1
|
Allamyradov Y, Yosef JB, Kylychbekov S, Majidov I, Khuzhakulov Z, Er AY, Kitchens C, Banga S, Er AO. The role of efflux pump inhibitor in enhancing antimicrobial efficiency of Ag NPs and MB as an effective photodynamic therapy agent. Photodiagnosis Photodyn Ther 2024; 47:104212. [PMID: 38740317 DOI: 10.1016/j.pdpdt.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Efflux pumps are active transporters, which allow the cell to remove toxic substances from within the cell including antibiotics and photosensitizer complexes. Efflux pump inhibitors (EPIs), chemicals that prevent the passage of molecules through efflux pumps, play a crucial role in antimicrobial effectiveness against pathogen. In this work, we studied the effect of EPI, namely, reserpine, on photodeactivation rate of pathogens when used with Ag NPs and methylene blue (MB). Our results show that using reserpine led to a higher deactivation rate than Ag NPs and MB alone. The mechanism of this observation was investigated with singlet oxygen generation amount. Additionally, different sizes of Ag NPs were tested with reserpine. Molecular docking calculation shows that reserpine had higher affinity toward AcrB than MB. The improvement in bacterial deactivation rate is attributed to blockage of the AcrAB-TolC efflux pump preventing the removal of MB rather than enhanced singlet oxygen production. These results suggest that using reserpine with nanoparticles and photosynthesize is a promising approach in photodynamic therapy.
Collapse
Affiliation(s)
- Yaran Allamyradov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Justice Ben Yosef
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Salizhan Kylychbekov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Inomjon Majidov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Zikrulloh Khuzhakulov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Alper Yusuf Er
- Gatton Academy of Mathematics and Science, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Chazz Kitchens
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Simran Banga
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Ali Oguz Er
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA.
| |
Collapse
|
2
|
Ludwig-Begall LF, Heyne B. aPDI meets PPE: photochemical decontamination in healthcare using methylene blue-where are we now, where will we go? Photochem Photobiol Sci 2024; 23:215-223. [PMID: 38165604 DOI: 10.1007/s43630-023-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024]
Abstract
Personal protective equipment (PPE) reuse, first recommended in the context of the SARS-CoV-2 pandemic, can mitigate shortages in crisis situations and can greatly reduce the environmental impact of typically single-use PPE. Prior to safe reuse, PPE must be sanitized and contaminating pathogens-in current circumstances viruses in particular-must be inactivated. However, many established decontamination procedures are not equitable and remain unavailable in low-resource settings. In mid-2020, an interdisciplinary consortium of researchers first studied the potential of implementing cheap and easy-to-use antimicrobial photodynamic inactivation (aPDI) using methylene blue as photosensitizer to decontaminate face masks and filtering facepiece respirators. In this perspective piece, we describe the development of this novel method, discuss recent advances, and offer insights into how equitable PPE decontamination via methylene blue-based aPDI may be integrated into circular economy policies in the healthcare sector.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH Research Centre, University of Liège, 4000, Liège, Belgium
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
3
|
Park J, Tang H, Zhang P. Differentiation of Superoxide Radical Anion and Singlet Oxygen and Their Concurrent Quantifications by Nuclear Magnetic Resonance. Anal Chem 2023; 95:5293-5299. [PMID: 36926848 DOI: 10.1021/acs.analchem.2c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
While there have been various techniques, assays, and commercial kits developed to measure reactive oxygen species (ROS) with varying degrees of success, there is a lack of innovative methods to differentiate and quantify them simultaneously. In this work, we demonstrate a 19F nuclear magnetic resonance (NMR)-based method to differentiate two important types of ROS, superoxide radical anion and singlet oxygen, and to quantify them concurrently. By taking advantage of the unique chemical reactivity of two fluorine-containing molecules, 4-fluoro-3-methylphenyl boronic acid and 4-fluoro-3-methylphenol, serving as 19F NMR probes, we are able to differentiate and quantify, for the first time, superoxide radical anion and singlet oxygen generated by photosensitizers (PSs) concurrently. The results reveal that relative amounts of superoxide radical anion and singlet oxygen generated by a PS under light illumination are oftentimes sensitive to the environment, such as the presence or absence of electron donors. This method provides a means to identify the type of mechanism by which a PS functions under a given condition. We envision that this relatively simple, yet robust, method would be beneficial to a broad range of ROS-pertinent studies, such as photodynamic therapy and photoredox reactions.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong Tang
- Alph Technologies LLC, Cincinnati, Ohio 45243, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Zanella PA, Onuchic LF, Watanabe EH, Azevedo LH, Aranha ACC, Ramalho KM, Eduardo CDP. Photobiomodulation for Preventive Therapy of Recurrent Herpes Labialis: A 2-Year In Vivo Randomized Controlled Study. Photobiomodul Photomed Laser Surg 2022; 40:682-690. [PMID: 36219750 PMCID: PMC9603276 DOI: 10.1089/photob.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022] Open
Abstract
Objective: The present study aimed to evaluate the effectiveness of the application of photobiomodulation therapy (PBMT) in the prevention of recurrent herpes labialis (RHL) through a randomized controlled clinical trial. Background data: RHL is a lifelong infection that effects patients' quality of life. In the literature PBMT has shown positive results preventing RHL, decreasing recurrences and severity of lesions. Despite the good results reported, there are still few controlled clinical studies published on the subject. Methods: For this study, 158 volunteers were recruited and were randomly divided into three study groups: Laser 1-1 J/point (L1J): n = 61, Laser 2-2 J/point (L2J): n = 50, and placebo-0 J/point: n = 47. The treatment consisted of a protocol of 15 sessions throughout 6 months and 2 years of follow-up posttreatment. Results: The results showed that L1J presented the most satisfactory results concerning the reduction of the number of lesions per year and less severity of recurrences in the long-term evaluation when compared with L2J. Both Laser Groups (L1J and L2J) were statistically more efficient than placebo in all aspects analyzed. All patients who received laser treatment (L1J and L2J) and presented recurrences had significant improvement in frequency and/or severity of lesions. No patient had side effects from treatment. Conclusions: PBMT can be effective in the reduction of the frequency of recurrences of RHL and in the severity of postirradiation lesions that may appear.
Collapse
Affiliation(s)
- Paola Aragon Zanella
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry (LELO), School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Luiz Fernando Onuchic
- Department of Medical Clinic, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Luciane Hiramatsu Azevedo
- Clinician of Special Laboratory of Laser in Dentistry (LELO), University of São Paulo, São Paulo, Brazil
| | - Ana Cecília Corrêa Aranha
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry (LELO), School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Carlos de Paula Eduardo
- Department of Restorative Dentistry, Special Laboratory of Lasers in Dentistry (LELO), School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Lendvay TS, Xu J, Chen J, Clark T, Cui Y. Methylene blue applied to N95 respirators and medical masks for SARS-CoV-2 decontamination: What is the likelihood of inhaling methylene blue? Am J Infect Control 2022; 50:857-862. [PMID: 35908823 PMCID: PMC9436551 DOI: 10.1016/j.ajic.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
Background Global shortage of personal protective equipment (PPE), as consequence of the COVID-19 global pandemic, has unmasked significant resource inequities prompting efforts to develop methods for safe PPE decontamination for reuse. The World Health Organization (WHO) in their Rational Use of PPE bulletin cited the use of a photodynamic dye, methylene blue, and light exposure as a viable option for N95 respirator decontamination. Because WHO noted that methylene blue (MB) would be applied to surfaces through which health care workers breathe, we hypothesized that little to no MB will be detectable by spectroscopy when the PPE is subjected to MB at supraphysiologic airflow rates. Methods A panel of N95 respirators, medical masks, and cloth masks were sprayed with 5 cycles of 1,000 uM MB solution. Mask coupons were subjected to the equivalent of 120 L/min of 100% humidified air flow. Effluent gas was trapped in an aqueous solution and the resultant fluid was sampled for MB absorbance with a level of detection of 0.004 mg/m3. Results No detectable MB was identified for any mask using Ultraviolet-Visible spectroscopy. Conclusions At 500-fold the amount of MB applied to N95 respirators and medical masks as were used for the decontamination study cited in the WHO Rational Use of PPE bulletin, no detectable MB was observed, thus providing safety evidence for the use of methylene blue and light exposure for mask decontamination.
