No interactions between diet and MeHg were found, suggesting that n-3 PUFAs do not guard against these behavioral effects. Brain Hg concentrations did not differ between the diets, either. In geriatric rats, failures to respond were less common and response latencies were shorter for rats fed the fish-oil diet, suggesting that exposure to a diet rich in n-3s may lessen the impact of age-related declines in response initiation.
Collapse
Affiliation(s)
- Elliott M Paletz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA.
| | | | | | | |
Collapse
|
49
|
Nishijo M, Kuriwaki JI, Hori E, Tawara K, Nakagawa H, Nishijo H. Effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal brain growth and motor and behavioral development in offspring rats. Toxicol Lett 2007; 173:41-7. [PMID: 17669605 DOI: 10.1016/j.toxlet.2007.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
The effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during pregnancy on fetal brain growth and neurobehavioral development in early developmental stages were investigated using rat offspring. TCDD in corn-oil (0.1microg/kg) was orally administrated to the dams from the 9th to 19th gestational day. When TCDD effects on the fetal brain weight were analyzed on the 19th gestational day, weight ratio of the brain to the whole body, and that of the forebrain without the cerebral cortex to the whole brain were larger in the exposed group than those of the control group, suggesting premature fetal brain development. TCDD effects on motor functions were investigated using newborns in an inclined plane task. Motor development assessed by righting response on an inclination was delayed in the exposed offspring in the 8th-12th postnatal day, especially in male. Also, TCDD effects on active avoidance behavior in a shuttle box were investigated using the offspring after weaning. Latency in the active avoidance learning was longer, and locomotor activity was reduced in the exposed male offspring in the 41st-44th postnatal day. The results demonstrated that maternal TCDD exposure delayed fetal brain growth and neurodevelopment of the offspring in early stage, especially in male rats.
Collapse
Affiliation(s)
- Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Gies A, Neumeier G, Rappolder M, Konietzka R. Risk assessment of dioxins and dioxin-like PCBs in food--comments by the German Federal Environmental Agency. CHEMOSPHERE 2007; 67:S344-9. [PMID: 17223171 DOI: 10.1016/j.chemosphere.2006.05.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 05/13/2023]
Abstract
Human health risk assessments for dioxins and dioxin-like PCBs (with the exception of the one by US-EPA) recommend health based exposure limits within the range of 1-4 pg WHO-TEQ/kg bw per day. As all humans are exposed to measurable levels of dioxins and related substances, the determination of the tolerated daily intake is a very significant decision and may influence limit values guiding risk reduction measures and target levels. The proposed TDI has to protect all human subpopulations. In the case of dioxin this is particularly important as the exposure of infants through breast-feeding may exceed the exposure of adults by one or two orders of magnitude. An overview of recently recommended limit values (WHO, SCF, JECFA) for PCDDs, PCDFs and dioxin-like PCBs using WHO-TEFs shows the common feature that the values were derived only from non carcinogenic endpoints. In November 2000 the Scientific Committee on Food of the European Commission published an 'Opinion of the SCF on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food' [SCF, Scientific Committee on Food 2000. Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food. European Commission, Brussels, Adopted on November 2000 http://europa.eu.int/comm/food/fs/sc/scf/out78_en.pdf]. On the basis of this extensive review of data and experimental results the Committee recommended a temporary tolerable weekly intake (t-TWI) of 7 pg WHO-TEQ/kg bw. Only six months later the SCF carried out a re-evaluation of its t-TWI from November 2000. The reconsideration of 'pivotal studies' led to the situation that the re-assessment is now based only on rat studies which investigated only reproductive effects only on male offspring and, in addition, three of these studies are single dose studies at gestational day 15. Applying an overall uncertainty factor of 10 to the LOAEL derived estimated human daily intakes (EHDI) the SCF concluded that 14 pg/kg bw per week should be considered as a tolerable intake for 2,3,7,8-TCDD. The SCF stated that on a body weight basis, the dioxin intake of breast-fed infants has been estimated to be one to two orders of magnitude higher than the average adult intake. Recent German data suggest that the body burden of formerly breast-fed children aged 9-11 is still about 30% higher than those of their formula-fed age-mates. As breast-feeding has measurable benefits for neurological and immunological development, formula feeding cannot be recommended as an alternative to lower dioxin intake. So the only remaining way to lower the dioxin uptake is to drastically reduce the background exposure of the general population. It is acknowledged that any recommendation of a precise number for a TDI is flawed by uncertainties and the possibility of different weight being given to the studies of relevance. The determination of the TDI has influence on all regulatory limit values that are based on the TDI value. A higher TDI lowers the level of protection for humans. It is proposed by the German Federal Environmental Agency that the TDI should be reassessed in a process transparent to the public and on the basis of all relevant endpoints from animal experiments and human epidemiology, including the assessment of cancer risks.
Collapse
Affiliation(s)
- Andreas Gies
- Federal Environmental Agency, Postbox 1406, D-06813 Dessau, Germany
| | | | | | | |
Collapse
|