1
|
Panezai J, van Dyke T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023; 15:nu15040821. [PMID: 36839179 PMCID: PMC9965392 DOI: 10.3390/nu15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable contributions to human physiology. They not only serve as sources of fuel but also cellular structural components as well as substrates that provide bioactive metabolites. A growing body of evidence demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory reactions in periodontitis is only beginning to be uncovered as research continues to unravel their far-reaching immunologic implications.
Collapse
Affiliation(s)
- Jeneen Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Thomas van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Centre for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard Faculty of Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
2
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
3
|
Rengachar P, Bhatt AN, Polavarapu S, Veeramani S, Krishnan A, Sadananda M, Das UN. Gamma-Linolenic Acid (GLA) Protects against Ionizing Radiation-Induced Damage: An In Vitro and In Vivo Study. Biomolecules 2022; 12:797. [PMID: 35740923 PMCID: PMC9221136 DOI: 10.3390/biom12060797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Radiation is pro-inflammatory in nature in view of its ability to induce the generation of reactive oxygen species (ROS), cytokines, chemokines, and growth factors with associated inflammatory cells. Cells are efficient in repairing radiation-induced DNA damage; however, exactly how this happens is not clear. In the present study, GLA reduced DNA damage (as evidenced by micronuclei formation) and enhanced metabolic viability, which led to an increase in the number of surviving RAW 264.7 cells in vitro by reducing ROS generation, and restoring the activities of desaturases, COX-1, COX-2, and 5-LOX enzymes, TNF-α/TGF-β, NF-kB/IkB, and Bcl-2/Bax ratios, and iNOS, AIM-2, and caspases 1 and 3, to near normal. These in vitro beneficial actions were confirmed by in vivo studies, which revealed that the survival of female C57BL/6J mice exposed to lethal radiation (survival~20%) is significantly enhanced (to ~80%) by GLA treatment by restoring altered levels of duodenal HMGB1, IL-6, TNF-α, and IL-10 concentrations, as well as the expression of NF-kB, IkB, Bcl-2, Bax, delta-6-desaturase, COX-2, and 5-LOX genes, and pro- and anti-oxidant enzymes (SOD, catalase, glutathione), to near normal. These in vitro and in vivo studies suggest that GLA protects cells/tissues from lethal doses of radiation by producing appropriate changes in inflammation and its resolution in a timely fashion.
Collapse
Affiliation(s)
- Poorani Rengachar
- BioScience Research Centre, Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India; (P.R.); (S.P.)
- Department of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India;
| | - Anant Narayan Bhatt
- Department of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India;
| | - Sailaja Polavarapu
- BioScience Research Centre, Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India; (P.R.); (S.P.)
| | - Senthil Veeramani
- Quality Assurance Laboratory, Ship Building Centre, Vishakhapatnam 530014, India;
| | - Anand Krishnan
- Department of Radiotherapy, Queen’s NRI Hospital, Vishakhapatnam 530013, India;
| | - Monika Sadananda
- Department of Biosciences, Mangalore University, Mangalore 574199, India;
| | - Undurti N. Das
- BioScience Research Centre, Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India; (P.R.); (S.P.)
- Department of Biosciences, Mangalore University, Mangalore 574199, India;
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
- Department of Biotechnology, Indian Institute of Technology, Sangareddy 502284, India
- Department of Medicine, Sri Ramachandra Medical College and Research Institute, Chennai 600116, India
| |
Collapse
|
4
|
Shen J, Zhang L, Wang Y, Chen Z, Ma J, Fang X, Das UN, Yao K. Beneficial Actions of Essential Fatty Acids in Streptozotocin-Induced Type 1 Diabetes Mellitus. Front Nutr 2022; 9:890277. [PMID: 35669071 PMCID: PMC9164285 DOI: 10.3389/fnut.2022.890277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
The essential fatty acids (EFA), n3 alpha-linolenic acid (ALA), and n6 linoleic acid (LA) are of benefit in diabetes mellitus, but their mechanisms of action are unknown. We, therefore, examined the effects of EFAs on the metabolism, gut microbiota, and inflammatory and retinal histopathology indices in streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) animals, and we assessed the levels of vitreal lipoxin A4 (LXA4)-derived from LA-in subjects with diabetic retinopathy (DR). STZ-induced T1DM rats received LA or ALA 100 μg/day intraperitoneally on alternate days for 21 days, and their blood glucose; lipid profile; plasma, hepatic, and retinal fatty acid profiles (by gas chromatography); retinal histology; activities of hepatic and retinal desaturases; and inflammatory markers (by qRT-PCR) were evaluated. Gut microbiota composition was assayed by 16S rDNA sequencing technology of the fecal samples, and their short-chain fatty acids and bile acids were assayed by gas chromatography, liquid chromatography coupled with tandem mass spectrometry, respectively. The human vitreal fatty acid profiles of subjects with proliferative DR and LXA4 levels were measured. LA and ALA significantly improved the plasma glucose and lipid levels; increased the abundance of Ruminococcaceae (the ALA-treated group), Alloprevotella, Prevotellaceae_Ga6A1_group, Ruminococcaceae_UCG_010, and Ruminococcus_1 (the LA-treated group) bacteria; enhanced acetate and butyrate levels; and augmented fecal and hepatic concentrations of cholic acid, chenodeoxycholic acid, and tauro ursodeoxycholic acid in ALA- and LA-treated animals. Significant STZ-induced decreases in plasma LA, gamma-linolenic acid, arachidonic acid, and ALA levels reverted to near normal, following LA and ALA treatments. Significant changes in the expression of desaturases; COX-2, 5-LOX, and 12-LOX enzymes; and cytokines in T1DM were reverted to near normal by EFAs. DR subjects also had low retinal LXA4 levels. The results of the present study show that ALA and LA are of significant benefit in reversing metabolism, gut microbiota, and inflammatory and retinal index changes seen in T1DM, suggesting that EFAs are of benefit in diabetes mellitus.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Li Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Zhiqing Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Jian Ma
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Fang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Undurti N. Das
- UND Life Sciences, Battle Ground, WA, United States
- Department of Biotechnology, Indian Institute of Technology, Kandi, India
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Das UN. Molecular pathobiology of scleritis and its therapeutic implications. Int J Ophthalmol 2020; 13:163-175. [PMID: 31956585 DOI: 10.18240/ijo.2020.01.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022] Open
Abstract
Scleritis and other autoimmune diseases are characterized by an imbalance in the levels of pro-inflammatory and anti-inflammatory molecules with the balance tilted more towards the former due to the failure of recognition of self. The triggering of inflammatory process could be ascribed to the presence of cytoplasmic DNA/chromatin that leads to activation of cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway and enhanced expression of NF-κB that results in an increase in the production of pro-inflammatory bioactive lipids. Bioactive lipids gamma-linolenic acid (GLA), dihomo-GLA (DGLA), prostaglandin E1 (PGE1), prostacyclin (PGI2) and lipoxin A4, resolvins, protectins and maresins have anti-inflammatory actions, bind to DNA to render it non-antigenic and are decreased in autoimmune diseases. These results suggest that efforts designed to enhance the production of anti-inflammatory bioactive lipids may form a new approach to autoimmune diseases. Local injection or infusion of lipoxins, resolvins, protectins and maresins or their precursors such as arachidonic acid may be exploited in the prevention and management of autoimmune diseases including scleritis, uveitis and lupus/rheumatoid arthritis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, WA 98604, USA.,BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
| |
Collapse
|
7
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|
8
|
Das UN. Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses 2019; 135:109473. [PMID: 31733534 DOI: 10.1016/j.mehy.2019.109473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
It is proposed that arachidonic acid (AA, 20:4 n-6) and other polyunsaturated fatty acids (PUFAs) in combination with immune check point inhibitors and tumor infiltrating lymphocytes (TILs) enhances the activity of T and NK cells and macrophages and thus, aids in the elimination of tumor cells and suppresses inflammatory side effects due to immune check point inhibitors.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, GVP Hospital and Medical College, Visakhapatnam 530048, India.