Collapse
Affiliation(s)
- Thomas S Lendvay
- Department of Urology, University of Washington, Seattle Children's Hospital, Seattle, WA.
| | - Jinwei Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA
| | - James Chen
- Department of Urology, University of Washington, Seattle, WA
| | - Tanner Clark
- Department of Radiology, University of Washington, Seattle, WA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA
| |
Collapse
|
6
|
Chen T, Yang D, Lei S, Liu J, Song Y, Zhao H, Zeng X, Dan H, Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther 2022; 39:103010. [PMID: 35820633 DOI: 10.1016/j.pdpdt.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
The treatment of oral mucosal infections is increasingly challenging owing to antibiotic resistance. Therefore, alternative antimicrobial strategies are urgently required. Photodynamic therapy (PDT) has attracted attention for the treatment of oral mucosal infections because of its ability to effectively inactivate drug-resistant bacteria, completely heal clinical infectious lesions and usually offers only mild adverse reactions. This review briefly summarizes relevant scientific data and published papers and discusses the potential mechanism and application of PDT in the treatment of oral mucosal infections.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yansong Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
7
|
Hakimov S, Kylychbekov S, Harness B, Neupane S, Hurley J, Brooks A, Banga S, Er AO. Evaluation of Silver Nanoparticles Attached to Methylene Blue as an antimicrobial agent and its cytotoxicity. Photodiagnosis Photodyn Ther 2022; 39:102904. [DOI: 10.1016/j.pdpdt.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
8
|
Enwemeka CS, Bumah VV, Castel JC, Suess SL. Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112378. [PMID: 35085988 PMCID: PMC8713422 DOI: 10.1016/j.jphotobiol.2021.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; James Hope University, Lagos, Nigeria; Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA
| | | | - Samantha L Suess
- Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
9
|
De Santis R, Luca V, Näslund J, Ehmann RK, De Angelis M, Lundmark E, Nencioni L, Faggioni G, Fillo S, Amatore D, Regalbuto E, Molinari F, Petralito G, Wölfel R, Stefanelli P, Rezza G, Palamara AT, Antwerpen M, Forsman M, Lista F. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021; 8:100082. [PMID: 34729540 PMCID: PMC8552801 DOI: 10.1016/j.jpap.2021.100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Difficulty in controlling SARS-CoV-2 transmission made the ability to inactivate viruses in aerosols and fomites to be an important and attractive risk reduction measure. Evidence that light frequencies have the ability to inhibit microorganisms has already been reported by many studies which, however, focused on ultraviolet (UV) wavelengths, which are known to induce potential injury in humans. In the present study, the effect on suspensions of SARS-CoV-2 of a Light Emitting Diode (LED) device capable of radiating frequencies in the non-hazardous visible light spectrum (VIS) was investigated. In order to evaluate the efficiency of viral inactivation, plaque assay and western blot of viral proteins were performed. The observed results showed a significant reduction in infectious particles that had been exposed to the LED irradiation of visible light. Furthermore, the analysis of the intracellular expression of viral proteins confirmed the inactivating effect of this irradiation technology. This in vitro study revealed for the first time the inactivation of SARS-CoV-2 through LED irradiation with multiple wavelengths of the visible spectrum. However additional and more in-depth studies can aim to demonstrate the data obtained during these experiments in different matrices, in mutable environmental conditions and on other respiratory viruses such as the influenza virus. The type of LED technology can decisively contribute on reducing virus transmission through the continuous sanitation of common environments without risks for humans and animals.
Collapse
Affiliation(s)
| | - Vincenzo Luca
- Scientific Department, Army Medical Center, Rome, Italy.,7th CBRN Defence Regiment "Cremona", Civitavecchia, Italy
| | - Jonas Näslund
- Department of CBRN Protection and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Rosina K Ehmann
- Section Viral and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Eva Lundmark
- Department of CBRN Protection and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | | | | | - Roman Wölfel
- Section Viral and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Paola Stefanelli
- Department of Infectious Disease, National Institute of Health, Rome, Italy
| | - Gianni Rezza
- Department of Infectious Disease, National Institute of Health, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Markus Antwerpen
- Section Viral and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Mats Forsman
- Department of CBRN Protection and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | | |
Collapse
|
10
|
Enwemeka CS, Bumah VV, Mokili JL. Pulsed blue light inactivates two strains of human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112282. [PMID: 34404018 PMCID: PMC8349404 DOI: 10.1016/j.jphotobiol.2021.112282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that blue light has the potential to inactivate viruses. Therefore, we investigated the effect of 405 nm, 410 nm, 425 nm and 450 nm pulsed blue light (PBL) on human alpha coronavirus HCoV-229 E and human beta coronavirus HCoV-OC43, using Qubit fluorometry and RT-LAMP to quantitate the amount of nucleic acid in irradiated and control samples. Like SARS-CoV-2, HCoV-229E and HCoV-OC43 are single stranded RNA viruses transmitted by air and direct contact; they have similar genomic sizes as SARS-CoV-2, and are used as surrogates for SARS-CoV-2. Irradiation was carried out either at 32.4 J cm-2 using 3 mW cm-2 irradiance or at 130 J cm-2 using 12 mW cm-2 irradiance. Results: (1) At each wavelength tested, PBL was antiviral against both coronaviruses. (2) 405 nm light gave the best result, yielding 52.3% (2.37 log10) inactivation against HCoV-OC43 (p < .0001), and a significant 1.46 log 10 (44%) inactivation of HCoV-229E (p < .01). HCoV-OC43, which like SARS-CoV-2 is a beta coronavirus, was more susceptible to PBL irradiation than alpha coronavirus HCoV-229E. The latter finding suggests that PBL is potentially antiviral against multiple coronavirus strains, and that, while its potency may vary from one virus to another, it seems more antiviral against beta coronaviruses, such as HCoV-OC43. (3) Further, the antiviral effect of PBL was better at a higher irradiance than a lower irradiance, and this indicates that with further refinement, a protocol capable of yielding 100% inactivation of viruses is attainable.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - John L Mokili
- Viral Information Institute, Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
11
|
Bartolomeu M, Oliveira C, Pereira C, Neves MGPMS, Faustino MAF, Almeida A. Antimicrobial Photodynamic Approach in the Inactivation of Viruses in Wastewater: Influence of Alternative Adjuvants. Antibiotics (Basel) 2021; 10:767. [PMID: 34202496 PMCID: PMC8300698 DOI: 10.3390/antibiotics10070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogenic viruses are frequently present in marine and estuarine waters, due to poor wastewater (WW) treatments, which consequently affect water quality and human health. Chlorination, one of the most common methods used to ensure microbiological safety in tertiarily treated effluents, may lead to the formation of toxic chemical disinfection by-products on reaction with organic matter present in the effluents. Antimicrobial photodynamic therapy (aPDT) can be a promising disinfecting approach for the inactivation of pathogens, without the formation of known toxic by-products. Additionally, some studies have reported the potentiator effect on aPDT of some compounds, such as potassium iodide (KI) and hydrogen peroxide (H2O2). In the present study, the aPDT efficiency of a PS formulation constituted of five cationic porphyrins (Form) in the inactivation of E. coli T4-like bacteriophage, a model of mammalian viruses, in different aqueous matrices with different organic matter content, was evaluated. Photoinactivation studies were performed at different concentrations of Form and in the presence of the adjuvants KI and H2O2. The results showed that the efficiency of bacteriophage photoinactivation is correlated with the Form concentration, the amount of the organic matter in WW, and the adjuvant type. Form can be an effective alternative to controlling viruses in WW, particularly if combined with H2O2, allowing to significantly reduce PS concentration and treatment time. When combined with KI, the Form is less effective in inactivating T4-like bacteriophage in WW.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Cristiana Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | | | - M. Amparo F. Faustino
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| |
Collapse
|
12
|
Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21197150. [PMID: 32998270 PMCID: PMC7582680 DOI: 10.3390/ijms21197150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/virology
- Curcumin/therapeutic use
- DNA Repair/radiation effects
- DNA, Circular/antagonists & inhibitors
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/drug effects
- Hepatitis B virus/growth & development
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/radiation effects
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/radiotherapy
- Hepatitis B, Chronic/virology
- Humans
- Immunologic Factors/therapeutic use
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver/radiation effects
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/etiology
- Liver Cirrhosis/radiotherapy
- Liver Cirrhosis/virology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/virology
- Low-Level Light Therapy/methods
- Photosensitizing Agents/therapeutic use
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
13
|
Enwemeka CS, Bumah VV, Masson-Meyers DS. Light as a potential treatment for pandemic coronavirus infections: A perspective. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111891. [PMID: 32388486 PMCID: PMC7194064 DOI: 10.1016/j.jphotobiol.2020.111891] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “Spanish influenza” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.
