1
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
2
|
Nihei Y, Higashiyama M, Miyauchi K, Haniuda K, Suzuki Y, Kubo M, Kitamura D. Subcutaneous immunisation with zymosan generates mucosal IgA-eliciting memory and protects mice from heterologous influenza virus infection. Int Immunol 2023; 35:377-386. [PMID: 37140172 DOI: 10.1093/intimm/dxad013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/29/2023] [Indexed: 05/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant isotype of antibodies and provides a first line of defense at the mucosa against pathogens invading the host. It has been widely accepted that the mucosal IgA response provided by vaccination requires mucosal inoculation, and intranasal inoculation has been proposed for vaccines against influenza virus. Considering the difficulty of intranasal vaccination in infants or elderly people, however, parenteral vaccination that provides the mucosal IgA response is desirable. Here, we demonstrate that subcutaneous immunisation with zymosan, a yeast cell wall constituent known to be recognised by Dectin-1 and TLR2, potentiates the production of antigen-specific IgA antibodies in the sera and airway mucosa upon intranasal antigen challenge. We confirmed that the antigen-specific IgA-secreting cells accumulated in the lung and nasal-associated lymphoid tissues after the antigen challenge. Such an adjuvant effect of zymosan in the primary immunisation for the IgA response depended on Dectin-1 signalling, but not on TLR2. The IgA response to the antigen challenge required both antigen-specific memory B and T cells, and the generation of memory T cells, but not memory B cells, depended on zymosan as an adjuvant. Finally, we demonstrated that subcutaneous inoculation of inactivated influenza virus with zymosan, but not with alum, mostly protected the mice from infection with a lethal dose of a heterologous virus strain. These data suggest that zymosan is a possible adjuvant for parenteral immunisation that generates memory IgA responses to respiratory viruses such as influenza virus.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Mizuki Higashiyama
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
- Division of Molecular Pathology, RIBS, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
3
|
Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R, Zan H, Xu Z, Casali P. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. SCIENCE ADVANCES 2023; 9:eade8928. [PMID: 37115935 PMCID: PMC10146914 DOI: 10.1126/sciadv.ade8928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Maturation of antibody responses entails somatic hypermutation (SHM), class-switch DNA recombination (CSR), plasma cell differentiation, and generation of memory B cells, and it is thought to require T cell help. We showed that B cell Toll-like receptor 4 (TLR4)-B cell receptor (BCR) (receptor for antigen) coengagement by 4-hydroxy-3-nitrophenyl acetyl (NP)-lipopolysaccharide (LPS) (Escherichia coli lipid A polysaccharide O-antigen) or TLR5-BCR coengagement by Salmonella flagellin induces mature antibody responses to NP and flagellin in Tcrβ-/-Tcrδ-/- and NSG/B mice. TLR-BCR coengagement required linkage of TLR and BCR ligands, "linked coengagement." This induced B cell CSR/SHM, germinal center-like differentiation, clonal expansion, intraconal diversification, plasma cell differentiation, and an anamnestic antibody response. In Tcrβ-/-Tcrδ-/- mice, linked coengagement of TLR4-BCR by LPS or TLR5-BCR by flagellin induced protective antibodies against E. coli or Salmonella Typhimurium. Our findings unveiled a critical role of B cell TLRs in inducing neutralizing antibody responses, including those to microbial pathogens, without T cell help.
Collapse
Affiliation(s)
- Carlos E. Rivera
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Yulai Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hui Yan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Amanda D. Fisher
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
- Department of Medicine, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Lu Y, Xu M, Dorrier CE, Zhang R, Mayer CT, Wagner D, McGavern DB, Hodes RJ. CD40 Drives Central Nervous System Autoimmune Disease by Inducing Complementary Effector Programs via B Cells and Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2083-2092. [PMID: 36426970 PMCID: PMC10065987 DOI: 10.4049/jimmunol.2200439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Costimulatory CD40 plays an essential role in autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis (MS). However, how CD40 drives autoimmune disease pathogenesis is not well defined. Here, we used a conditional knockout approach to determine how CD40 orchestrates a CNS autoimmune disease induced by recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We found that deletion of CD40 in either dendritic cells (DCs) or B cells profoundly reduced EAE disease pathogenesis. Mechanistically, CD40 expression on DCs was required for priming pathogenic Th cells in peripheral draining lymph nodes and promoting their appearance in the CNS. By contrast, B cell CD40 was essential for class-switched MOG-specific Ab production, which played a crucial role in disease pathogenesis. In fact, passive transfer of MOG-immune serum or IgG into mice lacking CD40 on B cells but not DCs reconstituted autoimmune disease, which was associated with inundation of the spinal cord parenchyma by Ig and complement. These data demonstrate that CD40 supports distinct effector programs in B cells and DCs that converge to drive a CNS autoimmune disease and identify targets for intervention.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Max Xu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cayce E. Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wagner
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol 2022; 23:1536-1550. [PMID: 36271147 PMCID: PMC9896965 DOI: 10.1038/s41590-022-01324-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.
