1
|
Laydon DJ, Smith DL, Chakradeo K, Khurana MP, Okiring J, Duchene DA, Bhatt S. Climate Change and Malaria: A Call for Robust Analytics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.16.24313623. [PMID: 39830277 PMCID: PMC11741450 DOI: 10.1101/2024.09.16.24313623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mosquito ecology and behavior and malaria parasite development display marked sensitivity to weather, in particular to temperature and precipitation. Therefore, climate change is expected to profoundly affect malaria epidemiology in its transmission, spatiotemporal distribution and consequent disease burden. However, malaria transmission is also complicated by other factors (e.g. urbanization, socioeconomic development, genetics, drug resistance) which together constitute a highly complex, dynamical system, where the influence of any single factor can be masked by others. In this study, we therefore aim to re-evaluate the evidence underlying the widespread belief that climate change will increase worldwide malaria transmission. We review two broad types of study that have contributed to this evidence-base: i) studies that project changes in transmission due to inferred relationships between environmental and mosquito entomology, and ii) regression-based studies that look for associations between environmental variables and malaria prevalence. We then employ a simple statistical model to show that environmental variables alone do not account for the observed spatiotemporal variation in malaria prevalence. Our review raises several concerns about the robustness of the analyses used for advocacy around climate change and malaria. We find that, while climate change's effect on malaria is highly plausible, empirical evidence is much less certain. Future research on climate change and malaria must become integrated into malaria control programs, and understood in context as one factor among many. Our work outlines gaps in modelling that we believe are priorities for future research.
Collapse
Affiliation(s)
- Daniel J Laydon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, Imperial College London, London, UK
| | - David L Smith
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kaustubh Chakradeo
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jaffer Okiring
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
| | - David A Duchene
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Schultz JS, Okoli M, Lee S, Leonard CM, Sayre D, Heilig CM, Uhomoibhi P, Ogunniyi A, Ndodo N, Mba N, Abubakar AG, Akinmulero O, Dawurung AB, Okoye M, Iriemenam NC, Plucinski M, Steinhardt L, Rogier E, Ihekweazu C. Principal component analysis of the Serological response to Plasmodium Falciparum using a Multiplex bead-based assay in Nigeria. Sci Rep 2024; 14:30658. [PMID: 39730380 DOI: 10.1038/s41598-024-74236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/24/2024] [Indexed: 12/29/2024] Open
Abstract
Characterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA). PC1 and PC2 scores explained 41% and 17% of the total variance, respectively. PC1 unit vectors represented seropositivity. PC2 unit vectors for blood-stage antigens were in opposite directions to liver-stage and sporozoite antigens. PC2 scores were correlated with MSP-1 positively (R = 0.52, P < 0.001) and CSP negatively (R=-0.65, P < 0.001) and may help identify areas with prior exposure but higher risk for increased infections or epidemics. PCA of Pf serology can provide summary scores to possibly inform future programmatic interventions.
Collapse
Affiliation(s)
- Jonathan S Schultz
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mary Okoli
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Scott Lee
- Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Colleen M Leonard
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dean Sayre
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles M Heilig
- Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Nnaemeka Ndodo
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Nwando Mba
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Ado G Abubakar
- Institute of Human Virology Nigeria, Abuja, FCT, Nigeria
| | | | | | - McPaul Okoye
- Division of Global HIV and Tuberculosis, Centers for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Nnaemeka C Iriemenam
- Division of Global HIV and Tuberculosis, Centers for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Mateusz Plucinski
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura Steinhardt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
3
|
Martin AC, Chaponda M, Muleba M, Lupiya J, Gebhardt ME, Berube S, Shields T, Wesolowski A, Kobayashi T, Norris DE, Impoinvil DE, Chirwa B, Zulu R, Psychas P, Ippolito M, Moss WJ. Impact of late rainy season indoor residual spraying on holoendemic malaria transmission: a cohort study in northern Zambia. J Infect Dis 2024:jiae609. [PMID: 39699125 DOI: 10.1093/infdis/jiae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a malaria control strategy implemented before the rainy season. Nchelenge District, Zambia is a holoendemic setting where IRS has been conducted since 2008 with little impact on malaria incidence or parasite prevalence. Pre-rainy season IRS may not reduce the post-rainy season peak abundance of the major vector, Anopheles funestus. METHODS A controlled, pre-post, prospective cohort study assessed the impact of late-rainy season IRS on malaria prevalence, incidence, hazard, and vector abundance. Three hundred eighty-two individuals were enrolled across four household clusters, of which two were sprayed in April 2022 toward the end of the rainy season. Monthly household and individual surveys and indoor overnight vector collections were conducted through August 2022. Multivariate regression and time-to-event analyses estimated the impact of IRS on outcomes measured by rapid diagnostic tests, microscopy, and quantitative polymerase chain reaction. RESULTS Seventy two percent of participants tested positive by rapid diagnostic test at least once and incidence by microscopy was 3.4 infections per person-year. Residing in a household in a sprayed area was associated with a 52% reduction in infection hazard (hazards ratio: 0.48, 95% confidence interval [0.29, 0.78]) but not with changes in incidence, prevalence, or vector abundance. The study-wide entomological inoculation rate was 34 infectious bites per person per year. CONCLUSION Monthly tracking of incidence and prevalence did not demonstrate meaningful changes in holoendemic transmission intensity. However, hazard of infection, which provides greater power for detecting changes in transmission, demonstrated that late rainy season IRS reduced malaria risk.
