1
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Santinelli L, Statzu M, Pierangeli A, Frasca F, Bressan A, Pinacchio C, Nonne C, Turriziani O, Antonelli G, d'Ettorre G, Scagnolari C. Increased expression of IL-32 correlates with IFN-γ, Th1 and Tc1 in virologically suppressed HIV-1-infected patients. Cytokine 2019; 120:273-281. [PMID: 30910260 DOI: 10.1016/j.cyto.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
Following recent attention focused on IL-32 as an important component involved in the inflammatory cytokine network, we speculated that IL-32's action on IFN-γ and IFN-γ secreting T cell subsets may help sustain the immune activation and dysregulation found in patients with HIV-1 achieving viral suppression. To explore this hypothesis, transcript levels of IL-32 and IFN-γ were evaluated in PBMC from 139 virologically suppressed HIV-1-infected patients and from 63 healthy individuals by Real Time RT-PCR assays. IL-32 and IFN-γ mRNA levels were also analyzed in CD4+ T cells, CD14+ monocytes and lamina propria lymphocytes (LPL) of the gut district in a subgroup of HIV-1-infected subjects. IFN-γ secreting CD4+ (Th1) and CD8+ (Tc1) T cell subset frequencies were evaluated in LPL by multiparametric flow cytometry. Gene expression results revealed that IL-32 and IFN-γ levels in PBMC from HIV-1-positive patients were significantly elevated compared to those from healthy donors, correlated with each other and increased with patient age. Both IL-32 and IFN-γ genes were also more strongly expressed in CD4+ T cells than in CD14+ monocytes. By contrast, IL-32 levels in LPL were comparable to those measured in PBMC, while IFN-γ levels were higher in PBMC than those in LPL. Negative correlations were found between IL-32 levels and the frequencies of Th1 and Tc1 subsets in gut mucosa. Collectively, our results provide the first evidence that IL-32 levels remain elevated in treated HIV-1-infected patients and correlate with IFN-γ, Th1 and Tc1 subsets.
Collapse
Affiliation(s)
- Letizia Santinelli
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Maura Statzu
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Alessia Bressan
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; Microbiology and Virology Unit, Sapienza University Hospital, Rome, Italy.
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Chiara Nonne
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; Microbiology and Virology Unit, Sapienza University Hospital, Rome, Italy.
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Guha D, Wagner MCE, Ayyavoo V. Human immunodeficiency virus type 1 (HIV-1)-mediated neuroinflammation dysregulates neurogranin and induces synaptodendritic injury. J Neuroinflammation 2018; 15:126. [PMID: 29703241 PMCID: PMC5923011 DOI: 10.1186/s12974-018-1160-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorder (HAND) is a common outcome of a majority of HIV-1-infected subjects and is associated with synaptodendritic damage. Neurogranin (Ng), a postsynaptic protein, and calmodulin (CaM) are two important players of synaptic integrity/functions. The biological role of Ng in the context of HAND is unknown. Methods We compared the expression of Ng in frontal cortex (FC) tissues from control and HIV-1-positive subjects with and without HAND by immunohistochemistry, western blot, and qRT-PCR. The interaction between Ng and CaM was analyzed by co-immunoprecipitation. Ng, microtubule-associated protein 2 (MAP2), CaM, CaM-dependent protein kinase II (CaMKII), CREB, synaptophysin (Syp), and synapsin I (Syn I) expressions were evaluated by western blot using FC tissue lysates and differentiated SH-SY5Y (dSH-SY5Y) cells. Identification of inflammatory factors related to Ng loss was accomplished by exposing dSH-SY5Y cells to HIV-1 and mock-infected monocyte-derived macrophage (MDM) supernatants or HIV-1 NLYU2 pseudotyped with VSV-G-Env. Levels of interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, MCP-2, and CXCL5 in MDM supernatants were measured by ELISA. Association of IL-1β and IL-8 to Ng expression in context of HIV-1 infection was evaluated in the presence or absence of neutralizing antibodies against these cytokines. Results Expression level of Ng was reduced significantly in FC of HAND-positive (HAND+) patients compared to uninfected individuals. Although no difference was found in CaM expression, interaction between Ng and CaM was reduced in HAND+ patients, which was associated with decreased level of CaMKII, a downstream signaling molecule of CaM pathway. This in turn resulted in reduction of synaptic markers, Syp and Syn I. HIV-1 infection directly had no considerable effect on dysregulation of Ng expression in dSH-SY5Y cells, whereas high amount of pro-inflammatory IL-1β and IL-8 in HIV-1-infected MDM supernatants was associated with significant reduction in Ng expression. Conclusions Synaptic damage in HAND+ patients could be a result of abrogation of Ng through HIV-1-induced inflammation that dysregulates Ng-CaM interaction and downstream signaling cascades associated with synaptodendritic functions. This is the first study evaluating the potential role of Ng in the context of HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
5
|
Ocon AJ, Bhatt BD, Miller C, Peredo RA. Safe usage of anakinra and dexamethasone to treat refractory hemophagocytic lymphohistiocytosis secondary to acute disseminated histoplasmosis in a patient with HIV/AIDS. BMJ Case Rep 2017; 2017:bcr-2017-221264. [PMID: 28978596 DOI: 10.1136/bcr-2017-221264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a serious life-threatening disease if not recognised early. In patients with HIV/AIDS, this association has been reported following acute opportunistic infections, including histoplasmosis. However, optimal treatment is not known. We describe a male aged 46 years with AIDS who developed HLH following acute disseminated histoplasmosis. Presenting symptoms included fever, hepatosplenomegaly and pancytopenia. Bone marrow biopsy confirmed HLH. Initially, he was refractory to the treatment with amphotericin B, antiretroviral therapy and intravenous immunoglobulin (IVIG). Anakinra, an interleukin-1 receptor antagonist, and dexamethasone were initiated. He improved clinically, did not exhibit any harmful effects and ultimately was discharged from the hospital. This, we believe, is the first reported treatment of HLH with anakinra in a patient with AIDS and acute disseminated histoplasmosis.
Collapse
Affiliation(s)
- Anthony J Ocon
- Division of Rheumatology, Department of Medicine, Albany Medical Center, Albany, New York, USA
| | - Birju D Bhatt
- Division of Rheumatology, Department of Medicine, Albany Medical Center, Albany, New York, USA
| | - Cynthia Miller
- Division of Infectious Disease, Department of Medicine, Albany Medical Center, Albany, New York, USA
| | - Ruben A Peredo
- Department of Internal Medicine, Albany Medical Center, Albany, New York, USA
| |
Collapse
|
6
|
Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017; 91:JVI.01983-16. [PMID: 28122986 PMCID: PMC5375689 DOI: 10.1128/jvi.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse model that recapitulates characteristics of the brain infection described in human infants, we have shown that TNF-α plays a key role in brain inflammation, including recruitment of inflammatory mononuclear cells. Neutralization of TNF-α normalized neurodevelopmental abnormalities in infected mice, providing evidence that virus-induced inflammation is a major component of disease in the developing brain. These results suggest that interventions limiting inflammation associated with the infection could potentially improve the neurologic outcome of infants infected in utero with HCMV.
Collapse
|
7
|
Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers. Mediators Inflamm 2016; 2016:9026573. [PMID: 27019552 PMCID: PMC4785279 DOI: 10.1155/2016/9026573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14), beta-2 microglobulin (β2M), CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1). Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P < 0.01–P < 0.0001). The effects of antiretroviral therapy (ART) and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group.
Collapse
|
8
|
HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity. PLoS One 2015; 10:e0130189. [PMID: 26066624 PMCID: PMC4465743 DOI: 10.1371/journal.pone.0130189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/17/2015] [Indexed: 12/21/2022] Open
Abstract
Background The potential role of the human immunodeficiency virus-1 (HIV-1) accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines) and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef) treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3), thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT)-1, STAT-2 and STAT-3 through the production of proinflammatory factors. Methodology/Principal Findings We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS) with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ) release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells. Conclusions These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.
