1
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
2
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Chou MY, Cao X, Hou KC, Tsai MH, Lee CY, Kuo MF, Wu VC, Huang HY, Akbarian S, Chang SK, Hu CY, Lin SW, Huang HS. Mir125b-2 imprinted in human but not mouse brain regulates hippocampal function and circuit in mice. Commun Biol 2023; 6:267. [PMID: 36918719 PMCID: PMC10014956 DOI: 10.1038/s42003-023-04655-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Genomic imprinting predominantly occurs in the placenta and brain. Few imprinted microRNAs have been identified in the brain, and their functional roles in the brain are not clear. Here we show paternal, but not maternal, expression of MIR125B2 in human but not mouse brain. Moreover, Mir125b-2m-/p- mice showed impaired learning and memory, and anxiety, whose functions were hippocampus-dependent. Hippocampal granule cells from Mir125b-2m-/p- mice displayed increased neuronal excitability, increased excitatory synaptic transmission, and decreased inhibitory synaptic transmission. Glutamate ionotropic receptor NMDA type subunit 2A (Grin2a), a key regulator of synaptic plasticity, was physically bound by miR-125b-2 and upregulated in the hippocampus of Mir125b-2m-/p- mice. Taken together, our findings demonstrate MIR125B2 imprinted in human but not mouse brain, mediated learning, memory, and anxiety, regulated excitability and synaptic transmission in hippocampal granule cells, and affected hippocampal expression of Grin2a. Our work provides functional mechanisms of a species-specific imprinted microRNA in the brain.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Xuhui Cao
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Kuan-Chu Hou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Meng-Han Tsai
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chih-Yu Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sheng-Kai Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chung-Yi Hu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
4
|
Xylaki M, Paiva I, Al-Azzani M, Gerhardt E, Jain G, Islam MR, Vasili E, Wassouf Z, Schulze-Hentrich JM, Fischer A, Outeiro TF. miR-101a-3p Impairs Synaptic Plasticity and Contributes to Synucleinopathy. JOURNAL OF PARKINSON'S DISEASE 2023; 13:179-196. [PMID: 36744345 PMCID: PMC10041420 DOI: 10.3233/jpd-225055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Present address: Laboratory of Cognitive and Adaptive Neuroscience, UMR 7364 (CNRS/ Strasbourg University), Strasbourg, France
| | - Mohammed Al-Azzani
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | | | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Centre, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Scientific employee with an honorary contract at German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
5
|
Dehghan H, Farkhondeh T, Darroudi M, Yousefizadeh S, Samarghandian S. Role of miRNAs in mediating organophosphate compounds induced toxicity. Toxicol Rep 2023; 10:216-222. [PMID: 36845257 PMCID: PMC9945638 DOI: 10.1016/j.toxrep.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Organophosphate compounds (OPCs) are a diverse class of chemicals utilized in both industrial and agricultural settings. The exact molecular pathways that OPCs-induced toxicity is caused by are still being investigated, despite the fact that studies on this topic have been ongoing for a long time. As a result, it's important to identify innovative strategies to uncover these processes and further the understanding of the pathways involved in OPCs-induced toxicity. In this context, determining the role of microRNAs (miRs) in the toxicity caused by OPCs should be taken into consideration. Recent research on the regulation function of miRs presents key discoveries to identify any gaps in the toxicity mechanisms of OPCs. As diagnostic indicators for toxicity in people exposed to OPCs, various expression miRs can also be used. The results of experimental and human studies into the expression profiles of miRs in OPCs-induced toxicity have been compiled in this article.
Collapse
Affiliation(s)
- Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Paraveterinary, Ilam University, Ilam, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Mauceri D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022; 11:cells11162613. [PMID: 36010687 PMCID: PMC9406853 DOI: 10.3390/cells11162613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/11/2022] Open
Abstract
Pain is an unpleasant but essential-to-life sensation, usually resulting from tissue damage. When pain persists long after the injury has resolved, it becomes pathological. The precise molecular and cellular mechanisms causing the transition from acute to chronic pain are not fully understood. A key aspect of pain chronicity is that several plasticity events happen along the neural pathways involved in pain. These long-lasting adaptive changes are enabled by alteration in the expression of relevant genes. Among the different modulators of gene transcription in adaptive processes in the nervous system, epigenetic mechanisms play a pivotal role. In this review, I will first outline the main classes of epigenetic mediators and then discuss their implications in chronic pain.