Collapse
Affiliation(s)
- Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Violet Vakunseh Bumah
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | |
Collapse
|
14
|
Teitelbaum S, Azevedo LH, Bernaola-Paredes WE. Antimicrobial Photodynamic Therapy Used as First Choice to Treat Herpes Zoster Virus Infection in Younger Patient: A Case Report. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:232-236. [DOI: 10.1089/photob.2019.4725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Susana Teitelbaum
- Department of Onco-Hematological Pediatric, Perez Scremini Foundation, Montevideo, Uruguay
| | - Luciane Hiramatsu Azevedo
- Clinician of Special Laboratory of Laser in Dentistry (LELO), School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
15
|
La Selva A, Negreiros RM, Bezerra DT, Rosa EP, Pavesi VCS, Navarro RS, Bello-Silva MS, Ramalho KM, Aranha ACC, Braz-Silva PH, Fernandes KPS, Bussadori SK, Horliana ACRT. Treatment of herpes labialis by photodynamic therapy: Study protocol clinical trial (SPIRIT compliant). Medicine (Baltimore) 2020; 99:e19500. [PMID: 32195950 PMCID: PMC7220348 DOI: 10.1097/md.0000000000019500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Lesions of herpes labialis are caused by the herpes simplex virus type 1 and cause pain and aesthetic compromise. It is characterized by the formation of small vesicles that coalesce and rupture forming extremely painful ulcers, that evolve to crusts, dry desquamations until their complete remission. Currently the treatment of these lesions is done with acyclovir. Although it diminishes the symptomatology, it causes viral resistance and does not prevent the recurrence of the lesions. It is known that antimicrobial photodynamic therapy (aPDT) has numerous advantages, among them: the reduction of the time of remission, and does not cause resistance. This protocol will determine the effectiveness of PDT in lesions of herpes labialis. MATERIALS AND METHODS A total of 30 patients with herpes labialis in the prodromal stage of vesicles, ulcers, and crusts will be selected to participate in the study and randomized into 2 groups: G1 control and G2 experimental. After signing Research Ethics Committee and TA, patients in group G1 will undergo the standard gold treatment for herpes labialis with acyclovir and simulated PDT treatment. Patients in the experimental G2 group will be treated simulating the gold standard treatment of herpes labialis (placebo) and PDT. In all patients, saliva samples will be collected for analysis of cytokines, and will be performed exfoliative cytology in the lesions. The pain will be assessed through a pain scale and a questionnaire of quality of life related to oral health (OHIP-14) will be given to them. Patients will continue to be followed up after 7 days, 1 month, 3 months, and 6 months; if there is a recurrence of the lesion, they will contact the researchers.Clinical registration: clinicaltrials.gov - NCT04037475. Registered on July 2019.
Collapse
Affiliation(s)
- Andreia La Selva
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | - Renata Matalon Negreiros
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | - Daniela Teixeira Bezerra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | - Ellen Perin Rosa
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | | | - Ricardo Scarparo Navarro
- Postgraduate Program in Bioengineering and Biomedical Engineering, School of Dentistry, Universidade Brasil
| | - Marina Stella Bello-Silva
- International Academy of Lasers in Dentistry
- Laser Special Laboratory in Dentistry, LELO, School of Dentistry, University of Sao Paulo
| | - Karen Müller Ramalho
- Laser Special Laboratory in Dentistry, LELO, School of Dentistry, University of Sao Paulo
- Post Graduate Program of Dental Sciences, University Ibirapuera
| | - Ana Cecília Corrêa Aranha
- Laser Special Laboratory in Dentistry, LELO, School of Dentistry, University of Sao Paulo
- Department of Dentistry School of Dentistry, University of Sao Paulo
| | - Paulo Henrique Braz-Silva
- Division of Pathology, Department of Stomatology, School of Dentistry, University of Sao Paulo
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | | |
Collapse
|
16
|
Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0353-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Korneev D, Kurskaya O, Sharshov K, Eastwood J, Strakhovskaya M. Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses 2019; 11:v11100955. [PMID: 31623281 PMCID: PMC6832225 DOI: 10.3390/v11100955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as “bald” virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture “bald” virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.
Collapse
Affiliation(s)
- Denis Korneev
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Justin Eastwood
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Marina Strakhovskaya
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, 115682 Moscow, Russia.
| |
Collapse
|
18
|
Kholikov K, Ilhom S, Sajjad M, Smith ME, Monroe JD, San O, Er AO. Improved singlet oxygen generation and antimicrobial activity of sulphur-doped graphene quantum dots coupled with methylene blue for photodynamic therapy applications. Photodiagnosis Photodyn Ther 2018; 24:7-14. [DOI: 10.1016/j.pdpdt.2018.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/18/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
|
19
|
Monjo ALA, Pringle ES, Thornbury M, Duguay BA, Monro SMA, Hetu M, Knight D, Cameron CG, McFarland SA, McCormick C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018; 10:v10100532. [PMID: 30274257 PMCID: PMC6213367 DOI: 10.3390/v10100532] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) infections can be treated with direct acting antivirals like acyclovir and foscarnet, but long-term use can lead to drug resistance, which motivates research into broadly-acting antivirals that can provide a greater genetic barrier to resistance. Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species that inactivate microorganisms. The botanical plant extract OrthoquinTM is a powerful photosensitizer with antimicrobial properties. Here we report that Orthoquin also has antiviral properties. Photoactivated Orthoquin inhibited herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) infection of target cells in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. HSV inactivation required direct contact between Orthoquin and the inoculum, whereas pre-treatment of target cells had no effect. Orthoquin did not cause appreciable damage to viral capsids or premature release of viral genomes, as measured by qPCR for the HSV-1 genome. By contrast, immunoblotting for HSV-1 antigens in purified virion preparations suggested that higher doses of Orthoquin had a physical impact on certain HSV-1 proteins that altered protein mobility or antigen detection. Orthoquin PDI also inhibited the non-enveloped adenovirus (AdV) in a dose-dependent manner, whereas Orthoquin-mediated inhibition of the enveloped vesicular stomatitis virus (VSV) was light-independent. Together, these findings suggest that the broad antiviral effects of Orthoquin-mediated PDI may stem from damage to viral attachment proteins.