Collapse
|
9
|
Chronic Pain Syndromes, Mechanisms, and Current Treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:565-611. [DOI: 10.1016/bs.pmbts.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Vance DE, Randazza J, Fogger S, Slater LZ, Humphrey SC, Keltner NL. An overview of the biological and psychosocial context surrounding neurocognition in HIV. J Am Psychiatr Nurses Assoc 2014; 20:117-24. [PMID: 24717830 DOI: 10.1177/1078390314527549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of a psychiatric illness increases the risk of exposure to HIV and disease complications; however, effective treatments have substantially reduced mortality in adults with HIV. Despite such effective treatments, nearly half of adults with HIV experience neurocognitive deficits that can affect job-related and everyday tasks, thus reducing their quality of life. This article provides an overview of the context in which neurocognitive deficits occur in adults with HIV; it also includes implications for treatment and mitigation of such neurocognitive deficits. Understanding the underlying neurocognitive changes related to HIV can help psychiatric nurses provide better care to patients that may improve medication compliance and everyday functioning.
Collapse
Affiliation(s)
- David E Vance
- David E. Vance, PhD, MGS, The University of Alabama School of Nursing, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
11
|
Levine AJ, Horvath S, Miller EN, Singer EJ, Shapshak P, Baldwin GC, Martínez-Maza O, Witt MD, Langfelder P. Transcriptome analysis of HIV-infected peripheral blood monocytes: gene transcripts and networks associated with neurocognitive functioning. J Neuroimmunol 2013; 265:96-105. [PMID: 24094461 DOI: 10.1016/j.jneuroim.2013.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/15/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Immunologic dysfunction, mediated via monocyte activity, has been implicated in the development of HIV-associated neurocognitive disorder (HAND). We hypothesized that transcriptome changes in peripheral blood monocytes relate to neurocognitive functioning in HIV+ individuals, and that such alterations could be useful as biomarkers of worsening HAND. METHODS mRNA was isolated from the monocytes of 86 HIV+ adults and analyzed with the Illumina HT-12 v4 Expression BeadChip. Neurocognitive functioning, HAND diagnosis, and other clinical and virologic variables were determined. Data were analyzed using standard expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS Neurocognitive functioning was correlated with multiple gene transcripts in the standard expression analysis. WGCNA identified two nominally significant co-expression modules associated with neurocognitive functioning, which were enriched with genes involved in mitotic processes and translational elongation. CONCLUSIONS Multiple modified gene transcripts involved in inflammation, cytoprotection, and neurodegeneration were correlated with neurocognitive functioning. The associations were not strong enough to justify their use as biomarkers of HAND; however, the associations of two co-expression modules with neurocognitive functioning warrant further exploration.
Collapse
Affiliation(s)
- Andrew J Levine
- Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine, University of California, Los Angeles, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McArthur J, Smith B. Neurologic Complications and Considerations in HIV-Infected Persons. Curr Infect Dis Rep 2013; 15:61-6. [PMID: 23307491 DOI: 10.1007/s11908-012-0312-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurologic complications for HIV-infected persons retain significant prevalence despite an increasingly global use of antiretroviral therapies. Such complications are often ascribed to advanced immunosuppression; however, the most common neurologic problems for HIV-infected persons, distal sensory polyneuropathy and HIV-associated neurocognitive disorders, affect a significant proportion of patients who have successfully achieved immunologic restoration with normal or near-normal CD4 count levels and undetectable HIV RNA in the periphery. Understanding specific considerations for HIV-associated complications, including the epidemiology, risk factors, medication-adverse effects, and benefits of appropriate management, is vital for all providers caring for those with HIV. This review will describe such considerations, as well as providing a more detailed review of the most common neurologic complications of HIV infection, and will highlight some of the challenges involved with diagnosis, management, and long-term effects.
Collapse
Affiliation(s)
- Justin McArthur
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe St, Meyer 6113, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
13
|
Cao L, Butler MB, Tan L, Draleau KS, Koh WY. Murine immunodeficiency virus-induced peripheral neuropathy and the associated cytokine responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:3724-33. [PMID: 22956581 DOI: 10.4049/jimmunol.1201313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Distal symmetrical polyneuropathy is the most common form of HIV infection-associated peripheral neuropathy and is often associated with pain. C57BL/6 (B6) mice infected with LP-BM5, a murine retroviral isolate, develop a severe immunodeficiency syndrome similar to that in humans infected with HIV-1, hence the term murine AIDS. We investigated the induction of peripheral neuropathy after LP-BM5 infection in B6 mice. Infected B6 mice, like HIV-infected humans, exhibited behavioral (increased sensitivity to mechanical and heat stimuli) and pathological (transient loss of intraepidermal nerve fibers) signs of peripheral neuropathy. The levels of viral gag RNA were significantly increased in all tissues tested, including spleen, paw skin, lumbar dorsal root ganglia, and lumbar spinal cord, postinfection (p.i.). Correlated with the development of peripheral neuropathy, the tissue levels of several cytokines, including IFN-γ, IL-1β, IL-6, and IL-12, were significantly elevated p.i. These increases had cytokine-specific and tissue-specific profiles and kinetics. Further, treatment with the antiretroviral agent zidovudine either significantly reduced or completely reversed the aforementioned behavioral, pathologic, and cytokine changes p.i. These data suggest that LP-BM5 infection is a potential mouse model of HIV-associated distal symmetrical polyneuropathy that can be used for investigating the roles of various cytokines in infection-induced neuropathic pain. Further investigation of this model could give a better understanding of, and lead to more effective treatments for, HIV infection-associated painful peripheral neuropathy.
Collapse
Affiliation(s)
- Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | | | | | | | | |
Collapse
|
14
|
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012; 46:614-38. [PMID: 22899188 PMCID: PMC3496540 DOI: 10.1007/s12035-012-8320-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Verma AS, Singh UP, Dwivedi PD, Singh A. Contribution of CNS cells in NeuroAIDS. J Pharm Bioallied Sci 2011; 2:300-6. [PMID: 21180461 PMCID: PMC2996080 DOI: 10.4103/0975-7406.72129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/15/2010] [Accepted: 08/12/2010] [Indexed: 11/28/2022] Open
Abstract
NeuroAIDS is becoming a major health problem among AIDS patients and long-term HIV survivors. As per 2009 estimates of UNAIDS report, more than 34 million people have been infected with HIV out of which ≥ 50% show signs and symptoms of neuropsychiatric disorders. These disorders affect central nervous system (CNS) and peripheral nervous systems (PNS). CNS is one of the most protected organ systems in body which is protected by blood-brain barrier (BBB). Not only this, most of the cells of CNS are negative for receptors and co-receptors for HIV infections. Neurons have been found to be completely nonpermissive for HIV infection. These facts suggest that neurotoxicity could be an indirect mechanism responsible for neuropsychiatric complications. In this review, we will discuss the importance of different cell types of CNS and their contribution toward neurotoxicity.