| |
Collapse
|
9
|
Das UN. Can Bioactive Lipids Augment Anti-cancer Action of Immunotherapy and Prevent Cytokine Storm? Arch Med Res 2019; 50:342-349. [DOI: 10.1016/j.arcmed.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
|
10
|
Penesová A, Dean Z, Kollár B, Havranová A, Imrich R, Vlček M, Rádiková Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res 2018; 67:521-533. [PMID: 29750884 DOI: 10.33549/physiolres.933694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. In addition to the genetic, epigenetic and immunological components, various other factors, e.g. unhealthy dietary habits, play a role in the MS pathogenesis. Dietary intervention is a highly appealing approach, as it presents a simple and relatively low risk method to potentially improve outcomes in patients with brain disorders in order to achieve remission and improvement of clinical status, well-being and life expectancy of patients with MS. The importance of saturated fat intake restriction for the clinical status improvement of MS patients was pointed for the first time in 1950s. Recently, decreased risk of first clinical diagnosis of CNS demyelination associated with higher intake of omega-3 polyunsaturated fatty acids particularly originating from fish was reported. Only few clinical trials have been performed to address the question of the role of dietary intervention, such is e.g. low saturated fat diet in MS treatment. This review summarizes current knowledge about the effect of different dietary approaches (diets low in saturated fat and dietary supplements such as fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, seeds oils, high fiber diet, vitamin D, etc.) on neurological signs, patient's well-being, physical and inflammatory status. So far the results are not conclusive, therefore much more research is needed to confirm and to understand the effectiveness of these dietary interventions in the long term and well defined studies.
Collapse
Affiliation(s)
- A Penesová
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
11
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
12
|
Bhagat U, Das UN. Potential role of dietary lipids in the prophylaxis of some clinical conditions. Arch Med Sci 2015; 11:807-18. [PMID: 26322094 PMCID: PMC4548034 DOI: 10.5114/aoms.2015.53302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/12/2014] [Accepted: 04/20/2014] [Indexed: 01/01/2023] Open
Abstract
An imbalance of dietary lipids may potentially have a significant role in the pathobiology of some chronic diseases. Public health dietary fat recommendations have emphasized that low saturated fat, high monounsaturated fat, and high polyunsaturated fat with a lower ω-6 to ω-3 fatty acid ratio intake are necessary for normal health. However, such universal recommendations are likely to be hazardous, since the outcome of recommended lipid intake may depend on the consumption of other important dietary constituents that have an important role in the metabolism of lipids. In addition, consumption of fatty acids as per the individually tailored specific requirements in the context of other nutritional factors may have the potential to stabilize hormones, mood and sleep, and minimize adverse events. In support of this proposal, we review various factors that influence fatty acid metabolism, which need to be taken into consideration for appropriate utilization and consequently prevention of various diseases.
Collapse
|
13
|
Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014; 5:75. [PMID: 24611066 PMCID: PMC3933826 DOI: 10.3389/fimmu.2014.00075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function.
Collapse
Affiliation(s)
- Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Claudio Mauro
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| | - Paula Urquhart
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Federica Marelli-Berg
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| |
Collapse
|
14
|
Wang C, Cui Y, Li C, Zhang Y, Xu S, Li X, Li H, Zhang X. Nrf2 deletion causes "benign" simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet. Lipids Health Dis 2013; 12:165. [PMID: 24188280 PMCID: PMC3826845 DOI: 10.1186/1476-511x-12-165] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022] Open
Abstract
Background Nonalcoholic fatty liver disease begins with the aberrant accumulation of triglyceride in the liver. Its spectrum includes the earliest stage of hepatic simple steatosis (SS), nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Generally, hepatic SS is often self-limited; however 10%-30% of patients with hepatic SS progress to NASH. The cause(s) of the transition from SS to NASH are unclear. We aimed to test the contribution of nuclear erythroid 2-related factor 2 (Nrf2) on the progression of “benign” SS to NASH in mice fed a high fat diet. In doing so, we discovered the influence of fatty acid in that progression. Method The involvement of Nrf2 in defending against the development of NASH was studied in an experimental model induced by a high-fat diet. Wild-type and Nrf2-null mice were fed the diet. Their specimens were analyzed for pathology as well as for fatty acid content and ratios. Result In feeding the high-fat diet to the Wild-type and the Nrf2-null mice, the Wild-type mice increased hepatic fat deposition without inflammation or fibrosis (i.e., simple steatosis), while the Nrf2-null mice had significantly more hepatic steatosis and substantial inflammation, (i.e., nonalcoholic steatohepatitis). In addition, as a result of the high-fat diet, SFA (C20: 0, C22: 0) and MUFA (C18: 1, C20: 1) content in Nrf2-null mice were significantly higher than in Wild-type mice. In the Nrf2-null mice the PUFA/TFA ratio decreased; conversely, the MUFA/TFA ratio increased. Conclusion The deletion of Nrf2 causes “benign” SS to develop into NASH in mice fed with a high-fat diet, through prompt fatty acid accumulation and disruption of hepatic fatty acid composition in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuying Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Meng H, Shen Y, Shen J, Zhou F, Shen S, Das UN. Effect of n-3 and n-6 unsaturated fatty acids on prostate cancer (PC-3) and prostate epithelial (RWPE-1) cells in vitro. Lipids Health Dis 2013; 12:160. [PMID: 24168453 PMCID: PMC3818971 DOI: 10.1186/1476-511x-12-160] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/25/2013] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of death in the elderly men. Polyunsaturated fatty acids (PUFAs) regulate proliferation of cancer cells. In the present study, we evaluated the effect of various PUFAs on the proliferation and survival of human prostate cancer (PC-3) and human prostate epithelial (RWPE-1) cells in vitro. LA, GLA, AA, ALA, EPA and DHA (linoleic acid, gamma-linolenic acid, arachidonic acid, alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid respectively) when tested at 50, 100, 150, and 200 μM inhibited proliferation of RWPE-1 and PC-3 cells, except that lower concentrations of LA (25 μM) and GLA (5, 10 μM) promoted proliferation. Though all fatty acids tested produced changes in the production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), lipoxin A4 and free radical generation by RWPE-1 and PC-3 cells, there were significant differences in their ability to do so. As expected, supplementation of various n-3 and n-6 fatty acids to RWPE-1 and PC-3 cells enhanced the content of the added fatty acids and their long-chain metabolites in these cells. In contrast to previous results, we did not find any direct correlation between inhibition of cell proliferation induced by various fatty acids and free radical generation. These results suggest that polyunsaturated fatty acids suppress proliferation of normal and tumor cells by a variety of mechanisms that may partly depend on the type(s) of cell(s) being tested and the way these fatty acids are handled by the cells. Hence, it is suggested that more deeper and comprehensive studies are needed to understand the actions of fatty acids on the growth of normal and tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Shengrong Shen
- Department of Food Science and Nutrition, School of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
16
|
Das UN. n-3 fatty acids, γ-linolenic acid, and antioxidants in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:312. [PMID: 23597172 PMCID: PMC3672630 DOI: 10.1186/cc12574] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The usefulness of n-3 fatty acids, γ-linolenic acid and antioxidants in the critically ill is controversial. I propose that adverse outcome in the critically ill is due to excess production of proinflammatory cytokines and eicosanoids from polyunsaturated fatty acids (PUFAs), while generation of anti-inflammatory products of PUFAs may lead to a favorable outcome. Hence, I suggest that measurement of plasma levels of various cytokines, free radicals, and proinflammatory and anti-inflammatory products of PUFAs and correlating them to the clinical picture may pave the way to identify prognostic markers and develop newer therapeutic strategies to prevent and manage critical illness.
