1
|
Chatterjee R, Ó Maoiléidigh D. Stereocilium height changes can account for the calcium dependence of the outer-hair-cell bundle's resting state. PLoS One 2025; 20:e0314728. [PMID: 40408357 PMCID: PMC12101656 DOI: 10.1371/journal.pone.0314728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/01/2025] [Indexed: 05/25/2025] Open
Abstract
Outer-hair-cell bundles are sensory organelles required for normal hearing in mammals. These bundles convert sound-induced forces into receptor currents. This conversion depends on the resting receptor current of each bundle, which increases when extracellular calcium is decreased to the physiological level. How extracellular calcium regulates the bundle's resting state is not well understood. We propose a mechanism explaining how extracellular calcium can regulate the outer-hair-cell bundle's resting state. Each bundle comprises filamentous stereocilia linked by gating springs that are attached to ion channels. Sound-induced forces deflect stereocilia, increasing and decreasing gating-spring tensions, opening and closing the ion channels, resulting in an oscillating receptor current. We hypothesize that decreasing extracellular calcium, decreases the heights of the shorter stereocilia, increasing resting gating-spring tensions, which increases the resting receptor current and decreases the bundle's resting deflection. To determine the plausibility of this mechanism, we build a mathematical model of an outer-hair-cell bundle and calibrate the model using seven independent experimental observations. The calibrated model shows that the mechanism is quantitatively plausible and predicts that a decrease of only 10 nm in the heights of the shorter stereocilia when extracellular calcium is lowered is sufficient to explain the observed increase in the resting receptor current. The model predicts the values of nine parameters and makes several additional predictions.
Collapse
Affiliation(s)
- Rayan Chatterjee
- Department of Otolaryngology–Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology–Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Zhang H, Qiu X, Mittelstadt J, Müller U. Ankyrins are dispensable for mechanotransduction by cochlear hair cells. Hear Res 2025; 459:109224. [PMID: 40024092 PMCID: PMC11934226 DOI: 10.1016/j.heares.2025.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
The mechanotransduction (MET) channels of cochlear hair cells is a heteromeric protein complex consisting of TMC1, TMIE and CIB2. The activity of this ion channel is thought to be regulated by a gating spring, a mechanical element that conveys sound-induced vibrations to the MET channel. In nematodes, orthologs of TMC-1, TMIE and CIB2 similarly assemble into a MET channel mediating light nose-touch. Studies in nematodes have suggested that nematode Unc-44, an ortholog of the mammalian ankyrins Ank1, 2, and 3, encodes a gating spring that tethers the nematode MET channel to the cytoskeleton. Here we show that mammalian ankyrins are expressed in cochlear hair cells. Using single and triple conditional knockout mice, we demonstrate that Ank1, 2, and 3 are dispensable for the function of cochlear hair cells. We concluded that Ank1, 2, and 3 are unlikely to be components of the gating spring that gates mechanotransduction channels in mammalian cochlear hair cells.
Collapse
Affiliation(s)
- Hong Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Jonah Mittelstadt
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Marrocchio R, Ó Maoiléidigh D. Links regulate deflection fluctuations in the sensory cells of hearing. Phys Rev E 2025; 111:034403. [PMID: 40247582 DOI: 10.1103/physreve.111.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
In our ears, inner-hair-cell hair bundles (IHBs) convert sound-induced forces into electrical signals, which are ultimately transmitted to the brain. An IHB comprises filamentous stereocilia emanating from the inner-hair-cell apex. Stereocilium deflections promote ion-channel opening and closing, causing receptor currents. This process is limited by fluctuations in the deflections, which compete with the sound signal, limiting the threshold of hearing. Stereocilia are viscoelastic structures and are coupled by fluid and viscoelastic links. The stiffness and damping of the system's components constrain stereocilium deflections, but increasing damping increases thermal deflection fluctuations. Competition between the constraining forces and thermal forces determines the deflection fluctuations. To better understand the deflection fluctuations, we build a mathematical model that relates the IHB's mechanical properties to deflection fluctuations. We find that the coherency of neighboring stereocilium deflections is less than 0.75 at frequencies corresponding to the physiological range of sound frequencies. The coherency for pairs of stereocilia decreases exponentially with the distance between them and is approximately zero between stereocilia at the center and edge of the IHB. We determine how the deflection fluctuations depend on the stiffness and damping of the links. In the absence of stiff links between stereocilia, neighboring stereocilia are weakly or negatively correlated in the physiological frequency range. We show how the sign of the coherency between stereocilium pairs is determined by the eigendecomposition of the deflection power spectral density matrix. Increasing the number of stereocilia in the IHB decreases the coherency between stereocilium pairs. The model also predicts that the threshold of hearing corresponds to IHB stereocilium deflections owing to sound of < 1.5 nm and that links of physiological stiffness decrease the threshold of hearing by at least 10dB. Predictions of the mathematical model are experimentally testable using recently developed techniques.
Collapse
Affiliation(s)
- Riccardo Marrocchio
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| | - Dáibhid Ó Maoiléidigh
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| |
Collapse
|
4
|
Purali N. Mechanosensitive Ion Channels: The Unending Riddle of Mechanotransduction. Bioelectricity 2025; 7:58-70. [PMID: 40342940 PMCID: PMC12054614 DOI: 10.1089/bioe.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Sensation begins at the periphery, where distinct transducer proteins, activated by specific physical stimuli, initiate biological events to convert the stimulus into electrical activity. These evoked pulse trains encode various properties of the stimulus and travel to higher centers, enabling perception of the physical environment. Transduction is an essential process in all of the five senses described by Aristotle. A substantial amount of information is already available on how G-protein coupled receptor proteins transduce exposure to light, odors, and tastants. Functional studies have revealed the presence of mechanosensitive (MS) ion channels, which act as force transducers, in a wide range of organisms from archaea to mammals. However, the molecular basis of mechanosensitivity is incompletely understood. Recently, the structure of a few MS channels and the molecular mechanisms linking mechanical force to channel gating have been partially revealed. This article reviews recent developments focusing on the molecular basis of mechanosensitivity and emerging methods to investigate MS channels.
Collapse
Affiliation(s)
- Nuhan Purali
- Faculty of Medicine, Department of Biophysics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Hehlert P, Effertz T, Gu RX, Nadrowski B, Geurten BRH, Beutner D, de Groot BL, Göpfert MC. NOMPC ion channel hinge forms a gating spring that initiates mechanosensation. Nat Neurosci 2025; 28:259-267. [PMID: 39762662 DOI: 10.1038/s41593-024-01849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2024] [Indexed: 02/08/2025]
Abstract
The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate. This linker acts as a Hookean hinge that is ten times more elastic than the tether, with the linker hinge dictating channel gating and the intrinsic stiffness of the gating spring. Our study shows how mechanosensation is initiated molecularly; disentangles gating springs and tethers, and respective paradigms of channel gating; and puts forward gating springs as core ion channel constituents that enable efficient gating by diverse stimuli and in a wide variety of channels.
Collapse
Affiliation(s)
- Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Thomas Effertz
- Department of Otorhinolaryngology, Head and Neck Surgery and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ruo-Xu Gu
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Björn Nadrowski
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany.