Collapse
Affiliation(s)
- Ashish Swarup Verma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector -125, Noida (UP) - 201 303, India
| | | | | | | |
Collapse
|
16
|
Cedeno-Laurent F, Gómez-Flores M, Mendez N, Ancer-Rodríguez J, Bryant JL, Gaspari AA, Trujillo JR. New insights into HIV-1-primary skin disorders. J Int AIDS Soc 2011; 14:5. [PMID: 21261982 PMCID: PMC3037296 DOI: 10.1186/1758-2652-14-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/24/2011] [Indexed: 11/23/2022] Open
Abstract
Since the first reports of AIDS, skin involvement has become a burdensome stigma for seropositive patients and a challenging task for dermatologist and infectious disease specialists due to the severe and recalcitrant nature of the conditions. Dermatologic manifestations in AIDS patients act as markers of disease progression, a fact that enhances the importance of understanding their pathogenesis. Broadly, cutaneous disorders associated with HIV type-1 infection can be classified as primary and secondary. While the pathogenesis of secondary complications, such as opportunistic infections and skin tumours, is directly correlated with a decline in the CD4+ T cell count, the origin of the certain manifestations primarily associated with the retroviral infection itself still remains under investigation. The focus of this review is to highlight the immunological phenomena that occur in the skin of HIV-1-seropositive patients, which ultimately lead to skin disorders, such as seborrhoeic dermatitis, atopic dermatitis, psoriasis and eosinophilic folliculitis. Furthermore, we compile the latest data on how shifts in the cytokines milieu, impairments of the innate immune compartment, reactions to xenobiotics and autoimmunity are causative agents in HIV-1-driven skin diseases. Additionally, we provide a thorough analysis of the small animal models currently used to study HIV-1-associated skin complications, centering on transgenic rodent models, which unfortunately, have not been able to fully unveil the role of HIV-1 genes in the pathogenesis of their primarily associated dermatological manifestations.
Collapse
|
17
|
Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, Barbour JD, Lowe MM, Jayawardene A, Aweeka F, Huang Y, Douek DC, Brenchley JM, Martin JN, Hecht FM, Deeks SG, McCune JM. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2010; 2:32ra36. [PMID: 20484731 DOI: 10.1126/scitranslmed.3000632] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human and simian immunodeficiency viruses is characterized by CD4(+) T cell depletion and chronic T cell activation, leading ultimately to AIDS. CD4(+) T helper (T(H)) cells provide protective immunity and immune regulation through different immune cell functional subsets, including T(H)1, T(H)2, T regulatory (T(reg)), and interleukin-17 (IL-17)-secreting T(H)17 cells. Because IL-17 can enhance host defenses against microbial agents, thus maintaining the integrity of the mucosal barrier, loss of T(H)17 cells may foster microbial translocation and sustained inflammation. Here, we study HIV-seropositive subjects and find that progressive disease is associated with the loss of T(H)17 cells and a reciprocal increase in the fraction of the immunosuppressive T(reg) cells both in peripheral blood and in rectosigmoid biopsies. The loss of T(H)17/T(reg) balance is associated with induction of indoleamine 2,3-dioxygenase 1 (IDO1) by myeloid antigen-presenting dendritic cells and with increased plasma concentration of microbial products. In vitro, the loss of T(H)17/T(reg) balance is mediated directly by the proximal tryptophan catabolite from IDO metabolism, 3-hydroxyanthranilic acid. We postulate that induction of IDO may represent a critical initiating event that results in inversion of the T(H)17/T(reg) balance and in the consequent maintenance of a chronic inflammatory state in progressive HIV disease.
Collapse
Affiliation(s)
- David Favre
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Schlautman JD, Ciborowski P, Volsky DJ, Gendelman HE. HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol 2008; 3:173-86. [PMID: 18587649 PMCID: PMC2579774 DOI: 10.1007/s11481-008-9110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/07/2008] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia), astrocytes also can be infected, at low and variable frequency, particularly in patients with encephalitis. Among their many functions, astrocytes network with microglia to provide the first line of defense against microbial infection; however, very little is known about astrocytes' consequences on MP. Here, we addressed this question using co-culture systems of HIV-infected mouse astrocytes and microglia. Pseudotyped vesicular stomatis virus/HIV was used to circumvent the absence of viral receptors and ensure cell genotypic uniformity for studies of intercellular communication. The study demonstrated that infected astrocytes show modest changes in protein elements compared to uninfected cells. In contrast, infected astrocytes induce robust changes in the proteome of HIV-1-infected microglia. Accelerated cell death and redox proteins, among others, were produced in abundance. The observations confirmed the potential of astrocytes to influence the neuropathogenesis of HIV-1 infection by specifically altering the neurotoxic potential of infected microglia and regulating viral maturation.
Collapse
Affiliation(s)
- Tong Wang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong, China 510630
| | - Nan Gong
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Stephanie D Kraft-Terry
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Joshua D Schlautman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - David J Volsky
- Molecular Virology Division, Columbia University Medical Center, New York, NY 10063
| | - Howard E Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
19
|
Dhillon NK, Williams R, Callen S, Zien C, Narayan O, Buch S. Roles of MCP-1 in development of HIV-dementia. FRONT BIOSCI-LANDMRK 2008; 13:3913-8. [PMID: 18508485 DOI: 10.2741/2979] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The encephalopathy caused by HIV, known clinically as HIV-associated dementia (HAD) and pathologically as HIV encephalitis (HIVE), results from intense infiltration of mononuclear cells, productive replication of the virus in monocyte-derived macrophages/microglia, abortive replication in astrocytes and activation of macrophages/microglia and astrocytes leading to neuronal degeneration in the brains of infected persons. Recent findings have suggested that development of HAD is based more on the activation process than on direct evidence of virus replication in the brain. Since HAD is based on the encephalitic process, major studies have been directed to the mechanisms regulating the inflammatory process. Monocyte chemoattractant protein 1, MCP-1, is a chemokine that is implicated in this process and also in the development of activation in the brain. In this review, we have attempted to identify mechanisms that induce expression of MCP-1 in the brain and the role that it plays in recruitment of mononuclear cells from blood to brain and in the activation processes of inflammatory and neural cells that lead to development of degenerative changes in the neuronal population.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Molecular and Integrative Physiology Department, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
20
|
Pulido JE, Pulido JS, Erie JC, Arroyo J, Bertram K, Lu MJ, Shippy SA. A role for excitatory amino acids in diabetic eye disease. EXPERIMENTAL DIABETES RESEARCH 2008; 2007:36150. [PMID: 17713594 PMCID: PMC1940058 DOI: 10.1155/2007/36150] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/19/2007] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina.
Collapse
Affiliation(s)
- Jose E. Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jose S. Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jay C. Erie
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jorge Arroyo
- Division of Ophthalmology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kurt Bertram
- Division of Ophthalmology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Miao-Jen Lu
- Department of Chemistry, The University of Illinois
at Chicago, Chicago, IL 60607, USA
| | - Scott A. Shippy
- Department of Chemistry, The University of Illinois
at Chicago, Chicago, IL 60607, USA
- *Scott A. Shippy:
| |
Collapse
|
21
|
Jayadev S, Yun B, Nguyen H, Yokoo H, Morrison RS, Garden GA. The glial response to CNS HIV infection includes p53 activation and increased expression of p53 target genes. J Neuroimmune Pharmacol 2007; 2:359-70. [PMID: 18040854 DOI: 10.1007/s11481-007-9095-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/26/2007] [Indexed: 01/02/2023]
Abstract
HIV-associated dementia (HAD) is a chronic neuroinflammatory disease that remains an important clinical problem without available rational treatment. As HIV does not infect neurons, the pathogenesis of HAD is thought to be secondary to the impact of infected leukocytes, including parenchymal microglia, which can secrete inflammatory mediators and viral products that alter the function of surrounding uninfected cells. We previously reported that the transcription factor p53 accumulates in neurons, microglia, and astrocytes of HAD patients. We have also shown that microglia from p53-deficient mice fail to induce neurotoxicity in response to the HIV coat protein gp120 in a coculture system, supporting the hypothesis that p53 plays a pathogenic role in the chronic neuroinflammatory component of HIV-associated neurodegeneration. We analyzed the extent and cell type specificity of p53 accumulation in subcortical white matter of ten AIDS patients that had previously been shown to demonstrate white matter p53 accumulation. To determine if p53 activation functioned to alter gene expression in HAD, cortical tissue sections were also immunolabeled for the p53 target genes Bax and p21(WAF1). These studies reveal that microglia, astrocytes, and oligodendrocytes all demonstrate p53 activation in response to HIV infection. We observed immunoreactivity for both Bax and p21(WAF1) in neurons and glia from patients demonstrating elevated p53 immunoreactivity. Our findings demonstrate that widespread increased p53 expression is present in HAD. Activation of p53 mediated pathways in the glia of HAD patients may contribute to the neuroinflammatory processes that promote neurodegeneration by inhibiting glial proliferation and/or promoting glial cell dysfunction.