Collapse
Affiliation(s)
- Anne C Martin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Department of Biostatistics, University of Florida, Gainesville USA
| | - Mike Chaponda
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205, USA
| | - Mbanga Muleba
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205, USA
| | - James Lupiya
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205, USA
| | - Mary E Gebhardt
- Department of Biostatistics, University of Florida, Gainesville USA
- Tropical Diseases Research Centre, Ndola, Zambia
| | - Sophie Berube
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Department of Biostatistics, University of Florida, Gainesville USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Department of Biostatistics, University of Florida, Gainesville USA
| | - Douglas E Norris
- Department of Biostatistics, University of Florida, Gainesville USA
- Tropical Diseases Research Centre, Ndola, Zambia
| | - Daniel E Impoinvil
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, USA
| | - Brian Chirwa
- U.S. President's Malaria Initiative (PMI), U.S. Centers for Disease Control and Prevention (CDC), Atlanta, 30333, GA USA
| | - Reuben Zulu
- U.S. President's Malaria Initiative (PMI) VectorLink, Lusaka, Zambia
| | - Paul Psychas
- National Malaria Elimination Centre, Lusaka, Zambia
| | - Matthew Ippolito
- Department of Biostatistics, University of Florida, Gainesville USA
- U.S. President's Malaria Initiative (PMI), U.S. Centers for Disease Control and Prevention (CDC) Lusaka, Zambia
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Department of Biostatistics, University of Florida, Gainesville USA
- Tropical Diseases Research Centre, Ndola, Zambia
| |
Collapse
|
4
|
Cheng W, Liu J, Wang C, Jiang R, Jiang M, Kong F. Application of image recognition technology in pathological diagnosis of blood smears. Clin Exp Med 2024; 24:181. [PMID: 39105953 PMCID: PMC11303489 DOI: 10.1007/s10238-024-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 08/07/2024]
Abstract
Traditional manual blood smear diagnosis methods are time-consuming and prone to errors, often relying heavily on the experience of clinical laboratory analysts for accuracy. As breakthroughs in key technologies such as neural networks and deep learning continue to drive digital transformation in the medical field, image recognition technology is increasingly being leveraged to enhance existing medical processes. In recent years, advancements in computer technology have led to improved efficiency in the identification of blood cells in blood smears through the use of image recognition technology. This paper provides a comprehensive summary of the methods and steps involved in utilizing image recognition algorithms for diagnosing diseases in blood smears, with a focus on malaria and leukemia. Furthermore, it offers a forward-looking research direction for the development of a comprehensive blood cell pathological detection system.