Collapse
Affiliation(s)
- Andrea L-A Monjo
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Eric S Pringle
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Mackenzie Thornbury
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
- Department of Pathology and Cell Biology, University of Montreal, V-541 Pavillon Roger Gaudry, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3C 3J7, Canada.
| | - Brett A Duguay
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Susan M A Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Marc Hetu
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Danika Knight
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Colin G Cameron
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Sherri A McFarland
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
20
|
Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – The charge number and charge distribution effects. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Jones DP, Radi R. Redox pioneer: professor Helmut Sies. Antioxid Redox Signal 2014; 21:2459-68. [PMID: 25178739 PMCID: PMC4245851 DOI: 10.1089/ars.2014.6037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022]
Abstract
Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
22
|
Pereira MA, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol Sci 2014; 13:680-90. [PMID: 24549049 DOI: 10.1039/c3pp50408e] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The main targets of photodynamic inactivation (PDI) are the external bacterial structures, cytoplasmic membrane and cell wall. In this work it was evaluated how the external bacterial structures influence the PDI efficiency. To reach this objective 8 bacteria with distinct external structures were selected; 4 Gram-negative bacteria (Escherichia coli, with typical Gram-negative external structures; Aeromonas salmonicida, Aeromonas hydrophila both with an S-layer and Rhodopirellula sp., with a peptidoglycan-less proteinaceous cell wall and with cytoplasm compartmentalization) and 4 Gram-positive bacteria (Staphylococcus aureus, with typical Gram-positive external structures; Truepera radiovictrix, Deinococcus geothermalis and Deinococcus radiodurans, all with thick cell walls that give them Gram-positive stains, but including a second complex multi-layered membrane and structurally analogous to that of Gram-negative bacteria). The studies were performed in the presence of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (Tetra-Py(+)-Me) at 5.0 μM with white light (40 W m(-2)). The susceptibility of each bacteria to PDI by Tetra-Py(+)-Me was dependent on bacteria external structures. Although all Gram-positive bacteria were inactivated to the detection limit (reduction of ∼8 log) after 60-180 min of irradiation, the inactivation followed distinct patterns. Among the Gram-negative bacteria, E. coli was the only species to be inactivated to the detection limit (∼8 log after 180 min). The efficiency of inactivation of the two species of Aeromonas was similar (reduction of ∼5-6 log after 270 min). Rhodopirellula was less susceptible (reduction of ∼4 log after 270 min). As previously observed, the Gram-positive bacteria are more easily inactivated than Gram-negative strains, and this is even true for T. radiovictrix, D. geothermalis and D. radiodurans, which have a complex multi-layered cell wall. The results support the theory that the outer cell structures are major bacterial targets for PDI. Moreover, the chemical composition of the external structures has a stronger effect on PDI efficiency than complexity and the number of layers of the external coating, and lipids seem to be an important target of PDI.
Collapse
Affiliation(s)
- M A Pereira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Costa L, Esteves AC, Correia A, Moreirinha C, Delgadillo I, Cunha Â, Neves MGPS, Faustino MAF, Almeida A. SDS-PAGE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer. J Virol Methods 2014; 209:103-9. [PMID: 25241141 DOI: 10.1016/j.jviromet.2014.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species can be responsible for microbial photodynamic inactivation due to its toxic effects, which include severe damage to proteins, lipids and nucleic acids. In this study, the photo-oxidative modifications of the proteins of a non-enveloped T4-like bacteriophage, induced by the cationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide were evaluated. Two methods were used: sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and infrared spectroscopy. SDS-PAGE analysis showed that the phage protein profile was considerably altered after photodynamic treatment. Seven protein bands putatively corresponding to capsid and tail tube proteins were attenuated and two other were enhanced. Infrared spectroscopy confirmed the time-dependent alteration on the phage protein profile detected by SDS-PAGE, indicative of a response to oxidative damage. Infrared analysis showed to be a promising and rapid screening approach for the analysis of the modifications induced on viral proteins by photosensitization. In fact, one single infrared spectrum can highlight the changes induced to all viral molecular structures, overcoming the delays and complex protocols of the conventional methods, in a much simple and cost effective way.
Collapse
Affiliation(s)
- Liliana Costa
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Cristina Esteves
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Correia
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Moreirinha
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivonne Delgadillo
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria G P S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Mano CM, Prado FM, Massari J, Ronsein GE, Martinez GR, Miyamoto S, Cadet J, Sies H, Medeiros MHG, Bechara EJH, Di Mascio P. Excited singlet molecular O₂(¹Δg) is generated enzymatically from excited carbonyls in the dark. Sci Rep 2014; 4:5938. [PMID: 25087485 PMCID: PMC4120373 DOI: 10.1038/srep05938] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022] Open
Abstract
In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 ((1)Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 ((1)Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 ((1)Δg). Indirect analysis of O2 ((1)Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [(18)O]-labeled triplet, ground state molecular oxygen [(18)O2 ((3)Σg(-))], chemical trapping of (18)O2 ((1)Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[(18)O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 ((1)Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates (18)O2 ((1)Δg) by triplet-triplet energy transfer to ground state oxygen O2 ((3)Σg(-)), and supports the long formulated hypothesis of O2 ((1)Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light.