Collapse
Affiliation(s)
- Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
MiR-375 potentially enhances GnRH expression by targeting Sp1 in GT1-7 cells. In Vitro Cell Dev Biol Anim 2021; 57:438-447. [PMID: 33772408 DOI: 10.1007/s11626-020-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/25/2020] [Indexed: 10/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the initial central regulator of the animal reproduction system, which is crucial for puberty onset and fertility. However, the mechanisms regulating GnRH production and release remain unclear. In addition, few studies reported that miR-375 expressed in mouse hypothalamus, but up to now there are limited functional studies of miR-375 in regulating GnRH secretion. According to our recent findings that miR-375 was involved in regulating the synthesis and secretion of pituitary hormones, thus, we aimed to identify the role of miR-375 in regulating GnRH production in GT1-7 cells. Immunofluorescence results demonstrated that miR-375 was expressed in all of the GT1-7 cells. The functional studies showed that miR-375 overexpression enhanced GnRH mRNA expression level, but decreased the mRNA expressions of Sp1, Cebpb, Msx1, and Tle4. Transcriptomics analysis demonstrated Sp1 and Tle4 acted as the targeting genes of miR-375, and Sp1 negatively regulated Gnrh mRNA expression by binding to the Gnrh promoter. Thus, we conclude that miR-375 potentially enhances GnRH expression by targeting Sp1 and Tle4 in GT1-7 cells. Our results highlight a critical role of miR-375 in regulating GnRH production, which may provide a novel potential therapeutic approach to neuroendocrine-disorder-related dysfunctions.
Collapse
|
9
|
Sharma VK, Singh TG. Navigating Alzheimer's Disease via Chronic Stress: The Role of Glucocorticoids. Curr Drug Targets 2021; 21:433-444. [PMID: 31625472 DOI: 10.2174/1389450120666191017114735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic intensifying incurable progressive disease leading to neurological deterioration manifested as impairment of memory and executive brain functioning affecting the physical ability like intellectual brilliance, common sense in patients. The recent therapeutic approach in Alzheimer's disease is only the symptomatic relief further emerging the need for therapeutic strategies to be targeted in managing the underlying silent killing progression of dreaded pathology. Therefore, the current research direction is focused on identifying the molecular mechanisms leading to the evolution of the understanding of the neuropathology of Alzheimer's disease. The resultant saturation in the area of current targets (amyloid β, τ Protein, oxidative stress etc.) has led the scientific community to rethink of the mechanistic neurodegenerative pathways and reprogram the current research directions. Although, the role of stress has been recognized for many years and contributing to the development of cognitive impairment, the area of stress has got the much-needed impetus recently and is being recognized as a modifiable menace for AD. Stress is an unavoidable human experience that can be resolved and normalized but chronic activation of stress pathways unsettle the physiological status. Chronic stress mediated activation of neuroendocrine stimulation is generally linked to a high risk of developing AD. Chronic stress-driven physiological dysregulation and hypercortisolemia intermingle at the neuronal level and leads to functional (hypometabolism, excitotoxicity, inflammation) and anatomical remodeling of the brain architecture (senile plaques, τ tangles, hippocampal atrophy, retraction of spines) ending with severe cognitive deterioration. The present review is an effort to collect the most pertinent evidence that support chronic stress as a realistic and modifiable therapeutic earmark for AD and to advocate glucocorticoid receptors as therapeutic interventions.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India.,Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| |
Collapse
|
10
|
Henriques AD, Machado-Silva W, Leite RE, Suemoto CK, Leite KR, Srougi M, Pereira AC, Jacob-Filho W, Nóbrega OT. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech Ageing Dev 2020; 191:111352. [DOI: 10.1016/j.mad.2020.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
11
|
Khalil W, Tiraihi T, Soleimani M, Baheiraei N, Zibara K. Conversion of Neural Stem Cells into Functional Neuron-Like Cells by MicroRNA-218: Differential Expression of Functionality Genes. Neurotox Res 2020; 38:707-722. [PMID: 32696438 DOI: 10.1007/s12640-020-00244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Conversion of mesenchymal stem cells (MSC) into neuron-like cells (NLC) is a feasible cell therapy strategy for replacing lost neurons in neuronal disorders. In this study, adipose-derived MSC (ADMSC) were converted into neural stem cells (NSC) via neurosphere. The resulting NSC were then differentiated into NLC by transduction with microRNA-218, using a lentiviral vector. ADMSC, NSC, and NLC were first characterized by flow cytometry, RT-PCR, and immunocytochemistry. The functionality of the NLC was evaluated by qRT-PCR and patch clamp recording. Immunophenotyping of ADMSC showed their immunoreactivity to MSC markers CD90, CD73, CD105, and CD49d, but not to CD31 and CD45. RT-PCR results demonstrated the expression of nestin, neurogenin, neurod1, neurofilament light, and GAP43 genes in NSC while NLC expressed synaptophysin, neurofilament heavy, and GAP43. In addition, NSC morphology changed into multipolar with long processes after transduction with miR-218. Moreover, using qRT-PCR, the expression levels of miR-218 and functionality genes CACNA1C, SNAP25, KCNH1, KCNMA1, and SCN9A were significantly increased in NLC, compared with NSC, and ADMSC at 3 weeks and 5 months post-transduction. Furthermore, the generated NLC expressed significantly higher protein levels of neurofilament heavy polypeptide (NFh) and enolase 2 (Eno2) neuronal markers, compared with ADMSC and NSC. Finally, action potentials were successfully recorded by the generated NLC, using patch clamp. In summary, ADMSC-derived NSC differentiated into functional NLC by transduction with miR-218. The generated NLC expressed functional SNAP25, CACNA1C, KCNH1, KCNMA1, and SCN9A and produced an action potential, which provides useful insights into the generation of functional neuronal cells.