Collapse
Affiliation(s)
- Wangxinjun Cheng
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Queen Mary College, Nanchang University, Nanchang, 330006, China
| | - Jingshuang Liu
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Queen Mary College, Nanchang University, Nanchang, 330006, China
| | - Chaofeng Wang
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Queen Mary College, Nanchang University, Nanchang, 330006, China
| | - Ruiyin Jiang
- Queen Mary College, Nanchang University, Nanchang, 330006, China
| | - Mei Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Fancong Kong
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Wagman J, Chanda B, Chanda J, Saili K, Orange E, Mambo P, Muyabe R, Kaniki T, Mwenya M, Ng'andu M, Sakala J, Ngulube W, Miller J, Arnzen A, Silumbe K, Mwaanga G, Simubali L, Mungo A, Mburu MM, Simulundu E, Mambwe B, Kasaro R, Mulube C, Mwenda M, Hamainza B, Ashton RA, Eisele TP, Harris AF, Entwistle J, Yukich J, Slutsker L, Burkot TR, Littrell M. Entomological effects of attractive targeted sugar bait station deployment in Western Zambia: vector surveillance findings from a two-arm cluster randomized phase III trial. Malar J 2024; 23:214. [PMID: 39026236 PMCID: PMC11264679 DOI: 10.1186/s12936-024-05045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Attractive targeted sugar bait (ATSB) stations are a novel tool with potential to complement current approaches to malaria vector control. To assess the public health value of ATSB station deployment in areas of high coverage with standard vector control, a two-arm cluster-randomized controlled trial (cRCT) of Sarabi ATSB® stations (Westham Ltd., Hod-Hasharon, Israel) was conducted in Western Province, Zambia, a high-burden location were Anopheles funestus is the dominant vector. The trial included 70 clusters and was designed to measure the effect of ATSBs on case incidence and infection prevalence over two 7-month deployments. Reported here are results of the vector surveillance component of the study, conducted in a subset of 20 clusters and designed to provide entomological context to guide overall interpretation of trial findings. METHODS Each month, 200 paired indoor-outdoor human landing catch (HLC) and 200 paired light trap (LT) collections were conducted to monitor An. funestus parity, abundance, biting rates, sporozoite prevalence, and entomological inoculation rates (EIR). RESULTS During the study 20,337 female An. funestus were collected, 11,229 from control and 9,108 from intervention clusters. A subset of 3,131 HLC specimens were assessed for parity: The mean non-parous proportion was 23.0% (95% CI 18.2-28.7%, total n = 1477) in the control and 21.2% (95% CI 18.8-23.9%, total n = 1654) in the intervention arm, an OR = 1.05 (95% CI 0.82-1.34; p = 0.688). A non-significant reduction in LT abundance (RR = 0.65 [95% CI 0.30-1.40, p = 0.267]) was associated with ATSB deployment. HLC rates were highly variable, but model results indicate a similar non-significant trend with a RR = 0.68 (95%CI 0.22-2.00; p = 0.479). There were no effects on sporozoite prevalence or EIR. CONCLUSIONS Anopheles funestus parity did not differ across study arms, but ATSB deployment was associated with a non-significant 35% reduction in vector LT density, results that are consistent with the epidemiological impact reported elsewhere. Additional research is needed to better understand how to maximize the potential impact of ATSB approaches in Zambia and other contexts. TRIAL REGISTRATION NUMBER This trial was registered with Clinicaltrials.gov (NCT04800055, 16 March 2021).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ruth A Ashton
- Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Thomas P Eisele
- Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | | | - Joshua Yukich
- Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | |
Collapse
|
6
|
Kearney EA, Amratia P, Kang SY, Agius PA, Alene KA, O’Flaherty K, Oo WH, Cutts JC, Htike W, Da Silva Goncalves D, Razook Z, Barry AE, Drew D, Thi A, Aung KZ, Thu HK, Thein MM, Zaw NN, Htay WYM, Soe AP, Beeson JG, Simpson JA, Gething PW, Cameron E, Fowkes FJI. Geospatial joint modeling of vector and parasite serology to microstratify malaria transmission. Proc Natl Acad Sci U S A 2024; 121:e2320898121. [PMID: 38833464 PMCID: PMC11181033 DOI: 10.1073/pnas.2320898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.