Collapse
|
17
|
Das UN. Polyunsaturated fatty acids and their metabolites in the pathobiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:122-34. [PMID: 22735394 DOI: 10.1016/j.pnpbp.2012.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 05/27/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023]
Abstract
Schizophrenia can be considered as a low-grade systemic inflammatory disease with its origins in the perinatal period. It is likely that genetic, environmental, and nutritional factors interact to induce excess production of pro-inflammatory cytokines that, in turn, damage fetal neurons leading to the adult onset of schizophrenia. Polyunsaturated fatty acids (PUFAs) and their metabolites such as lipoxins, resolvins, protectins, maresins and nitrolipids not only have potent neuroprotective action but also are capable of inhibiting the production of pro-inflammatory cytokines. Decreased formation of PUFAs as a result of low activity of Δ(6) and Δ(5) desaturases can result in an increase in the production of pro-inflammatory cytokines due to the absence of negative control exerted by PUFAs and their anti-inflammatory metabolites that, in turn, may predispose to neuronal damage and development of schizophrenia in adult life. Furthermore, PUFAs are essential for brain growth and development. If this proposal is correct, this implies that perinatal and adult supplementation of PUFAs not only prevents but also helps in the treatment of schizophrenia. Furthermore, synthetic analogs of lipoxins, resolvins, and protectins may be of significant benefit in schizophrenia.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, Shaker Heights, OH 44120, USA.
| |
Collapse
|
18
|
Das UN. Serum adipocyte fatty acid-binding protein in the critically ill. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:121. [PMID: 23463959 PMCID: PMC3672535 DOI: 10.1186/cc12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis due to unabated inflammation is common. Increased production of pro-inflammatory cytokines, free radicals, and eicosanoids has been detected in sepsis and other critical illnesses but could also be due to decreased synthesis and release of anti-inflammatory molecules. Increased serum adipose-fatty acid-binding protein (A-FABP) levels can cause insulin resistance and have been reported in the critically ill, serve as a marker of prognosis, and thus link metabolic homeostasis and inflammation. A-FABP can be linked to the expression of Toll-like receptors, macrophage activation, synthesis and release of pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, activation of cyclooxygenase 2 (COX-2) expression, and eicosanoid synthesis, events that can cause insulin resistance and initiation and progression of inflammation and sepsis. Unsaturated fatty acids and their anti-inflammatory products, such as lipoxins, resolvins, and protectins, may suppress A-FABP expression, inhibit macrophage and COX-2 activation, and decrease production of pro-inflammatory cytokines and ultimately could lead to a decrease in insulin resistance and resolution of inflammation and recovery from sepsis. Serial measurement of these pro- and anti-inflammatory molecules and correlation of their levels to the progression to or recovery from (or both) sepsis and other inflammatory processes may form a new approach to predict prognosis in inflammatory conditions and eventually could lead to the development of new therapeutic strategies.
Collapse
|
19
|
Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2012; 24:868-76. [PMID: 22902330 DOI: 10.1016/j.jnutbio.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
Because the interaction between omega-3 fatty acids and mast cells has remained largely unknown in allergies, we investigated whether omega-3 fatty acids affect the activation of mast cells by examining Th2-associated cytokine production and possible molecular mechanisms. Alpha-linolenic acid and its metabolites including eicosapentaenoic acid and decosahexaenoic acid induced a dramatic decrease in the production of interleukin (IL)-4, IL-5 and IL-13 in a dose-dependent manner, as well as mRNA expression of their genes, in activated MC/9 mast cells and bone marrow-derived mast cells. The effects were comparable to those of cyclosporin A (1 μM), a well-known immunosuppressive agent. Nuclear expression of GATA binding protein-1 (GATA-1) and GATA binding protein-2 (GATA-2), essential transcription factors for mast cell activation, was also greatly suppressed. However, their mRNA expressions were not affected. In P815 mast cells, which do not express GATA-1, the suppressive effects on cytokines were abolished. On the contrary, omega-3 fatty acids had less significant effects on IL-4 and IL-5 and resulted in a slight decrease in IL-13 production in EL-4 T cells. Finally, oral administration of fish oil containing high level of omega-3 fatty acids significantly reduced the severity of dermatitis and the thickening of epidermis/dermis in a NC/Nga murine atopic model. The number of cells expressing CD117(+) and FcεRIα(+) was greatly decreased and GATA-1 expression in the cells was also diminished. Taken together, omega-3 fatty acids might target mast cells to a greater extent than T cells to suppress Th2 cytokine expression by inhibiting GATAs for alleviation of allergic disease.
Collapse
|
20
|
Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and α-tocopherol effects among male population--a preliminary study. Clin Nutr 2012; 32:289-93. [PMID: 22901744 DOI: 10.1016/j.clnu.2012.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND & AIMS Recent years, inflammation and oxidative stress have been addressed in relation to interactions between fatty acid (FA) and depression. To study the associations between FAs and depressive symptoms in men, serum FA proportion was compared with perceived depression. We also measured α-tocopherol (a-Toc) levels to investigate the associations with FA functions. METHODS A cross-sectional study was performed on 113 male workers recruited from a software development company in Japan. Depressive symptoms were assessed according to the 20-item Center for Epidemiologic Studies Depression (CES-D) scale. Twenty-four FAs in the serum from the peripheral blood were examined. RESULTS CES-D scores were significantly positively correlated with the serum percentage of palmitic acid (PA), while they were negatively correlated with arachidonic acid (AA). The CES-D scores were not correlated with the serum ratio of docosahexaenoic acid or eicosapentaenoic acid (n-3 poly-unsaturated FAs (PUFAs)). CES-D scores were significantly negatively correlated with a-Toc/PA ratio (correlation: adjusting for possible confounders). CONCLUSIONS Although no associations were found between depressive symptoms and n-3 PUFA proportions in male population, depressive symptoms were positively correlated with PA percentages and negatively correlated with AA percentages. PA may increase neural vulnerability and AA may decrease the severity of depression. Moreover, a-Toc may have protective effects against depressive symptoms.
Collapse
|
21
|
Ling PR, Malkan A, Le HD, Puder M, Bistrian BR. Arachidonic acid and docosahexaenoic acid supplemented to an essential fatty acid-deficient diet alters the response to endotoxin in rats. Metabolism 2012; 61:395-406. [PMID: 21944266 DOI: 10.1016/j.metabol.2011.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/13/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
This study examined fatty acid profiles, triene-tetraene ratios (20:3n9/20:4n6), and nutritional and inflammatory markers in rats fed an essential fatty acid-deficient (EFAD) diet provided as 2% hydrogenated coconut oil (HCO) alone for 2 weeks or with 1.3 mg of arachidonic acid (AA) and 3.3 mg of docosahexaenoic acid (DHA) (AA + DHA) added to achieve 2% fat. Healthy controls were fed an AIN 93M diet (AIN) with 2% soybean oil. The HCO and AA + DHA diets led to significant reductions of linoleic acid, α-linolenic acid, and AA (20:4n6) and increases in Mead acid (20:3n9) in plasma and liver compared with the AIN diet; but the triene-tetraene levels remained well within normal. However, levels of 20:3n9 and 20:4n6 were lower in liver phospholipids in the AA + DHA than in HCO group, suggesting reduced elongation and desaturation in ω-9 and -6 pathways. The AA + DHA group also had significantly lower levels of 18:1n9 and 16:1n7 as well as 18:1n9/18:0 and 16:1n7/16:0 than the HCO group, suggesting inhibition of stearyl-Co A desaturase-1 activity. In response to lipopolysaccharide, the levels of tumor necrosis factor and interleukin-6 were significantly lower with HCO, reflecting reduced inflammation. The AA + DHA group had higher levels of IL-6 and C-reactive protein than the HCO group but significantly lower than the AIN group. However, in response to endotoxin, interleukin-6 was higher with AA + DHA than with AIN. Feeding an EFAD diet reduces baseline inflammation and inflammatory response to endotoxin long before the development of EFAD, and added AA + DHA modifies this response.