Collapse
|
6
|
Feng H, Zhao Z, Dong C. Adapting to the world: The determination and plasticity of T follicular helper cells. J Allergy Clin Immunol 2022; 150:981-989. [DOI: 10.1016/j.jaci.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
7
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
8
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
9
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Ansari A, Sachan S, Jit BP, Sharma A, Coshic P, Sette A, Weiskopf D, Gupta N. An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4 + T cells. CELL REPORTS METHODS 2022; 2:100224. [PMID: 35571764 PMCID: PMC9085463 DOI: 10.1016/j.crmeth.2022.100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/27/2021] [Accepted: 04/28/2022] [Indexed: 04/30/2023]
Abstract
The B cell "help" function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B cocultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing M. tuberculosis (Mtb), we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells and that similar effects are achieved by supplementing cocultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and stem cell growth factor (SCGF)/C-type lectin domain family 11 member A (CLEC11A), but this alone does not fully recapitulate the effects of monocyte supplementation. Importantly, we demonstrate improved activation and immunological output of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory CD4+ T-B cell cocultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example, after vaccination or natural infection.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
11
|
Feng H, Zhao X, Xie J, Bai X, Fu W, Chen H, Tang H, Wang X, Dong C. Pathogen-associated T follicular helper cell plasticity is critical in anti-viral immunity. SCIENCE CHINA LIFE SCIENCES 2022; 65:1075-1090. [DOI: 10.1007/s11427-021-2055-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 01/12/2023]
|
12
|
Song W, Antao OQ, Condiff E, Sanchez GM, Chernova I, Zembrzuski K, Steach H, Rubtsova K, Angeletti D, Lemenze A, Laidlaw BJ, Craft J, Weinstein JS. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 2022; 55:290-307.e5. [PMID: 35090581 PMCID: PMC8965751 DOI: 10.1016/j.immuni.2022.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Emily Condiff
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Irene Chernova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Krzysztof Zembrzuski
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kira Rubtsova
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
13
|
Verstegen NJM, Ubels V, Westerhoff HV, van Ham SM, Barberis M. System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation. Front Immunol 2021; 12:734282. [PMID: 34616402 PMCID: PMC8488341 DOI: 10.3389/fimmu.2021.734282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Germinal center (GC) reactions are vital to the correct functioning of the adaptive immune system, through formation of high affinity, class switched antibodies. GCs are transient anatomical structures in secondary lymphoid organs where specific B cells, after recognition of antigen and with T cell help, undergo class switching. Subsequently, B cells cycle between zones of proliferation and somatic hypermutation and zones where renewed antigen acquisition and T cell help allows for selection of high affinity B cells (affinity maturation). Eventually GC B cells first differentiate into long-lived memory B cells (MBC) and finally into plasma cells (PC) that partially migrate to the bone marrow to encapsulate into long-lived survival niches. The regulation of GC reactions is a highly dynamically coordinated process that occurs between various cells and molecules that change in their signals. Here, we present a system-level perspective of T cell-mediated GC B cell differentiation, presenting and discussing the experimental and computational efforts on the regulation of the GCs. We aim to integrate Systems Biology with B cell biology, to advance elucidation of the regulation of high-affinity, class switched antibody formation, thus to shed light on the delicate functioning of the adaptive immune system. Specifically, we: i) review experimental findings of internal and external factors driving various GC dynamics, such as GC initiation, maturation and GCBC fate determination; ii) draw comparisons between experimental observations and mathematical modeling investigations; and iii) discuss and reflect on current strategies of modeling efforts, to elucidate B cell behavior during the GC tract. Finally, perspectives are specifically given on to the areas where a Systems Biology approach may be useful to predict novel GCBC-T cell interaction dynamics.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Ubels
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78:5095-5106. [PMID: 33880615 PMCID: PMC11073436 DOI: 10.1007/s00018-021-03839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with joint and systemic inflammation that is accompanied by the production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide (anti-CCP) antibodies. Follicular helper T (Tfh) cells, which are a subset of CD4+ T cells, facilitate germinal center (GC) reactions by providing signals required for high-affinity antibody production and the generation of long-lived antibody-secreting plasma cells. Uncontrolled expansion of Tfh cells is observed in various systemic autoimmune diseases. Particularly, the frequencies of circulating Tfh-like (cTfh-like) cells, their subtypes and synovial-infiltrated T helper cells correlate with disease activity in RA patients. Therefore, reducing autoantibody production and restricting excessive Tfh cell responses are ideal ways to control RA pathogenesis. The present review summarizes current knowledge of the involvement of Tfh cells in RA pathogenesis and highlights the potential of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Xueli Xia
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
15
|
Narayanan B, Prado de Maio D, La Porta J, Voskoboynik Y, Ganapathi U, Xie P, Covey LR. A Posttranscriptional Pathway of CD40 Ligand mRNA Stability Is Required for the Development of an Optimal Humoral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2552-2565. [PMID: 34031147 DOI: 10.4049/jimmunol.2001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
CD40 ligand (CD40L) mRNA stability is dependent on an activation-induced pathway that is mediated by the binding complexes containing the multifunctional RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) to a 3' untranslated region of the transcript. To understand the relationship between regulated CD40L and the requirement for variegated expression during a T-dependent response, we engineered a mouse lacking the CD40L stability element (CD40LΔ5) and asked how this mutation altered multiple aspects of the humoral immunity. We found that CD40LΔ5 mice expressed CD40L at 60% wildtype levels, and lowered expression corresponded to significantly decreased levels of T-dependent Abs, loss of germinal center (GC) B cells and a disorganized GC structure. Gene expression analysis of B cells from CD40LΔ5 mice revealed that genes associated with cell cycle and DNA replication were significantly downregulated and genes linked to apoptosis upregulated. Importantly, somatic hypermutation was relatively unaffected although the number of cells expressing high-affinity Abs was greatly reduced. Additionally, a significant loss of plasmablasts and early memory B cell precursors as a percentage of total GL7+ B cells was observed, indicating that differentiation cues leading to the development of post-GC subsets was highly dependent on a threshold level of CD40L. Thus, regulated mRNA stability plays an integral role in the optimization of humoral immunity by allowing for a dynamic level of CD40L expression on CD4 T cells that results in the proliferation and differentiation of pre-GC and GC B cells into functional subsets.
Collapse
Affiliation(s)
- Bitha Narayanan
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Diego Prado de Maio
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | | | - Usha Ganapathi
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lori R Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
16
|
Schubert K, Karkossa I, Schor J, Engelmann B, Steinheuer LM, Bruns T, Rolle-Kampczyk U, Hackermüller J, von Bergen M. A Multi-Omics Analysis of Mucosal-Associated-Invariant T Cells Reveals Key Drivers of Distinct Modes of Activation. Front Immunol 2021; 12:616967. [PMID: 34108957 PMCID: PMC8183572 DOI: 10.3389/fimmu.2021.616967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in a TCR-independent manner via cytokines. The underlying molecular mechanisms are not entirely understood. To define the activation of MAIT cells on the molecular level, we applied a multi-omics approach with untargeted transcriptomics, proteomics and metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells showed a distinct transcriptional reprogramming, including altered pathways, transcription factors and effector molecules. We validated the consequences of this reprogramming on the phenotype by proteomics and metabolomics. Thus, and to distinguish between TCR-dependent and -independent activation, MAIT cells were stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to full activation of MAIT cells, comparable to activation by E. coli. Using an integrated network-based approach, we identified key drivers of the distinct modes of activation, including cytokines and transcription factors, as well as negative feedback regulators like TWIST1 or LAG3. Taken together, we present novel insights into the biological function of MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in pathological conditions.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Lisa Maria Steinheuer
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Li X, Xu D, Cheng B, Zhou Y, Chen Z, Wang Y. Mitochondrial DNA insert into CD40 ligand gene-associated X-linked hyper-IgM syndrome. Mol Genet Genomic Med 2021; 9:e1646. [PMID: 33764006 PMCID: PMC8172197 DOI: 10.1002/mgg3.1646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND X-linked hyper-IgM (X-HIGM), which results from mutations in the CD40LG gene located on chromosome Xq26.3, is the most common form of HIGM. To date, more than 130 variants of the CD40L gene have been reported. We described a patient with novel de novo nuclear mitochondrial DNA sequences (NUMTs) in the CD40LG gene that have resulted in X-HIGM. METHODS Whole-exome sequencing (WES) analysis was used to screen for causal variants in the genome, and the candidate breakpoint was confirmed by Sanger sequencing. RESULTS A new mutation of CD40LG, which deletes A at position 17 followed by a 147-nucleotide from mitochondrial DNA copies insertion in exon 1, was detected in a 20-month-old boy harbouring an X-HIGM combined with immunodeficiency syndrome. CONCLUSION This is one of the few cases of a human genetic disease caused by nuclear mitochondrial DNA sequences (NUMTs). The presented data serve to demonstrate that de novo NUMT transfer of nucleic acid is a novel mechanism of X-HIGM.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dan Xu
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Beilei Cheng
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yunlian Zhou
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingshuo Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
18
|
Abstract
Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.