Collapse
Affiliation(s)
- Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dou H, Morehead J, Bradley J, Gorantla S, Ellison B, Kingsley J, Smith LM, Chao W, Bentsman G, Volsky DJ, Gendelman HE. Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain. Glia 2006; 54:81-93. [PMID: 16705672 DOI: 10.1002/glia.20358] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The balance between astrocyte and microglia neuroprotection and neurotoxicity defines the tempo of neuronal dysfunction during HIV-1-associated dementia (HAD). Astrocytes maintain brain homeostasis and respond actively to brain damage by providing functional and nutritive neuronal support. In HAD, low-level, continuous infection of astrocytes occurs, but the functional consequences of this infection are poorly understood. To this end, human fetal astrocytes (HFA) and monocyte-derived macrophages (MDM) were infected with HIV-1DJV and HIV-1NL4-3 (neurotropic and lymphotropic strains respectively) and a pseudotyped Vesicular Stomatitis Virus (VSV/HIV-1NL4-3) prior to intracranial injection into the basal ganglia of severe combined immunodeficient mice. Neuropathological and immunohistochemical comparisons for inflammatory and neurotoxic activities were performed amongst the infected cell types at 7 or 14 days. HIV-1-infected MDM induced significant increases in Mac-1, glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1, and proinflammatory cytokine RNA and/or protein expression when compared with HSV/HIV-1- and HIV-1-infected HFA and sham-operated mice. Levels of neuron-specific nuclear protein, microtubule-associated protein 2, and neurofilament antigens were reduced significantly in the brain regions injected with human MDM infected with HIV-1DJV or VSV/HIV-1. We conclude that HIV-1 infection of astrocytes leads to limited neurodegeneration, underscoring the early and active role of macrophage-driven neurotoxicity in disease.
Collapse
Affiliation(s)
- Huanyu Dou
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shapshak P, Stewart RV, Rodriguez de la Vega P, Dominguez B, Fujimura R, Segal DM, Sun NCJ, Delgado S, Petito C. Brain macrophage surface marker expression with HIV-1 infection and drug abuse: a preliminary study. ACTA ACUST UNITED AC 2006; 2:37-50. [PMID: 16873198 DOI: 10.1300/j128v02n03_03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GOAL To determine the heterogeneity of surface marker expression of macrophages in the temporal lobe of patients who died with AIDS who were also Drug Abusers (DAs). We studied the expression of macrophage surface markers CD11c, CD14, CD68, and HLA-DR and T cell surface markers CD4, and CD8. BACKGROUND The macrophage is the prime locus for HIV-1-associated pathology, is the most frequently infected cell in the brain, and has the highest virus load compared to other cells. We previously described the heterogeneity of macrophage surface marker expression and performed morphometric analysis in peripheral nerves of patients who died from AIDS compared to HIV-1 negative individuals. We showed that the HIV-related neuropathy in AIDS is a multifocal process. It is similarly important to determine the expression of macrophage surface markers in brain. Temporal lobe tissue was selected for this preliminary study because we previously found elevated HIV-1 proviral DNA load and inflammatory processes in this neuroanatomic location for subjects who died with AIDS. There is a high prevalence of Drug Abuse in Miami, Florida, associated with AIDS that may interactively affect HIV-associated pathology. METHODS Temporal lobe tissue was examined from 17 HIV-1-seropositive patients (4 with Drug Abuse and 13 without Drug Abuse) and 11 HIV-seronegative individuals (5 with Drug Abuse and 6 without Drug Abuse). Standard immunohistochemistry utilized alkaline phosphatase conjugate secondary antibody and fuchsin substrate. RESULTS We found that HIV-1 infection and the interaction of HIV-1 infection and Drug Abuse produced changes in macrophage surface marker expression. Macrophage surface markers, CD11c, CD14, CD68, and HLA-DR, and T-cell marker CD4 were increased with statistical significance due to HIV-1 infection (all p < .001) whereas CD8 remained unchanged. Changes due to Drug Abuse alone were not significant. Interaction of Drug Abuse and HIV-infected individuals showed increased expression of CD68 (p = .011), HLA-DR (p = .001), CD4 (p = .027), and CD8 (p = .016). CONCLUSION Drug Abuse and HIV-1 infection are factors that differentially and interactively result in multiple macrophages surface marker effects. In HIV-1 infected individuals, Drug Abuse stimulates surface marker expression. Since brain macrophage surface makers do not change uniformly as a result of Drug Abuse and HIV infection, these cells may be heterogeneous and contain sub-types (sub-sets). It remains to be determined which macrophage sub-types may be most pathognomic for pathology.
Collapse
Affiliation(s)
- Paul Shapshak
- Department of Psychiatry and Behavioral Sciences, Comprehensive Drug Research Center, University of Miami School of Medicine, FL 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Many viruses cause encephalitis, but understanding the mechanisms by which viral infection leads to encephalopathy or dementia remain elusive. In many cases, inflammation generated by the host's attempt to combat the infection is itself implicated as a primary factor in causing neuronal dysfunction or degeneration. In this review, we outline the current state of knowledge regarding the pathophysiology of CNS (central nervous system) injury in viral infection. We focus our review on the neuropathogenesis of HIV type 1 (HIV-1)-associated dementia, because, within this class of infection, it is the best studied. We will also discuss the key similarities and differences in the pathological mechanisms of other important viral encephalitides. Understanding these mechanisms should ultimately enable development of immunomodulatory therapies for treating these infections, as well as other neuro-inflammatory conditions.
Collapse
Affiliation(s)
- Tongguang Wang
- Department of Neurology, Johns Hopkins University, 600 N. Wolfe St, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
26
|
Abstract
Many illnesses that affect the peripheral nervous system (PNS) lead to distal axonal degeneration rather than loss of neuronal cell bodies. Strategies aimed at promoting survival of injured neurons (i.e., preventing cell death) may not be applicable to many PNS illnesses. We have developed in vitro and in vivo animal models to study mechanisms of acquired peripheral neuropathies and used these models to evaluate the therapeutic potential of novel compounds. In recent years, erythropoietin (EPO) has been recognized as a novel neuroprotectant in the central nervous system. In the PNS, we recently showed that Schwann cell-derived EPO acts as an endogenous neuroprotectant and that it is most effective in preventing distal axonal degeneration seen in models of peripheral neuropathy. Similarly, we showed that immunophilin ligands are also neuroprotective in the PNS and prevent axonal degeneration seen in models of peripheral neuropathies. Both EPO and non-immunosuppressive immunophilin ligands are in early clinical development for the treatment of acquired peripheral neuropathies.
Collapse
Affiliation(s)
- Ahmet Höke
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Path 509, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
27
|
Ghafouri M, Amini S, Khalili K, Sawaya BE. HIV-1 associated dementia: symptoms and causes. Retrovirology 2006; 3:28. [PMID: 16712719 PMCID: PMC1513597 DOI: 10.1186/1742-4690-3-28] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022] Open
Abstract
Despite the use of highly active antiretroviral therapy (HAART), neuronal cell death remains a problem that is frequently found in the brains of HIV-1-infected patients. HAART has successfully prevented many of the former end-stage complications of AIDS, however, with increased survival times, the prevalence of minor HIV-1 associated cognitive impairment appears to be rising among AIDS patients. Further, HIV-1 associated dementia (HAD) is still prevalent in treated patients as well as attenuated forms of HAD and CNS opportunistic disorders. HIV-associated cognitive impairment correlates with the increased presence in the CNS of activated, though not necessarily HIV-1-infected, microglia and CNS macrophages. This suggests that indirect mechanisms of neuronal injury and loss/death occur in HIV/AIDS as a basis for dementia since neurons are not themselves productively infected by HIV-1. In this review, we discussed the symptoms and causes leading to HAD. Outcome from this review will provide new information regarding mechanisms of neuronal loss in AIDS patients.