Collapse
Affiliation(s)
- Pei-Ra Ling
- Laboratory of Nutrition/Infection, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
22
|
Das UN. A defect in the activities of Δ and Δ desaturases and pro-resolution bioactive lipids in the pathobiology of non-alcoholic fatty liver disease. World J Diabetes 2011; 2:176-88. [PMID: 22087354 PMCID: PMC3215767 DOI: 10.4239/wjd.v2.i11.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/28/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a low-grade systemic inflammatory condition, since liver and adipose tissue tumor necrosis factor-α (TNF-α) and TNF receptor 1 transcripts and serum TNF-α levels are increased and IL-6(-/-) mice are less prone to NAFLD. Fatty liver damage caused by high-fat diets is associated with the generation of pro-inflammatory prostaglandin E(2) (PGE(2)). A decrease in the levels of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the usefulness of EPA and DHA both in the prevention and management of NAFLD has been reported. AA, EPA and DHA and their anti-inflammatory products lipoxins (LXs), resolvins and protectins suppress IL-6 and TNF-α and PGE(2) production. These results suggest that the activities of Δ(6) and Δ(5) desaturases are reduced in NAFLD and hence, the dietary essential fatty acids, linoleic acid (LA) and α-linolenic acid (ALA) are not metabolized to their long-chain products AA, EPA and DHA, the precursors of anti-inflammatory molecules, LXs, resolvins and protectins that could pre vent NAFLD. This suggests that an imbalance between pro- and anti-inflammatory bioactive lipids contribute to NAFLD. Hence, it is proposed that plasma and tissue levels of AA, EPA, DHA and LXs, resolvins and protectins could be used as predictors and prognostic biomarkers of NAFLD. It is suggested that the synthesis and use of more stable analogues of LXs, resolvins and protectins need to be explored in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, UND Life Sciences, 13800 Fairhill Road, 321, Shaker Heights, OH 44120, United States
| |
Collapse
|
23
|
Comba A, Maestri DM, Berra MA, Garcia CP, Das UN, Eynard AR, Pasqualini ME. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis 2010; 9:112. [PMID: 20932327 PMCID: PMC2959203 DOI: 10.1186/1476-511x-9-112] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs) have the ability to induce modifications in the activity of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C) that received commercial diet. RESULTS Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA) content and the cyclooxygenase enzyme derived 12-HHT (p < 0.05) and simultaneously showed decrease in 12-LOX, 15-LOX-2, 15-LOX-1 and PGE activities (p < 0.05) that corresponded to higher apoptosis and lower mitosis seen in this group (p < 0.05). Furthermore, Peanut oil group showed lower T-cell infiltration (p < 0.05), number of metastasis (p < 0.05) and tumour volume (p < 0.05) and longer survival rate compared to other groups. CONCLUSIONS The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.
Collapse
Affiliation(s)
- Andrea Comba
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
24
|
Das UN, Puskás LG. Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis 2009; 8:61. [PMID: 20042103 PMCID: PMC2811702 DOI: 10.1186/1476-511x-8-61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/30/2009] [Indexed: 01/18/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) form an important constituent of all the cell membranes in the body. PUFAs such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) form precursors to both pro-inflammatory and anti-inflammatory compounds. Low-grade systemic inflammation occurs in clinical conditions such as insulin resistance, hypertension, type 2 diabetes mellitus, atherosclerosis, coronary heart disease, lupus, schizophrenia, Alzheimer's disease, and other dementias, cancer and non-alcoholic fatty liver disease (NAFLD) that are also characterized by an alteration in the metabolism of essential fatty acids in the form of excess production of pro-inflammatory eicosanoids and possibly, decreased synthesis and release of anti-inflammatory lipoxins, resolvins, protectins and maresins. We propose that low-grade systemic inflammation observed in these clinical conditions is due to an imbalance in the metabolism of essential fatty acids that is more in favour of pro-inflammatory molecules. In this context, transgenic fat-1 mouse that is designed to convert n-6 to n-3 fatty acids could form an ideal model to study the altered metabolism of essential fatty acids in the above mentioned conditions. It is envisaged that low-grade systemic inflammatory conditions are much less likely in the fat-1 mouse and/or these diseases will run a relatively mild course. Identifying the anti-inflammatory compounds from n-3 fatty acids that suppress low-grade systemic inflammatory conditions and understanding their mechanism(s) of action may lead to newer therapeutic strategies.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada-533 003, Andhra Pradesh, India.
| | | |
Collapse
|
25
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
26
|
Shi X, LeCapitaine NJ, Rudner XL, Ruan S, Shellito JE. Lymphocyte apoptosis in murine Pneumocystis pneumonia. Respir Res 2009; 10:57. [PMID: 19558669 PMCID: PMC2714500 DOI: 10.1186/1465-9921-10-57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 06/26/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Apoptosis of lymphocytes is important in the termination of an immune response to infection but has also been shown to have detrimental effects in animal models of systemic infection and sepsis. We sought to characterize lymphocyte apoptosis in an animal model of pneumonia due to Pneumocystis murina, an infection localized to the lungs. METHODS Control mice and mice depleted of CD4+ lymphocytes were inoculated with Pneumocystis. Apoptosis of lung and spleen lymphocytes was assayed by flow cytometry and PCR assay of apoptotic proteins. RESULTS In control mice, apoptosis of lung lymphocytes was maximal just after the infection was cleared from lung tissue and then declined. However, in CD4-depleted mice, apoptosis was also upregulated in recruited lymphocytes in spite of progressive infection. In splenic lymphocytes, apoptosis was observed early at 1 week after inoculation and then declined. Apoptosis of lung lymphocytes in control mice was associated with a decrease in mRNA for Bcl-2 and an increase in mRNA for Bim. In CD4-depleted mice, lavaged CD8+ cells did change intracellular Bcl-2 but showed increased mRNA for Bim. CONCLUSION Apoptosis of both pulmonary and extrapulmonary lymphocytes is part of the normal host response to Pneumocystis but is also triggered in CD4-deficient animals with progressive infection. In normal mice apoptosis of pulmonary lymphocytes may serve to terminate the immune response in lung tissue. Apoptosis of lung lymphocytes takes place via both the intrinsic and extrinsic apoptotic pathways and is associated with changes in both pro- and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Xin Shi
- Section of Pulmonary/Critical Care Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
27
|
Das UN. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 2008; 7:37. [PMID: 18922179 PMCID: PMC2576273 DOI: 10.1186/1476-511x-7-37] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 01/04/2023] Open
Abstract
Lowering plasma low density lipoprotein-cholesterol (LDL-C), blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by approximately 80%. Essential fatty acids (EFAs) and their long-chain metabolites: gamma-linolenic acid (GLA), dihomo-GLA (DGLA), arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and other products such as prostaglandins E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins (LXs), resolvins, protectins including neuroprotectin D1 (NPD1) prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-gamma ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of omega-3 and omega-6 fatty acids and the co-factors that are necessary for their appropriate action/metabolism is as beneficial as that of the combined use of a statin, thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor, folic acid, and aspirin. Furthermore, appropriate combination of omega-3 and omega-6 fatty acids may even show additional benefits in the form of protection from depression, schizophrenia, Alzheimer's disease, and enhances cognitive function; and serve as endogenous anti-inflammatory molecules; and could be administered from childhood for life long.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
28
|
Yeh SS, Blackwood K, Schuster MW. The cytokine basis of cachexia and its treatment: are they ready for prime time? J Am Med Dir Assoc 2008; 9:219-36. [PMID: 18457797 DOI: 10.1016/j.jamda.2008.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/14/2023]
Abstract
Cachexia is a hypercatabolic condition that is often associated with the terminal stages of many diseases, in which the patient's resting metabolic rate is high and loss of muscle and fat tissue mass occur at an alarming rate. The patient also usually has concurrent anorexia, amplifying the wasting syndrome that is cachexia. The greater the extent of cachexia (regardless of underlying disease), the worse the prognosis. Efforts to treat cachexia over the years have fallen short of satisfactorily reversing the wasting syndrome. This article reviews the pathophysiology of cachexia, enumerating the different pro-inflammatory cytokines that contribute to the syndrome and attempting to illustrate their interwoven pathways. We also review the different treatments that have been explored, as well as the recent literature addressing the use of anti-cytokine therapy to treat cachexia.