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Zhu Z, Reid W, Ó Maoiléidigh D. Gating-spring stiffness increases outer-hair-cell bundle stiffness, damping, and receptor current. Sci Rep 2024; 14:29904. [PMID: 39622900 PMCID: PMC11612202 DOI: 10.1038/s41598-024-81355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
In our ears, outer-hair-cell bundles (OHBs) convert sound-induced forces into receptor currents that drive cochlear amplification, the process responsible for the micropascal-scale threshold and million-fold dynamic range of hearing. OHBs rely on gating springs to open mechanoelectrical-transduction (MET) ion channels, through which the receptor current flows. OHBs have larger gating-spring stiffnesses than other types of hair bundles, but we have a poor understanding of how gating-spring stiffness contributes to OHB mechanics and receptor-current regulation. Using experimentally-constrained mathematical models of the OHB, we show that the increased gating-spring stiffness in an OHB increases its stiffness and damping. The OHB's 3D morphology reduces the contribution of gating-spring stiffness to OHB stiffness, reduces the contribution of MET-channel gating to OHB stiffness and damping, but causes additional OHB damping that rises with gating-spring stiffness. Gating-spring stiffness increases the OHB's receptor current but decreases its displacement-current dynamic range. Strikingly, the OHB's 3D morphology causes its force-current dynamic range to decrease with gating-spring stiffness. Our results suggest a trade-off between threshold and dynamic range regulated by OHB gating-spring stiffness.
Collapse
Affiliation(s)
- Zenghao Zhu
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, 94304, CA, USA
| | - Wisam Reid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, 94304, CA, USA
- Harvard Medical School, Harvard University, Boston, 02114, MA, USA
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, 94304, CA, USA.
| |
Collapse
|
7
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
8
|
Zhu Z, Reid W, George SS, Ou V, Ó Maoiléidigh D. 3D morphology of an outer-hair-cell hair bundle increases its displacement and dynamic range. Biophys J 2024; 123:3433-3451. [PMID: 39161094 PMCID: PMC11480765 DOI: 10.1016/j.bpj.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, outer-hair-cell hair bundles (OHBs) transduce sound-induced forces into receptor currents and are required for the wide dynamic range and high sensitivity of hearing. OHBs differ conspicuously in morphology from other types of bundles. Here, we show that the 3D morphology of an OHB greatly impacts its mechanics and transduction. An OHB comprises rod-like stereocilia, which pivot on the surface of its sensory outer hair cell. Stereocilium pivot positions are arranged in columns and form a V shape. We measure the pivot positions and determine that OHB columns are far from parallel. To calculate the consequences of an OHB's V shape and far-from-parallel columns, we develop a mathematical model of an OHB that relates its pivot positions, 3D morphology, mechanics, and receptor current. We find that the 3D morphology of the OHB can halve its stiffness, can double its damping coefficient, and causes stereocilium displacements driven by stimulus forces to differ substantially across the OHB. Stereocilium displacements drive the opening and closing of ion channels through which the receptor current flows. Owing to the stereocilium-displacement differences, the currents passing through the ion channels can peak versus the stimulus frequency and vary considerably across the OHB. Consequently, the receptor current peaks versus the stimulus frequency. Ultimately, the OHB's 3D morphology can increase its receptor-current dynamic range more than twofold. Our findings imply that potential pivot-position changes owing to development, mutations, or location within the mammalian auditory organ might greatly alter OHB function.
Collapse
Affiliation(s)
- Zenghao Zhu
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Wisam Reid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Harvard Medical School, Boston, Massachusetts
| | - Shefin Sam George
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Victoria Ou
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California.
| |
Collapse
|
9
|
Wang Y, Jin P, Kumar A, Jan L, Cheng Y, Jan YN, Zhang Y. Nonlinear compliance of NompC gating spring and its implication in mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599842. [PMID: 38979198 PMCID: PMC11230213 DOI: 10.1101/2024.06.20.599842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lily Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Pedro De-la-Torre, Wen H, Brower J, Martínez-Pérez K, Narui Y, Yeh F, Hale E, Ivanchenko MV, Corey DP, Sotomayor M, Indzhykulian AA. Elasticity and Thermal Stability are Key Determinants of Hearing Rescue by Mini-Protocadherin-15 Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599132. [PMID: 38948700 PMCID: PMC11212938 DOI: 10.1101/2024.06.16.599132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Protocadherin-15 is a core protein component of inner-ear hair-cell tip links pulling on transduction channels essential for hearing and balance. Protocadherin-15 defects can result in non-syndromic deafness or Usher syndrome type 1F (USH1F) with hearing loss, balance deficits, and progressive blindness. Three rationally engineered shortened versions of protocadherin-15 (mini-PCDH15s) amenable for gene therapy have been used to rescue function in USH1F mouse models. Two can successfully or partially rescue hearing, while another one fails. Here we show that despite varying levels of hearing rescue, all three mini-PCDH15 versions can rescue hair-cell mechanotransduction. Negative-stain electron microscopy shows that all three versions form dimers like the wild-type protein, while crystal structures of some engineered fragments show that these can properly fold and bind calcium ions essential for function. In contrast, simulations predict distinct elasticities and nano differential scanning fluorimetry shows differences in melting temperature measurements. Our data suggest that elasticity and thermal stability are key determinants of sustained hearing rescue by mini-PCDH15s.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Haosheng Wen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Karina Martínez-Pérez
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Biology Program, Department of Basic Sciences, Universidad del Atlántico, Cra 30 # 8-49, Puerto Colombia, 081007, Colombia
| | - Yoshie Narui
- Center for Electron Microscopy and Analysis, The Ohio State University, 1275-1305 Kinnear Road, Columbus, OH, USA
| | - Frank Yeh
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| | - Maryna V. Ivanchenko
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Lee JH, Perez-Flores MC, Park S, Kim HJ, Chen Y, Kang M, Kersigo J, Choi J, Thai PN, Woltz RL, Perez-Flores DC, Perkins G, Sihn CR, Trinh P, Zhang XD, Sirish P, Dong Y, Feng WW, Pessah IN, Dixon RE, Sokolowski B, Fritzsch B, Chiamvimonvat N, Yamoah EN. The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell. Nat Commun 2024; 15:526. [PMID: 38228630 PMCID: PMC10791687 DOI: 10.1038/s41467-023-44230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | - Hyo Jeong Kim
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | | | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | | | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Pauline Trinh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Wayne Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Bernd Sokolowski
- Department of Otolaryngology-Head and Neck Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Sacramento, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
12
|
Beurg M, Schwalbach ET, Fettiplace R. LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel. Proc Natl Acad Sci U S A 2024; 121:e2318270121. [PMID: 38194445 PMCID: PMC10801851 DOI: 10.1073/pnas.2318270121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
During auditory transduction, sound-evoked vibrations of the hair cell stereociliary bundles open mechanotransducer (MET) ion channels via tip links extending from one stereocilium to its neighbor. How tension in the tip link is delivered to the channel is not fully understood. The MET channel comprises a pore-forming subunit, transmembrane channel-like protein (TMC1 or TMC2), aided by several accessory proteins, including LHFPL5 (lipoma HMGIC fusion partner-like 5). We investigated the role of LHFPL5 in transduction by comparing MET channel activation in outer hair cells of Lhfpl5-/- knockout mice with those in Lhfpl5+/- heterozygotes. The 10 to 90 percent working range of transduction in Tmc1+/+; Lhfpl5+/- was 52 nm, from which the single-channel gating force, Z, was evaluated as 0.34 pN. However, in Tmc1+/+; Lhfpl5-/- mice, the working range increased to 123 nm and Z more than halved to 0.13 pN, indicating reduced sensitivity. Tip link tension is thought to activate the channel via a gating spring, whose stiffness is inferred from the stiffness change on tip link destruction. The gating stiffness was ~40 percent of the total bundle stiffness in wild type but was virtually abolished in Lhfpl5-/-, implicating LHFPL5 as a principal component of the gating spring. The mutation Tmc1 p.D569N reduced the LHFPL5 immunolabeling in the stereocilia and like Lhfpl5-/- doubled the MET working range, but other deafness mutations had no effect on the dynamic range. We conclude that tip-link tension is transmitted to the channel primarily via LHFPL5; residual activation without LHFPL5 may occur by direct interaction between PCDH15 and TMC1.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Evan Travis Schwalbach
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Robert Fettiplace
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| |
Collapse
|
13
|
Warren B, Eberl D. What can insects teach us about hearing loss? J Physiol 2024; 602:297-316. [PMID: 38128023 DOI: 10.1113/jp281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Over the last three decades, insects have been utilized to provide a deep and fundamental understanding of many human diseases and disorders. Here, we present arguments for insects as models to understand general principles underlying hearing loss. Despite ∼600 million years since the last common ancestor of vertebrates and invertebrates, we share an overwhelming degree of genetic homology particularly with respect to auditory organ development and maintenance. Despite the anatomical differences between human and insect auditory organs, both share physiological principles of operation. We explain why these observations are expected and highlight areas in hearing loss research in which insects can provide insight. We start by briefly introducing the evolutionary journey of auditory organs, the reasons for using insect auditory organs for hearing loss research, and the tools and approaches available in insects. Then, the first half of the review focuses on auditory development and auditory disorders with a genetic cause. The second half analyses the physiological and genetic consequences of ageing and short- and long-term changes as a result of noise exposure. We finish with complex age and noise interactions in auditory systems. In this review, we present some of the evidence and arguments to support the use of insects to study mechanisms and potential treatments for hearing loss in humans. Obviously, insects cannot fully substitute for all aspects of human auditory function and loss of function, although there are many important questions that can be addressed in an animal model for which there are important ethical, practical and experimental advantages.