Collapse
Affiliation(s)
- Wissam Khalil
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
12
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
13
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Benedict Atzler
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany.
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
15
|
Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 2019; 9:196. [PMID: 31431609 PMCID: PMC6702224 DOI: 10.1038/s41398-019-0538-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brain development is dependent on programmed gene expression, which is both genetically and epigenetically regulated. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is essential for brain development. As abnormal brain development is hypothesized to be associated with schizophrenia, miRNAs are an intriguing target for this disorder. The aims of this study were to determine the temporal dynamics of miRNA expression in the human dorsolateral prefrontal cortex (DLPFC), and the relationship between miRNA's temporal expression pattern and dysregulation in schizophrenia. This study used next-generation sequencing to characterize the temporal dynamics of miRNA expression in the DLPFC of 109 normal subjects (second trimester-74 years of age) and miRNA expression changes in 34 schizophrenia patients. Unlike mRNAs, the majority of which exhibits a wave of change in fetuses, most miRNAs are preferentially expressed during a certain period before puberty. It is noted that in schizophrenia patients, miRNAs normally enriched in infants tend to be upregulated, while those normally enriched in prepuberty tend to be downregulated, and the targets of these miRNAs are enriched for genes encoding synaptic proteins and those associated with schizophrenia. In addition, miR-936 and miR-3162 were found to be increased in the DLPFC of patients with schizophrenia. These findings reveal the temporal dynamics of miRNAs in the human DLPFC, implicate the importance of miRNAs in DLPFC development, and suggest a possible link between schizophrenia and dysregulation of miRNAs enriched in infancy and prepuberty.
Collapse
|
16
|
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer's Disease: An Update. J Alzheimers Dis 2019; 64:671-688. [PMID: 29991138 DOI: 10.3233/jad-180259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer. At least three systems including DNA methylation, histone modification, and non-coding RNA (ncRNA)-associated gene silencing are thought to initiate and sustain epigenetic change. For example, in Alzheimer's disease (AD), both genetic and non-genetic factors contribute to disease etiopathology. While over 250 gene mutations have been related to familial AD, less than 5% of AD cases are explained by known disease genes. More than likely, non-genetic factors, probably triggered by environmental factors, are causative factors of late-onset AD. AD is associated with dysregulation of DNA methylation, histone modifications, and ncRNAs. Among the classes of ncRNA, microRNAs (miRNAs) have a well-established regulatory relevance. MicroRNAs are highly expressed in CNS neurons, where they play a major role in neuron differentiation, synaptogenesis, and plasticity. MicroRNAs impact higher cognitive functions, as their functional impairment is involved in the etiology of neurological diseases, including AD. Alterations in the miRNA network contribute to AD disease processes, e.g., in the regulation of amyloid peptides, tau, lipid metabolism, and neuroinflammation. MicroRNAs, both as biomarkers for AD and therapeutic targets, are in the early stages of exploration. In addition, emerging data suggest that altered transcription of long ncRNAs, endogenous, ncRNAs longer than 200 nucleotides, may be involved in an elevated risk for AD.
Collapse
Affiliation(s)
- Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| |
Collapse
|
17
|
Affiliation(s)
- Andre Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- Department for Systems Medicine and Brain Diseases, German Center for Neurodegenerative Diseases (DZNE) site Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
19
|
Epigenetic modulation by small molecule compounds for neurodegenerative disorders. Pharmacol Res 2018; 132:135-148. [PMID: 29684672 DOI: 10.1016/j.phrs.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.
Collapse
|
20
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
21
|
Sano M, Ohtaka M, Iijima M, Nakasu A, Kato Y, Nakanishi M. Sensitive and long-term monitoring of intracellular microRNAs using a non-integrating cytoplasmic RNA vector. Sci Rep 2017; 7:12673. [PMID: 28978921 PMCID: PMC5627244 DOI: 10.1038/s41598-017-12847-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the post-transcriptional level. Different types of cells express unique sets of miRNAs that can be exploited as potential molecular markers to identify specific cell types. Among the variety of miRNA detection methods, a fluorescence-based imaging system that utilises a fluorescent-reporter gene regulated by a target miRNA offers a major advantage for long-term tracking of the miRNA in living cells. In this study, we developed a novel fluorescence-based miRNA-monitoring system using a non-integrating cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because SeVdp vectors robustly and stably express transgenes, this system enabled sensitive monitoring of miRNAs by fluorescence microscopy. By applying this system for cellular reprogramming, we found that miR-124, but not miR-9, was significantly upregulated during direct neuronal conversion. Additionally, we were able to isolate integration-free human induced pluripotent stem cells by long-term tracking of let-7 expression. Notably, this system was easily expandable to allow detection of multiple miRNAs separately and simultaneously. Our findings provide insight into a powerful tool for evaluating miRNA expression during the cellular reprogramming process and for isolating reprogrammed cells potentially useful for medical applications.