Collapse
Affiliation(s)
- Camila M. Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Fernanda M. Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Júlio Massari
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Helmut Sies
- Institute of Biochemistry and Molecular Biology I, and Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Etelvino J. H. Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Vatansever F, Ferraresi C, de Sousa MVP, Yin R, Rineh A, Sharma SK, Hamblin MR. Can biowarfare agents be defeated with light? Virulence 2013; 4:796-825. [PMID: 24067444 PMCID: PMC3925713 DOI: 10.4161/viru.26475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023] Open
Abstract
Biological warfare and bioterrorism is an unpleasant fact of 21st century life. Highly infectious and profoundly virulent diseases may be caused in combat personnel or in civilian populations by the appropriate dissemination of viruses, bacteria, spores, fungi, or toxins. Dissemination may be airborne, waterborne, or by contamination of food or surfaces. Countermeasures may be directed toward destroying or neutralizing the agents outside the body before infection has taken place, by destroying the agents once they have entered the body before the disease has fully developed, or by immunizing susceptible populations against the effects. A range of light-based technologies may have a role to play in biodefense countermeasures. Germicidal UV (UVC) is exceptionally active in destroying a wide range of viruses and microbial cells, and recent data suggests that UVC has high selectivity over host mammalian cells and tissues. Two UVA mediated approaches may also have roles to play; one where UVA is combined with titanium dioxide nanoparticles in a process called photocatalysis, and a second where UVA is combined with psoralens (PUVA) to produce "killed but metabolically active" microbial cells that may be particularly suitable for vaccines. Many microbial cells are surprisingly sensitive to blue light alone, and blue light can effectively destroy bacteria, fungi, and Bacillus spores and can treat wound infections. The combination of photosensitizing dyes such as porphyrins or phenothiaziniums and red light is called photodynamic therapy (PDT) or photoinactivation, and this approach cannot only kill bacteria, spores, and fungi, but also inactivate viruses and toxins. Many reports have highlighted the ability of PDT to treat infections and stimulate the host immune system. Finally pulsed (femtosecond) high power lasers have been used to inactivate pathogens with some degree of selectivity. We have pointed to some of the ways light-based technology may be used to defeat biological warfare in the future.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
| | - Cleber Ferraresi
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Electro-thermo-phototherapy; Department of Physical Therapy; Federal University of São Carlos; São Paulo, Brazil
- Post-Graduation Program in Biotechnology; Federal University of São Carlos; São Paulo, Brazil
- Optics Group; Physics Institute of Sao Carlos; University of São Paulo; São Carlos, Brazil
| | - Marcelo Victor Pires de Sousa
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Radiation Dosimetry and Medical Physics; Institute of Physics, São Paulo University, São Paulo, Brazil
| | - Rui Yin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Department of Dermatology; Southwest Hospital; Third Military Medical University; Chongqing, PR China
| | - Ardeshir Rineh
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- School of Chemistry; University of Wollongong; Wollongong, NSW Australia
| | - Sulbha K Sharma
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Raja Ramanna Centre for Advanced Technology; Indore, India
| | - Michael R Hamblin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Harvard-MIT Division of Health Sciences and Technology; Cambridge, MA USA
| |
Collapse
|
26
|
Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci 2013; 29:1517-29. [PMID: 23584730 DOI: 10.1007/s10103-013-1311-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
Recurrent herpes labialis is a worldwide life-long oral health problem that remains unsolved. It affects approximately one third of the world population and causes frequent pain and discomfort episodes, as well as social restriction due to its compromise of esthetic features. In addition, the available antiviral drugs have not been successful in completely eliminating the virus and its recurrence. Currently, different kinds of laser treatment and different protocols have been proposed for the management of recurrent herpes labialis. Therefore, the aim of the present article was to review the literature regarding the effects of laser irradiation on recurrent herpes labialis and to identify the indications and most successful clinical protocols. The literature was searched with the aim of identifying the effects on healing time, pain relief, duration of viral shedding, viral inactivation, and interval of recurrence. According to the literature, none of the laser treatment modalities is able to completely eliminate the virus and its recurrence. However, laser phototherapy appears to strongly decrease pain and the interval of recurrences without causing any side effects. Photodynamic therapy can be helpful in reducing viral titer in the vesicle phase, and high-power lasers may be useful to drain vesicles. The main advantages of the laser treatment appear to be the absence of side effects and drug interactions, which are especially helpful for older and immunocompromised patients. Although these results indicate a potential beneficial use for lasers in the management of recurrent herpes labialis, they are based on limited published clinical trials and case reports. The literature still lacks double-blind controlled clinical trials verifying these effects and such trials should be the focus of future research.
Collapse
|
27
|
Costa L, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A, Almeida A. Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 120:10-6. [PMID: 23416708 DOI: 10.1016/j.jphotobiol.2013.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/20/2022]
Abstract
Microbial photodynamic inactivation (PDI), involving the use of a photosensitizer (PS), light and molecular oxygen, with the subsequent production of reactive oxygen species (ROS), has been considered a promising and effective technology for viral inactivation. Although singlet oxygen is generally accepted as the main damaging species in PDI, ROS like free radicals may also be involved in the process, inducing damages to proteins, lipids, nucleic acids and other molecular structures. In this study, the relative importance of each mechanism (type I and type II) on the photoinactivation of non-enveloped DNA (T4-like phage) and RNA (Qβ phage) viruses was evaluated. For this purpose, two cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) and four different ROS scavengers were used. The scavenging effect of sodium azide and L-histidine (singlet oxygen quenchers) and of D-mannitol and L-cysteine (free radical scavengers) was assessed by exposure of both phages (T4-like and Qβ) to each cationic porphyrin (5.0μM for T4-like phage and 0.5μM for Qβ phage) and white light (40Wm(-2)) in the presence of different concentrations of the scavengers (5, 10, 50 and 100mM). Sodium azide and L-histidine gave the best protection, reducing the phototoxic effect of Tri-Py(+)-Me-PF on T4-like phage respectively by 80% and 72% and in the presence of Tetra-Py(+)-Me by 90% and 78%. Free radical scavengers D-mannitol and L-cysteine did not significantly reduce the rate of T4-like phage photoinactivation (around 20% protection, for both PS). The sodium azide protection on Qβ phage photoinactivation, in the presence of Tri-Py(+)-Me-PF, was lower (39%) when compared with T4-like phage. D-mannitol did not exert on Qβ phage any protective effect after 90min of irradiation. The effect of the simultaneous presence of singlet oxygen and free radicals scavengers at 100mM confirmed that singlet oxygen (type II mechanism) is clearly the main ROS involved in T4-like and Qβ phages photoinactivation by these two cationic PS. As RNA-type phages are more easily photoinactivated when compared with DNA-type ones, the protection conferred by the scavengers during the PDI process is lower and this should be taken into account when the main mechanism involved in PDI of different viruses is to be studied.
Collapse
Affiliation(s)
- Liliana Costa
- Department of Biology and CESAM, University of de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Otsu K, Sato K, Sato M, Ono H, Ohba Y, Katagata Y. Impaired activation of caspase cascade during cell death induced by newly synthesized singlet oxygen generator, 1-buthylnaphthalene-4-propionate endoperoxide. Cell Biol Int 2013; 32:1380-7. [DOI: 10.1016/j.cellbi.2008.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 04/28/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
29
|
Costa L, Faustino MAF, Neves MGPMS, Cunha Â, Almeida A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 2012; 4:1034-74. [PMID: 22852040 PMCID: PMC3407894 DOI: 10.3390/v4071034] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022] Open
Abstract
Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.
Collapse
Affiliation(s)
- Liliana Costa
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (L.C.); (A.C.)
| | - Maria Amparo F. Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.G.P.M.S.N.)
| | - Maria Graça P. M. S. Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.G.P.M.S.N.)
| | - Ângela Cunha
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (L.C.); (A.C.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (L.C.); (A.C.)
| |
Collapse
|
30
|
Pereira JB, Carvalho EFA, Faustino MAF, Fernandes R, Neves MGPMS, Cavaleiro JAS, Gomes NCM, Cunha Â, Almeida A, Tomé JPC. Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers†. Photochem Photobiol 2012; 88:537-47. [DOI: 10.1111/j.1751-1097.2012.01113.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Lluïsa Sagristá M, Postigo F, Africa De Madariaga M, Pintó RM, Caballero S, Bosch A, Asunción Vallés M, Mora M. Photodynamic inactivation of viruses by immobilized chlorin-containing liposomes. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The viral safety of blood derived products relies in properly chosen inactivation procedures. In this way, it has been reported that some photosensitizers are useful products for blood sterilization. The data presented here show the high incorporation efficiency of the chlorin 3-phorbinepropanol, 9,14-diethyl-4,8,13,18-tetramethyl-20-(3S-trans) (CHL) into anionic unilamellar liposomes, give a protocol for the steric immobilization of chlorin-containing liposomes in a chromatographic support and provide the studies of photodynamic inactivation of bovine viral diarrhea virus (BVDV) and encephalomyocarditis virus (EMCV) with chlorin-containing liposomes, free in solution and immobilized on Sephacryl S-1000 beads. The study demonstrates the successful inactivation of the enveloped virus BVDV by both preparations in culture medium and the resistance of the non-enveloped virus EMCV. The effectiveness of CHL-containing liposomes, in solution and immobilized in the chromatographic support, decreased when the culture media was replaced with human blood plasma. Moreover, the reduction factor of the virus titer after irradiation was smallest when immobilized liposomes were used. Nevertheless, the reduction factor for the virus titers of enveloped viruses after irradiation of human blood plasma samples with immobilized chlorin-containing liposomes increased with the reduction of the sample thickness. The more outstanding aspect of this paper is the design of a system useful for blood sterilization that can be easily removed after photodynamic treatment and, therefore, able to be applied in the manufacturing processes.