Collapse
Affiliation(s)
- Timothy W Hand
- R.K. Mellon Institute for Pediatric Research, Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, USA;
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
19
|
Vavassori V, Mercuri E, Marcovecchio GE, Castiello MC, Schiroli G, Albano L, Margulies C, Buquicchio F, Fontana E, Beretta S, Merelli I, Cappelleri A, Rancoita PM, Lougaris V, Plebani A, Kanariou M, Lankester A, Ferrua F, Scanziani E, Cotta-Ramusino C, Villa A, Naldini L, Genovese P. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med 2021; 13:e13545. [PMID: 33475257 PMCID: PMC7933961 DOI: 10.15252/emmm.202013545] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X‐linked hyper‐IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one‐size‐fits‐all editing strategy for effective T‐cell correction, selection, and depletion and investigated the therapeutic potential of T‐cell and HSPC therapies in the HIGM1 mouse model. Edited patients’ derived CD4 T cells restored physiologically regulated CD40L expression and contact‐dependent B‐cell helper function. Adoptive transfer of wild‐type T cells into conditioned HIGM1 mice rescued antigen‐specific IgG responses and protected mice from a disease‐relevant pathogen. We then obtained ~ 25% CD40LG editing in long‐term repopulating human HSPC. Transplanting such proportion of wild‐type HSPC in HIGM1 mice rescued immune functions similarly to T‐cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T‐cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mercuri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Monza, Italy
| | - Genni E Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria C Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Elena Fontana
- Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy.,Human Genome Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute for Biomedical Technologies, National Research Council (CNR), Segrate, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Paola Mv Rancoita
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Vassilios Lougaris
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Plebani
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Maria Kanariou
- First Department of Paediatrics, Aghia Sophia Children's Hospital, Athens, Greece
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Renner ED, Krätz CE, Orange JS, Hagl B, Rylaarsdam S, Notheis G, Durandy A, Torgerson TR, Ochs HD. Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clin Immunol 2020; 222:108638. [PMID: 33276124 DOI: 10.1016/j.clim.2020.108638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.
Collapse
Affiliation(s)
- Ellen D Renner
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Carolin E Krätz
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Jordan S Orange
- Columbia University, Department of Pediatrics, New York, United States of America
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Stacey Rylaarsdam
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Gundula Notheis
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Anne Durandy
- Laboratory of Human Lymphohaematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
21
|
Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2020; 219:107709. [PMID: 33091428 DOI: 10.1016/j.pharmthera.2020.107709] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The CD40 receptor and its ligand CD40L is one of the most critical molecular pairs of the stimulatory immune checkpoints. Both CD40 and CD40L have a membrane form and a soluble form generated by proteolytic cleavage or alternative splicing. CD40 and CD40L are widely expressed in various types of cells, among which B cells and myeloid cells constitutively express high levels of CD40, and T cells and platelets express high levels of CD40L upon activation. CD40L self-assembles into functional trimers which induce CD40 trimerization and downstream signaling. The canonical CD40/CD40L signaling is mediated by recruitment of TRAFs and NF-κB activation, which is supplemented by signal pathways such as PI3K/AKT, MAPKs and JAK3/STATs. CD40/CD40L immune checkpoint leads to activation of both innate and adaptive immune cells via two-way signaling. CD40/CD40L interaction also participates in regulating thrombosis, tissue inflammation, hematopoiesis and tumor cell fate. Because of its essential role in immune activation, CD40/CD40L interaction has been regarded as an attractive immunotherapy target. In recent years, significant advance has been made in CD40/CD40L-targeted therapy. Various types of agents, including agonistic/antagonistic monoclonal antibodies, cellular vaccines, adenoviral vectors and protein antagonist, have been developed and evaluated in early-stage clinical trials for treating malignancies, autoimmune diseases and allograft rejection. In general, these agents have demonstrated favorable safety and some of them show promising clinical efficacy. The mechanisms of benefits include immune cell activation and tumor cell lysis/apoptosis in malignancies, or immune cell inactivation in autoimmune diseases and allograft rejection. This review provides a comprehensive overview of the structure, processing, cellular expression pattern, signaling and effector function of CD40/CD40L checkpoint molecules. In addition, we summarize the progress, targeted diseases and outcomes of current ongoing and completed clinical trials of CD40/CD40L-targeted therapy.
Collapse
Affiliation(s)
- TingTing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Billy Truong
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - LiZhe Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - XiaoFeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
22
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
23
|
Janssen E, Tohme M, Butts J, Giguere S, Sage PT, Velázquez FE, Kam C, Milin E, Das M, Sobh A, Al-Tamemi S, Luscinskas FW, Batista F, Geha RS. DOCK8 is essential for LFA-1-dependent positioning of T follicular helper cells in germinal centers. JCI Insight 2020; 5:134508. [PMID: 32573493 DOI: 10.1172/jci.insight.134508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/18/2020] [Indexed: 01/07/2023] Open
Abstract
T follicular helper (Tfh) cell migration into germinal centers (GCs) is essential for the generation of GC B cells and antibody responses to T cell-dependent (TD) antigens. This process requires interactions between lymphocyte function-associated antigen 1 (LFA-1) on Tfh cells and ICAMs on B cells. The mechanisms underlying defective antibody responses to TD antigens in DOCK8 deficiency are incompletely understood. We show that mice selectively lacking DOCK8 in T cells had impaired IgG antibody responses to TD antigens, decreased GC size, and reduced numbers of GC B cells. However, they developed normal numbers of Tfh cells with intact capacity for driving B cell differentiation into a GC phenotype in vitro. Notably, migration of DOCK8-deficient T cells into GCs was defective. Following T cell receptor (TCR)/CD3 ligation, DOCK8-deficient T cells had impaired LFA-1 activation and reduced binding to ICAM-1. Our results therefore indicate that DOCK8 is important for LFA-1-dependent positioning of Tfh cells in GCs, and thereby the generation of GC B cells and IgG antibody responses to TD antigen.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan Butts
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Giguere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco E Velázquez
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Milin
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Facundo Batista
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Grasset EK, Chorny A, Casas-Recasens S, Gutzeit C, Bongers G, Thomsen I, Chen L, He Z, Matthews DB, Oropallo MA, Veeramreddy P, Uzzan M, Mortha A, Carrillo J, Reis BS, Ramanujam M, Sintes J, Magri G, Maglione PJ, Cunningham-Rundles C, Bram RJ, Faith J, Mehandru S, Pabst O, Cerutti A. Gut T cell-independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells. Sci Immunol 2020; 5:eaat7117. [PMID: 32737068 PMCID: PMC8349226 DOI: 10.1126/sciimmunol.aat7117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
The gut mounts secretory immunoglobulin A (SIgA) responses to commensal bacteria through nonredundant T cell-dependent (TD) and T cell-independent (TI) pathways that promote the establishment of mutualistic host-microbiota interactions. SIgAs from the TD pathway target penetrant bacteria, and their induction requires engagement of CD40 on B cells by CD40 ligand on T follicular helper cells. In contrast, SIgAs from the TI pathway bind a larger spectrum of bacteria, but the mechanism underpinning their production remains elusive. Here, we show that the intestinal TI pathway required CD40-independent B cell-activating signals from TACI, a receptor for the innate CD40 ligand-like factors BAFF and APRIL. TACI-induced SIgA responses targeted a fraction of the gut microbiota without shaping its overall composition. Of note, TACI was dispensable for TD induction of IgA in gut-associated lymphoid organs. Thus, BAFF/APRIL signals acting on TACI orchestrate commensal bacteria-specific SIgA responses through an intestinal TI program.