Collapse
Affiliation(s)
- Masayuki Sano
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Minoru Iijima
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Asako Nakasu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
22
|
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017; 11:151-167. [PMID: 28125293 DOI: 10.2217/bmm-2016-0242] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the result of progressive deterioration of neurons, ultimately leading to disabilities. There is no effective cure for NDDs at present; ongoing therapies are mainly aimed at treating the most bothersome symptoms. Since early treatment is crucial in NDDs, there is an urgent need for specific and sensitive biomarkers that can aid in early diagnosis of these disorders. Recently, altered expression of miRNAs has been implicated in several neurological disorders, including NDDs. miRNA expression has been extensively investigated in the cells, tissues and body fluids of patients with different types of NDDs. The aim of this review is to provide a comprehensive overview of miRNAs as biomarkers and therapeutic targets for NDDs.
Collapse
Affiliation(s)
- Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh M Vasu
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431 3192, Japan
| | - Suresh A Poovathinal
- Department of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
23
|
|
24
|
Wen MM. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review. Front Mol Neurosci 2016; 9:129. [PMID: 27920668 PMCID: PMC5118630 DOI: 10.3389/fnmol.2016.00129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
miRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain, control brain development and are identified as important biomarkers in the pathogenesis of motor—and neuro-cognitive diseases such as Alzheimer’s (AD), Huntington’s and Parkinson’s diseases (PD) and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist), and the other one is to inhibit miRNA function by using anti-miR (antagonist) to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the central nervous system (CNS) for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming Ming Wen
- Department of Pharmaceutics, Pharos University in Alexandria Alexandria, Egypt
| |
Collapse
|
25
|
Wang P, Zhao D, Rockowitz S, Zheng D. Divergence and rewiring of regulatory networks for neural development between human and other species. NEUROGENESIS 2016; 3:e1231495. [PMID: 27900343 DOI: 10.1080/23262133.2016.1231495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurology, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Shira Rockowitz
- Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| |
Collapse
|
26
|
Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY. Lentivirus-Mediated Overexpression of MicroRNA-210 Improves Long-Term Outcomes after Focal Cerebral Ischemia in Mice. CNS Neurosci Ther 2016; 22:961-969. [PMID: 27390218 DOI: 10.1111/cns.12589] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/04/2023] Open
Abstract
AIMS MicroRNAs play an important role in the pathogenesis of ischemic brain injury and in the repair process during postischemic condition. However, the key miRNAs and their function in these processes remain unclear. METHODS Circulating blood MicroRNAs profiles were examined in the ischemic stroke patients. The predicted network of difference was analyzed by ingenuity pathway analysis. The key MicroRNAs were selected, and the function was further studied in a mouse ischemia model. The predicted downstream target was confirmed. RESULTS We found that 24 MicroRNAs were differently expressed in stroke patients compared to the control (P < 0.05). Bioinformatic analysis showed a MicroRNAs regulated network with the highest score in the stroke cascade, which was consisted of 10 MicroRNAs including key hypoxia-related miR-210 and its predicted downstream target brain derived neurotrophic factor (BDNF). Lentivirus-mediated miR-210 overexpression enhanced the microvessel density and the number of neural progenitor cells in the ischemic mouse brain (P < 0.05) and improved neurobehavioral outcomes in the ischemic mouse (P < 0.05). MiR-210 upregulation increased mBDNF/proBDNF protein expression in the normal and ischemic mouse brain. The dual-luciferase reporter assay identified that BDNF was the direct target of miR-210. CONCLUSION MiR-210 is a crucial ischemic stroke-associated MicroRNAs and a potential target for the stroke therapy.