Collapse
Affiliation(s)
- M. Lluïsa Sagristá
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Fernado Postigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - M. Africa De Madariaga
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Rosa M. Pintó
- Department of Microbiology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Santiago Caballero
- Department of Microbiology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Albert Bosch
- Department of Microbiology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - M. Asunción Vallés
- Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
| | - Margarita Mora
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| |
Collapse
|
32
|
Tardivo JP, Wainwright M, Baptista MS. Local clinical phototreatment of herpes infection in São Paulo. Photodiagnosis Photodyn Ther 2012; 9:118-21. [PMID: 22594981 DOI: 10.1016/j.pdpdt.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The clinical use of topical photodynamic therapy in herpes simplex lesions in São Paulo is presented and discussed. Although previous attempts utilising this type of approach in the USA were discontinued in the early 1970s due to several presentations of post-treatment Bowen's disease, none of the cases from the clinic presented here have displayed any complications on follow-up. In addition, lesion recrudescence periods are generally much longer than with conventional approaches. This is thought to be due to improvements in the treatment protocol, viz. use of the non-toxic photosensitisers methylene blue and Hypericum perforatum extract in place of proflavine and neutral red in the original trials, differences in photosensitisation pathway and illumination of the treatment site with red rather than fluorescent/UV light. Post-treatment cosmesis is also excellent.
Collapse
|
33
|
Alves E, Costa L, Cunha A, Faustino MAF, Neves MGPMS, Almeida A. Bioluminescence and its application in the monitoring of antimicrobial photodynamic therapy. Appl Microbiol Biotechnol 2011; 92:1115-28. [PMID: 22038247 DOI: 10.1007/s00253-011-3639-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 11/26/2022]
Abstract
Light output from bioluminescent microorganisms is a highly sensitive reporter of their metabolic activity and therefore can be used to monitor in real time the effects of antimicrobials. Antimicrobial photodynamic therapy (aPDT) is receiving considerable attention for its potentialities as a new antimicrobial treatment modality. This therapy combines oxygen, a nontoxic photoactive photosensitizer, and visible light to generate reactive oxygen species (singlet oxygen and free radicals) that efficiently destroy microorganisms. To monitor this photoinactivation process, faster methods are required instead of laborious conventional plating and overnight incubation procedures. The bioluminescence method is a very interesting approach to achieve this goal. This review covers recent developments on the use of microbial bioluminescence in aPDT in the clinical and environmental areas.
Collapse
Affiliation(s)
- Eliana Alves
- Department of Biology and CESAM, University of Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
34
|
Tavares A, Dias SRS, Carvalho CMB, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Gomes NCM, Alves E, Almeida A. Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiol Sci 2011; 10:1659-69. [PMID: 21799996 DOI: 10.1039/c1pp05097d] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy is a very promising approach to inactivate pathogenic microorganisms. The photodamage of cells involves reactive oxygen species (ROS) which are generated in situ by two main mechanisms (type I and/or type II). The mechanism responsible for the photoinactivation (PI) of a bioluminescent recombinant Escherichia coli, induced by three different cationic porphyrins, was identified in this work using a rapid method based on the monitoring of the metabolic activity of this bacterium. The inhibitory effect of the photodynamic process in the presence of a singlet oxygen quencher (sodium azide) or free radical scavengers (d-mannitol and l-cysteine) was evaluated by exposing bacterial suspensions with 0.5 μM Tri-Py(+)-Me-PF, 5.0 μM Tetra-Py(+)-Me or 5.0 μM Tri-SPy(+)-Me-PF to white light. Strong bacterial protection was observed with sodium azide (100 mM) for the three cationic porphyrins. However, in the presence of Tri-Py(+)-Me-PF and Tetra-Py(+)-Me and the free radical scavengers (l-cysteine and d-mannitol) the reduction on the bacterial bioluminescence was significantly higher and similar to that obtained in their absence (5.4-6.0 log reduction). In the case of Tri-SPy(+)-Me-PF two distinct behaviours were observed when l-cysteine and d-mannitol were used as free radical scavengers: while the presence of l-cysteine (100 mM) lead to a bacterial protection similar to the one observed with sodium azide, in the presence of d-mannitol only a small protection was detected. The high inhibition of the PS activity by l-cysteine is not due to its radical scavenger ability but due to the singlet oxygen quenching by the sulfanyl group (-SH). In fact, the photodecomposition of 1,3-diphenylisobenzofuran in the presence of Tri-SPy(+)-Me-PF is completely suppressed when l-cysteine is present. The results obtained in this study suggest that singlet oxygen (type II mechanism) plays a very important role over free radicals (type I mechanism) on the PI process of the bioluminescent E. coli by Tri-Py(+)-Me-PF, Tetra-Py(+)-Me and Tri-SPy(+)-Me-PF. Although the use of scavengers is an adequate and simple approach to evaluate the relative importance of the two pathways, it is important to choose scavengers which do not interfere in both PI mechanisms. Sodium azide and d-mannitol seem to be good oxygen and free radical quenchers, respectively, to study the PI mechanisms by porphyrinic photosensitizers.
Collapse
Affiliation(s)
- Anabela Tavares
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Costa L, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Faustino MAF, Cunha Â, Gomes NCM, Almeida A. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res 2011; 91:278-82. [PMID: 21722673 DOI: 10.1016/j.antiviral.2011.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/16/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023]
Abstract
Nowadays, the emergence of drug resistant microorganisms is a public health concern. The antimicrobial photodynamic therapy (aPDT) has an efficient action against a wide range of microorganisms and can be viewed as an alternative approach for treating microbial infections. The aim of this study was to determine if a model target virus (T4-like bacteriophage), in the presence of the tricationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py(+)-Me-PF), can develop resistance to aPDT and recover its viability after photodynamic treatments. To assess the development of aPDT resistance after repeated treatments, a suspension of T4-like bacteriophage was irradiated with white light (40 Wm(-2)) for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF (99.99% of inactivation) and new phage suspensions were produced from the surviving phages, after each cycle of light exposure. The procedure was repeated ten times. To evaluate the recovery of viral viability after photoinactivation, a suspension of T4-like bacteriophage was irradiated with white light for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF on five consecutive days. In each day, an aliquot of the irradiated suspension was plated and the number of lysis plaques was counted after 24, 48, 72, 96 and 120 h of dark incubation at 37 °C. The profile of bacteriophage photoinactivation did not change after ten consecutive cycles and no recovery of viability was detected after five accumulated cycles of photodynamic treatment. The results suggest that aPDT represents a valuable and promising alternative therapy to treat viral infections, overcoming the problem of microbial resistance.
Collapse
Affiliation(s)
- Liliana Costa
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Comini L, Núñez Montoya S, Páez P, Argüello GA, Albesa I, Cabrera J. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:108-14. [DOI: 10.1016/j.jphotobiol.2010.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
37
|
Hotze EM, Badireddy AR, Chellam S, Wiesner MR. Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6639-45. [PMID: 19764229 DOI: 10.1021/es901110m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nonenveloped viruses are shown to be inactivated by singlet oxygen ((1)O2) produced in UVA photosensitized aqueous suspensions of a polyhydroxylated fullerene (C60(OH)22-24; fullerol, 40 microM). Experiments were performed with MS2, a ssRNA bacteriophage, as well as two dsDNA phages: PRD1, which has an internal lipid membrane, and T7, which entirely lacks lipids. MS2 was highly susceptible to inactivation, having a rate constant of 0.034 min(-1) with UVA alone, which increased to 0.102 min(-1) with photoactivated fullerol. PRD1 and T7 were not susceptible to UVA alone but were photoinactivated by fullerol with rate constants of 0.026 and 0.035 min(-1), respectively. The role of 1(O)2 was demonstrated by three independent observations: (i) viruses that were insensitive to UVA alone were photoinactivated by rose bengal in the absence of fullerol, (ii) beta-carotene reduced (but did not eliminate) photoinactivation rates, and (iii) singlet oxygen sensor green fluorescence spectroscopy directly detected (1)O2 in UVA illuminated fullerol suspensions. Qualitative evidence is also presented that fullerol aggregates were closely associated with viruses allowing efficient transfer of 1(O)2 to their capsids. Fourier transform infrared spectroscopy revealed significant oxidative modifications to capsid proteins but comparatively minor changes to the DNA and (phospho)lipids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) suggested (1)O2 induced crosslinking of proteins. Hence, phage inactivation by photoactivated fullerol nanoparticles appears to be caused by cross-linking of capsid protein secondary structures by exogenous (1)O2 and consequentimpairmentof their ability to bind to surface receptors of their bacterial hosts (loss of infectivity) rather than by direct reactions with fullerol.