Collapse
Affiliation(s)
- Mohammad Ghafouri
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| |
Collapse
|
28
|
Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP. Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 2006; 8:25-50. [PMID: 16260384 DOI: 10.1007/bf03033818] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain mononuclear phagocytes (MP, bone marrow monocyte-derived macrophages, perivascular macrophages, and microglia) function to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses. MP are activated by a variety of environmental cues and such inflammatory responses elicit cell injury and death in the nervous system. MP immunoregulatory responses include secretion of neurotoxic factors, mobilization of adaptive immunity, and cell chemotaxis. This incites tissue remodelling and blood-brain barrier dysfunction. As disease progresses, MP secretions engage neighboring cells in a vicious cycle of autocrine and paracrine amplification of inflammation leading to tissue injury and ultimately destruction. Such pathogenic processes tilt the balance between the relative production of neurotrophic and neurotoxic factors and to disease progression. The ultimate effects that brain MP play in disease revolves "principally" around their roles in neurodegeneration. Importantly, common functions of brain MP in neuroimmunity link highly divergent diseases (for example, human immunodeficiency virus type-one associated dementia, Alzheimer's disease and Parkinson's disease). Research into this process from our own laboratories and those of others seek to harness MP inflammatory processes with the intent of developing therapeutic interventions that block neurodegenerative processes and improve the quality of life in affected people.
Collapse
Affiliation(s)
- I Kadiu
- Laboratory of Neuroregeneration, Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
29
|
Jones BM, Chiu SS, Wong WH, Lim WW, Lau YL. Cytokine profiles in human immunodeficiency virus-infected children treated with highly active antiretroviral therapy. J Int AIDS Soc 2005; 7:71. [PMID: 19825129 PMCID: PMC2759641 DOI: 10.1186/1758-2652-7-2-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Context There have been few longitudinal studies of cytokine production in neonatally acquired HIV-1 infection and none in Asian or Chinese children. Objective To determine whether monitoring cytokine production could contribute to the better management of pediatric patients with HIV-1 infection. Setting Clinical Immunology Laboratory and Pediatrics Department, University Hospital, Hong Kong. Patients Ten Asian and 2 Eurasian children infected with HIV-1 by mother-to-child transmission were followed for up to 5 years while on treatment with highly active antiretroviral therapy (HAART). Main Outcome Measures Numbers of unstimulated and mitogen-activated cytokine-secreting cells (IFN-gamma, interleukin [IL]-2, IL-4, IL-6, IL-10, IL-12, and TNF-alpha) were measured by ELISPOT assay at frequent intervals, and correlations were sought with CD4+ and CD8+ cell counts and viral loads. Results Mitogen-stimulated IL-2-secreting cells were directly associated with recovery of CD4+ cells. Correlations with viral load were found for Con A-induced IFN-gamma, Con A-induced IL-4, and unstimulated IL-10, suggesting that these cytokines were either suppressed by high virus levels or that higher cytokine levels suppressed virus. IFN-gamma, IL-2-, IL-4-, and IL-12-secreting cells induced by PHA, Con A, and/or SAC tended to increase for the first 3-4 years of treatment but declined thereafter. Conclusion Alterations in cytokine profiles were not associated with adverse clinical events and there was little evidence to indicate that monitoring cytokine enzyme-linked immunospots (ELISPOTs) could contribute to pediatric patient management.
Collapse
Affiliation(s)
- Brian M Jones
- Head of Division of Clinical Immunology, Department of Pathology, University of Hong Kong, Hong Kong, PR China.
| | | | | | | | | |
Collapse
|
30
|
Wong K, Sharma A, Awasthi S, Matlock EF, Rogers L, Van Lint C, Skiest DJ, Burns DK, Harrod R. HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB. J Biol Chem 2004; 280:9390-9. [PMID: 15611041 DOI: 10.1074/jbc.m408643200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) infects microglia, macrophages, and astrocytes in the central nervous system (CNS) and may cause severe neurological diseases, such as AIDS-related dementias or progressive encephalopathies, as a result of CNS inflammation and neurotrophin signaling defects associated with expression of viral antigens and HIV-1 replication in the brain. The HIV Tat protein can be endocytosed by surrounding uninfected cells; interacts with transcriptional coactivators/acetyltransferases, p300/CREB-binding protein, and p300/CREB-binding protein-associated factor (PCAF); and induces neuronal apoptosis. Since nerve growth factor (NGF) receptor and brain-derived neurotrophic factor receptor signaling through CREB requires p300 and PCAF histone acetyltransferases, we sought to determine whether HIV-1 Tat coactivator interactions interfere with neurotrophin receptor signaling in neuronal cells. Here, we demonstrate that Tat-coactivator interactions inhibit NGF- and brain-derived neurotrophic factor-responsive CRE trans-activation and neurotrophin protection against apoptosis in PC12 and IMR-32 neuroblastoma cells. Purified recombinant Tat or Tat-derived synthetic peptides, spanning p300- and PCAF-binding sequences, inhibit histone H3/H4 acetylation in vitro. A Tat mutant, TatK28A/K50A, defective for binding p300 and PCAF, neither repressed NGF-responsive CRE transactivation nor inhibited histone acetylation. HIV-1 Tat interacts in PCAF complexes in post-mortem CNS tissues from donor neuro-AIDS patients, as determined by fluorescence resonance energy transfer immunoconfocal microscopy. Importantly, these findings suggest that HIV-1 Tat-coactivator interactions may contribute to neurotrophin signaling impairments and neuronal apoptosis associated with HIV-1 infections of the CNS.
Collapse
Affiliation(s)
- Kasuen Wong
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dou H, Kingsley JD, Mosley RL, Gelbard HA, Gendelman HE. Neuroprotective strategies for HIV-1 associated dementia. Neurotox Res 2004; 6:503-21. [PMID: 15639783 DOI: 10.1007/bf03033447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus-1 (HIV-1) commonly affects cognitive, behavioral and motor functions during the disease course. The neuropathogenesis of viral infection revolves around neurotoxins produced from infected and immune-activated mononuclear phagocytes (MP; perivascular macrophages and microglia). Direct infection of neurons occurs rarely, if at all. Neurologic disease arises in part as a consequence of MP metabolic dysfunction. Although the advent of highly active antiretroviral therapy (HAART) has attenuated the incidence and severity of neurologic disease, it, nonetheless, remains a common and disabling problem for those living with HIV-1 infection. Adjunctive therapies are currently designed to ameliorate clinical outcomes and are included in the therapeutic armamentarium. Anti-inflammatory drugs that inhibit cytokines, chemokines and interferons linked to neurodegenerative processes can significantly ameliorate neuronal function. HIV-1 neurotoxins have the unique ability to up-regulate glycogen synthase kinase-3beta (GSK-3beta) activity that in turn elicits neuronal apoptosis. GSK-3beta inhibitors are neuroprotective in animal models of Neuro AIDS. They are also currently in Phase 1 clinical trials designed for safety and tolerability in patients with HIV-1 infection. Neurotrophins are only beginning to be realized for their therapeutic potential in HIV-1 associated neurologic disease. This review article provides a broad overview of neuroprotective strategies for HIV-1 infection and details how such strategies act and may be implemented for treatment of human disease.