Collapse
Affiliation(s)
- Li-Li Zeng
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Song He
- Department of human anatomy, Guangzhou medical university, Guangzhou, China
| | - Jian-Rong Liu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Bo Zheng
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
John J, Bhatia T, Kukshal P, Chandna P, Nimgaonkar VL, Deshpande SN, Thelma BK. Association study of MiRSNPs with schizophrenia, tardive dyskinesia and cognition. Schizophr Res 2016; 174:29-34. [PMID: 27106592 PMCID: PMC5487370 DOI: 10.1016/j.schres.2016.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) bind to 3'UTRs of genes and negatively regulate their expression. With ~50% of miRNAs expressing in the brain, they play an important role in neuronal development, plasticity, cognition and neurological disorders. Conserved miRNA targets are present in >60% genes in humans and are under evolutionary pressure to maintain pairing with miRNA. However, such binding may be affected by genetic variant(s) in the target sites (MiRSNPs), thereby altering gene expression. Differential expression of a large number of genes in postmortem brains of schizophrenia (SZ) patients compared to controls has been documented. Thus studying the role of MiRSNPs which are underinvestigated in SZ becomes attractive. We systematically selected 35 MiRSNPs with predicted functional relevance in 3'UTRs of genes shown previously to be associated with SZ, genotyped and tested their association with disease, using independent discovery and replication samples (total n=1017 cases; n=1073 controls). We also explored genetic associations with two sets of quantitative traits, namely tardive dyskinesia (TD) and cognitive functions disrupted in SZ in subsets of the study cohort. In the primary analysis, a significant association of MiRSNP rs7430 at PPP3CC was observed with SZ in the discovery and the replication samples [discovery: P=0.01; OR (95% CI) 1.24 (1.04-1.48); replication: P=0.03; OR (95% CI) 1.20 (1.02-1.43)]. In the exploratory analyses, five SNPs were nominally associated with TD (P values 0.04-0.004). Separately, 12 SNPs were associated with one or more of the eight cognitive domains (P values 0.05-0.003). These associations, particularly the SNP at PPP3CC merit further investigations.
Collapse
Affiliation(s)
- Jibin John
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Triptish Bhatia
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Puneet Chandna
- AceProbe Technologies (India) Pvt. Ltd., New Delhi, India
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Smita N Deshpande
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
28
|
MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. J Virol 2016; 90:4078-4092. [PMID: 26865716 PMCID: PMC4810567 DOI: 10.1128/jvi.02810-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated, justifying the continued development of novel oncolytic viruses with enhanced potency. Here, we introduce mengovirus as a novel oncolytic agent. Mengovirus is appealing as an oncolytic virotherapy platform because of its small size, simple genome structure, rapid replication cycle, and broad cell/species tropism. However, mengovirus can cause encephalomyelitis and myocarditis. It can be partially attenuated by shortening the poly(C) tract in the 5′ NCR but remains capable of damaging cardiac and nervous tissue. Here, we further enhanced the safety profile of a poly(C)-truncated mengovirus by incorporating muscle- and neuron-specific microRNA target sequences into the viral genome. This dual-detargeted virus has reduced pathogenesis but retained potent oncolytic activity. Our data show that microRNA targeting can be used to further increase the safety of an attenuated mengovirus, providing a basis for its development as an oncolytic platform.
Collapse
|
29
|
Marty V, Labialle S, Bortolin-Cavaillé ML, Ferreira De Medeiros G, Moisan MP, Florian C, Cavaillé J. Deletion of the miR-379/miR-410 gene cluster at the imprintedDlk1-Dio3locus enhances anxiety-related behaviour. Hum Mol Genet 2016; 25:728-39. [DOI: 10.1093/hmg/ddv510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022] Open
|
30
|
Oikawa H, Sng JCG. Valproic acid as a microRNA modulator to promote neurite outgrowth. Neural Regen Res 2016; 11:1564-1565. [PMID: 27904479 PMCID: PMC5116827 DOI: 10.4103/1673-5374.193227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hirotaka Oikawa
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (ASTAR), Singapore, Singapore
| | - Judy C G Sng
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (ASTAR), Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Oikawa H, Goh WWB, Lim VKJ, Wong L, Sng JCG. Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1. Neurochem Int 2015; 91:62-71. [PMID: 26519098 DOI: 10.1016/j.neuint.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
Abstract
Valproic acid (VPA) is an anti-convulsant drug that is recently shown to have neuroregenerative therapeutic actions. In this study, we investigate the underlying molecular mechanism of VPA and its effects on Bdnf transcription through microRNAs (miRNAs) and their corresponding target proteins. Using in silico algorithms, we predicted from our miRNA microarray and iTRAQ data that miR-124 is likely to target at guanine nucleotide binding protein alpha inhibitor 1 (GNAI1), an adenylate cyclase inhibitor. With the reduction of GNAI1 mediated by VPA, the cAMP is enhanced to increase Bdnf expression. The levels of GNAI1 protein and Bdnf mRNA can be manipulated with either miR-124 mimic or inhibitor. In summary, we have identified a novel molecular mechanism of VPA that induces miR-124 to repress GNAI1. The implication of miR-124→GNAI1→BDNF pathway with valproic acid treatment suggests that we could repurpose an old drug, valproic acid, as a clinical application to elevate neurotrophin levels in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirotaka Oikawa
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore
| | - Wilson W B Goh
- School of Pharmaceutical Science and Technology, Tianjin University, China; School of Computing, National University of Singapore, Singapore
| | - Vania K J Lim
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore
| | - Judy C G Sng
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Regulation of Neuronal Cell Cycle and Apoptosis by MicroRNA 34a. Mol Cell Biol 2015; 36:84-94. [PMID: 26459758 DOI: 10.1128/mcb.00589-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
The cell cycle of neurons remains suppressed to maintain the state of differentiation and aberrant cell cycle reentry results in loss of neurons, which is a feature in neurodegenerative disorders like Alzheimer's disease (AD). Present studies revealed that the expression of microRNA 34a (miR-34a) needs to be optimal in neurons, as an aberrant increase or decrease in its expression causes apoptosis. miR-34a keeps the neuronal cell cycle under check by preventing the expression of cyclin D1 and promotes cell cycle arrest. Neurotoxic amyloid β1-42 peptide (Aβ42) treatment of cortical neurons suppressed miR-34a, resulting in unscheduled cell cycle reentry, which resulted in apoptosis. The repression of miR-34a was a result of degradation of TAp73, which was mediated by aberrant activation of the MEK extracellular signal-regulated kinase (ERK) pathway by Aβ42. A significant decrease in miR-34a and TAp73 was observed in the cortex of a transgenic (Tg) mouse model of AD, which correlated well with cell cycle reentry observed in the neurons of these animals. Importantly, the overexpression of TAp73α and miR-34a reversed cell cycle-related neuronal apoptosis (CRNA). These studies provide novel insights into how modulation of neuronal cell cycle machinery may lead to neurodegeneration and may contribute to the understanding of disorders like AD.