Collapse
Affiliation(s)
- Ernest M Hotze
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708-0287, USA
| | | | | | | |
Collapse
|
38
|
Marotti J, Aranha ACC, Eduardo CDP, Ribeiro MS. Photodynamic Therapy Can Be Effective as a Treatment for Herpes Simplex Labialis. Photomed Laser Surg 2009; 27:357-63. [DOI: 10.1089/pho.2008.2268] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Juliana Marotti
- Department of Prosthodontics, University of São Paulo, São Paulo, Brazil
| | | | | | - Martha Simões Ribeiro
- Center for Lasers and Applications, Instituto de Pesquisas Energérticas e Nucleares, São Paulo, Brazil
| |
Collapse
|
39
|
Tajima Y, Takagi R, Nakajima T, Yasuda T, Kominato Y. 11-Tungstophosphate with Iron(II) and Hydrogen Peroxide Efficiently Detached Bacterial Biofilm. Biol Pharm Bull 2009; 32:1783-9. [DOI: 10.1248/bpb.32.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yutaka Tajima
- Legal Medicine and Molecular Genetics, Postgraduate School of Medicine, Gunma University
| | - Rie Takagi
- Legal Medicine and Molecular Genetics, Postgraduate School of Medicine, Gunma University
| | - Tamiko Nakajima
- Legal Medicine and Molecular Genetics, Postgraduate School of Medicine, Gunma University
| | - Toshiro Yasuda
- Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, Fukui University
| | - Yoshihiko Kominato
- Legal Medicine and Molecular Genetics, Postgraduate School of Medicine, Gunma University
| |
Collapse
|
40
|
Osselaer JC, Debry C, Goffaux M, Pineau J, Calomme G, Dubuc E, Chatelain B, Vandendaele MC, Hsu J, Rheinschmidt M, Lin L. Coagulation function in fresh-frozen plasma prepared with two photochemical treatment methods: methylene blue and amotosalen. Transfusion 2007; 48:108-17. [PMID: 17900283 DOI: 10.1111/j.1537-2995.2007.01488.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pathogen inactivation of plasma intended for transfusion is now the standard of care in Belgium. Two methods for treatment of single plasma units are available: amotosalen plus ultraviolet A light and methylene blue plus visible light. This study compared the quality and stability of plasma treated with these two methods. STUDY DESIGN AND METHODS Plasma units made from a pool of two ABO-matched fresh apheresis units were photochemically treated with either amotosalen (PCT-FFP) or methylene blue (MB-FFP). A total of 12 paired samples were evaluated. Plasma coagulation function was assessed at three time points: immediately after treatment, after 30 days of frozen storage, and an additional 24 hours at 4 degrees C after thawing. Comparison between PCT-FFP and MB-FFP was assessed with the paired t test and a p value of less than 0.05 indicated statistical significance. RESULTS Based on statistical analysis, mean levels of factor (F)II, FXII, FXIII, von Willebrand antigen, ADAMTS-13, D-dimers, and protein C were equivalent between PCT-FFP and MB-FFP for all three time points. PCT-FFP exhibited shorter mean prothrombin time, activated partial thromboplastin time (two time points), and thrombin time and higher mean levels of fibrinogen, FXI, and protein S than MB-FFP. Retention of FV, FVII, FVIII, FX, or von Willebrand factor:ristocetin cofactor in PCT-FFP was either equivalent to or higher than MB-FFP. MB-FFP contained higher mean levels of plasminogen, antithrombin, and plasmin inhibitor than PCT-FFP. Retention of F IX in MB-FFP was higher than PCT-FFP only after the 4 degrees C storage after thawing. CONCLUSION There is adequate preservation of therapeutic coagulation factor activities in both PCT-FFP and MB-FFP. The overall coagulation factor levels and stability of PCT-FFP were better preserved than MB-FFP.
Collapse
Affiliation(s)
- Jean-Claude Osselaer
- Blood Transfusion Center and Laboratory of Hematology, Cliniques Universitaires de Mont Godinne, Université Catholique de Louvain, Yvoir, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Gábor F, Szolnoki J, Tóth K, Fekete A, Maillard P, Csík G. Photoinduced Inactivation of T7 Phage Sensitized by Symmetrically and Asymmetrically Substituted Tetraphenyl Porphyrin: Comparison of Efficiency and Mechanism of Action¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730304piotps2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Costa D, Fernandes E, Santos JLM, Pinto DCGA, Silva AMS, Lima JLFC. New noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen. Anal Bioanal Chem 2007; 387:2071-81. [PMID: 17225996 DOI: 10.1007/s00216-006-0998-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 11/29/2022]
Abstract
In the present study, a new fluorescence microplate screening assay for evaluating scavenging activity against singlet oxygen (1O2) was implemented. The chemical generation of 1O2 was promoted using the thermodissociable endoperoxide of disodium 3,3'-(1,4-naphthalene)bispropionate (NDPO2). The detection of 1O2 was achieved using dihydrorhodamine 123 (DHR), a nonfluorescent molecule that is oxidizable to the fluorescent form rhodamine 123 (RH). The combined use of a 1O2-selective generator and a highly sensitive probe (DHR) was then successfully applied to perform a screening assay of the 1O2 scavenging activities of ascorbic acid, penicillamine, cysteine, N-acetylcysteine (NAC), methionine, reduced glutathione (GSH), dihydrolipoic acid, lipoic acid, and sodium azide. All of these antioxidants exhibited concentration-dependent 1O2 scavenging capacities. They could be ranked according to observed activity: ascorbic acid>cysteine>penicillamine>dihydrolipoic acid>GSH>NAC>sodium azide>lipoic acid (IC50 values of 3.0+/-0.2, 8.0+/-0.7, 10.9+/-0.8, 25.2+/-4.5, 57.4+/-5.9, 138+/-13, 1124+/-128, 2775+/-359 microM, mean+/-SEM, respectively)>methionine (35% of scavenging effect at 10 mM). In conclusion, the use of NDPO2 as a selective generator for 1O2 and its fluorescence detection by the highly sensitive probe DHR is shown to be a reliable and resourceful analytical alternative means to implement a microplate screening assay for scavenging activity against 1O2.
Collapse
Affiliation(s)
- David Costa
- REQUIMTE, Departamento de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence, mainly represented by temperature and heating time, affects the DNA degradation via DNA depurination followed by cleavage of nearby phosphodiesters. The heating time influence is temperature-dependent. By reactive oxygen species (ROS) scavenging and 1,3-diphenyl-isobenzofuran (DPBF) bleaching experiments the influence of oxygen on DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the thermal degradation of cellular DNA and isolated DNA showed that cellular lipids can aggravate DNA thermal degradation. These results confirm the possibility of gene amplification from thermally degraded DNA. They can be used to evaluate the feasibility of the retrieval of single gene from ancient remains.