Collapse
|
29
|
Das UN. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why? Prostaglandins Leukot Essent Fatty Acids 2008; 78:11-9. [PMID: 18054217 DOI: 10.1016/j.plefa.2007.10.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/18/2007] [Accepted: 10/21/2007] [Indexed: 01/14/2023]
Abstract
Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
30
|
Das UN. Is depression a low-grade systemic inflammatory condition? Am J Clin Nutr 2007; 85:1665-6; author reply 1666. [PMID: 17556708 DOI: 10.1093/ajcn/85.6.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 76:251-68. [PMID: 17466497 DOI: 10.1016/j.plefa.2007.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 03/07/2007] [Indexed: 02/03/2023]
Abstract
Atherosclerosis is a dynamic process. Dyslipidemia, diabetes mellitus, hypertension, obesity, and shear stress of blood flow, the risk factors for the development of atherosclerosis, are characterized by abnormalities in the metabolism of essential fatty acids (EFAs). Gene expression profiling studies revealed that at the sites of atheroslcerosis-prone regions, endothelial cells showed upregulation of pro-inflammatory genes as well as antioxidant genes, and endothelial cells themselves showed changes in cell shape and proliferation. Uncoupled respiration (UCP-1) precedes atherosclerosis at lesion-prone sites but not at the sites that are resistant to atherosclerosis. UCP-1 expression in aortic smooth muscle cells causes hypertension, enhanced superoxide anion production and decreased the availability of NO, suggesting that inefficient metabolism in blood vessels causes atherosclerosis without affecting cholesterol levels. Thus, mitochondrial dysfunction triggers atherosclerosis. Atherosclerosis-free aortae have abundant concentrations of the EFA-linoleate, whereas fatty streaks (an early stage of atherosclerosis) are deficient in EFAs. EFA deficiency promotes respiratory uncoupling and atherosclerosis. I propose that a defect in the activity of Delta6 and Delta5 desaturases decreases the formation of gamma-linolenic acid (GLA), dihomo-DGLA (DGLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from dietary linoleic acid (LA) and alpha-linolenic acid (ALA). This, in turn, leads to inadequate formation of prostaglandin E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins (LXs), resolvins, neuroprotectin D1 (NPD1), NO, and nitrolipids that have anti-inflammatory and platelet anti-aggregatory actions, inhibit leukocyte activation and augment wound healing and resolve inflammation and thus, lead to the initiation and progression atheroslcerosis. In view of this, it is suggested that Delta6 and Delta5 desaturases could serve as biological target(s) for the discovery and development of pharmaceuticals to treat atherosclerosis.
Collapse
|
32
|
Prenatal fatty acid status and immune development: the pathways and the evidence. Lipids 2007; 42:801-10. [PMID: 17952480 DOI: 10.1007/s11745-007-3030-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/22/2007] [Indexed: 01/22/2023]
Abstract
This review explores the effects of dietary long chain polyunsaturated fatty acids (LCPUFA) on various aspects of early immune development and their potential role in the development or the prevention of immune disease. Modern diets have become increasingly rich in n-6 LCPUFA and relatively n-3 LCPUFA deficient. These potentially "pro-inflammatory" dietary changes have clear implications for the immature and developing fetal immune system. It is now well known that immunological abnormalities precede the development of allergic disease and are frequently evident at birth or in the first months of life. This has lead to the hypothesis that potential effects of LCPUFA could be greatest in very early life before immune responses and clinical phenotype are established. Here we summarise the evidence that patterns of LCPUFA exposure in pregnancy can influence aspects of fetal immune in ways that are consistent with the immunological properties of these nutrients in adults. Specifically, human studies have shown that higher levels of n-3 LCPUFA are associated with reduction in neonatal oxidative stress, reduced production of inflammatory leukotienne B4 (LTB4) and altered T cell function. Inverse correlations between n-3 LCPUFA levels and neonatal T cell cytokine production, are consistent with adult studies showing reduction in T cell cytokine production with fish oil supplementation. At this stage the relevance of these effects in the prevention of disease is unclear. Although there have been no effects of postnatal fish oil supplementation (from 6 months of age) on allergy prevention, preliminary studies suggest possible merits in pregnancy and there are ongoing pregnancy intervention studies to address this more definitively.
Collapse
|
33
|
Abstract
Essential fatty acids (EFAs), linoleic acid (LA), and alpha-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites not only form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), but also give rise to lipoxins (LXs) and resolvins that have potent anti-inflammatory actions. Furthermore, EFAs and their metabolites may function as endogenous angiotensin-converting enzyme and 3-hdroxy-3-methylglutaryl coenzyme A reductase inhibitors, nitric oxide (NO) enhancers, anti-hypertensives, and anti-atherosclerotic molecules. Recent studies revealed that EFAs react with NO to yield respective nitroalkene derivatives that exert cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors. The metabolism of EFAs is altered in several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer. Thus, EFAs and their derivatives have varied biological actions and seem to be involved in several physiological and pathological processes.
Collapse
|
34
|
Suresh Y, Das UN. Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2006; 74:199-213. [PMID: 16412622 DOI: 10.1016/j.plefa.2005.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 11/19/2005] [Indexed: 10/25/2022]
Abstract
Earlier, we reported that oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevented the development of alloxan-induced diabetes mellitus in experimental animals. Here we report the results of our studies with pure saturated stearic acid (SA), monounsaturated oleic acid (OA) and omega-6 arachidonic acid (AA) on alloxan-induced diabetes mellitus in Wistar male rats. Prior oral supplementation with AA prevented alloxan-induced diabetes mellitus, whereas both SA and OA were ineffective. Cyclo-oxygenase (COX) and lipoxygenase (LO) inhibitors did not block this protective action of AA against alloxan-induced diabetes, suggesting that both prostaglandins and leukotrienes are not involved, and that AA by itself is effective. Furthermore, AA restored the anti-oxidant status to normal range in various tissues. These results suggest that AA protects pancreatic beta cells against alloxan-induced diabetes in experimental animals by attenuating oxidant stress.