Collapse
Affiliation(s)
- Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester, UK
| | - Daniel Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Handler A, Zhang Q, Pang S, Nguyen TM, Iskols M, Nolan-Tamariz M, Cattel S, Plumb R, Sanchez B, Ashjian K, Shotland A, Brown B, Kabeer M, Turecek J, DeLisle MM, Rankin G, Xiang W, Pavarino EC, Africawala N, Santiago C, Lee WCA, Xu CS, Ginty DD. Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch. Neuron 2023; 111:3211-3229.e9. [PMID: 37725982 PMCID: PMC10773061 DOI: 10.1016/j.neuron.2023.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Stuart Cattel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca Plumb
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brianna Sanchez
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Karyl Ashjian
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aria Shotland
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Bartianna Brown
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Madiha Kabeer
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M DeLisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wangchu Xiang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Elisa C Pavarino
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nusrat Africawala
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Santos DOC, Trindade MAS, da Silva AJ. Nonextensive realizations in interacting ion channels: Implications for mechano-electrical transducer mechanisms. Biosystems 2023; 232:105005. [PMID: 37611860 DOI: 10.1016/j.biosystems.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
We propose a theoretical model to investigate the thermodynamics of single and coupled two-state ion channels, associated with mechanoelectrical transduction (MET) and hair cell biophysics. The modeling was based on the Tsallis nonextensive statistical mechanics. The choice for a nonextensive framework in modeling ion channels is encouraged on the fact that we take into account the presence of interactions or long-range correlations in the dynamics of single and coupled ion channels. However, the basic assumptions that support Boltzmann-Gibbs statistics, traditionally used to model ion channel dynamics, state that the system is formed by independent or weakly interacting elements. Despite being well studied in many biological systems, the literature has not yet addressed the study of both entropy and mutual information related to isolated or physically interacting pairs of MET channels. Inspired by hair cell biophysics, we show how the presence of nonextensivity, or subadditivity and superadditivity modulates the nonextensive entropy and mutual information as functions of stereocilia displacements. We also observe that the magnitude of the interaction between the two channels, given by a nonextensive parameter, influences the amplitude of the nonextensive joint entropy and mutual information as functions of the hair cell displacements. Finally, we show how nonextensivity regulates the current versus displacement curve for a single and a pair of interacting two-state channels. The present findings shed light on the thermodynamic process involved in the molecular mechanisms of the auditory system.
Collapse
Affiliation(s)
- D O C Santos
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil
| | - M A S Trindade
- Colegiado de Física, Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, CEP 41150-000, Salvador, Bahia, Brazil
| | - A J da Silva
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil.
| |
Collapse
|
16
|
Barayeu A, Schäfer R, Grewe J, Benda J. Beat encoding at mistuned octaves within single electrosensory neurons. iScience 2023; 26:106840. [PMID: 37434697 PMCID: PMC10331418 DOI: 10.1016/j.isci.2023.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
Beats are slow periodic amplitude modulations resulting from the superposition of two spectrally close periodic signals. The difference frequency between the signals sets the frequency of the beat. A field study in the electric fish Apteronotus rostratus showed the behavioral relevance of very high difference frequencies. Contrary to expectations from previous studies, our electrophysiological data show strong responses of p-type electroreceptor afferents whenever the difference frequency approaches integer multiples (mistuned octaves) of the fish's own electric field frequency (carrier). Mathematical reasoning and simulations show that common approaches to extract amplitude modulations, such as Hilbert transform or half-wave rectification, are not sufficient to explain the responses at carrier octaves. Instead, half-wave rectification needs to be smoothed out, for example by a cubic function. Because electroreceptive afferents share many properties with auditory nerve fibers, these mechanisms may underly the human perception of beats at mistuned octaves as described by Ohm and Helmholtz.
Collapse
Affiliation(s)
- Alexandra Barayeu
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Ramona Schäfer
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jan Grewe
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jan Benda
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Yoon JY, Kim GW. Harnessing adaptive bistable stiffness of hair-cell-bundle structure for broadband vibration applications. Sci Rep 2023; 13:10750. [PMID: 37400522 DOI: 10.1038/s41598-023-37962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
This study presents an initial study on the adaptive bistable stiffness of the hair cell bundle structure in a frog cochlea, and aims to harness its bistable nonlinearity that features a negative stiffness region for broadband vibration applications such as vibration-based energy harvesters. To this end, the mathematical model for describing the bistable stiffness is first formulated based on the modeling concept of piecewise type nonlinearities. The harmonic balance method was then employed to examine the nonlinear responses of bistable oscillator, mimicking hair cells bundle structure under the frequency sweeping condition, and their dynamic behaviors induced by bistable stiffness characteristics are projected on phase diagrams, and Poincare maps concerning the bifurcation. In particular, the bifurcation mapping at the super- and sub-harmonic regimes provides a better perspective to examine the nonlinear motions which occur in the biomimetic system. The use of bistable stiffness characteristics of hair cell bundle structure in frog cochlea thus offers physical insights to harness the adaptive bistable stiffness for metamaterial-like potential engineering structures such as vibration-based energy harvester, and isolator etc.
Collapse
Affiliation(s)
- Jong-Yun Yoon
- Department of Mechatronics Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Gi-Woo Kim
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
18
|
Avillion MP, Lopez IA, Matsui H, Ishiyama G, Ishiyama A. Differential Expression of Na/K-ATPase in the Human Saccule of Patients With and Without Otologic Disease. Otol Neurotol 2023; 44:e256-e261. [PMID: 36791368 PMCID: PMC10038903 DOI: 10.1097/mao.0000000000003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
HYPOTHESIS Na + , K + -ATPase (Na/K-ATPase) α1 subunit expression in the saccule of patients diagnosed with otologic disease is different compared with normal controls. BACKGROUND We have recently characterized changes in the expression of Na/K-ATPase α1 subunit in the normal and pathological cochlea; however, no studies have determined the distribution Na/K-ATPase α1 subunit in the human saccule. The present study uses archival temporal bones to study the expression Na/K-ATPase α1 subunit in the human saccule. METHODS Archival celloidin formalin fixed 20-micron thick sections of the vestibule from patients diagnosed with Menière's disease (n = 5), otosclerosis (n = 5), sensorineural hearing loss, and normal hearing and balance (n = 5) were analyzed. Sections containing the saccular macula were immunoreacted with mouse monoclonal antibodies against Na/K-ATPase α1 subunit. Micrographs were acquired using a high-resolution digital camera coupled to a light inverted microscope. RESULTS In the normal human saccule vestibular sensory epithelium, Na/K-ATPase α1 immunoreactivity (IR) was present in nerve fibers and calyces that surround type I vestibular hair cells and nerve terminals. The transition epithelium cells were also Na/K-ATPase α1 immunoreactive. Comparison between normal and pathological specimens showed that there was a significant reduction of Na/K-ATPase α1 IR in the saccule vestibular sensory epithelium from patients with Menière's disease, otosclerosis, and sensorineural hearing loss. CONCLUSIONS The decrease of Na/K-ATPase-IR α1 in the saccule vestibular sensory epithelium from patients with otopathologies suggests its critical role in inner ear homeostasis and pathology.