Collapse
|
33
|
Gupta S, Verma S, Mantri S, Berman NE, Sandhir R. Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Drug Dev Res 2015; 76:397-418. [PMID: 26359796 DOI: 10.1002/ddr.21277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preclinical Research microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that are key regulators of gene expression. They act on wide range of targets by binding to mRNA via imperfect complementarity at 3' UTR. Evidence suggests that miRNAs regulate many biological processes including neuronal development, differentiation, and disease. Altered expression of several miRNAs has been reported in many neurodegenerative disorders (NDDs). Many miRNAs are altered in these diseases, but miRNA 15, miRNA 21, and miRNA 146a have been shown to play critical role in many neurodegenerative conditions. As these miRNAs regulate many genes, miRNA targeted approaches would allow concurrently targeting of multiple effectors of pathways that regulate disease progression. In this review, we describe the role of miRNAs in various NDDs and their potential as therapeutic tools in prevention and treatment of neurological conditions.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Verma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shrikant Mantri
- Computational Biology Laboratory, National Agri-Food Biotechnology Institute, Mohali, Punjab, 160071, India
| | - Nancy E Berman
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
34
|
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015; 125:3572-84. [PMID: 26280576 DOI: 10.1172/jci79942] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.
Collapse
|
35
|
A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status. Nat Commun 2015; 6:7576. [PMID: 26144867 PMCID: PMC4506538 DOI: 10.1038/ncomms8576] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/21/2015] [Indexed: 01/20/2023] Open
Abstract
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3′-untranslated regions (3′ UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. Nervous system development relies on coherent up-regulation of extensive genes in a precise spatiotemporal manner. Here, the authors show that miR-9/TTP circuitry ensures coordinated up-regulation of neuronal mRNAs in neurons and limits unscheduled accumulation of these transcripts in non-neuronal cells.
Collapse
|
36
|
Störchel PH, Thümmler J, Siegel G, Aksoy-Aksel A, Zampa F, Sumer S, Schratt G. A large-scale functional screen identifies Nova1 and Ncoa3 as regulators of neuronal miRNA function. EMBO J 2015; 34:2237-54. [PMID: 26105073 DOI: 10.15252/embj.201490643] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/20/2015] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of neuronal development, network connectivity, and synaptic plasticity. While many neuronal miRNAs were previously shown to modulate neuronal morphogenesis, little is known regarding the regulation of miRNA function. In a large-scale functional screen, we identified two novel regulators of neuronal miRNA function, Nova1 and Ncoa3. Both proteins are expressed in the nucleus and the cytoplasm of developing hippocampal neurons. We found that Nova1 and Ncoa3 stimulate miRNA function by different mechanisms that converge on Argonaute (Ago) proteins, core components of the miRNA-induced silencing complex (miRISC). While Nova1 physically interacts with Ago proteins, Ncoa3 selectively promotes the expression of Ago2 at the transcriptional level. We further show that Ncoa3 regulates dendritic complexity and dendritic spine maturation of hippocampal neurons in a miRNA-dependent fashion. Importantly, both the loss of miRNA activity and increased dendrite complexity upon Ncoa3 knockdown were rescued by Ago2 overexpression. Together, we uncovered two novel factors that control neuronal miRISC function at the level of Ago proteins, with possible implications for the regulation of synapse development and plasticity.