Collapse
Affiliation(s)
- Huanyu Dou
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | |
Collapse
|
32
|
Sui Y, Potula R, Pinson D, Adany I, Li Z, Day J, Buch E, Segebrecht J, Villinger F, Liu Z, Huang M, Narayan O, Buch S. Microarray analysis of cytokine and chemokine genes in the brains of macaques with SHIV-encephalitis. J Med Primatol 2003; 32:229-39. [PMID: 14498983 DOI: 10.1034/j.1600-0684.2003.00030.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-encephalitis results from a cascade of viral-host interactions that lead to cytokine and chemokine imbalance, which then leads to neuropathologic manifestations of the disease. These include macrophage/microglia activation, astrocytosis and neuronal dysfunction or death. As the molecular mechanisms of this process are poorly understood, we used Atlas human cytokine or cytokine receptor microarray analysis to highlight gene expression profiles that accompanied encephalitis in Simian human immunodeficiency virus (SHIV) 89.6P-infected macaques. Of the 277 genes screened, marked upregulation of monocyte chemoattractant protein-1, interferon-inducible peptide IP-10 and interleukin-4 were observed specifically in the encephalitic brains. These genes are collectively known to promote macrophage infiltration and activation and virus replication. In contrast, genes regulating neurotrophic functions, such as brain-derived neurotrophic factor were downregulated. We also found that some of the apoptosis genes were up- or down-regulated. These data provide a comprehensive spectrum of gene expression that underscores the two major clinical manifestations of this unique syndrome: enhanced virus replication in brain macrophages and dystrophic changes in neurons.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Microbiology, Immunology and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lawrence DM, Major EO. HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 2002; 4:301-8. [PMID: 11909740 DOI: 10.1016/s1286-4579(02)01542-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIDS patients frequently exhibit neurological disorders due to the neurotoxic events that result from HIV-1 and/or opportunistic infections in the brain. This review examines recent clinical findings related to HIV-1-associated dementia, and outlines current areas of basic research that may clarify how HIV-1-associated encephalopathy produces clinical symptoms of brain dysfunction.
Collapse
Affiliation(s)
- Diane M Lawrence
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 5W21, 36 Convent Drive, MSC 4164, Bethesda, MD 20892-4164, USA.
| | | |
Collapse
|
34
|
Langford D, Masliah E. Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol 2001; 11:306-12. [PMID: 11414473 PMCID: PMC8098377 DOI: 10.1111/j.1750-3639.2001.tb00401.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the progression of AIDS, a majority of patients develop cognitive disorders such as HIV encephalitis (HIVE) and AIDS dementia complex (ADC), which correlate closely with macrophage infiltration into the brain and microglial activation. Microglial activation occurs in response to infection, inflammation and neurological disorders including HIVE, Alzheimer's disease, Parkinson's disease and multiple sclerosis. Microglia can be activated by immunoreactive cells independent of, but enhanced by HIV infection, from at least two routes. Activation may occur from signals originating from activated monocytes and lymphocytes in the blood stream, which initiate a cascade of stimuli that ultimately reach microglia in the brain or from activated macrophages/microglia/astrocytes within the brain. Effects of microglial activation stemming from both systemic and CNS HIV infection act together to commence signaling feedback, leading to HIVE and increased neurodegeneration. Most recent data indicate that in AIDS patients, microglial activation in the brain with subsequent release of excitotoxins, cytokines and chemokines leads to neurodegeneration and cognitive impairment. Since the presence of HIV in the brain results from migration of infected monocytes and lymphocytes across the vascular boundary, the development of novel therapies aimed at protecting the integrity of the blood brain barrier (BBB) upon systemic HIV infection is critical for controlling CNS infection.
Collapse
Affiliation(s)
- D Langford
- Department of Neurosciences, University of California San Diego, La Jolla 92093, USA
| | | |
Collapse
|
35
|
Michaud J, Fajardo R, Charron G, Sauvageau A, Berrada F, Ramla D, Dilhuydy H, Robitaille Y, Kessous-Elbaz A. Neuropathology of NFHgp160 transgenic mice expressing HIV-1 env protein in neurons. J Neuropathol Exp Neurol 2001; 60:574-87. [PMID: 11398834 DOI: 10.1093/jnen/60.6.574] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The physiopathology of HIV-1 dementia remains largely hypothetical. Although several sets of evidence point towards an indirect multicellular inflammatory pathway, gp120, one of the HIV-1 env products, was shown to be very cytotoxic for neurons in vitro. To explore a direct pathway in the physiopathology of dementia in AIDS, we developed transgenic mouse models carrying the HIV-1 env proteins gp 120 and gp 41 (gp 160) under the control of the human light neurofilament and murine heavy neurofilament promoters. To date, this is the first mouse model in which the HIV-1 env protein can be detected in neurons by immunohistochemistry. The expression is found in several brainstem and spinal cord gray structures and in the cerebellum in one of the mouse lines bearing the NFHgp160 transgene. The morphological findings at 3 months are subtle and are dominated by a watery, dendritic degeneration and a reactive gliosis. At 12 months, the evidence of neuronal degeneration and loss is present along with various degenerative phenomena involving synapses, dendrites and axons, including axonal swellings. Cytoskeletal abnormalities were found by immunohistochemistry. Chronic inflammation was also observed in the leptomeninges of the spinal cord and brainstem and in the cerebellar white matter. These models thus offer an exciting sequence of morphological findings initiated by the neuronal expression of the HIV-1 env proteins and offer a different tool to explore the neuronal dysfunction in AIDS.
Collapse
Affiliation(s)
- J Michaud
- Department of Pathology and Cellular Biology, University of Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schoneboom BA, Catlin KM, Marty AM, Grieder FB. Inflammation is a component of neurodegeneration in response to Venezuelan equine encephalitis virus infection in mice. J Neuroimmunol 2000; 109:132-46. [PMID: 10996215 DOI: 10.1016/s0165-5728(00)00290-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection with the mosquito-transmitted Venezuelan equine encephalitis virus (VEE) causes an acute systemic febrile illness followed by meningoencephalitis. In this communication we characterize the cytokine profile induced in the central nervous system (CNS) in response to virulent or attenuated strains of VEE using RNase Protection Assays. Virulent VEE causes an upregulation of multiple pro-inflammatory genes including inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-alpha). To determine if iNOS and TNF-alpha contribute to the neuropathogenesis of VEE infection, iNOS and TNF receptor knockout mice were used in VEE mortality studies and exhibited extended survival times. Finally, CNS tissue sections labeled for VEE antigen, and adjacent sections double-labeled for an astrocyte marker and apoptosis, revealed that apoptosis of neurons occurs not only in areas of the brain positive for VEE-antigen, but also in areas of astrogliosis. These findings suggest that the inflammatory response, which is in part mediated by iNOS and TNF-alpha, may contribute to neurodegeneration following encephalitic virus infection.
Collapse
Affiliation(s)
- B A Schoneboom
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Peripheral neuropathy associated with human immunodeficiency virus type 1 (HIV-1) infection is a major cause of morbidity in this patient population. Due to the associated chronic pain, its management has come within the purview of neuropsychiatrists. This paper will focus on the primary pathogenic aspects of HIV-1-associated peripheral neuropathies. The specific syndromes of greatest concern are distal sensory polyneuropathy, toxic neuropathy, inflammatory demyelinating polyradiculoneuropathy, and cytomegalovirus-related progressive polyradiculoneuropathy. The treatments available for these conditions and their efficacy are discussed.
Collapse
|
38
|
Abstract
Infection with human immunodeficiency virus type 1 (HIV-1) leads rapidly to infection of the brain and subsequent neuropsychological impairment, including subclinical impairment, minor cognitive-motor disorder, and HIV-1-associated dementia (HAD). This article reviews HAD and the factors involved in its pathogenesis; the effectiveness of antiretroviral therapy; the prevalence of HIV-1 and subtypes; and the role of chemokines and cytokines as the capstones associated with neuropathology due to inflammation.