Collapse
Affiliation(s)
- Michael P Avillion
- House Ear Clinic, Los Angeles 2100 W. Third St, Ste 111, Los Angeles, CA 90057
| | - Ivan A Lopez
- NIDCD National Temporal Bone Laboratory at UCLA DGSOM at UCLA Los Angeles CA
| | | | - Gail Ishiyama
- Department of Neurology, DGSOM at UCLA Los Angeles CA
| | - Akira Ishiyama
- NIDCD National Temporal Bone Laboratory at UCLA DGSOM at UCLA Los Angeles CA
| |
Collapse
|
19
|
Scharr AL, Ó Maoiléidigh D, Ricci AJ. Coupling between the Stereocilia of Rat Sensory Inner-Hair-Cell Hair Bundles Is Weak, Shaping Their Sensitivity to Stimulation. J Neurosci 2023; 43:2053-2074. [PMID: 36746628 PMCID: PMC10039747 DOI: 10.1523/jneurosci.1588-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The hair bundle is the universal mechanosensory organelle of auditory, vestibular, and lateral-line systems. A bundle comprises mechanically coupled stereocilia, whose displacements in response to stimulation activate a receptor current. The similarity of stereociliary displacements within a bundle regulates fundamental properties of the receptor current like its speed, magnitude, and sensitivity. However, the dynamics of individual stereocilia from the mammalian cochlea in response to a known bundle stimulus has not been quantified. We developed a novel high-speed system, which dynamically stimulates and tracks individual inner-hair-cell stereocilia from male and female rats. Stimulating two to three of the tallest stereocilia within a bundle (nonuniform stimulation) caused dissimilar stereociliary displacements. Stereocilia farther from the stimulator moved less, but with little delay, implying that there is little slack in the system. Along the axis of mechanical sensitivity, stereocilium displacements peaked and reversed direction in response to a step stimulus. A viscoelastic model explained the observed displacement dynamics, which implies that coupling between the tallest stereocilia is effectively viscoelastic. Coupling elements between the tallest inner-hair-cell stereocilia were two to three times stronger than elements anchoring stereocilia to the surface of the cell but were 100-10,000 times weaker than those of a well-studied noncochlear hair bundle. Coupling was too weak to ensure that stereocilia move similarly in response to nonuniform stimulation at auditory frequencies. Our results imply that more uniform stimulation across the tallest stereocilia of an inner-hair-cell bundle in vivo is required to ensure stereociliary displacement similarity, increasing the speed, sensitivity, and magnitude of the receptor current.SIGNIFICANCE STATEMENT Generation of the receptor current of the hair cell is the first step in electrically encoding auditory information in the hearing organs of all vertebrates. The receptor current is shaped by mechanical coupling between stereocilia in the hair bundle of each hair cell. Here, we provide foundational information on the mechanical coupling between stereocilia of cochlear inner-hair cells. In contrast to other types of hair cell, coupling between inner-hair-cell stereocilia is weak, causing slower, smaller, and less sensitive receptor currents in response to stimulation of few, rather than many, stereocilia. Our results imply that inner-hair cells need many stereocilia to be stimulated in vivo to ensure fast, large, and sensitive receptor currents.
Collapse
Affiliation(s)
| | | | - Anthony J Ricci
- Department of Otolaryngology
- Neuroscience Graduate Program
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
20
|
Handler A, Zhang Q, Pang S, Nguyen TM, Iskols M, Nolan-Tamariz M, Cattel S, Plumb R, Sanchez B, Ashjian K, Shotland A, Brown B, Kabeer M, Turecek J, Rankin G, Xiang W, Pavarino EC, Africawala N, Santiago C, Lee WCA, Shan Xu C, Ginty DD. Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533188. [PMID: 36993253 PMCID: PMC10055218 DOI: 10.1101/2023.03.17.533188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Specialized mechanosensory end organs within mammalian skin-hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles-enable our perception of light, dynamic touch 1 . In each of these end organs, fast-conducting mechanically sensitive neurons, called Aβ low-threshold mechanoreceptors (Aβ LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aβ LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli 1-6 . How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2 7-15 and Aβ RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aβ RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aβ RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aβ RA-LTMR activation in which axon protrusions anchor Aβ RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.
Collapse
|
21
|
Faran M, Furst M. Inner-hair-cell induced hearing loss: A biophysical modeling perspective. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1776. [PMID: 37002110 DOI: 10.1121/10.0017627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
In recent years, experimental studies have demonstrated that malfunction of the inner-hair cells and their synapse to the auditory nerve is a significant hearing loss (HL) contributor. This study presents a detailed biophysical model of the inner-hair cells embedded in an end-to-end computational model of the auditory pathway with an acoustic signal as an input and prediction of human audiometric thresholds as an output. The contribution of the outer hair cells is included in the mechanical model of the cochlea. Different types of HL were simulated by changing mechanical and biochemical parameters of the inner and outer hair cells. The predicted thresholds yielded common audiograms of hearing impairment. Outer hair cell damage could only introduce threshold shifts at mid-high frequencies up to 40 dB. Inner hair cell damage affects low and high frequencies differently. All types of inner hair cell deficits yielded a maximum of 40 dB HL at low frequencies. Only a significant reduction in the number of cilia of the inner-hair cells yielded HL of up to 120 dB HL at high frequencies. Sloping audiograms can be explained by a combination of gradual change in the number of cilia of inner and outer hair cells along the cochlear partition from apex to base.
Collapse
Affiliation(s)
- Michael Faran
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Miriam Furst
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
22
|
Inagaki K, Yoshida T, Kobayashi M, Sugimoto S, Fukunaga Y, Hara D, Naganawa S, Sone M. Impact of endolymphatic hydrops on DPOAE in subjects with normal to mild hearing loss. Laryngoscope Investig Otolaryngol 2023; 8:262-268. [PMID: 36846415 PMCID: PMC9948569 DOI: 10.1002/lio2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022] Open
Abstract
Objective The increased endolymph volume affects a shift in the organ of Corti and basilar membrane in ears with endolymphatic hydrops (EH), which might affect distortion-product otoacoustic emissions (DPOAE) by altering the operating point of the outer hair cells. We investigated how changes in DPOAE are related to the distribution site of EH. Study Design Prospective study. Methods Among 403 patients with hearing or vestibular symptoms who underwent contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of EH and subsequent DPOAE testing, subjects whose hearing levels on pure tone audiometry were ≤35 dB at all frequencies were included in this study. In patients with EH on MRI, the presence and amplitude of DPOAE were evaluated between groups with hearing levels of ≤25 dB at all frequencies versus hearing levels of >25 dB at one or more frequencies. Results There were no differences in the distribution of EH between groups. The amplitude of DPOAE had no clear correlation with the presence of EH. However, in both groups, there was a significantly higher probability of the presence of a DPOAE response from 1001 to 6006 Hz in cases with EH in the cochlea. Conclusion Among patients whose hearing levels were ≤35 dB at all frequencies, better responses on DPOAE testing were found in subjects with EH in the cochlea. Alteration of DPOAEs in the early stages of hearing impairment could indicate morphological changes in the inner ear with altered basilar membrane compliance due to EH. Level of Evidence 4.