Collapse
Affiliation(s)
- Peter H Störchel
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Juliane Thümmler
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Gabriele Siegel
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Ayla Aksoy-Aksel
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Federico Zampa
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Simon Sumer
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute for Physiological Chemistry Biochemical-Pharmacological Center Marburg Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
37
|
Søvik E, Bloch G, Ben-Shahar Y. Function and evolution of microRNAs in eusocial Hymenoptera. Front Genet 2015; 6:193. [PMID: 26074950 PMCID: PMC4444961 DOI: 10.3389/fgene.2015.00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
The emergence of eusociality (“true sociality”) in several insect lineages represents one of the most successful evolutionary adaptations in the animal kingdom in terms of species richness and global biomass. In contrast to solitary insects, eusocial insects evolved a set of unique behavioral and physiological traits such as reproductive division of labor and cooperative brood care, which likely played a major role in their ecological success. The molecular mechanisms that support the social regulation of behavior in eusocial insects, and their evolution, are mostly unknown. The recent whole-genome sequencing of several eusocial insect species set the stage for deciphering the molecular and genetic bases of eusociality, and the possible evolutionary modifications that led to it. Studies of mRNA expression patterns in the brains of diverse eusocial insect species have indicated that specific social behavioral states of individual workers and queens are often associated with particular tissue-specific transcriptional profiles. Here, we discuss recent findings that highlight the role of non-coding microRNAs (miRNAs) in modulating traits associated with reproductive and behavioral divisions of labor in eusocial insects. We provide bioinformatic and phylogenetic data, which suggest that some Hymenoptera-specific miRNA may have contributed to the evolution of traits important for the evolution of eusociality in this group.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
38
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
39
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
40
|
Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 2015; 133:640-52. [DOI: 10.1111/jnc.13089] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Ankita Pandey
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Parul Singh
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Abhishek Jauhari
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Tanisha Singh
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Farah Khan
- Department of Biochemistry; JamiaHamdard University; New Delhi India
| | - Aditya B. Pant
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Devendra Parmar
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Sanjay Yadav
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| |
Collapse
|
41
|
McAdams RM, McPherson RJ, Beyer RP, Bammler TK, Farin FM, Juul SE. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice. PLoS One 2015; 10:e0123047. [PMID: 25844808 PMCID: PMC4386824 DOI: 10.1371/journal.pone.0123047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.
Collapse
Affiliation(s)
- Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ronald J. McPherson
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| | - Richard P. Beyer
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Frederico M. Farin
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sandra E. Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
42
|
Fiorenza A, Lopez-Atalaya JP, Rovira V, Scandaglia M, Geijo-Barrientos E, Barco A. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness. Cereb Cortex 2015; 26:1619-1633. [PMID: 25595182 DOI: 10.1093/cercor/bhu332] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons.
Collapse
Affiliation(s)
- Anna Fiorenza
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Victor Rovira
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Emilio Geijo-Barrientos
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
43
|
Rajan KS, Ramasamy S. Retrotransposons and piRNA: The missing link in central nervous system. Neurochem Int 2014; 77:94-102. [DOI: 10.1016/j.neuint.2014.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
|
44
|
Bicker S, Lackinger M, Weiß K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 2014; 71:3987-4005. [PMID: 25008044 PMCID: PMC11113804 DOI: 10.1007/s00018-014-1671-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/19/2023]
Abstract
Dendritic mRNA transport and local translation in the postsynaptic compartment play an important role in synaptic plasticity, learning and memory. Local protein synthesis at the synapse has to be precisely orchestrated by a plethora of factors including RNA binding proteins as well as microRNAs, an extensive class of small non-coding RNAs. By binding to complementary sequences in target mRNAs, microRNAs fine-tune protein synthesis and thereby represent critical regulators of gene expression at the post-transcriptional level. Research over the last years identified an entire network of dendritic microRNAs that fulfills an essential role in synapse development and physiology. Recent studies provide evidence that these small regulatory molecules are highly regulated themselves, at the level of expression as well as function. The importance of microRNAs for correct function of the nervous system is reflected by an increasing number of studies linking dysregulation of microRNA pathways to neurological disorders. By focusing on three extensively studied examples (miR-132, miR-134, miR-138), this review will attempt to illustrate the complex regulatory roles of dendritic microRNAs at the synapse and their implications for pathological conditions.