Collapse
Affiliation(s)
- E K Grasset
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - A Chorny
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Casas-Recasens
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - C Gutzeit
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - I Thomsen
- Institute of Molecular Medicine, Aachen University, Aachen D-52074, Germany
| | - L Chen
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Z He
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D B Matthews
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M A Oropallo
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P Veeramreddy
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Uzzan
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J Carrillo
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | - B S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - M Ramanujam
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - J Sintes
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - G Magri
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - P J Maglione
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - C Cunningham-Rundles
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R J Bram
- Departments of Pediatrics and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - J Faith
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Mehandru
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - O Pabst
- Institute of Molecular Medicine, Aachen University, Aachen D-52074, Germany
| | - A Cerutti
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08003, Spain
| |
Collapse
|
25
|
Lee MJ, Jo H, Park SH, Ko MK, Kim SM, Kim B, Park JH. Advanced Foot-And-Mouth Disease Vaccine Platform for Stimulation of Simultaneous Cellular and Humoral Immune Responses. Vaccines (Basel) 2020; 8:E254. [PMID: 32481687 PMCID: PMC7349985 DOI: 10.3390/vaccines8020254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Currently available commercial foot-and-mouth disease (FMD) vaccines have various limitations, such as the slow induction and short-term maintenance of antibody titers. Therefore, a novel FMD vaccine that can rapidly induce high neutralizing antibody titers to protect the host in early stages of an FMD virus infection, maintain high antibody titers for long periods after one vaccination dose, and confer full protection against clinical symptoms by simultaneously stimulating cellular and humoral immunity is needed. Here, we developed immunopotent FMD vaccine strains A-3A and A-HSP70, which elicit strong initial cellular immune response and induce humoral immune response, including long-lasting memory response. We purified the antigen (inactivated virus) derived from these immunopotent vaccine strains, and evaluated the immunogenicity and efficacy of the vaccines containing these antigens in mice and pigs. The immunopotent vaccine strains A-3A and A-HSP70 demonstrated superior immunogenicity compared with the A strain (backbone strain) in mice. The oil emulsion-free vaccine containing A-3A and A-HSP70 antigens effectively induced early, mid-term, and long-term immunity in mice and pigs by eliciting robust cellular and humoral immune responses through the activation of co-stimulatory molecules and the secretion of proinflammatory cytokines. We successfully derived an innovative FMD vaccine formulation to create more effective FMD vaccines.
Collapse
Affiliation(s)
- Min Ja Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.J.); (S.H.P.); (M.-K.K.); (S.-M.K.); (B.K.)
| | | | | | | | | | | | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.J.); (S.H.P.); (M.-K.K.); (S.-M.K.); (B.K.)
| |
Collapse
|
26
|
Cooper L, Good-Jacobson KL. Dysregulation of humoral immunity in chronic infection. Immunol Cell Biol 2020; 98:456-466. [PMID: 32275789 DOI: 10.1111/imcb.12338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic viral infections disrupt the ability of the humoral immune response to produce neutralizing antibody or form effective immune memory, preventing viral clearance and making vaccine design difficult. Multiple components of the B-cell response are affected by pathogens that are not cleared from the host. Changes in the microenvironment shift production of B cells to short-lived plasma cells early in the response. Polyclonal B cells are recruited into both the plasma cell and germinal center compartments, inhibiting the formation of a targeted, high-affinity response. Finally, memory B cells shift toward an "atypical" phenotype, which may in turn result in changes to the functional properties of this population. While similar properties of B-cell dysregulation have been described across different types of persistent infections, key questions about the underlying mechanisms remain. This review will discuss the recent advances in this field, as well as highlight the critical questions about the interplay between viral load, microenvironment, the polyclonal response and atypical memory B cells that are yet to be answered. Design of new preventative treatments will rely on identifying the extrinsic and intrinsic modulators that push B cells toward an ineffective response, and thus identify new ways to guide them back onto the best path for clearance of virus and formation of effective immune memory.
Collapse
Affiliation(s)
- Lucy Cooper
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
27
|
Espié P, He Y, Koo P, Sickert D, Dupuy C, Chokoté E, Schuler R, Mergentaler H, Ristov J, Milojevic J, Verles A, Groenewegen A, Auger A, Avrameas A, Rotte M, Colin L, Tomek CS, Hernandez-Illas M, Rush JS, Gergely P. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant 2020; 20:463-473. [PMID: 31647605 DOI: 10.1111/ajt.15661] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023]
Abstract
Iscalimab is a fully human, CD40 pathway blocking, nondepleting monoclonal antibody being developed as an immunosuppressive agent. We describe a first-in-human, randomized, double-blind, placebo-controlled study investigating the safety, tolerability, pharmacokinetics, and pharmacodynamics of iscalimab in healthy subjects and rheumatoid arthritis patients. Healthy subjects (n = 56) received single doses of intravenous iscalimab (0.03, 0.1, 0.3, 1, or 3 mg/kg), or subcutaneous iscalimab (3 mg/kg), or placebo. Rheumatoid arthritis patients (n = 20) received single doses of intravenous iscalimab (10 or 30 mg/kg) or placebo. Iscalimab exhibited target-mediated drug disposition resulting in dose-dependent and nonlinear pharmacokinetics. Complete (≥90%) CD40 receptor occupancy on whole blood B cells was observed at plasma concentrations >0.3-0.4 µg/mL. In subjects receiving 3 mg/kg iscalimab, antibody responses to keyhole limpet hemocyanin were transiently suppressed. CD40 occupancy by iscalimab prevented ex vivo human rCD154-induced expression of CD69 on B cells in whole blood. All doses were generally safe and well tolerated, with no clinically relevant changes in any safety parameters, including no evidence of thromboembolic events. Iscalimab appears to be a promising blocker of the CD40-CD154 costimulatory pathway with potential use in transplantation and other autoimmune diseases.