Collapse
Affiliation(s)
- Kei Inagaki
- Department of OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tadao Yoshida
- Department of OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Masumi Kobayashi
- Department of OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Satofumi Sugimoto
- Department of OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukari Fukunaga
- Department of RehabilitationNagoya University Graduate School of MedicineNagoyaJapan
| | - Daisuke Hara
- Department of RehabilitationNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinji Naganawa
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Michihiko Sone
- Department of OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
23
|
Rabbitt RD, Bidone TC. A parametric blueprint for optimum cochlear outer hair cell design. J R Soc Interface 2023; 20:20220762. [PMID: 36789510 PMCID: PMC9929500 DOI: 10.1098/rsif.2022.0762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
The present work examines the hypothesis that cochlear outer hair cell (OHC) properties vary in precise proportions along the tonotopic map to optimize electromechanical power conversion. We tested this hypothesis using a very simple model of a single isolated OHC driving a mechanical load. Results identify three non-dimensional ratios that are predicted to optimize power conversion: the ratio of the resistive-capacitive (RC) corner to the characteristic frequency (CF), the ratio of nonlinear to linear capacitance and the ratio of OHC stiffness to cochlear load stiffness. Optimum efficiency requires all three ratios to be universal constants, independent of CF and species. The same ratios are cardinal control parameters that maximize power output by positioning the OHC operating point on the edge of a dynamic instability. Results support the hypothesis that OHC properties evolved to optimize electro-mechanical power conversion. Identification of the RC corner frequency as a control parameter reveals a powerful mechanism used by medial olivocochlear efferent system to control OHC power output. Results indicate the upper-frequency limit of OHC power output is not constrained by the speed of the motor itself but instead is probably limited by the size of the nucleus and membrane surface area available for ion-channel expression.
Collapse
Affiliation(s)
- Richard D. Rabbitt
- Biomedical Engineering, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Otolaryngology, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Neuroscience Program, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
| | - Tamara C. Bidone
- Biomedical Engineering, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Molecular Pharmaceutics, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
- Scientific Computing & Imaging Institute, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
La Scaleia B, Lacquaniti F, Zago M. Enhancement of Vestibular Motion Discrimination by Small Stochastic Whole-body Perturbations in Young Healthy Humans. Neuroscience 2023; 510:32-48. [PMID: 36535577 DOI: 10.1016/j.neuroscience.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Noisy galvanic vestibular stimulation has been shown to improve vestibular perception in healthy subjects. Here, we sought to obtain similar results using more natural stimuli consisting of small-amplitude motion perturbations of the whole body. Thirty participants were asked to report the perceived direction of antero-posterior sinusoidal motion on a MOOG platform. We compared the baseline perceptual thresholds with those obtained by applying small, stochastic perturbations at different power levels along the antero-posterior axis, symmetrically distributed around a zero-mean. At the population level, we found that the thresholds for all but the highest level of noise were significantly lower than the baseline threshold. At the individual level, the threshold was lower with at least one noise level than the threshold without noise in 87% of participants. Thus, small, stochastic oscillations of the whole body can increase the probability of recognizing the direction of motion from low, normally subthreshold vestibular signals, possibly due to stochastic resonance mechanisms. We suggest that, just as the external noise of the present experiments, also the spontaneous random oscillations of the head and body associated with standing posture are beneficial by enhancing vestibular thresholds with a mechanism similar to stochastic resonance.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Myrka Zago
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Civil Engineering and Computer Science Engineering and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
25
|
Yu Y, Liu J, Antisdel J, Liu C, Sappington J, Wang X, Gao Y, Peng Y, Wang H, Lin Z, Ruan H, Wang R, Lin S, Zhang M. The relationship between round window and ear canal Cochlear microphonic. Laryngoscope Investig Otolaryngol 2022; 7:2076-2083. [PMID: 36544938 PMCID: PMC9764817 DOI: 10.1002/lio2.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Hypothesis Cochlear microphonic recorded at ear canal (CM-EC) can be a substitute for the one recorded at round window (CM-RW). Background Almost all clinics do not measure tone-burst evoked CM due to technical difficulty although it can provide more information than click evoked CM. Moreover, clinicians like the CM-EC more than that measured at CM-RW because CM-EC is non-invasive. There is difference between CM-RW and CM-EC, for example, CM-EC is less prominent than CM-RW, therefore, studying tone-burst evoked CM-EC and its relationship with CM-RW are highly significant and can promote the clinical application of CM-EC. Method Nine guinea pigs were randomly allocated into three groups, group 1 was not exposed to noise, called normal control. group 2 and group 3 were exposed to the low- (0.5-2 kHz) and high-frequency band-noise (6-8 kHz) at 120 dB SPL for 1 h, respectively. It was difficulty to record low-frequency CM due to severe environmental interruption, in current study the recording technology of tone-burst evoked CM was optimized so that tone-burst evoked CM was measured across full speech frequency (0.5-8 kHz) in the presence of normal hearing and noise induced hearing loss (NIHL). Results CM-RW and CM-EC were successfully recorded across speech frequency. Significant reduction in CM amplitude was observed at 0.5 and 2 kHz in group 2, at 6 and 8 kHz in group 3 as compared to group 1, p < .05, indicating that CM amplitude was sensitive to band-noise exposure. Significant correlation between CM-RW and CM-EC was also verified, p < .05. Conclusion CM-EC is a useful objective test for evaluation of hearing function; the result of current study supports the clinical application of non-invasive CM-EC.
Collapse
Affiliation(s)
- Yongqiang Yu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
- Department of Otolaryngology – Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
- Department of Speech Pathology and Audiology (Communication Sciences and Disorders), Faculty of Rehabilitation MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Junping Liu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Jastin Antisdel
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
| | - Changming Liu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Joshua Sappington
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
| | | | - Yunge Gao
- Strategic Support Force Medical CenterBeijingChina
| | - Yanguo Peng
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Hui Wang
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Zhonghao Lin
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Hongguang Ruan
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Ruiying Wang
- Department of MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shuwu Lin
- Department of MedicineThe Second Affiliated Hospital of Shenyang Medical CollegeShenyangLiaoning ProvinceChina
| | - Ming Zhang
- Department of Speech Pathology and Audiology (Communication Sciences and Disorders), Faculty of Rehabilitation MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Department of Otolaryngology Head Neck Surgery, Faculty of MedicineUniversity of Alberta HospitalEdmontonAlbertaCanada
- Department of Communication DisordersLouisiana State University Health Sciences Center New OrleansNew OrleansLouisianaUSA
| |
Collapse
|
26
|
Signorelli L, Hescham SA, Pralle A, Gregurec D. Magnetic nanomaterials for wireless thermal and mechanical neuromodulation. iScience 2022; 25:105401. [PMID: 36388996 PMCID: PMC9641224 DOI: 10.1016/j.isci.2022.105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic fields are very attractive for non-invasive neuromodulation because they easily penetrate trough the skull and tissue. Cell specific neuromodulation requires the magnetic field energy to be converted by an actuator to a biologically relevant signal. Miniaturized actuators available today range from small, isotropic magnetic nanoparticles to larger, submicron anisotropic magnetic nanomaterials. Depending on the parameters of external magnetic fields and the properties of the nanoactuators, they create either a thermal or a mechanical stimulus. Ferromagnetic nanomaterials generate heat in response to high frequency alternating magnetic fields associated with dissipative losses. Anisotropic nanomaterials with large magnetic moments are capable of exerting forces at stationary or slowly varying magnetic fields. These tools allow exploiting thermosensitive or mechanosensitive neurons in circuit or cell specific tetherless neuromodulation schemes. This review will address assortment of available magnetic nanomaterial-based neuromodulation techniques that rely on application of external magnetic fields.