Collapse
|
39
|
Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59:137-50. [PMID: 10749103 DOI: 10.1093/jnen/59.2.137] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glia play a major role in neuronal migration, synapse formation, and control of neurotransmission in the developing and mature nervous system. This study investigated whether chronic schizophrenia is associated with glial changes in 3 regions of the cerebral cortex: dorsolateral prefrontal cortex (Brodmann's area 9), the superior temporal gyrus (area 22), and the anterior cingulate gyrus (area 24). In a blind study, astroglia and microglia were identified immunocytochemically in frozen sections from postmortem schizophrenic and control brains. Astroglia and microglia were identified using antibodies to glial fibrillary acidic protein (GFAP) and class II human leucocyte antigen (HLA-DR) respectively. They were then quantified for each cortical layer. Significant differences were found in HLA-DR+ microglial numerical density in 2 of the areas. A 28% increase (p < 0.05) was found in area 9 in 8 schizophrenics (115 +/- 9 cells/mm2) compared with 10 controls (89 +/- 5 cells/mm2), when combining all cortical layers and both cerebral hemispheres. For area 22, there was a 57% increase (p < 0.01) in microglia in 7 schizophrenics (139 +/- 6 cells/mm2) compared with 10 controls (88 +/- 5 cells/mm2). In area 24 the same trend was evident, but the results did not reach significance. Microglial number was further analyzed for each cortical layer, which confirmed the overall pattern. For all areas, numerical density of astroglia showed no significant differences between schizophrenics and controls. Cortical thickness was measured in all areas and total neuronal numerical density was estimated for area 22. Again, no significant differences were found between schizophrenics and controls. This study demonstrates a specific increase in the numerical density of HLA-DR+ microglia in temporal and frontal cortex of chronic schizophrenics, not related to aging, which might be implicated in possible changes in cortical neuropil architecture in schizophrenia.
Collapse
Affiliation(s)
- K Radewicz
- Department of Neurodegenerative Disorders, Imperial College School of Medicine, Charing Cross Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
40
|
Cheeran MC, Hu S, Gekker G, Lokensgard JR. Decreased cytomegalovirus expression following proinflammatory cytokine treatment of primary human astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:926-33. [PMID: 10623841 DOI: 10.4049/jimmunol.164.2.926] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding the influence of immune effector mechanisms on CMV infection of the CNS may facilitate the development of immunotherapies for viral encephalitis. Using cultures of highly purified, fully permissive primary human astrocytes, proinflammatory cytokines, but not antiinflammatory cytokines or beta-chemokines, were found to inhibit CMV expression, DNA synthesis, and replication. Treatment with certain proinflammatory cytokines 24 h before CMV infection markedly suppressed viral expression in astrocytes. TNF-alpha, IL-1beta, and IFN-gamma all inhibited CMV expression (70 +/- 4.2%, 65 +/- 3.4%, and 82 +/- 3.6% inhibition of viral expression, respectively, n = 5). In contrast, no viral suppression was observed following IL-6 treatment. Suppressive activity was dependent on the addition of cytokines before CMV infection. Cytokine pretreatment did not affect CMV entry into primary astrocytes, and the observed cytokine-induced suppressive activity was not affected by the NO synthase inhibitor NG-monomethyl- -arginine (NGMA). Instead, the suppressive effect appeared to be mediated through a mechanism involving inhibition of CMV major immediate early promoter activity. These results support the hypothesis that proinflammatory cytokines possess anti-CMV activity in brain cells and may lead to new interventions for CMV encephalitis based upon immunotherapy.
Collapse
Affiliation(s)
- M C Cheeran
- Institute for Brain Disorders, Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | | | | | | |
Collapse
|
41
|
Gahtan E, Overmier JB. Inflammatory pathogenesis in Alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev 1999; 23:615-33. [PMID: 10392655 DOI: 10.1016/s0149-7634(98)00058-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence from molecular biology, biochemistry, epidemiology and behavioral research support the conclusion that brain inflammation contributes to the pathogenesis of Alzheimer's disease and other types of human dementias. Aspects of neuroimmunology relating to the pathogenesis of Alzheimer's disease are briefly reviewed. The effects of brain inflammation, mediated through cytokines and other secretory products of activated glial cells, on neurotransmission (specifically, nitric oxide, glutamate, and acetylcholine), amyloidogenesis, proteolysis, and oxidative stress are discussed within the context of the pathogenesis of learning and memory dysfunction in Alzheimer's disease. Alzheimer's disease is proposed to be an etiologically heterogeneous syndrome with the common elements of amyloid deposition and inflammatory neuronal damage.
Collapse
Affiliation(s)
- E Gahtan
- Department of Psychology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
42
|
Boscá L, Hortelano S. Mechanisms of nitric oxide-dependent apoptosis: involvement of mitochondrial mediators. Cell Signal 1999; 11:239-44. [PMID: 10372801 DOI: 10.1016/s0898-6568(98)00064-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death occurs in several physiopathological situations in multicellular organisms and constitutes a common mechanism of cell replacement, tissue remodelling and removal of altered cells. The effectors that induce apoptosis as well as the signalling pathways involved in the process are the subjects of current work. In addition to receptor-mediated apoptosis, highly reactive molecules, such as NO, influence cell viability either by acting as a protection against apoptogenic stimuli, or by inducing apoptosis when produced at elevated concentrations. The contribution to apoptosis of mediators released by the mitochondria and involved in the activation of caspases focused attention on the functional changes caused by NO in this organelle. NO induces mitochondrial permeability transition and promotes apoptosis in cell-free systems containing mitochondria and nuclei. Moreover, NO-dependent apoptosis can be blocked in most cases through the use of permeability transition or caspase inhibitors. The intracellular pathways activated in response to NO challenge and involved in the regulation of apoptosis are analysed.
Collapse
Affiliation(s)
- L Boscá
- Instituto de Bioquímica, Facultad de Farmacia, Madrid, Spain.
| | | |
Collapse
|
43
|
Rowe A, Mallon E, Rosenberger P, Barrett M, Walsh J, Bunker CB. Depletion of cutaneous peptidergic innervation in HIV-associated xerosis. J Invest Dermatol 1999; 112:284-9. [PMID: 10084303 DOI: 10.1046/j.1523-1747.1999.00508.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Severe xerosis occurs in approximately 20% of human immunodeficiency virus seropositive patients. Changes in cutaneous innervation have been found in various inflammatory skin diseases and in xerotic skin in familial amyloid. We have therefore carried out a quantitative examination of the cutaneous peptidergic innervation in human immunodeficiency virus-associated xerosis. Immunohistochemistry and image analysis quantitation were used to compare total cutaneous innervation (protein gene product 9.5), calcitonin gene-related peptide, substance P, and vasoactive intestinal peptide peptidergic fibers, at two sites in the skin of human immunodeficiency virus-associated xerosis patients (upper arm, n = 12; upper leg, n = 11) and site-matched seronegative controls (upper arm, n = 10; upper leg, n = 10). Measurement of lengths of fibers of each type was carried out for each subject in the epidermis and papillary dermis, and around the sweat glands. Immunostained mast cells in these areas were counted. Epidermal integrity and maturation were assessed by immunostaining for involucrin. There were significant (Mann-Whitney U test; p < 0.02) decreases in total lengths of protein gene product 9.5 fibers in both epidermis/papillary dermis and sweat gland fields; of calcitonin gene-related peptide innervation in the epidermis/papillary dermis; and of substance P innervation of the sweat glands. There were no differences in the distribution of mast cells, or in the epidermal expression of involucrin. Depletion of the calcitonin gene-related peptide innervation may affect the nutrient blood supply of the upper dermis, and the integrity and function of basal epidermis and Langerhans cells. Diminished substance P innervation of the sweat glands may affect their secretory activity. Both of these changes may be implicated in the development of xerosis.