Collapse
Affiliation(s)
- Ellen A. Kearney
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Punam Amratia
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
| | - Su Yun Kang
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
| | - Paul A. Agius
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
- Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC3125, Australia
| | - Kefyalew Addis Alene
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | | | - Win Han Oo
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Julia C. Cutts
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC3000, Australia
| | - Win Htike
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | | | - Zahra Razook
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Institute for Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC3216, Australia
| | - Alyssa E. Barry
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Institute for Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC3216, Australia
| | - Damien Drew
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
| | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health and Sports, Nay Pyi Taw15011, Myanmar
| | - Kyaw Zayar Aung
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Htin Kyaw Thu
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Myat Mon Thein
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Nyi Nyi Zaw
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Wai Yan Min Htay
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Aung Paing Soe
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - James G. Beeson
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Department of Infectious Diseases, The University of Melbourne, Melbourne, VIC3000, Australia
- Department of Microbiology, Monash University, Melbourne, VIC3800, Australia
- Central Clinical School, Monash University, Melbourne, VIC3004, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Peter W. Gething
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | - Ewan Cameron
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | - Freya J. I. Fowkes
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| |
Collapse
|
7
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Lapidus S, Goheen MM, Sy M, Deme AB, Ndiaye IM, Diedhiou Y, Mbaye AM, Hagadorn KA, Sene SD, Pouye MN, Thiam LG, Ba A, Guerra N, Mbengue A, Raduwan H, Vigan-Womas I, Parikh S, Ko AI, Ndiaye D, Fikrig E, Chuang YM, Bei AK. Two mosquito salivary antigens demonstrate promise as biomarkers of recent exposure to P. falciparum infected mosquito bites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.20.24305430. [PMID: 38712295 PMCID: PMC11071555 DOI: 10.1101/2024.04.20.24305430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins such as SG6 have previously been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate four mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with P. falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. Methods We tested population-level human immune responses in longitudinal and cross-sectional plasma samples from individuals with known P. falciparum infection from low and moderate transmission areas in Senegal using a multiplexed magnetic bead-based assay. Results AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate endemic area, and to AgTRIO in both low and moderate endemic areas, were significantly higher than responses in a healthy non-endemic control cohort (p-values = 0.0245, 0.0064, and <0.0001 respectively). No antibody responses significantly differed between the low and moderate transmission area, or between equivalent groups during and outside the malaria transmission seasons. For AgSAP and AgTRIO, reactivity peaked 2-4 weeks after clinical P. falciparum infection and declined 3 months after infection. Discussion Reactivity to both AgSAP and AgTRIO peaked after infection and did not differ seasonally nor between areas of low and moderate transmission, suggesting reactivity is likely reflective of exposure to infectious mosquitos or recent biting rather than general mosquito exposure. Kinetics suggest reactivity is relatively short-lived. AgSAP and AgTRIO are promising candidates to incorporate into multiplexed assays for serosurveillance of population-level changes in P. falciparum-infected mosquito exposure.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Morgan M Goheen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Kelly A Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Seynabou Diouf Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama Nicole Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Hamidah Raduwan
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Inés Vigan-Womas
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Erol Fikrig
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Yu-Min Chuang
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
9
|
Gupta H, Sharma S, Gilyazova I, Satyamoorthy K. Molecular tools are crucial for malaria elimination. Mol Biol Rep 2024; 51:555. [PMID: 38642192 DOI: 10.1007/s11033-024-09496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, 450054, Russia
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| |
Collapse
|
10
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
11
|
Brokhattingen N, Matambisso G, da Silva C, Neubauer Vickers E, Pujol A, Mbeve H, Cisteró P, Maculuve S, Cuna B, Melembe C, Ndimande N, Palmer B, García-Ulloa M, Munguambe H, Montaña-Lopez J, Nhamussua L, Simone W, Chidimatembue A, Galatas B, Guinovart C, Rovira-Vallbona E, Saúte F, Aide P, Aranda-Díaz A, Greenhouse B, Macete E, Mayor A. Genomic malaria surveillance of antenatal care users detects reduced transmission following elimination interventions in Mozambique. Nat Commun 2024; 15:2402. [PMID: 38493162 PMCID: PMC10944499 DOI: 10.1038/s41467-024-46535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compare the genetic structure of parasite populations sampled from 289 first ANC users and 93 children from the community in Mozambique between 2015 and 2019. Samples are amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, are consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declines in both populations (p = 0.002-0.007), while for the ANC population, population genetic diversity is also lower (p = 0.0004), and genetic relatedness between infections is higher (p = 0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.