Collapse
Affiliation(s)
- Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah- Anna Hescham
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | - Danijela Gregurec
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs. Proc Natl Acad Sci U S A 2022; 119:e2107567119. [PMID: 35858439 PMCID: PMC9335186 DOI: 10.1073/pnas.2107567119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of auditory sensitivity contributes to the precision, dynamic range, and protection of the auditory system. Regulation of the hair cell mechanotransduction channel is a major contributor to controlling the sensitivity of the auditory transduction process. The gating spring is a critical piece of the mechanotransduction machinery because it opens and closes the mechanotransduction channel, and its stiffness regulates the sensitivity of the mechanotransduction process. In the present work, we characterize the effect of the second-messenger signaling molecule cyclic adenosine monophosphate (cAMP) and identify that it reduces gating spring stiffness likely through an exchange protein directly activated by cAMP (EPAC)-mediated pathway. This is a unique physiologic mechanism to regulate gating spring stiffness. Hair cells of the auditory and vestibular systems transform mechanical input into electrical potentials through the mechanoelectrical transduction process (MET). Deflection of the mechanosensory hair bundle increases tension in the gating springs that open MET channels. Regulation of MET channel sensitivity contributes to the auditory system’s precision, wide dynamic range and, potentially, protection from overexcitation. Modulating the stiffness of the gating spring modulates the sensitivity of the MET process. Here, we investigated the role of cyclic adenosine monophosphate (cAMP) in rat outer hair cell MET and found that cAMP up-regulation lowers the sensitivity of the channel in a manner consistent with decreasing gating spring stiffness. Direct measurements of the mechanical properties of the hair bundle confirmed a decrease in gating spring stiffness with cAMP up-regulation. In parallel, we found that prolonged depolarization mirrored the effects of cAMP. Finally, a limited number of experiments implicate that cAMP activates the exchange protein directly activated by cAMP to mediate the changes in MET sensitivity. These results reveal that cAMP signaling modulates gating spring stiffness to affect auditory sensitivity.
Collapse
|
29
|
Akyuz N, Karavitaki KD, Pan B, Tamvakologos PI, Brock KP, Li Y, Marks DS, Corey DP. Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices. SCIENCE ADVANCES 2022; 8:eabo1126. [PMID: 35857511 PMCID: PMC9278870 DOI: 10.1126/sciadv.abo1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
The transmembrane (TM) channel-like 1 (TMC1) and TMC2 proteins play a central role in auditory transduction, forming ion channels that convert sound into electrical signals. However, the molecular mechanism of their gating remains unknown. Here, using predicted structural models as a guide, we probed the effects of 12 mutations on the mechanical gating of the transduction currents in native hair cells of Tmc1/2-null mice expressing virally introduced TMC1 variants. Whole-cell electrophysiological recordings revealed that mutations within the pore-lining TM4 and TM6 helices modified gating, reducing the force sensitivity or shifting the open probability of the channels, or both. For some of the mutants, these changes were accompanied by a change in single-channel conductance. Our observations are in line with a model wherein conformational changes in the TM4 and TM6 helices are involved in the mechanical gating of the transduction channel.
Collapse
Affiliation(s)
- Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Young M, Lewis AH, Grandl J. Physics of mechanotransduction by Piezo ion channels. J Gen Physiol 2022; 154:213231. [PMID: 35593732 PMCID: PMC9127981 DOI: 10.1085/jgp.202113044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Piezo ion channels are sensors of mechanical forces and mediate a wide range of physiological mechanotransduction processes. More than a decade of intense research has elucidated much of the structural and mechanistic principles underlying Piezo gating and its roles in physiology, although wide gaps of knowledge continue to exist. Here, we review the forces and energies involved in mechanical activation of Piezo ion channels and their functional modulation by other chemical and physical stimuli including lipids, voltage, and temperature. We compare the three predominant mechanisms likely to explain Piezo activation—the force-from-lipids mechanism, the tether model, and the membrane footprint theory. Additional sections shine light on how Piezo ion channels may affect each other through spatial clustering and functional cooperativity, and how substantial functional heterogeneity of Piezo ion channels arises as a byproduct of the precise physical environment each channel experiences. Finally, our review concludes by pointing out major research questions and technological limitations that future research can address.
Collapse
Affiliation(s)
- Michael Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
31
|
Abstract
High-resolution immunofluorescence imaging of cochlear hair bundles faces many challenges due to the hair bundle’s small dimensions, fragile nature, and complex organization. Here, we describe an optimized protocol for hair-bundle protein immunostaining and localization. We detail the steps and solutions for extracting and fixing the mouse inner ear and for dissecting the organ of Corti. We further emphasize the optimal permeabilization, blocking, staining, and mounting conditions as well as the parameters for high-resolution microscopy imaging. For complete details on the use and execution of this protocol, please refer to Trouillet et al. (2021). Techniques for dissecting the mouse cochlea and the organ of Corti Dissection, permeabilization, blocking parameters to detect hair bundle proteins Mounting method to localize protein in the hair bundles
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Katharine K Miller
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Pei Wang
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Nicolas Grillet
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| |
Collapse
|
32
|
Wu K, Mohsin A, Zaman WQ, Zhang Z, Guan W, Chu M, Zhuang Y, Guo M. Urchin-like magnetic microspheres for cancer therapy through synergistic effect of mechanical force, photothermal and photodynamic effects. J Nanobiotechnology 2022; 20:224. [PMID: 35549715 PMCID: PMC9097396 DOI: 10.1186/s12951-022-01411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Background Magnetic materials mediated by mechanical forces to combat cancer cells are currently attracting attention. Firstly, the magnetic force penetrates deeper into tissues than the NIR laser alone to destroy tumours. Secondly, the synergistic effect of nano-magnetic-material characteristics results in a viable option for the targeted killing of cancer cells. Therefore, mechanical force (MF) produced by magnetic nanomaterials under low frequency dynamic magnetic field combined with laser technology is the most effective, safe and efficient tool for killing cancer cells and tumour growth. Results In this study, we synthesized novel urchin-like hollow magnetic microspheres (UHMMs) composed of superparamagnetic Fe3O4. We demonstrated the excellent performance of UHMMs for killing laryngocarcinoma cancer cells through mechanical force and photothermal effects under a vibrating magnetic field and near-infrared laser, respectively. The killing efficiency was further improved after loading the synthesised UHMMs with Chlorin e6 relative to unloaded UHMMs. Additionally, in animal experiments, laryngocarcinoma solid tumour growth was effectively inhibited by UHMMs@Ce6 through magneto-mechanic force, photothermal and photodynamic therapy. Conclusions The biocompatibility and high efficiency of multimodal integrated therapy with the UHMMs prepared in this work provide new insights for developing novel nano therapy and drug loading platforms for tumour treatment. In vivo experiments further demonstrated that UHMMs/Ce6 are excellent tools for strongly inhibiting tumour growth through the above-mentioned characteristic effects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01411-y.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China.,Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Zefei Zhang
- Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, Merced, CA, 95343, USA
| | - Maoquan Chu
- Biomedical Multidisciplinary Innovation Research Institute and Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
33
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
34
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
35
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
37
|
Gianoli F, Hogan B, Dilly É, Risler T, Kozlov AS. Fast adaptation of cooperative channels engenders Hopf bifurcations in auditory hair cells. Biophys J 2022; 121:897-909. [PMID: 35176272 PMCID: PMC8943817 DOI: 10.1016/j.bpj.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Since the pioneering work of Thomas Gold, published in 1948, it has been known that we owe our sensitive sense of hearing to a process in the inner ear that can amplify incident sounds on a cycle-by-cycle basis. Called the active process, it uses energy to counteract the viscous dissipation associated with sound-evoked vibrations of the ear's mechanotransduction apparatus. Despite its importance, the mechanism of the active process and the proximate source of energy that powers it have remained elusive, especially at the high frequencies characteristic of amniote hearing. This is partly due to our insufficient understanding of the mechanotransduction process in hair cells, the sensory receptors and amplifiers of the inner ear. It has been proposed previously that cyclical binding of Ca2+ ions to individual mechanotransduction channels could power the active process. That model, however, relied on tailored reaction rates that structurally forced the direction of the cycle. Here we ground our study on our previous model of hair-cell mechanotransduction, which relied on cooperative gating of pairs of channels, and incorporate into it the cyclical binding of Ca2+ ions. With a single binding site per channel and reaction rates drawn from thermodynamic principles, the current model shows that hair cells behave as nonlinear oscillators that exhibit Hopf bifurcations, dynamical instabilities long understood to be signatures of the active process. Using realistic parameter values, we find bifurcations at frequencies in the kilohertz range with physiological Ca2+ concentrations. The current model relies on the electrochemical gradient of Ca2+ as the only energy source for the active process and on the relative motion of cooperative channels within the stereociliary membrane as the sole mechanical driver. Equipped with these two mechanisms, a hair bundle proves capable of operating at frequencies in the kilohertz range, characteristic of amniote hearing.