Collapse
Affiliation(s)
- Pascal Espié
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - YanLing He
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts, USA
| | - Phillip Koo
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Denise Sickert
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cyrielle Dupuy
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Edwige Chokoté
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Roland Schuler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jacinda Ristov
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Julie Milojevic
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Aurelie Verles
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Anita Auger
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Michael Rotte
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laurence Colin
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts, USA
| | | | | | - James S Rush
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
28
|
Hameed R, Mirdan Al-Ibraheemi M, Obayes Al-Khikani F, Hasan N, Salman Almosawey H, Al-Asadi A. The possible role of immunoglobulin A monoclonal antibodies against COVID-19 infection. MATRIX SCIENCE MEDICA 2020. [DOI: 10.4103/mtsm.mtsm_27_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev 2019; 288:85-96. [PMID: 30874350 DOI: 10.1111/imr.12740] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
T follicular helper (Tfh) cells play a crucial role in orchestrating the humoral arm of adaptive immune responses. Mature Tfh cells localize to follicles in secondary lymphoid organs (SLOs) where they provide help to B cells in germinal centers (GCs) to facilitate immunoglobulin affinity maturation, class-switch recombination, and generation of long-lived plasma cells and memory B cells. Beyond the canonical GC Tfh cells, it has been increasingly appreciated that the Tfh phenotype is highly diverse and dynamic. As naive CD4+ T cells progressively differentiate into Tfh cells, they migrate through a variety of microanatomical locations to obtain signals from other cell types, which in turn alters their phenotypic and functional profiles. We herein review the heterogeneity of Tfh cells marked by the dynamic phenotypic changes accompanying their developmental program. Focusing on the various locations where Tfh and Tfh-like cells are found, we highlight their diverse states of differentiation. Recognition of Tfh cell heterogeneity has important implications for understanding the nature of T helper cell identity specification, especially the plasticity of the Tfh cells and their ontogeny as related to conventional T helper subsets.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
30
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
31
|
Zhu Z, Shukla A, Ramezani-Rad P, Apgar JR, Rickert RC. The AKT isoforms 1 and 2 drive B cell fate decisions during the germinal center response. Life Sci Alliance 2019; 2:e201900506. [PMID: 31767615 PMCID: PMC6878223 DOI: 10.26508/lsa.201900506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The PI3K pathway is integral for the germinal center (GC) response. However, the contribution of protein kinase B (AKT) as a PI3K effector in GC B cells remains unknown. Here, we show that mice lacking the AKT1 and AKT2 isoforms in B cells failed to form GCs, which undermined affinity maturation and antibody production in response to immunization. Upon B-cell receptor stimulation, AKT1/2-deficient B cells showed poor survival, reduced proliferation, and impaired mitochondrial and metabolic fitness, which collectively halted GC development. By comparison, Foxo1 T24A mutant, which cannot be inactivated by AKT1/2 phosphorylation and is sequestered in the nucleus, significantly enhanced antibody class switch recombination via induction of activation-induced cytidine deaminase (AID) expression. By contrast, repression of FOXO1 activity by AKT1/2 promoted IRF4-driven plasma cell differentiation. Last, we show that T-cell help via CD40, but not enforced expression of Bcl2, rescued the defective GC response in AKT1/2-deficient animals by restoring proliferative expansion and energy production. Overall, our study provides mechanistic insights into the key role of AKT and downstream pathways on B cell fate decisions during the GC response.
Collapse
Affiliation(s)
- Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ashima Shukla
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John R Apgar
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Lu J, Wu J, Xie F, Tian J, Tang X, Guo H, Ma J, Xu P, Mao L, Xu H, Wang S. CD4 + T Cell-Released Extracellular Vesicles Potentiate the Efficacy of the HBsAg Vaccine by Enhancing B Cell Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802219. [PMID: 31832305 PMCID: PMC6891927 DOI: 10.1002/advs.201802219] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/09/2019] [Indexed: 05/15/2023]
Abstract
T cells secrete bioactive extracellular vesicles (EVs), but the potential biological effects of CD4+ T cell EVs are not clear. The main purpose of this study is to investigate the effects of CD4+ T cell-derived EVs on B cell responses and examine their role in antigen-mediated humoral immune responses. In this study, CD4+ T cell EVs are purified from activated CD4+ T cells in vitro. After immunization with the Hepatitis B surface antigen (HBsAg) vaccine, CD4+ T cell EVs-treated mice show stronger humoral immune responses, which is indicated by a greater Hepatitis B surface antibody (HBsAb) level in serum and a greater proportion of plasma cells in bone marrow. In addition, it is found that EVs released from activated CD4+ T cells play an important role in B cell responses in vitro, which significantly promote B cell activation, proliferation, and antibody production. Interestingly, antigen-specific CD4+ T cell EVs are found to be more efficient than control EVs in enhancing B cell responses. Furthermore, it is shown that CD40 ligand (CD40L) is involved in CD4+ T cell EVs-mediated B cell responses. Overall, the results have demonstrated that CD4+ T cell EVs enhance B cell responses and serve as a novel immunomodulator to promote antigen-specific humoral immune responses.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Jing Wu
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Feiting Xie
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Jie Tian
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Xinyi Tang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
| | - Hongye Guo
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Jie Ma
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Ping Xu
- Department of Laboratory MedicineThe Fifth People's Hospital of SuzhouSuzhou215131China
| | - Lingxiang Mao
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
| | - Huaxi Xu
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Shengjun Wang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| |
Collapse
|
33
|
Targeting the CD40-CD154 Signaling Pathway for Treatment of Autoimmune Arthritis. Cells 2019; 8:cells8080927. [PMID: 31426619 PMCID: PMC6721639 DOI: 10.3390/cells8080927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Full activation of T lymphocytes requires signals from both T cell receptors and costimulatory molecules. In addition to CD28, several T cell molecules could deliver costimulatory signals, including CD154, which primarily interacts with CD40 on B-cells. CD40 is a critical molecule regulating several B-cell functions, such as antibody production, germinal center formation and cellular proliferation. Upregulated expression of CD40 and CD154 occurs in immune effector cells and non-immune cells in different autoimmune diseases. In addition, therapeutic benefits have been observed by blocking the CD40-CD154 interaction in animals with collagen-induced arthritis. Given the therapeutic success of the biologics abatacept, which blocks CD28 costimulation, and rituximab, which deletes B cells in the treatment of autoimmune arthritis, the inhibition of the CD40-CD154 axis has two advantages, namely, attenuating CD154-mediated T cell costimulation and suppressing CD40-mediated B-cell stimulation. Furthermore, blockade of the CD40-CD154 interaction drives the conversion of CD4+ T cells to regulatory T cells that mediate immunosuppression. Currently, several biological products targeting the CD40-CD154 axis have been developed and are undergoing early phase clinical trials with encouraging success in several autoimmune disorders, including autoimmune arthritis. This review addresses the roles of the CD40-CD154 axis in the pathogenesis of autoimmune arthritis and its potential as a therapeutic target.