Collapse
Affiliation(s)
- Y Suresh
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA
| | | |
Collapse
|
35
|
Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fatty Acids 2005; 72:343-50. [PMID: 15850715 DOI: 10.1016/j.plefa.2005.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/04/2005] [Indexed: 11/24/2022]
Abstract
GLUT-4 (glucose transporter) receptor, tumor necrosis factor-alpha (TNF-alpha), interleukins-6 (IL-6), daf-genes and PPARs (peroxisomal proliferation activator receptors) play a role in the development of insulin resistance syndrome and associated conditions. But, the exact interaction between these molecules/factors and the mechanism(s) by which they produce insulin resistance syndrome is not clear. I propose that a defect in the activity of the enzymes Delta6 and Delta5 desaturases that are essential for the formation of long chain metabolites of essential fatty acids, linoleic acid and alpha-linolenic acid, is a factor in the development of insulin resistance syndrome. Long chain polyunsaturated fatty acids (LCPUFAs) increase cell membrane fluidity and enhance the number of insulin receptors and the affinity of insulin to its receptors; suppress TNF-alpha, IL-6, macrophage migration inhibitory factor (MIF) and leptin synthesis; increase the number of GLUT-4 receptors, serve as endogenous ligands of PPARs, modify lipolysis, and regulate the balance between pro- and anti-oxidants, and thus, play a critical role in the pathogenesis of insulin resistance. In the nematode, Caenorhabditis elegans, the protein encoded by daf-2 is 35% identical to the human insulin receptor; daf-7 codes a transforming growth factor-beta (TGF-beta) type signal and daf-16 enhances superoxide dismutase (SOD) expression. Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD. Calorie restriction enhances the activity of Delta6 and Delta5 desaturases, melatonin production, decreases daf-2 signaling, free radical generation, and augments anti-oxidant defenses that may explain the beneficial effect of diet control in the management of obesity, insulin resistance, and type II diabetes mellitus. These evidences suggest that the activities of Delta6 and Delta5 enzymes play a critical role in the expression and regulation of GLUT-4, TNF-alpha, IL-6, MIF, daf-genes, melatonin, and leptin by modulating the synthesis and tissue concentrations of LCPUFAs. Caloric restriction delays ageing by activating Sir 2 deacetylase in yeast, and expression of Sir 2 (SIRT1) in human cells. Both insulin and insulin-like growth factor-1 (IGF-1) attenuated this response. SIRT1 sequesters the proapoptotic factor Bax, prevents stress-induced apoptosis of cells, and thus, prolongs survival. In addition, SIRT1 repressed PPAR-gamma, and overexpression of SIRT1 attenuated adipogenesis, and upregulation of SIRT in differentiated fat cells triggered lipolysis and loss of fat, events that are known to attenuate insulin resistance and prolong life span. It remains to be seen whether LCPUFAs have a regulatory role in SIRT1 expression and control Sir 2 deacetylase activity. Thus, calorie restriction or reduced food intake has a role not only in the pathobiology of insulin resistance, but also in other associated conditions such as obesity, type II diabetes mellitus, ageing, and longevity.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 1083 Main Street, Walpole, MA 02081, USA.
| |
Collapse
|
36
|
Das UN. Long-chain polyunsaturated fatty acids, endothelial lipase and atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2005; 72:173-9. [PMID: 15664301 DOI: 10.1016/j.plefa.2004.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/13/2004] [Indexed: 01/04/2023]
Abstract
Endothelial lipase (EL), a new member of the lipase gene family, was recently cloned and has been shown to have a significant role in modulating the concentrations of plasma high-density lipoprotein levels (HDL). EL is closely related to lipoprotein and hepatic lipases both in structure and function. It is primarily synthesized by endothelial cells, functions at the cell surface, and shows phospholipase A1 activity. Overexpression of EL decreases HDL cholesterol levels whereas blocking its action increases concentrations of HDL cholesterol. Pro-inflammatory cytokines suppress plasma HDL cholesterol concentrations by enhancing the activity of EL. On the other hand, physical exercise and fish oil (a rich source of eicosapentaenoic acid and docosahexaenoic acid) suppress the activity of EL and this, in turn, enhances the plasma concentrations of HDL cholesterol. Thus, EL plays a critical role in the regulation of plasma HDL cholesterol concentrations and thus modulates the development and progression of atherosclerosis. The expression and actions of EL in specific endothelial cells determines the initiation and progression of atherosclerosis locally explaining the patchy nature of atheroma seen, especially, in coronary arteries. Both HDL cholesterol and EPA and DHA enhance endothelial nitric oxide (eNO) and prostacyclin (PGI2) synthesis, which are known to prevent atherosclerosis. On the other hand, pro-inflammatory cytokines augment free radical generation, which are known to inactivate eNO and PGI2. Thus, interactions between EL, pro- and anti-inflammatory cytokines, polyunsaturated fatty acids, and the ability of endothelial cells to generate NO and PGI2 and neutralize the actions of free radicals may play a critical role in atherosclerosis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 1083 Main Street, Walpole, MA 02081, USA.
| |
Collapse
|
37
|
Misra A, Vikram NK. Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indians: evidence and implications. Nutrition 2004; 20:482-91. [PMID: 15105039 DOI: 10.1016/j.nut.2004.01.020] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This review describes prevalence, determinants, and possible pathophysiologic mechanisms and suggests management and research directions for insulin resistance syndrome (metabolic syndrome) in Asian Indians. METHOD We reviewed the topic using the terms Asian Indians, Asians, South Asians, and Indians coupled with the terms insulin resistance, hyperinsulinemia, metabolic syndrome, and obesity from the databases Pubmed (National Library of Medicine, Bethesda, MD, USA) and Current Contents (Institute for Scientific Information, Thomson Scientific, Philadelphia, PA, USA) and from non-indexed publications of the medical research and governmental institutions in India. RESULTS Asian Indians have a high prevalence of insulin resistance syndrome that may underlie their greater than normal tendency to develop diabetes mellitus and early atherosclerosis. Important reasons could be their excess body fat and adverse body fat patterning including abdominal adiposity even when the body mass index is within the currently defined normal limits. Some of these features have been reported at birth and childhood. Whether Asian Indians also have tendency to develop insulin resistance de novo, independent of total or regional adiposity, needs further investigation. Underlying genetic tendency or early-life adverse events may contribute to such a phenotype, but lifestyle factors alone or modulated by inherited factors appear to play an important role because obesity and dyslipidemia become worse with urbanization and migration. Systemic stress may contribute to insulin resistance syndrome in the intra-country and inter-country migrant Asian Indians. CONCLUSIONS High prevalences of excess body fat, adverse body fat patterning, hypertriglyceridemia, and insulin resistance beginning at a young age have been consistently recorded in Asian Indians irrespective of their geographic locations. These data suggest that primary prevention strategies should be initiated early in this ethnic group.
Collapse
Affiliation(s)
- Anoop Misra
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
38
|
Aguilera AA, Díaz GH, Barcelata ML, Guerrero OA, Ros RMO. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 2004; 15:350-7. [PMID: 15157941 DOI: 10.1016/j.jnutbio.2003.12.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 11/18/2003] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
Dietary fish oil rich in (n-3) fatty acids plays an important role in reducing abnormalities associated with the metabolic syndrome and mortality from coronary heart disease. We investigated the effects of dietary fish oil on the metabolic syndrome in a high-sucrose-fed rat model. The model was achieved by the administration of 30% sucrose in drinking water in male Wistar rats during 21 weeks. After the metabolic syndrome rat model was established, fish oil was administered during 6 weeks. The metabolic syndrome rats showed significant increases in body weight, systolic blood pressure, serum insulin, total lipids, triacylglycerols, cholesterol, free fatty acids, LDL, total proteins, albumin, and serum tumor necrosis factor-alpha (TNF-alpha). They also presented abdominal and epididymal fat accumulation and fatty liver. After fish oil diet administration, metabolic syndrome rats had a significant reduction in blood pressure, serum insulin, triacylglycerols, cholesterol, free fatty acids, and total lipids, but no change was observed in TNF-alpha concentration or fat accumulation. In conclusion, fish oil reversed the alterations on metabolic parameters and blood pressure exerted by sucrose administration, although it had no effect on TNF-alpha production and adiposity. This confirms the theory that the molecular etiology of the metabolic syndrome is multifactorial, as is the effect of n-3 polyunsaturated fatty acids (PUFAs) upon it, having complex and multifaceted actions.