Collapse
Affiliation(s)
| | - Brenna Hogan
- Department of Bioengineering, Imperial College London, London, UK
| | - Émilien Dilly
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Thomas Risler
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
38
|
Collier C, Muzzio N, Thevi Guntnur R, Gomez A, Redondo C, Zurbano R, Schuller IK, Monton C, Morales R, Romero G. Wireless Force-Inducing Neuronal Stimulation Mediated by High Magnetic Moment Microdiscs. Adv Healthc Mater 2022; 11:e2101826. [PMID: 34890130 PMCID: PMC9583708 DOI: 10.1002/adhm.202101826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force-induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low-intensity and low-frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top-down lithography techniques that allow for cost-effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto-mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+ . Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell-type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long-lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto-mechanical control of neural activity using disc-shaped micromaterials with tailored magnetic properties.
Collapse
Affiliation(s)
- Claudia Collier
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rohini Thevi Guntnur
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Carolina Redondo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Raquel Zurbano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Ivan K Schuller
- Center for Advanced Nanoscience and Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Carlos Monton
- General Atomics, PO Box 85608, San Diego, CA, 92186, USA
| | - Rafael Morales
- Department of Physical Chemistry & BCMaterials, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
39
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
40
|
Yao J, Yao C, Zhang A, Xu X, Wu A, Yang F. Magnetomechanical force: an emerging paradigm for therapeutic applications. J Mater Chem B 2022; 10:7136-7147. [DOI: 10.1039/d2tb00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces, which play an profound role in cell fate regulation, have prompted the rapid development and popularization of mechanobiology. More recently, magnetic fields in combination with intelligent materials featuring...
Collapse
|
41
|
Miller KK, Atkinson P, Mendoza KR, Ó Maoiléidigh D, Grillet N. Dimensions of a Living Cochlear Hair Bundle. Front Cell Dev Biol 2021; 9:742529. [PMID: 34900993 PMCID: PMC8657763 DOI: 10.3389/fcell.2021.742529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
The hair bundle is the mechanosensory organelle of hair cells that detects mechanical stimuli caused by sounds, head motions, and fluid flows. Each hair bundle is an assembly of cellular-protrusions called stereocilia, which differ in height to form a staircase. Stereocilia have different heights, widths, and separations in different species, sensory organs, positions within an organ, hair-cell types, and even within a single hair bundle. The dimensions of the stereociliary assembly dictate how the hair bundle responds to stimuli. These hair-bundle properties have been measured previously only to a limited degree. In particular, mammalian data are either incomplete, lack control for age or position within an organ, or have artifacts owing to fixation or dehydration. Here, we provide a complete set of measurements for postnatal day (P) 11 C57BL/6J mouse apical inner hair cells (IHCs) obtained from living tissue, tissue mildly-fixed for fluorescent imaging, or tissue strongly fixed and dehydrated for scanning electronic microscopy (SEM). We found that hair bundles mildly-fixed for fluorescence had the same dimensions as living hair bundles, whereas SEM-prepared hair bundles shrank uniformly in stereociliary heights, widths, and separations. By determining the shrinkage factors, we imputed live dimensions from SEM that were too small to observe optically. Accordingly, we created the first complete blueprint of a living IHC hair bundle. We show that SEM-prepared measurements strongly affect calculations of a bundle’s mechanical properties – overestimating stereociliary deflection stiffness and underestimating the fluid coupling between stereocilia. The methods of measurement, the data, and the consequences we describe illustrate the high levels of accuracy and precision required to understand hair-bundle mechanotransduction.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Patrick Atkinson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Kyssia Ruth Mendoza
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
42
|
Thipmaungprom Y, Prawanta E, Leelasiriwong W, Thammachoti P, Roongthumskul Y. Intermodulation distortions from an array of active nonlinear oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:123106. [PMID: 34972317 DOI: 10.1063/5.0063678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Coupling is critical in nonlinear dynamical systems. It affects the stabilities of individual oscillators as well as the characteristics of their response to external forces. In the auditory system, the mechanical coupling between sensory hair cells has been proposed as a mechanism that enhances the inner ear's sensitivity and frequency discrimination. While extensive studies investigate the effects of coupling on the detection of a sinusoidal signal, the role of coupling underlying the response to a complex tone remains elusive. In this study, we measured the acoustic intermodulation distortions (IMDs) produced by the inner ears of two frog species stimulated simultaneously by two pure tones. The distortion intensity level displayed multiple peaks across stimulus frequencies, in contrast to the generic response from a single nonlinear oscillator. The multiple-peaked pattern was altered upon varying the stimulus intensity or an application of a perturbation tone near the distortion frequency. Numerical results of IMDs from a chain of coupled active nonlinear oscillators driven by two sinusoidal forces reveal the effects of coupling on the variation profile of the distortion amplitude. When the multiple-peaked pattern is observed, the chain's motion at the distortion frequency displays both a progressive wave and a standing wave. The latter arises due to coupling and is responsible for the multiple-peaked pattern. Our results illustrate the significance of mechanical coupling between active hair cells in the generation of auditory distortions, as a mechanism underlying the formation of in vivo standing waves of distortion signals.
Collapse
Affiliation(s)
- Yanathip Thipmaungprom
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkanat Prawanta
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisit Leelasiriwong
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Thammachoti
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuttana Roongthumskul
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proc Natl Acad Sci U S A 2021; 118:2112749118. [PMID: 34782471 PMCID: PMC8617482 DOI: 10.1073/pnas.2112749118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
The ability of pigeons to sense geomagnetic fields has been conclusively established despite a notable lack of determination of the underlying biophysical mechanisms. Quasi-spherical iron organelles previously termed "cuticulosomes" in the cochlea of pigeons have potential relevance to magnetoreception due to their location and iron composition; however, data regarding the magnetic susceptibility of these structures are currently limited. Here quantum magnetic imaging techniques are applied to characterize the magnetic properties of individual iron cuticulosomes in situ. The stray magnetic fields emanating from cuticulosomes are mapped and compared to a detailed analytical model to provide an estimate of the magnetic susceptibility of the individual particles. The images reveal the presence of superparamagnetic and ferrimagnetic domains within individual cuticulosomes and magnetic susceptibilities within the range 0.029 to 0.22. These results provide insights into the elusive physiological roles of cuticulosomes. The susceptibilities measured are not consistent with a torque-based model of magnetoreception, placing iron storage and stereocilia stabilization as the two leading putative cuticulosome functions. This work establishes quantum magnetic imaging as an important tool to complement the existing array of techniques used to screen for potential magnetic particle-based magnetoreceptor candidates.