Collapse
Affiliation(s)
- Lianwen Zhang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
45
|
Richardson TB, Porter CD. Inactivation of murine leukaemia virus by exposure to visible light. Virology 2005; 341:321-9. [PMID: 16099012 DOI: 10.1016/j.virol.2005.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/12/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Prolonged storage of murine leukaemia virus in ambient light leads to a loss of infectivity. Particle integrity and envelope incorporation are unaffected; rather, the defect is functional and intrinsic to the viral core. Light in the violet part of the visible spectrum (wavelength 420-430 nm) is responsible for virus inactivation. Reduced reverse transcriptase-dependent cDNA generation post-entry accounts for the loss in infectivity and is likely due to a polymerase processivity defect. The virion-associated reverse transcription complex is thus photolabile. The phenomenon could be important in certain experimental situations, notably at elevated temperatures or when exposure to light is extensive. Additionally, our study suggests that the reverse transcription complex is a suitable target for an anti-retroviral strategy; identification of the nature of the lesion and the mechanism of its induction may inform the design of novel inhibitors.
Collapse
|
46
|
MacManus-Spencer LA, Latch DE, Kroncke KM, McNeill K. Stable Dioxetane Precursors as Selective Trap-and-Trigger Chemiluminescent Probes for Singlet Oxygen. Anal Chem 2005; 77:1200-5. [PMID: 15859008 DOI: 10.1021/ac048293s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Postigo F, Mora M, De Madariaga MA, Nonell S, Sagristá ML. Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements. Int J Pharm 2004; 278:239-54. [PMID: 15196629 DOI: 10.1016/j.ijpharm.2004.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 02/20/2004] [Accepted: 03/03/2004] [Indexed: 11/28/2022]
Abstract
The ability of photosensitisers to give reactive oxygenated products is considered decisive for photodynamic applications, but the hydrophobic nature of many porphyrins makes necessary to obtain suitable pharmaceutical formulations. This paper reports the structural photosensitiser features that allow the preparation of stable liposomal formulations. Metallated and non-metallated TPPs and TPyPs and different lipid/porphyrin ratios were considered in order to procure liposomal preparations containing porphyrin concentrations adequate to necessary doses. The results show that the incorporation of porphyrins into liposomes can be related with their ability to form aggregates in a watery media. Thus, ZnTPP, which structural properties avoid the formation of aggregates, was efficiently incorporated into stable liposomes. Moreover, the efficient generation of singlet oxygen by ZnTPP liposomal suspensions has been shown. Because of this, the synthesis of hydrophobic porphyrin derived structures or other sensitisers, which do not aggregate in a watery media and with Q-bands shifted to higher lambda values than ZnTPP, will be efficiently incorporated into liposomes and useful for clinical applications.
Collapse
Affiliation(s)
- F Postigo
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Spain
| | | | | | | | | |
Collapse
|
48
|
Egyeki M, Turóczy G, Majer Z, Tóth K, Fekete A, Maillard P, Csík G. Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action. Biochim Biophys Acta Gen Subj 2003; 1624:115-24. [PMID: 14642821 DOI: 10.1016/j.bbagen.2003.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the efficiency and the mechanism of action of a tetraphenyl porphyrin derivative in its photoreaction with T7 phage as surrogate of non-enveloped DNA viruses. TPFP was able to sensitize the photoinactivation of T7 phage in spite of the lack of its binding to the nucleoprotein complex. The efficiency of TPFP photosensitization was limited by the aggregation and by the photobleaching of porphyrin molecules. Addition of sodium azide or 1,3-dimethyl-2-thiourea (DMTU) to the reaction mixture moderated T7 inactivation, however, neither of them inhibited T7 inactivation completely. This result suggests that both Type I and Type II reaction play a role in the virus inactivation. Optical melting studies revealed structural changes in the protein part but not in the DNA of the photochemically treated nucleoprotein complex. Polymerase chain reaction (PCR) also failed to demonstrate any DNA damage. Circular dichroism (CD) spectra of photosensitized nucleoprotein complex indicated changes in the secondary structure of both the DNA and proteins. We suggest that damages in the protein capsid and/or loosening of protein-DNA interaction can be responsible for the photodynamic inactivation of T7 phage. The alterations in DNA secondary structure might be the result of photochemical damage in phage capsid proteins.
Collapse
Affiliation(s)
- M Egyeki
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
Suontaka AM, Blombäck M, Chapman J. Changes in functional activities of plasma fibrinogen after treatment with methylene blue and red light. Transfusion 2003; 43:568-75. [PMID: 12702176 DOI: 10.1046/j.1537-2995.2003.00377.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Methylene blue (MB) plus light treatment used for virus inactivation of human plasma units may lead to changes in the functional activities of fibrinogen. STUDY DESIGN AND METHODS Single-donor units of fresh plasma were treated with 1.0 microM MB and a red light dose of 48 J per cm2. The effects of MB plus red light treatment on fibrinogen clottability, fibrin polymerization and gelation, clot stabilization, and fibrinolysis were studied. RESULTS The concentration of clottable fibrinogen was unchanged during MB plus red light treatment, but a light-dose-dependent decrease of the concentration of functional fibrinogen was found. The initial release rate of fibrinopeptide A was slightly increased after MB plus red light treatment. Turbidity measurements of fibrin gel showed prolonged clotting time, lower fibrin fiber mass-to-length ratio, and slightly smaller fiber diameter. At a given clotting time, a gel with lower fibrin fiber mass-to-length ratio was produced. Clot stability and fibrinolysis remained normal. l-Histidine added to plasma before MB plus red light treatment normalized the thrombin-induced coagulation time in a dose-dependent way. CONCLUSION MB plus red light treatment affected the polymerization and gelation phase of fibrin. A tighter fibrin gel structure was formed. No effect on stabilization of fibrin clot or fibrinolysis was found.
Collapse
Affiliation(s)
- Anna-Maija Suontaka
- Department of Surgical Sciences/Blood Coagulation Research, Clinical Chemistry Building, Karolinska Hospital, SE-171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
50
|
Abstract
BACKGROUND AND OBJECTIVES Platelet concentrates are contaminated with residual leucocytes and may also be infected with viruses and bacteria. We investigated whether these pathogens can be inactivated by a two-step procedure comprising photodynamic treatment in the presence of the phenothiazine dye, thionine, followed by irradiation with ultraviolet light (UV-B, wavelength range 290-330 nm). MATERIALS AND METHODS Platelet concentrates were prepared from buffy coats. The concentrates were spiked with different viruses, bacteria and leucocytes, then illuminated with yellow light in the presence of thionine at dye concentrations between 1 and 5 microm and with UV-B at doses up to 2.4 J/cm2. The infectivity of samples and the viability of leucocytes were assayed before and after treatment. The influence of treatment on in vitro platelet function was also examined. RESULTS The inactivation of free viruses in platelet concentrates by photodynamic treatment with thionine/light was significantly enhanced when it was followed by irradiation with UV-B. The inactivation of leucocytes and of bacteria by UV-B was improved when it was preceded by thionine/light. Sterile platelet concentrates were prepared from buffy coats infected with Staphylococcus epidermidis. Platelet function and the storage stability of platelet concentrates were only moderately influenced by the two decontamination steps. CONCLUSIONS Photodynamic treatment in the presence of the phenothiazine dye, thionine, followed by low-dose UVB, has the potential to inactivate viruses, leucocytes and bacteria, which might contaminate platelet concentrates. Both treatments complement each other.
Collapse
Affiliation(s)
- H Mohr
- Blood Center of the German Red Cross Chapters of NSTOB, Institute Springe, Germany.
| | | |
Collapse
|