Collapse
|
39
|
Das UN. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur J Clin Nutr 2004; 58:195-203. [PMID: 14749737 DOI: 10.1038/sj.ejcn.1601766] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with uncontrolled essential hypertension have elevated concentrations of superoxide anion (O(2)(-*)), hydrogen peroxide (H(2)O(2)), lipid peroxides, endothelin, and transforming growth factor-beta (TGF-beta) with a simultaneous decrease in endothelial nitric oxide (eNO), superoxide dismutase (SOD), vitamin E, and long-chain polyunsaturated fatty acids (LCPUFAs). Physiological concentrations of angiotensin II activate NAD(P)H oxidase and trigger free radical generation (especially that of O(2)(-*)). Normally, angiotensin II-induced oxidative stress is abrogated by adequate production and release of eNO, which quenches O(2)(-*) to restore normotension. Angiotensin II also stimulates the production of endothelin and TGF-beta. TGF-beta enhances NO generation, which in turn suppresses TGF-beta production. Thus, NO has a regulatory role on TGF-beta production and is also a physiological antagonist of endothelin. Antihypertensive drugs suppress the production of O(2)(-*) and TGF-beta and enhance eNO synthesis to bring about their beneficial actions. LCPUFAs suppress angiotensin-converting enzyme (ACE) activity, reduce angiotensin II formation, enhance eNO generation, and suppress TGF-beta expression. Perinatal supplementation of LCPUFAs decreases insulin resistance and prevents the development of hypertension in adult life, whereas deficiency of LCPUFAs in the perinatal period results in raised blood pressure later in life. Patients with essential hypertension have low concentrations of various LCPUFAs in their plasma phospholipid fraction. Based on this, it is proposed that LCPUFAs serve as endogenous regulators of ACE activity, O(2)(-*), eNO generation, and TGF-beta expression. Further, LCPUFAs have actions similar to statins, inhibit (especially omega-3 fatty acids) cyclooxygenase activity and suppress the synthesis of proinflammatory cytokines, and activate the parasympathetic nervous system, all actions that reduce the risk of major vascular events. Hence, it is proposed that availability of adequate amounts of LCPUFAs during the critical periods of growth prevents the development of hypertension in adulthood.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, Norwood, MA 02062, USA.
| |
Collapse
|
40
|
Dooper MMBW, van Riel B, Graus YMF, M'Rabet L. Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity. Immunology 2003; 110:348-57. [PMID: 14632663 PMCID: PMC1783054 DOI: 10.1046/j.1365-2567.2003.01749.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary oils (such as borage oil), which are rich in gamma-linolenic acid (GLA), have been shown to be beneficial under inflammatory conditions. Dihomo-GLA (DGLA) is synthesized directly from GLA and forms a substrate for cyclooxygenase (COX) enzymes, resulting in the synthesis of lipid mediators (eicosanoids). In the present study, the immunomodulatory effects of DGLA were investigated and compared with those of other relevant fatty acids. Freshly isolated human peripheral blood mononuclear cells (PBMC) were cultured in fatty acid (100 microm)-enriched medium for 48 hr. Subsequently, cells were stimulated with lipopolysaccharide (LPS) for 20 hr and the cytokine levels were measured, in supernatants, by enzyme-linked immunosorbent assay (ELISA). Phospholipids were analysed by gas chromatography. Fatty acids were readily taken up, metabolized and incorporated into cellular phospholipids. Compared with the other fatty acids tested, DGLA exerted pronounced modulatory effects on cytokine production. Tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-10 levels were reduced to 60% of control levels, whereas IL-6 levels were not affected by DGLA. Kinetic studies showed that peak levels of TNF-alpha, occurring early after LPS addition, were inhibited strongly, whereas IL-10 levels were not affected until 15 hr after stimulation. Both the reduction of cytokine levels and the decrease in arachidonic acid levels in these cells, induced by DGLA, were dose dependent, suggesting a shift in eicosanoid-subtype synthesis. However, although some DGLA-derived eicosanoids similarly reduced TNF-alpha levels, the effects of DGLA were probably not mediated by COX products, as the addition of indomethacin did not alter the effects of DGLA. In conclusion, these results suggest that DGLA affects cytokine production by human PBMC independently of COX activation.
Collapse
Affiliation(s)
- Maaike M B W Dooper
- Condition and Disease Specific Research Department, Numico Research BV, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Abstract
I investigated whether metabolism of essential fatty acids and the concentrations of their long-chain metabolites (long-chain polyunsaturated fatty acids [LCPUFAs]) are altered in fetal or perinatal growth retardation, maternal hypercholesterolemia, low-grade systemic inflammation, insulin resistance, and atherosclerosis, conditions that predispose to the development of coronary heart disease (CHD).I critically reviewed the literature pertaining to the metabolism of essential fatty acids in CHD and conditions that predispose to it.LCPUFAs enhance endothelial nitric oxide synthesis, suppress the production of the proinflammatory cytokines tumor necrosis factor and interleukin-6, attenuate insulin resistance, and have antiatherosclerotic properties. Low-birthweight infants have decreased concentrations of LCPUFAs, especially arachidonic acid. Neonatal arachidonic acid status is related to intrauterine growth, and LCPUFAs improve fetal and postnatal growth. LCPUFAs are useful in the management of hyperlipidemia, inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and may mediate the beneficial actions of statins. Plasma concentrations of various LCPUFAs are low in diabetes mellitus, hypertension, and CHD and in populations at high risk of CHD. Breast milk is rich in LCPUFAs, and this may explain why and how adequate (6 mo to 1 y) breast feeding protects against the development of obesity, hypertension, insulin resistance, and CHD.LCPUFAs are essential for the growth and development of the fetus and infant. LCPUFAs can prevent various conditions that predispose to the development of CHD. The low incidence of CHD seen in adequately breast-fed infants can be linked to the LCPUFA content of breast milk. Based on this evidence, I suggest that provision of LCPUFAs during critical periods of growth, especially from the second trimester of pregnancy to age 5 y, prevents CHD in adult life.
Collapse
Affiliation(s)
- Undurti N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| |
Collapse
|
42
|
Fernandes G, Lawrence R, Sun D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot Essent Fatty Acids 2003; 68:361-72. [PMID: 12798656 DOI: 10.1016/s0952-3278(03)00060-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well established that bone loss due to estrogen deficiency after menopause is greater in women consuming higher quantities of animal protein than in women consuming vegetable protein, particularly soy protein. Besides the dietary protein source altering bone loss, it has also been postulated recently that the source of a higher n-6/n-3 ratio in dietary oils is implicated in causing osteoporosis. Both animal and human studies have indicated that an increased intake of n-6 fatty acids from vegetable oils elevates prostaglandin E(2) levels as well as pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha. Interestingly, it has been found that lack of estrogen also increases the production of these cytokines by immune cells and thereby activates osteoclasts during the peri-menopausal period. We speculated that the use of n-3 fatty acids and soy protein, which are known to act as anti-inflammatory and down regulate pro-inflammatory cytokines, may also protect against bone loss by decreasing osteoclast activation and bone resorption. Similar to the results of others, our ongoing studies indeed show that the bone loss in ovariectomized mice is significantly attenuated by feeding diets enriched with either fish oil or soy protein when compared to corn oil and casein-fed mice. One of the mechanisms appears to be decreasing the activation of receptor activator of NF-kappaB ligand (RANKL) on T cells, which has been found to increase osteoclast activation along with increasing pro-inflammatory cytokines in OVX mice. Since hormone replacement therapy has been found to cause adverse effects, further both animal and human studies are required with moderate soy protein and fish oil supplements in understanding the mechanisms involved in altering immune function and bone loss during menopause in women and aging in men.