Collapse
Affiliation(s)
| | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Arnau Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Henriques Mbeve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sónia Maculuve
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Boaventura Cuna
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Cardoso Melembe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelo Ndimande
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Beatriz Galatas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | | | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- National Directorate for Public Health, Ministry of Health, Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| |
Collapse
|
12
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Akoniyon OP, Akiibinu M, Adeleke MA, Maharaj R, Okpeku M. A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens 2024; 13:172. [PMID: 38392910 PMCID: PMC10891941 DOI: 10.3390/pathogens13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Understanding the genetic structure of P. falciparum population in different regions is pivotal to malaria elimination. Genetic diversity and the multiplicity of infection are indicators used for measuring malaria endemicity across different transmission settings. Therefore, this study characterized P. falciparum infections from selected areas constituting pre-elimination and high transmission settings in South Africa and Nigeria, respectively. METHODS Parasite genomic DNA was extracted from 129 participants with uncomplicated P. falciparum infections. Isolates were collected from 78 participants in South Africa (southern Africa) and 51 in Nigeria (western Africa). Allelic typing of the msp1 and msp2 genes was carried out using nested PCR. RESULTS In msp1, the K1 allele (39.7%) was the most common allele among the South African isolates, while the RO33 allele (90.2%) was the most common allele among the Nigerian isolates. In the msp2 gene, FC27 and IC3D7 showed almost the same percentage distribution (44.9% and 43.6%) in the South African isolates, whereas FC27 had the highest percentage distribution (60.8%) in the Nigerian isolates. The msp2 gene showed highly distinctive genotypes, indicating high genetic diversity in the South African isolates, whereas msp1 showed high genetic diversity in the Nigerian isolates. The RO33 allelic family displayed an inverse relationship with participants' age in the Nigerian isolates. The overall multiplicity of infection (MOI) was significantly higher in Nigeria (2.87) than in South Africa (2.44) (p < 0.000 *). In addition, heterozygosity was moderately higher in South Africa (1.46) than in Nigeria (1.13). CONCLUSIONS The high genetic diversity and MOI in P. falciparum that were observed in this study could provide surveillance data, on the basis of which appropriate control strategies should be adopted.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Moses Akiibinu
- Department of Biochemistry and Chemistry, Caleb University, Lagos 11379, Nigeria;
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| |
Collapse
|
14
|
Wotodjo AN, Oboh MA, Sokhna C, Diagne N, Diène-Sarr F, Trape JF, Doucouré S, Amambua-Ngwa A, D'Alessandro U. Plasmodium falciparum population structure and genetic diversity of cell traversal protein for ookinetes and sporozoites (CelTOS) during malaria resurgences in Dielmo, Senegal. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105535. [PMID: 38030029 DOI: 10.1016/j.meegid.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The ability to accurately measure the intensity of malaria transmission in areas with low transmission is extremely important to guide elimination efforts. Plasmodium falciparum Cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an important conserved sporozoite antigen reported as one of the promising malaria vaccine candidates, and could be used to estimate malaria transmission intensity. This study aimed at determining whether the diversity of PfCelTOS gene reflects the changes in malaria transmission that occurred between 2007 and 2014 in Dielmo, a Senegalese village, before and after the implementation of insecticide treated bed nets (ITNs). Of the 109 samples positive for PfCelTOS PCR, 96 (88%) were successfully sequenced and analysed for polymorphisms and population diversity. The number of segregating sites was higher during the pre-intervention period (13) and the malaria resurgences (11) than during the intervention period (5). Similarly, the number and diversity of haplotypes were higher during the pre-intervention period (16 and 0.914, respectively) and the malaria resurgences (6 and 0.821, respectively) than during the intervention period (4 and 0.758, respectively). Moreover, the average number of nucleotide differences was higher during the pre-intervention (3.792) and during malaria resurgences (3.467) than during the intervention period (2.189). The 3D7 KSSFNEP haplotype was only observed during the intervention period. Only two haplotypes were shared in both the pre-intervention and intervention periods while four haplotypes were shared between the pre-intervention and the malaria resurgences. The Fst values indicate moderate differentiation between pre-intervention and intervention periods (0.17433), and between intervention and malaria resurgences period (0.19198) as well as between pre-intervention and malaria resurgences periods (0.06607). PfCelTOS genetic diversity reflected changes of malaria transmission, with higher polymorphisms recorded before the large-scale implementation of ITNs and during the malaria resurgences. PfCelTOS is also a candidate vaccine; mapping its diversity across multiple endemic environments will facilitate the design and optimisation of a broad and efficacious vaccine.