Collapse
|
34
|
Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. eLife 2019; 8:44245. [PMID: 31225793 PMCID: PMC6636905 DOI: 10.7554/elife.44245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
In mice, memory B (Bmem) cells can be divided into two subpopulations: CD80hi Bmem cells, which preferentially differentiate into plasma cells; and CD80lo Bmem cells, which become germinal center (GC) B cells during a recall response. We demonstrate that these distinct responses can be B-cell-intrinsic and essentially independent of B-cell receptor (BCR) isotypes. Furthermore, we find that the development of CD80hi Bmem cells in the primary immune response requires follicular helper T cells, a relatively strong CD40 signal and a high-affinity BCR on B cells, whereas the development of CD80lo Bmem cells does not. Quantitative differences in CD40 stimulation were enough to recapitulate the distinct B cell fate decisions in an in vitro culture system. The quantity of CD40 signaling appears to be translated into NF-κB activation, followed by BATF upregulation that promotes Bmem cell differentiation from GC B cells.
Collapse
Affiliation(s)
- Takuya Koike
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Koshi Harada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Shu Horiuchi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
35
|
Remer M, White A, Glennie M, Al-Shamkhani A, Johnson P. The Use of Anti-CD40 mAb in Cancer. Curr Top Microbiol Immunol 2019; 405:165-207. [PMID: 25651948 DOI: 10.1007/82_2014_427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunomodulatory monoclonal antibody (mAb) therapy is at the forefront of developing cancer therapeutics with numerous targeted agents proving highly effective in selective patients at stimulating protective host immunity, capable of eradicating established tumours and leading to long-term disease-free states. The cell surface marker CD40 is expressed on a range of immune cells and transformed cells in malignant states whose signalling plays a critical role in modulating adaptive immune responses. Anti-CD40 mAb therapy acts via multiple mechanisms to stimulate anti-tumour immunity across a broad range of lymphoid and solid malignancies. A wealth of preclinical research in this field has led to the successful development of multiple anti-CD40 mAb agents that have shown promise in early-phase clinical trials. Significant progress has been made to enhance the engagement of antibodies with immune effectors through their interactions with Fcγ receptors (FcγRs) by the process of Fc engineering. As more is understood about how to best optimise these agents, principally through the fine-tuning of mAb structure and choice of synergistic partnerships, our ability to generate robust, clinically beneficial anti-tumour activity will form the foundation for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Marcus Remer
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Ann White
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Martin Glennie
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Peter Johnson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| |
Collapse
|
36
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
37
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
38
|
Abstract
Circulating DNA in plasma has many diagnostic applications, including noninvasive prenatal testing and cancer liquid biopsy. Plasma DNA consists of short fragments of DNA. However, there is little information about mechanisms that are involved in the fragmentation of plasma DNA. We showed that mice in which Dnase1l3 had been deleted showed aberrations in the fragmentation of plasma DNA. We also observed a change in the ranked frequencies of end motifs of plasma DNA caused by the Dnase1l3 deletion. In Dnase1l3−/− mice pregnant with Dnase1l3+/− fetuses, we observed a partial reversal of the plasma DNA aberrations. This study has thus linked the fields of nuclease biology and circulating nucleic acids and has opened up avenues for future research. Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3−/− mice carrying Dnase1l3+/− fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3. Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity.
Collapse
|
39
|
Ristov J, Espie P, Ulrich P, Sickert D, Flandre T, Dimitrova M, Müller-Ristig D, Weider D, Robert G, Schmutz P, Greutmann B, Cordoba-Castro F, Schneider MA, Warncke M, Kolbinger F, Cote S, Heusser C, Bruns C, Rush JS. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am J Transplant 2018; 18:2895-2904. [PMID: 29665205 DOI: 10.1111/ajt.14872] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 01/25/2023]
Abstract
The CD40-CD154 costimulatory pathway is essential for T cell-dependent immune responses, development of humoral memory, and antigen presenting cell function. These immune functions have been implicated in the pathology of multiple autoimmune diseases as well as allograft rejection. We have generated CFZ533, a fully human, pathway blocking anti-CD40 monoclonal antibody that has been modified with a N297A mutation to render it unable to mediate Fcγ-dependent effector functions. CFZ533 inhibited CD154-induced activation of human leukocytes in vitro, but failed to induce human leukocyte activation. Additionally, CFZ533 was unable to mediate depletion of human CD40 expressing B cells. In vivo, CFZ533 blocked primary and recall T cell-dependent antibody responses in nonhuman primates and abrogated germinal formation without depleting peripheral blood B cells. We also established a relationship between plasma concentrations of CFZ533 and CD40 pathway-relevant pharmacodynamic effects in tissue. Collectively these data support the scientific rationale and posology for clinical utility of this antibody in select autoimmune diseases and solid organ transplantation.
Collapse
Affiliation(s)
- Jacinda Ristov
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Pascal Espie
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Peter Ulrich
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Denise Sickert
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Mirela Dimitrova
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dorothee Müller-Ristig
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Doris Weider
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Gautier Robert
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Patrick Schmutz
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Barbara Greutmann
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | | | - Martin A Schneider
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Max Warncke
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Frank Kolbinger
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Serge Cote
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Christoph Heusser
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Christian Bruns
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - James S Rush
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
40
|
Luo W, Weisel F, Shlomchik MJ. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the c-Myc Transcription Factor in Germinal Center B Cells. Immunity 2018; 48:313-326.e5. [PMID: 29396161 DOI: 10.1016/j.immuni.2018.01.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Positive selection of germinal center (GC) B cells is driven by B cell receptor (BCR) affinity and requires help from follicular T helper cells. The transcription factors c-Myc and Foxo1 are critical for GC B cell selection and survival. However, how different affinity-related signaling events control these transcription factors in a manner that links to selection is unknown. Here we showed that GC B cells reprogram CD40 and BCR signaling to transduce via NF-κB and Foxo1, respectively, whereas naive B cells propagate both signals downstream of either receptor. Although either BCR or CD40 ligation induced c-Myc in naive B cells, both signals were required to highly induce c-Myc, a critical mediator of GC B cell survival and cell cycle reentry. Thus, GC B cells rewire their signaling to enhance selection stringency via a requirement for both antigen receptor- and T cell-mediated signals to induce mediators of positive selection.