Collapse
|
44
|
Kim J. A possible molecular mechanism for mechanotransduction at cellular focal adhesion complexes. BIOPHYSICAL REPORTS 2021; 1:100006. [PMID: 36425310 PMCID: PMC9680735 DOI: 10.1016/j.bpr.2021.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 06/16/2023]
Abstract
Mechanotransduction at focal adhesion complexes is key for various cellular events. Theoretical analyses were performed to predict a potential role of lipid membranes in modulating mechanotransduction at focal adhesions. Calculations suggested that the size of nanostructural constraints and mechanical pulling applied on lipid membranes affect the generation of cellular traction forces and signaling transduction at focal adhesions. This work provides predictions on how lipid membranes contribute to mechanotransduction at cellular focal adhesions.
Collapse
Affiliation(s)
- Jichul Kim
- Independent Researcher, Changwon, Republic of Korea
| |
Collapse
|
45
|
Warren B, Nowotny M. Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects must wonder why mammals have ears only in their head and why they evolved only one common principle of ear design—the cochlea. Ears independently evolved at least 19 times in different insect groups and therefore can be found in completely different body parts. The morphologies and functional characteristics of insect ears are as wildly diverse as the ecological niches they exploit. In both, insects and mammals, hearing organs are constrained by the same biophysical principles and their respective molecular processes for mechanotransduction are thought to share a common evolutionary origin. Due to this, comparative knowledge of hearing across animal phyla provides crucial insight into fundamental processes of auditory transduction, especially at the biomechanical and molecular level. This review will start by comparing hearing between insects and mammals in an evolutionary context. It will then discuss current findings about sound reception will help to bridge the gap between both research fields.
Collapse
|
46
|
A bending fluctuation-based mechanism for particle detection by ciliated structures. Proc Natl Acad Sci U S A 2021; 118:2020402118. [PMID: 34326246 DOI: 10.1073/pnas.2020402118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from contacts of the particles with the fiber, and we propose a simple elastohydrodynamics model to predict their amplitude. Our results provide a mechanistic and statistical framework to describe particle detection by biological ciliated systems.
Collapse
|
47
|
Abeytunge S, Gianoli F, Hudspeth AJ, Kozlov AS. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure. eLife 2021; 10:e65930. [PMID: 34227465 PMCID: PMC8363269 DOI: 10.7554/elife.65930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Hair cells, the receptors of the inner ear, detect sounds by transducing mechanical vibrations into electrical signals. From the top surface of each hair cell protrudes a mechanical antenna, the hair bundle, which the cell uses to detect and amplify auditory stimuli, thus sharpening frequency selectivity and providing a broad dynamic range. Current methods for mechanically stimulating hair bundles are too slow to encompass the frequency range of mammalian hearing and are plagued by inconsistencies. To overcome these challenges, we have developed a method to move individual hair bundles with photonic force. This technique uses an optical fiber whose tip is tapered to a diameter of a few micrometers and endowed with a ball lens to minimize divergence of the light beam. Here we describe the fabrication, characterization, and application of this optical system and demonstrate the rapid application of photonic force to vestibular and cochlear hair cells.
Collapse
Affiliation(s)
- Sanjeewa Abeytunge
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Francesco Gianoli
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - AJ Hudspeth
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Andrei S Kozlov
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
48
|
Lee JU, Shin W, Lim Y, Kim J, Kim WR, Kim H, Lee JH, Cheon J. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. NATURE MATERIALS 2021; 20:1029-1036. [PMID: 33510447 DOI: 10.1038/s41563-020-00896-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/02/2020] [Indexed: 05/20/2023]
Abstract
Among physical stimulation modalities, magnetism has clear advantages, such as deep penetration and untethered interventions in biological subjects. However, some of the working principles and effectiveness of existing magnetic neurostimulation approaches have been challenged, leaving questions to be answered. Here we introduce m-Torquer, a magnetic toolkit that mimics magnetoreception in nature. It comprises a nanoscale magnetic torque actuator and a circular magnet array, which deliver piconewton-scale forces to cells over a working range of ~70 cm. With m-Torquer, stimulation of neurons expressing bona fide mechanosensitive ion channel Piezo1 enables consistent and reproducible neuromodulation in freely moving mice. With its long working distance and cellular targeting capability, m-Torquer provides versatility in its use, which can range from single cells to in vivo systems, with the potential application in large animals such as primates.
Collapse
Affiliation(s)
- Jung-Uk Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Wookjin Shin
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yongjun Lim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Jungsil Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Woon Ryoung Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Heehun Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Farhadi M, Razmara E, Balali M, Hajabbas Farshchi Y, Falah M. How Transmembrane Inner Ear (TMIE) plays role in the auditory system: A mystery to us. J Cell Mol Med 2021; 25:5869-5883. [PMID: 33987950 PMCID: PMC8256367 DOI: 10.1111/jcmm.16610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Different cellular mechanisms contribute to the hearing sense, so it is obvious that any disruption in such processes leads to hearing impairment that greatly influences the global economy and quality of life of the patients and their relatives. In the past two decades, transmembrane inner ear (TMIE) protein has received a great deal of research interest because its impairments cause hereditary deafness in humans. This evolutionarily conserved membrane protein contributes to a fundamental complex that plays role in the maintenance and function of the sensory hair cells. Although the critical roles of the TMIE in mechanoelectrical transduction or hearing procedures have been discussed, there are little to no review papers summarizing the roles of the TMIE in the auditory system. In order to fill this gap, herein, we discuss the important roles of this protein in the auditory system including its role in mechanotransduction, olivocochlear synapse, morphology and different signalling pathways; we also review the genotype-phenotype correlation that can per se show the possible roles of this protein in the auditory system.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Maryam Balali
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Yeganeh Hajabbas Farshchi
- Department of Cellular and Molecular BiologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| |
Collapse
|
50
|
Summating potentials from the utricular macula of anaesthetized guinea pigs. Hear Res 2021; 406:108259. [PMID: 34038828 DOI: 10.1016/j.heares.2021.108259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
The Summating Potential (SP) was first recorded in the cochlea in the 1950s and represents an objective measure of cochlear hair cell function, in vivo. Despite being a regular tool in hearing research, a similar response has not yet been recorded from the vestibular system. This is mainly due to the lack of experimental techniques available to record electrical vestibular hair cell responses in isolation from the much larger cochlear potentials. Here we demonstrate the first recordings of the vestibular SP, evoked by Bone-Conducted Vibration (BCV) and Air-Conducted Sound (ACS) stimuli, in anaesthetized guinea pigs. Field potential measurements were taken from the basal surface of the utricular macula, and from the facial nerve canal following surgical or chemical ablation of the cochlea. SPs were evoked by stimuli with frequencies above ~200 Hz, and only with moderate to high intensity (~0.005-0.05 g) BCV and ACS (~120-140 dB SPL). Neural blockade abolished the Vestibular short-latency Evoked Potential (VsEP) and Vestibular Nerve Neurophonic (VNN) from the facial nerve canal recordings but did not abolish the vestibular SP nor the vestibular microphonic. Importantly, the vestibular SP was irreversibly abolished from the utricle and facial nerve canal recordings following local gentamicin application, highlighting its hair cell origin. This is the first study to record the Summating Potential from the mammalian vestibular system, in vivo, providing a novel research tool to assess vestibular hair cell function during experimental manipulations and animal models of disease.
Collapse
|