Collapse
Affiliation(s)
- Amélé Nyedzie Wotodjo
- VITROME, UMR 257 IRD, Campus UCAD-IRD, Dakar, Senegal; Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, Gambia; Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria; Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Cheikh Sokhna
- VITROME, UMR 257 IRD, Campus UCAD-IRD, Dakar, Senegal
| | | | | | - Jean-François Trape
- UMR MIVEGEC, Laboratoire de Paludologie et Zoologie Médicale, IRD, Dakar, Senegal
| | | | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| |
Collapse
|
15
|
Andika B, Mobegi V, Gathii K, Nyataya J, Maina N, Awinda G, Mutai B, Waitumbi J. Plasmodium falciparum population structure inferred by msp1 amplicon sequencing of parasites collected from febrile patients in Kenya. Malar J 2023; 22:263. [PMID: 37689681 PMCID: PMC10492417 DOI: 10.1186/s12936-023-04700-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 (Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.
Collapse
Affiliation(s)
- Brian Andika
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Kimita Gathii
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Josphat Nyataya
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Awinda
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Beth Mutai
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - John Waitumbi
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya.
| |
Collapse
|
16
|
Thawer SG, Golumbeanu M, Lazaro S, Chacky F, Munisi K, Aaron S, Molteni F, Lengeler C, Pothin E, Snow RW, Alegana VA. Spatio-temporal modelling of routine health facility data for malaria risk micro-stratification in mainland Tanzania. Sci Rep 2023; 13:10600. [PMID: 37391538 PMCID: PMC10313820 DOI: 10.1038/s41598-023-37669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer scales becomes critical to guide community-based targeted interventions. Although routine health facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, its incomplete nature of information can result in lower administrative units without empirical data. To overcome geographic sparsity of data and its representativeness, geo-spatial models can leverage routine information to predict risk in un-represented areas as well as estimate uncertainty of predictions. Here, a Bayesian spatio-temporal model was applied on malaria test positivity rate (TPR) data for the period 2017-2019 to predict risks at the ward level, the lowest decision-making unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (≥ 30; 90% certainty) in the North-West and South-East parts of Tanzania. Approximately 11.7 million people lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify different epidemiological strata and guide malaria interventions at micro-planning units in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-spatial modelling techniques for estimation.
Collapse
Affiliation(s)
- Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Samwel Lazaro
- Ministry of Health, Dodoma, Tanzania
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- Ministry of Health, Dodoma, Tanzania
- National Malaria Control Programme, Dodoma, Tanzania
| | - Khalifa Munisi
- Ministry of Health, Dodoma, Tanzania
- National Malaria Control Programme, Dodoma, Tanzania
| | - Sijenunu Aaron
- Ministry of Health, Dodoma, Tanzania
- National Malaria Control Programme, Dodoma, Tanzania
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Malaria Control Programme, Dodoma, Tanzania
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Clinton Health Access Initiative, New York, USA
| | - Robert W Snow
- Population Health Unit, KEMRI-Welcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Victor A Alegana
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
17
|
Jeang B, Lee MC, Embury P, Yewhalaw D, Narum D, King C, Tham WH, Kazura J, Yan G, Dent A. Serological Markers of Exposure to Plasmodium falciparum and Plasmodium vivax Infection in Southwestern Ethiopia. Am J Trop Med Hyg 2023; 108:871-881. [PMID: 37037443 PMCID: PMC10160885 DOI: 10.4269/ajtmh.22-0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/22/2023] [Indexed: 04/12/2023] Open
Abstract
As malaria control and elimination efforts ramp up in Ethiopia, more sensitive tools for assessing exposure to coendemic Plasmodium falciparum and Plasmodium vivax are needed to accurately characterize malaria risk and epidemiology. Serological markers have been increasingly explored as cost-effective tools for measuring transmission intensity and evaluating intervention effectiveness. The objectives of this study were to evaluate the efficacy of a panel of 10 serological markers as a proxy for malaria exposure and to determine underlying risk factors of seropositivity. We conducted cross-sectional surveys in two sites of contrasting malaria transmission intensities in southwestern Ethiopia: Arjo in Oromia Region (low transmission) and Gambella in Gambella Regional State (moderate transmission). We measured antibody reactivity against six P. falciparum (AMA-1, CSP, EBA175RIII-V, MSP-142, MSP-3, RH2ab) and four P. vivax (DBPII[Sal1], EBP2, MSP-119, RBP2b) targets. We used mixed effects logistic regressions to assess predictors of seropositivity. Plasmodium spp. infection prevalence by quantitative polymerase chain reaction was 1.36% in Arjo and 10.20% in Gambella. Seroprevalence and antibody levels against all 10 antigens were higher in Gambella than in Arjo. We observed spatial heterogeneities in seroprevalence across Arjo and smaller variations across Gambella. Seroprevalence in both sites was lowest against PfCSP and highest against PfAMA-1, PfMSP-142, and PvMSPS-119. Male sex, age, and agricultural occupation were positively associated with seropositivity in Arjo; associations were less pronounced in Gambella. Our findings demonstrate that seroprevalence and antibody levels to specific Plasmodium antigens can be used to identify high-risk groups and geographical areas where interventions to reduce malaria transmission should be implemented.