Collapse
Affiliation(s)
- A Rowe
- Skin Treatment and Research Trust Laboratory, Imperial College School of Medicine, Chelsea & Westminster Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
A morphometric study of the peripheral nervous system at autopsy was undertaken in 11 AIDS patients and 10 controls. The left L4, L5, and S1 dorsal root ganglia (DRG) and samples of the sciatic nerve at the buttock, tibial nerve at the knee, and sural nerve at the ankle were collected. Indices of neuronal/axonal degeneration and of segmental demyelination/ remyelination were measured at each level. The small number of cases and evidence of neuropathy in a number of the control cases resulted in statistical significance for only a limited number of comparisons. Nodules of Nageotte in the DRG were increased fivefold in AIDS cases compared with controls, and axonal degeneration in single-teased nerve fibers was increased 9-fold in the sciatic nerve, 28-fold in the tibial nerve, and 12-fold in the sural nerve. The ratios of AIDS to controls for the density of remaining DRG neurons and large myelinated axons were reduced to 0.71 in the DRG, 0.84 in the sciatic nerve, 0.84 in the tibial nerve, and 0.66 in the sural nerve. Axonal regeneration in single-teased nerve fibers was increased threefold at the sciatic nerve level in AIDS, but was markedly reduced at distal levels. Acute segmental demyelination in single-teased nerve fibers was present to a greater extent than in controls at all levels of the peripheral nerves in the AIDS cases. Remyelinating fibers were increased compared with controls only in the proximal sciatic nerve. No case showed the changes of cytomegalovirus infection. In a parallel immunohistochemical study of these AIDS peripheral nerves, T-cell and macrophage infiltration, with cytokine expression, was demonstrated. The pathological process in the neuropathy of terminal AIDS appears to be a multifocal immunologically mediated inflammatory disease, with increased density of macrophages and T cells at all levels of the peripheral nervous system, producing segmental demyelination and axonal degeneration. Reparative processes (axonal regeneration and remyelination) occurred only at the most proximal levels of the nerves.
Collapse
Affiliation(s)
- W G Bradley
- Department of Neurology, University of Miami School of Medicine, Florida, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Fujimura RK, Shapshak P, Segal DM, Crandall KA, Goodkin K, Page JB, Douyon R, Zhang BT, Xin KQ, Rodriguez de la Vega P, Nagona I, Srivastava A. Viral and host determinants of neurovirulence of HIV-1 infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 437:241-53. [PMID: 9666277 DOI: 10.1007/978-1-4615-5347-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R K Fujimura
- Dept. of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Delgado S, Shapshak P, Stewart R, de la Vega PR, Sun NC, Benjamin S, Petito C, Bradley W. Heterogeneity of Macrophage and T Cell Subpopulations in Peripheral Nerves from HIV Infected Individuals. ACTA ACUST UNITED AC 1998; 2:79-97. [PMID: 16873187 DOI: 10.1300/j128v02n01_06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GOAL To determine the heterogeneity of surface marker expression of macrophages in peripheral nerve of patients who died with AIDS. BACKGROUND Peripheral neuropathy occurs in 20%-40% of AIDS patients. There is evidence that activated macrophages may be involved in the neural damage associated with HIV-1 infection. We studied the expression of macrophage surface markers CD14, CD11c, CD68, and HLA-DR and also T cell surface markers CD3, CD4, and CD8 in peripheral nerves of AIDS patients. METHODS Three levels of peripheral nerves (sciatic, tibial, or sural) were examined from a limited number of subjects consisting of 4 HIV-seropositive and 5 HIV-seronegative individuals. Standard immunohistochemical technique utilized alkaline phosphatase conjugate and fuchsin substrate. RESULTS Surface antigen expression was significantly (p < .0025 increased in HIV-positive tissues compared with HIV-negative controls for CD14 and CD4 in sciatic nerves, CD68 and CD4 in tibial nerves, and CD68 in sural nerves. There were trends for increased expression of HLA-DR, CD3, and CD8 in sciatic nerves, CD11c and CD14 in tibial nerves, and CD14, HLA-DR, and CD4 in sural nerves in HIV-positive tissues compared with HIV-negative controls. CONCLUSION During the course of AIDS there may be an involvement of all three levels of peripheral nerves suggesting that HIV-related neuropathy is a multifocal process.
Collapse
Affiliation(s)
- S Delgado
- New Jersey City Hospital, Jersey City, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Stefano GB, Salzet M, Rialas CM, Mattocks D, Fimiani C, Bilfinger TV. Macrophage behavior associated with acute and chronic exposure to HIV GP120, morphine and anandamide: endothelial implications. Int J Cardiol 1998; 64 Suppl 1:S3-13. [PMID: 9687087 DOI: 10.1016/s0167-5273(98)00030-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that immediate exposure to gp120 (5 min; 0.1 microg/ml) results in a significant shift of the macrophage population to an amoeboid and motile category (P<0.01; 91.7+/-5.5 vs. a control value of 42.4+/-4.2) and prior exposure with anti-gp120 antagonizes this shift. Acute exposure of the macrophages to morphine (10(-6) M) or anandamide (10(-6) M) resulted in the cells rounding up (shape factors of 0.84 and 0.87 respectively) and becoming non-motile. The action is blocked by prior treatment with the specific antagonists naloxone and SR 141716A. Chronic exposure (6 h) of the cells to all three agents resulted in a random migration pattern. Further, all agents blocked chemotaxis induced by DAMA and IL-1. Observation of the cells behavior during chronic exposure revealed a sporadic activity pattern with gp120 whereas morphine and anandamide first induced a period of inactivity which is followed by a period of activity (chemokinesis). Recent work from our laboratory has demonstrated that both morphine and anandamide acutely stimulate constitutive macrophage nitric oxide (NO) release, which then induces macrophage rounding and inactivity. It was therefore of interest to examine their behavior by exposing macrophages to the NO-donor SNAP. In a concentration dependent manner SNAP exhibited the same behavioral actions as both substances of abuse. Given this, we next determined if macrophages exposed to gp120 would release NO. We demonstrated that NO was released only when exposed to morphine and anandamide not gp120. Thus. the chemokinetic inducing activities of these agents may be the basis for excitotoxin liberation in neural tissues and/or a higher viral load in various organ systems since cellular adherence and random migration are stimulated.
Collapse
Affiliation(s)
- G B Stefano
- Multidisciplinary Center for the Study of Aging, Neuroscience Research Institute, State University of New York/College at Old Westbury, 11568, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Vincent VA, Tilders FJ, Van Dam AM. Production, regulation and role of nitric oxide in glial cells. Mediators Inflamm 1998; 7:239-55. [PMID: 9792334 PMCID: PMC1781853 DOI: 10.1080/09629359890929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- V A Vincent
- Research Institute Neurosciences Free University, Medical Faculty, Department of Pharmacology, Amsterdam, The Netherlands
| | | | | |
Collapse
|
49
|
Pratt BM, McPherson JM. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 1997; 8:267-92. [PMID: 9620642 DOI: 10.1016/s1359-6101(97)00018-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Transforming Growth Factor-betas (TGF-beta) are a group of multifunctional proteins whose cellular sites of production and action are widely distributed throughout the body, including the central nervous system (CNS). Within the CNS, various isoforms of TGF-beta are produced by both glial and neural cells. When evaluated in either cell culture or in vivo models, the various isoforms of TGF-beta have been shown to have potent effects on the proliferation, function, or survival of both neurons and all three glial cell types, astrocytes, microglia and oligodendrocytes. TGF-beta has also been shown to play a role in several forms of acute CNS pathology including ischemia, excitotoxicity and several forms of neurodegenerative diseases including multiple sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- B M Pratt
- Protein and Cell Therapeutics Development Group, Genzyme Tissue Repair Division, Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | |
Collapse
|
50
|
Fujimura RK, Bockstahler LE, Goodkin K, Werner T, Brack-Werner R, Shapshak P. Neuropathology and Virology of HIV Associated Dementia. Rev Med Virol 1996; 6:141-150. [PMID: 10398454 DOI: 10.1002/(sici)1099-1654(199609)6:3<141::aid-rmv141>3.0.co;2-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- RK Fujimura
- Department of Psychiatry, University of Miami School of Medicine, Miami FL 33136, USA
| | | | | | | | | | | |
Collapse
|