Collapse
Affiliation(s)
- Gabriel Fernandes
- Department of Medicine, Division of Clinical Immunology, Health Science Center at San Antonio, The University of Texas, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
43
|
Suresh Y, Das UN. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids. Nutrition 2003; 19:213-28. [PMID: 12620523 DOI: 10.1016/s0899-9007(02)00855-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a previous study, we showed that prior oral feeding of oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevent the development of alloxan-induced diabetes mellitus in experimental animals. We also observed that 99% pure omega-6 fatty acids gamma-linolenic acid and arachidonic acid protect against chemically induced diabetes mellitus. Here we report the results of our studies with omega-3 fatty acids. Alloxan-induced in vitro cytotoxicity and apoptosis in an insulin-secreting rat insulinoma cell line, RIN, was prevented by prior exposure of these cells to alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Prior oral supplementation with alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid prevented alloxan-induced diabetes mellitus. alpha-Linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid not only attenuated chemical-induced diabetes mellitus but also restored the anti-oxidant status to normal range in various tissues. These results suggested that omega-3 fatty acids can abrogate chemically induced diabetes in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.
Collapse
Affiliation(s)
- Y Suresh
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA
| | | |
Collapse
|
44
|
Suresh Y, Das UN. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of omega-6 fatty acids. Nutrition 2003; 19:93-114. [PMID: 12591540 DOI: 10.1016/s0899-9007(02)00856-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We previously showed that prior oral supplementation of oils rich in omega-3, eicosapentaenoic acid and docosahexaenoic acid, and omega-6, gamma-linolenic acid and arachidonic acid, can prevent the development of alloxan-induced diabetes mellitus in experimental animals. But the effect of individual fatty acids on chemically induced diabetes mellitus is not known. We report the results of our studies with omega-6 fatty acids. METHODS Alloxan-induced in vitro cytotoxicity and apoptosis in an insulin-secreting rat insulinoma cell line, RIN, was prevented by prior exposure of these cells to linoleic acid, gamma-linolenic acid, and arachidonic acid (AA) but not to dihomo-gamma-linolenic acid. Cyclo-oxygenase and lipoxygenase inhibitors did not block this protective action of AA. Prior oral supplementation with gamma-linolenic acid and pre- and simultaneous treatments with AA prevented alloxan-induced diabetes mellitus. RESULTS Even though pretreatment with linoleic acid and dihomo-gamma-linolenic acid and simultaneous treatment with linoleic acid, gamma-linolenic acid, and dihomo-gamma-linolenic acid did not prevent the development of diabetes mellitus, the severity of diabetes was much less. The saturated fatty acid stearic acid and the monounsaturated fatty acid oleic acid were ineffective in preventing alloxan-induced diabetes mellitus. gamma-Linolenic acid and AA not only attenuated chemically induced diabetes mellitus but also restored the antioxidant status to normal range in various tissues. Changes in the concentrations of various fatty acids of the phospholipid fraction of plasma that occurred as a result of alloxan-induced diabetes mellitus also reverted to normal in the AA-treated animals. CONCLUSIONS These results suggest that polyunsaturated fatty acids can prevent chemically induced diabetes in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.
Collapse
MESH Headings
- Alloxan/administration & dosage
- Animals
- Antioxidants/metabolism
- Antioxidants/therapeutic use
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/prevention & control
- Enzymes/drug effects
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/blood
- Fatty Acids, Omega-6/therapeutic use
- Fatty Acids, Unsaturated/administration & dosage
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/therapeutic use
- In Vitro Techniques
- Insulinoma/pathology
- Lipids/blood
- Male
- Pancreas/metabolism
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Y Suresh
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA
| | | |
Collapse
|
45
|
Das UN. Can perinatal supplementation of long-chain polyunsaturated fatty acids prevent diabetes mellitus? Eur J Clin Nutr 2003; 57:218-26. [PMID: 12571652 DOI: 10.1038/sj.ejcn.1601535] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 05/17/2002] [Accepted: 05/22/2002] [Indexed: 11/09/2022]
Abstract
It is suggested that the negative correlation between breast-feeding and insulin resistance and diabetes mellitus can be related to the presence of significant amounts of long-chain polyunsaturated fatty acids in the human breast milk. Based on this, it is proposed that provision of adequate amounts of long chain polyunsaturated fatty acids during the critical periods of brain growth and development can prevent or postpone the development diabetes mellitus.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| |
Collapse
|
46
|
|
47
|
Abstract
I investigated whether there is a common link between essential fatty acids and probiotics, which have similar actions and benefits in atopy.I made a critical review of the literature pertaining to the actions of essential fatty acids and probiotics on immune response and the interaction between them with particular reference to atopy.Colonization of the human gastrointestinal tract occurs in the first months and years of life. Probiotics are cultures of beneficial bacteria of healthy gut microflora, which reduce dietary antigen load and thus protect against atopy. A significant reduction in the risk of childhood asthma and other atopic conditions was reported in children who were exclusively breast-fed for at least 4 mo after birth. This beneficial action can be attributed to the immunomodulatory, nutritional, or other components of human milk Human breast milk is rich in long-chain polyunsaturated fatty acids (LCPUFAs), which have immunomodulatory actions. Probiotics and LCPUFAs modulate T-helper 1 and 2 responses, show antibioticlike actions, and alleviate changes related to allergic inflammation. LCPUFAs promote the adhesion of probiotics to mucosal surfaces, which augments the health-promoting effects of probiotics. In view of the similarity in their actions and because LCPUFAs promote the actions of probiotics, I believe that a combination of LCPUFAs and probiotics offer significant protection against atopy. It is likely that breast-feeding and probiotics are two naturally occurring, appropriate events in early human life that have significant health benefits.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| |
Collapse
|
48
|
Affiliation(s)
- U N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| |
Collapse
|
49
|
Abstract
I propose that type 2 diabetes mellitus is due to damage to neurons in the ventromedial hypothalamus or to a defect in the action or properties of insulin or insulin receptors in the brain. These neuronal abnormalities are probably secondary to a marginal deficiency of long-chain polyunsaturated fatty acids during the critical periods of brain growth and development. Hence, supplementation of adequate amounts of long-chain polyunsaturated fatty acids during the third trimester of pregnancy to 2 y postterm can prevent or postpone the development of diabetes mellitus.
Collapse
Affiliation(s)
- Undurti N Das
- EFA Sciences LLC, 1420 Providence Highway, Norwood, MA 02062, USA.
| |
Collapse
|
50
|
Abstract
Breast-fed infants showed decreased incidence of obesity, hypertension, diabetes mellitus, and coronary heart disease in later life and higher cognitive function. Breast milk is rich in long-chain polyunsaturated fatty acids (LCPUFAs) and brain preferentially accumulates LCPUFAs during the last trimester of pregnancy and the first few months of life. Breast-fed infants showed significantly lower plasma glucose levels and higher percentage of docosahexaenoic acid and total percentages of LCPUFAs in their skeletal muscle biopsies compared with formula fed. LCPUFAs suppress the production of pro-inflammatory cytokines, regulate the function of several neurotransmitters, enhance the number of insulin receptors in the brain and other tissues, and decrease insulin resistance. LCPUFAs may enhance the production of bone morphogenetic proteins (BMPs), which participate in neurogenesis. It is proposed that the beneficial effects of breast feeding in later life can be attributed to its rich LCPUFA content. It is likely that inadequate breast feeding results in marginal deficiency of LCPUFAs during the critical stages of development, which can lead to insulin resistance. Hence, promoting prolonged breast feeding and/or supplementing LCPUFAs during the critical stages of development may be beneficial in preventing insulin resistance.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, 1420 Providence Highway, Norwood, MA 02062, USA.
| |
Collapse
|