Collapse
Affiliation(s)
- Brook Jeang
- Program in Public Health, University of California Irvine, Irvine, California
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, California
| | - Paula Embury
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - David Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christopher King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - James Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California
| | - Arlene Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
18
|
Epstein A, Namuganga JF, Nabende I, Kamya EV, Kamya MR, Dorsey G, Sturrock H, Bhatt S, Rodríguez-Barraquer I, Greenhouse B. Mapping malaria incidence using routine health facility surveillance data in Uganda. BMJ Glob Health 2023; 8:e011137. [PMID: 37208120 PMCID: PMC10201255 DOI: 10.1136/bmjgh-2022-011137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Maps of malaria risk are important tools for allocating resources and tracking progress. Most maps rely on cross-sectional surveys of parasite prevalence, but health facilities represent an underused and powerful data source. We aimed to model and map malaria incidence using health facility data in Uganda. METHODS Using 24 months (2019-2020) of individual-level outpatient data collected from 74 surveillance health facilities located in 41 districts across Uganda (n=445 648 laboratory-confirmed cases), we estimated monthly malaria incidence for parishes within facility catchment areas (n=310) by estimating care-seeking population denominators. We fit spatio-temporal models to the incidence estimates to predict incidence rates for the rest of Uganda, informed by environmental, sociodemographic and intervention variables. We mapped estimated malaria incidence and its uncertainty at the parish level and compared estimates to other metrics of malaria. To quantify the impact that indoor residual spraying (IRS) may have had, we modelled counterfactual scenarios of malaria incidence in the absence of IRS. RESULTS Over 4567 parish-months, malaria incidence averaged 705 cases per 1000 person-years. Maps indicated high burden in the north and northeast of Uganda, with lower incidence in the districts receiving IRS. District-level estimates of cases correlated with cases reported by the Ministry of Health (Spearman's r=0.68, p<0.0001), but were considerably higher (40 166 418 cases estimated compared with 27 707 794 cases reported), indicating the potential for underreporting by the routine surveillance system. Modelling of counterfactual scenarios suggest that approximately 6.2 million cases were averted due to IRS across the study period in the 14 districts receiving IRS (estimated population 8 381 223). CONCLUSION Outpatient information routinely collected by health systems can be a valuable source of data for mapping malaria burden. National Malaria Control Programmes may consider investing in robust surveillance systems within public health facilities as a low-cost, high benefit tool to identify vulnerable regions and track the impact of interventions.
Collapse
Affiliation(s)
- Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Isaiah Nabende
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hugh Sturrock
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, California, USA
| | - Samir Bhatt
- Department of Public Health, University of Copenhagen, Kobenhavn, Denmark
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Neal A, Sassi J, Vardo-Zalik A. Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum. PeerJ 2023; 11:e14908. [PMID: 36860770 PMCID: PMC9969858 DOI: 10.7717/peerj.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Microparasites often exist as a collection of genetic 'clones' within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and abundance of complex infections in natural settings. Utilizing a natural dataset that spans more than 20 years, we examined the effects of drought conditions on infection complexity and prevalence in the lizard malaria parasite Plasmodium mexicanum and its vertebrate host, the western fence lizard, Sceloporus occidentalis. We analyzed data for 14,011 lizards sampled from ten sites over 34 years with an average infection rate of 16.2%. Infection complexity was assessed for 546 infected lizards sampled during the most recent 20 years. Our data illustrate significant, negative effects of drought-like conditions on infection complexity, with infection complexity expected to increase by a factor of 2.27 from the lowest to highest rainfall years. The relationship between rainfall and parasite prevalence is somewhat more ambiguous; when prevalence is modeled over the full range in years, a 50% increase in prevalence is predicted between the lowest and highest rainfall years, but this trend is not apparent or is reversed when data are analyzed over a shorter timeframe. To our knowledge, this is the first reported evidence for drought affecting the abundance of multi-clonal infections in malaria parasites. It is not yet clear what mechanism might connect drought with infection complexity, but the correlation we observed suggests that additional research on how drought influences parasite features like infection complexity, transmission rates and within-host competition may be worthwhile.