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
41
|
Pal Singh S, de Bruijn MJW, de Almeida MP, Meijers RWJ, Nitschke L, Langerak AW, Pillai SY, Stadhouders R, Hendriks RW. Identification of Distinct Unmutated Chronic Lymphocytic Leukemia Subsets in Mice Based on Their T Cell Dependency. Front Immunol 2018; 9:1996. [PMID: 30271400 PMCID: PMC6146083 DOI: 10.3389/fimmu.2018.01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into prognostically distinct subsets with stereotyped or non-stereotyped, mutated or unmutated B cell receptors (BCRs). Individual subsets vary in antigen specificity and origin, but the impact of antigenic pressure on the CLL BCR repertoire remains unknown. Here, we employed IgH.TEμ mice that spontaneously develop CLL, expressing mostly unmutated BCRs of which ~35% harbor VH11-2/Vκ14-126 and recognize phosphatidylcholine. Proportions of VH11/Vκ14-expressing CLL were increased in the absence of functional germinal centers in IgH.TEμ mice deficient for CD40L or activation-induced cytidine deaminase. Conversely, in vivo T cell-dependent immunization decreased the proportions of VH11/Vκ14-expressing CLL. Furthermore, CLL onset was accelerated by enhanced BCR signaling in Siglec-G−/− mice or in mice expressing constitutively active Bruton's tyrosine kinase. Transcriptional profiling revealed that VH11 and non-VH11 CLL differed in the upregulation of specific pathways implicated in cell signaling and metabolism. Interestingly, principal component analyses using the 148 differentially expressed genes revealed that VH11 and non-VH11 CLL clustered with BCR-stimulated and anti-CD40-stimulated B cells, respectively. We identified an expression signature consisting of 13 genes that were differentially expressed in a larger panel of T cell-dependent non-VH11 CLL compared with T cell-independent VH11/Vκ14 or mutated IgH.TEμ CLL. Parallel differences in the expression of these 13 signature genes were observed between heterogeneous and stereotypic human unmutated CLL. Our findings provide evidence for two distinct unmutated CLL subsets with a specific transcriptional signature: one is T cell-independent and B-1 cell-derived while the other arises upon antigen stimulation in the context of T-cell help.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Post-graduate School Molecular Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | - Lars Nitschke
- Department of Genetics, University of Erlangen, Erlangen, Germany
| | | | | | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
42
|
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease (CD) and ulcerative colitis (UC). These disorders are characterized by various grades of tissue damage and development of local complications and extra-intestinal manifestations. The cause of IBD remains unknown but accumulating evidence indicates that both CD and UC arise in genetically predisposed individuals as a result of the action of multiple environmental factors, which ultimately trigger excessive and poorly controlled immune response against antigens of the luminal flora. Despite this realization, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. However, in recent years, several pathways of intestinal damage have been delineated and the improved knowledge has contributed to the development of new therapies. Various approaches have been used to either inhibit the expression and/or function of inflammatory molecules or enhance counter-regulatory mechanisms. This review summarizes the available pre-clinical and clinical data for antisense oligonucleotides and oligonucleotide-based therapy to provide a comprehensive understanding of the rationale and mechanism of action of these compounds in IBD. Key messages Preclinical studies and clinical trials show that antisense oligonucleotide (ASO)-based therapy could be of benefit in inflammatory bowel diseases. ASOs have an excellent safety profile. Technical issues emerged from clinical trials suggest that changes in drug formulation and/or route of administration could improve ASO efficacy.
Collapse
Affiliation(s)
- Irene Marafini
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
43
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
44
|
Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL, Paust S, Rico-Hesse R. Mosquito saliva alone has profound effects on the human immune system. PLoS Negl Trop Dis 2018; 12:e0006439. [PMID: 29771921 PMCID: PMC5957326 DOI: 10.1371/journal.pntd.0006439] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mosquito saliva is a very complex concoction of >100 proteins, many of which have unknown functions. The effects of mosquito saliva proteins injected into our skin during blood feeding have been studied mainly in mouse models of injection or biting, with many of these systems producing results that may not be relevant to human disease. Here, we describe the numerous effects that mosquito bites have on human immune cells in mice engrafted with human hematopoietic stem cells. We used flow cytometry and multiplex cytokine bead array assays, with detailed statistical analyses, to detect small but significant variations in immune cell functions after 4 mosquitoes fed on humanized mice footpads. After preliminary analyses, at different early times after biting, we focused on assessing innate immune and subsequent cellular responses at 6 hours, 24 hours and 7 days after mosquito bites. We detected both Th1 and Th2 human immune responses, and delayed effects on cytokine levels in the blood, and immune cell compositions in the skin and bone marrow, up to 7 days post-bites. These are the first measurements of this kind, with human immune responses in whole animals, bitten by living mosquitoes, versus previous studies using incomplete mouse models and salivary gland extracts or needle injected saliva. The results have major implications for the study of hematophagous insect saliva, its effects on the human immune system, with or without pathogen transmission, and the possibility of determining which of these proteins to target for vaccination, in attempts to block transmission of numerous tropical diseases.
Collapse
Affiliation(s)
- Megan B. Vogt
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anismrita Lahon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ravi P. Arya
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silke Paust
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Fähnrich A, Klein S, Sergé A, Nyhoegen C, Kombrink S, Möller S, Keller K, Westermann J, Kalies K. CD154 Costimulation Shifts the Local T-Cell Receptor Repertoire Not Only During Thymic Selection but Also During Peripheral T-Dependent Humoral Immune Responses. Front Immunol 2018; 9:1019. [PMID: 29867987 PMCID: PMC5966529 DOI: 10.3389/fimmu.2018.01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
CD154 is a transmembrane cytokine expressed transiently on activated CD4 T cells upon T-cell receptor (TCR) stimulation that interacts with CD40 on antigen-presenting cells. The signaling via CD154:CD40 is essential for B-cell maturation and germinal center formation and also for the final differentiation of CD4 T cells during T-dependent humoral immune responses. Recent data demonstrate that CD154 is critically involved in the selection of T-cell clones during the negative selection process in the thymus. Whether CD154 signaling influences the TCR repertoire during peripheral T-dependent humoral immune responses has not yet been elucidated. To find out, we used CD154-deficient mice and assessed the global TCRβ repertoire in T-cell zones (TCZ) of spleens by high-throughput sequencing after induction of a Th2 response to the multiepitopic antigen sheep red blood cells. Qualitative and quantitative comparison of the splenic TCZ-specific TCRβ repertoires revealed that CD154 deficiency shifts the distribution of Vβ-Jβ genes after antigen exposure. This data led to the conclusion that costimulation via CD154:CD40 during the interaction of T cells with CD40-matured B cells contributes to the recruitment of T-cell clones into the immune response and thereby shapes the peripheral TCR repertoire.