Collapse
Affiliation(s)
- Silvia Bicker
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Kerstin Weiß
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
45
|
Gonzalez S, Camarillo C, Rodriguez M, Ramirez M, Zavala J, Armas R, Contreras SA, Contreras J, Dassori A, Almasy L, Flores D, Jerez A, Raventós H, Ontiveros A, Nicolini H, Escamilla M. A genome-wide linkage scan of bipolar disorder in Latino families identifies susceptibility loci at 8q24 and 14q32. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:479-91. [PMID: 25044503 DOI: 10.1002/ajmg.b.32251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
A genome-wide nonparametric linkage screen was performed to localize Bipolar Disorder (BP) susceptibility loci in a sample of 3757 individuals of Latino ancestry. The sample included 963 individuals with BP phenotype (704 relative pairs) from 686 families recruited from the US, Mexico, Costa Rica, and Guatemala. Non-parametric analyses were performed over a 5 cM grid with an average genetic coverage of 0.67 cM. Multipoint analyses were conducted across the genome using non-parametric Kong & Cox LOD scores along with Sall statistics for all relative pairs. Suggestive and significant genome-wide thresholds were calculated based on 1000 simulations. Single-marker association tests in the presence of linkage were performed assuming a multiplicative model with a population prevalence of 2%. We identified two genome-wide significant susceptibly loci for BP at 8q24 and 14q32, and a third suggestive locus at 2q13-q14. Within these three linkage regions, the top associated single marker (rs1847694, P = 2.40 × 10(-5)) is located 195 Kb upstream of DPP10 in Chromosome 2. DPP10 is prominently expressed in brain neuronal populations, where it has been shown to bind and regulate Kv4-mediated A-type potassium channels. Taken together, these results provide additional evidence that 8q24, 14q32, and 2q13-q14 are susceptibly loci for BP and these regions may be involved in the pathogenesis of BP in the Latino population.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas; Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AWS. microRNA-128a dysregulation in transgenic Huntington's disease monkeys. Mol Brain 2014; 7:46. [PMID: 24929669 PMCID: PMC4065582 DOI: 10.1186/1756-6606-7-46] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a progressive neurodegenerative disorder with a single causal mutation in the Huntingtin (HTT) gene. MicroRNAs (miRNAs) have recently been implicated as epigenetic regulators of neurological disorders, however, their role in HD pathogenesis is not well defined. Here we study transgenic HD monkeys (HD monkeys) to examine miRNA dysregulation in a primate model of the disease. RESULTS In this report, 11 miRNAs were found to be significantly associated (P value < 0.05) with HD in the frontal cortex of the HD monkeys. We further focused on one of those candidates, miR-128a, due to the corresponding disruption in humans and mice with HD as well as its intriguing lists of gene targets. miR-128a was downregulated in our HD monkey model by the time of birth. We then confirmed that miR-128a was also downregulated in the brains of pre-symptomatic and post-symptomatic HD patients. Additionally, our studies confirmed a panel of canonical HD signaling genes regulated by miR-128a, including HTT and Huntingtin Interaction Protein 1 (HIP1). CONCLUSION Our studies found that miR-128a may play a critical role in HD and could be a viable candidate as a therapeutic or biomarker of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Disease, Yerkes National Primate Research Center, 954 Gatewood Rd,, N,E Atlanta, GA 30329, USA.
| |
Collapse
|
47
|
Abstract
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Barca-Mayo O, De Pietri Tonelli D. Convergent microRNA actions coordinate neocortical development. Cell Mol Life Sci 2014; 71:2975-95. [PMID: 24519472 PMCID: PMC4111863 DOI: 10.1007/s00018-014-1576-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA–target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | | |
Collapse
|
49
|
Condro MC, White SA. Recent Advances in the Genetics of Vocal Learning. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2014; 9:75-98. [PMID: 26052371 DOI: 10.3819/ccbr.2014.90003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
50
|
Khudayberdiev SA, Zampa F, Rajman M, Schratt G. A comprehensive characterization of the nuclear microRNA repertoire of post-mitotic neurons. Front Mol Neurosci 2013; 6:43. [PMID: 24324399 PMCID: PMC3840315 DOI: 10.3389/fnmol.2013.00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with important functions in the development and plasticity of post-mitotic neurons. In addition to the well-described cytoplasmic function of miRNAs in post-transcriptional gene regulation, recent studies suggested that miRNAs could also be involved in transcriptional and post-transcriptional regulatory processes in the nuclei of proliferating cells. However, whether miRNAs localize to and function within the nucleus of post-mitotic neurons is unknown. Using a combination of microarray hybridization and small RNA deep sequencing, we identified a specific subset of miRNAs which are enriched in the nuclei of neurons. Nuclear enrichment of specific candidate miRNAs (miR-25 and miR-92a) could be independently validated by Northern blot, quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH). By cross-comparison to published reports, we found that nuclear accumulation of miRNAs might be linked to a down-regulation of miRNA expression during in vitro development of cortical neurons. Importantly, by generating a comprehensive isomiR profile of the nuclear and cytoplasmic compartments, we found a significant overrepresentation of guanine nucleotides (nt) at the 3′-terminus of nuclear-enriched isomiRs, suggesting the presence of neuron-specific mechanisms involved in miRNA nuclear localization. In conclusion, our results provide a starting point for future studies addressing the nuclear function of specific miRNAs and the detailed mechanisms underlying subcellular localization of miRNAs in neurons and possibly other polarized cell types.
Collapse
Affiliation(s)
- Sharof A Khudayberdiev
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg Marburg, Germany
| | | | | | | |
Collapse
|