Collapse
Affiliation(s)
- Anke Fähnrich
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Sebastian Klein
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille (CRCM) U1068 INSERM - UMR7258 CNRS - Institut Paoli Calmette, Aix-Marseille University, UM105, Marseille, France
| | | | - Sabrina Kombrink
- Institute of Mathematics, University of Luebeck, Luebeck, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - Karsten Keller
- Institute of Mathematics, University of Luebeck, Luebeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| |
Collapse
|
46
|
Hattori H, Okano M, Kariya S, Nishizaki K, Satoskar AR. Signals through CD40 Play a Critical Role in the Pathophysiology of Schistosoma Mansoni Egg Antigen–Induced Allergic Rhinitis in Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240602000208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Interaction between CD40 and CD40L is thought to regulate immune responses in several allergic diseases. However, little is known about its in vivo role in the pathophysiology of allergic rhinitis. We sought to determine whether the lack of signals through CD40 affects the pathophysiology of allergic rhinitis using a murine model. Methods Wild type (WT) and CD40-deficient BALB/c (CD40-/-) mice were sensitized intranasally to Schistosoma mansoni egg antigen (SEA). After repeated sensitization, histamine responsiveness, serum antibody titer including immunoglobulin E (IgE), nasal eosinophilia, and cytokine production by nasal mononuclear cells were determined in each group. Results Intranasal sensitization with SEA in WT mice elicited a strong Th2 response including SEA-specific IgE production, nasal eosinophilia, and interleukin (IL)-4, and IL-5 production by nasal mononuclear cells after antigen challenge. Production of SEA-specific IgE and IgG1 was abolished in SEA-sensitized CD40-/- mice. These mice showed impaired nasal eosinophilia and displayed markedly reduced histamine-induced nasal hyperresponsiveness as compared with WT mice. Furthermore, reduced production of IL-4 and IL-5 by nasal mononuclear cells was seen in CD40-/- mice. Conclusion These results show that signals through CD40 play a critical role in not only IgE production but also pathophysiology of allergic rhinitis such as nasal hyperresponsiveness and nasal eosinophilia.
Collapse
Affiliation(s)
- Hisashi Hattori
- Department of Microbiology, The Ohio State University, Columbus, Ohio
- Department of Otolaryngology–Head and Neck Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology–Head and Neck Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology–Head and Neck Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology–Head and Neck Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
47
|
Louis C, Burns C, Wicks I. TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity. Front Immunol 2018; 9:434. [PMID: 29559975 PMCID: PMC5845716 DOI: 10.3389/fimmu.2018.00434] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is driven by genetic predisposition and environmental triggers that lead to dysregulated immune responses. These include the generation of pathogenic autoantibodies and aberrant production of inflammatory cytokines. Current therapies for RA and other autoimmune diseases reduce inflammation by targeting inflammatory mediators, most of which are innate response cytokines, resulting in generalized immunosuppression. Overall, this strategy has been very successful, but not all patients respond, responses can diminish over time and numerous side effects can occur. Therapies that target the germinal center (GC) reaction and/or antibody-secreting plasma cells (PC) potentially provide a novel approach. TANK-binding kinase 1 (TBK1) is an IKK-related serine/threonine kinase best characterized for its involvement in innate antiviral responses through the induction of type I interferons. TBK1 is also gaining attention for its roles in humoral immune responses. In this review, we discuss the role of TBK1 in immunological pathways involved in the development and maintenance of antibody responses, with particular emphasis on its potential relevance in the pathogenesis of humoral autoimmunity. First, we review the role of TBK1 in the induction of type I IFNs. Second, we highlight how TBK1 mediates inducible T cell co-stimulator signaling to the GC T follicular B helper population. Third, we discuss emerging evidence on the contribution of TBK1 to autophagic pathways and the potential implications for immune cell function. Finally, we discuss the therapeutic potential of TBK1 inhibition in autoimmunity.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Chris Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ian Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Rheumatology Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
48
|
Brennan FR, Cavagnaro J, McKeever K, Ryan PC, Schutten MM, Vahle J, Weinbauer GF, Marrer-Berger E, Black LE. Safety testing of monoclonal antibodies in non-human primates: Case studies highlighting their impact on human risk assessment. MAbs 2018; 10:1-17. [PMID: 28991509 PMCID: PMC5800363 DOI: 10.1080/19420862.2017.1389364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.
Collapse
Affiliation(s)
- Frank R. Brennan
- Non-Clinical Safety, UCB, Slough, Berkshire, United Kingdom, SL1 3WE
| | | | - Kathleen McKeever
- Ultragenyx Pharmaceuticals, 60 Leveroni Court, Novato, California, United States
| | - Patricia C. Ryan
- Toxicology, Medimmune LLC, One Medimmune Way, Gaithersburg, Maryland, United States
| | - Melissa M. Schutten
- Department of Toxicology, Genetech, 1 DNA Way, San Francisco, California, United States
| | - John Vahle
- Toxicology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | | | - Estelle Marrer-Berger
- Novartis Pharma, Preclinical Safety, F Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, Basel-Stadt, Switzerland CH-4070
| | - Lauren E. Black
- Safety Assessment, Charles River Laboratories, 6995 Longley Lane, Reno, Nevada, United States
| |
Collapse
|
49
|
Niebuhr M, Kasperkiewicz M, Maass S, Hauenschild E, Bieber K, Ludwig RJ, Westermann J, Kalies K. Evidence for a contributory role of a xenogeneic immune response in experimental epidermolysis bullosa acquisita. Exp Dermatol 2017; 26:1207-1213. [DOI: 10.1111/exd.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Markus Niebuhr
- Institute of Anatomy; University of Lübeck; Lübeck Germany
| | | | | | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | - Ralf J. Ludwig
- Department of Dermatology; University of Lübeck; Lübeck Germany
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | | | - Kathrin Kalies
- Institute of Anatomy; University of Lübeck; Lübeck Germany
| |
Collapse
|
50
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|