Collapse
Affiliation(s)
- Allison Neal
- Norwich University, Northfield, VT, United States
| | - Joshua Sassi
- Norwich University, Northfield, VT, United States
| | | |
Collapse
|
20
|
Arambepola R, Bérubé S, Freedman B, Taylor SM, Prudhomme O’Meara W, Obala AA, Wesolowski A. Exploring how space, time, and sampling impact our ability to measure genetic structure across Plasmodium falciparum populations. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1058871. [PMID: 38516334 PMCID: PMC10956351 DOI: 10.3389/fepid.2023.1058871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2024]
Abstract
A primary use of malaria parasite genomics is identifying highly related infections to quantify epidemiological, spatial, or temporal factors associated with patterns of transmission. For example, spatial clustering of highly related parasites can indicate foci of transmission and temporal differences in relatedness can serve as evidence for changes in transmission over time. However, for infections in settings of moderate to high endemicity, understanding patterns of relatedness is compromised by complex infections, overall high forces of infection, and a highly diverse parasite population. It is not clear how much these factors limit the utility of using genomic data to better understand transmission in these settings. In particular, further investigation is required to determine which patterns of relatedness we expect to see with high quality, densely sampled genomic data in a high transmission setting and how these observations change under different study designs, missingness, and biases in sample collection. Here we investigate two identity-by-state measures of relatedness and apply them to amplicon deep sequencing data collected as part of a longitudinal cohort in Western Kenya that has previously been analysed to identify individual-factors associated with sharing parasites with infected mosquitoes. With these data we use permutation tests, to evaluate several hypotheses about spatiotemporal patterns of relatedness compared to a null distribution. We observe evidence of temporal structure, but not of fine-scale spatial structure in the cohort data. To explore factors associated with the lack of spatial structure in these data, we construct a series of simplified simulation scenarios using an agent based model calibrated to entomological, epidemiological and genomic data from this cohort study to investigate whether the lack of spatial structure observed in the cohort could be due to inherent power limitations of this analytical method. We further investigate how our hypothesis testing behaves under different sampling schemes, levels of completely random and systematic missingness, and different transmission intensities.
Collapse
Affiliation(s)
- Rohan Arambepola
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Sophie Bérubé
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Betsy Freedman
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
| | - Steve M. Taylor
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | - Wendy Prudhomme O’Meara
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | | | - Amy Wesolowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| |
Collapse
|
21
|
Yamba EI, Fink AH, Badu K, Asare EO, Tompkins AM, Amekudzi LK. Climate Drivers of Malaria Transmission Seasonality and Their Relative Importance in Sub-Saharan Africa. GEOHEALTH 2023; 7:e2022GH000698. [PMID: 36743738 PMCID: PMC9884660 DOI: 10.1029/2022gh000698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A new database of the Entomological Inoculation Rate (EIR) was used to directly link the risk of infectious mosquito bites to climate in Sub-Saharan Africa. Applying a statistical mixed model framework to high-quality monthly EIR measurements collected from field campaigns in Sub-Saharan Africa, we analyzed the impact of rainfall and temperature seasonality on EIR seasonality and determined important climate drivers of malaria seasonality across varied climate settings in the region. We observed that seasonal malaria transmission was within a temperature window of 15°C-40°C and was sustained if average temperature was well above 15°C or below 40°C. Monthly maximum rainfall for seasonal malaria transmission did not exceed 600 in west Central Africa, and 400 mm in the Sahel, Guinea Savannah, and East Africa. Based on a multi-regression model approach, rainfall and temperature seasonality were found to be significantly associated with malaria seasonality in all parts of Sub-Saharan Africa except in west Central Africa. Topography was found to have significant influence on which climate variable is an important determinant of malaria seasonality in East Africa. Seasonal malaria transmission onset lags behind rainfall only at markedly seasonal rainfall areas such as Sahel and East Africa; elsewhere, malaria transmission is year-round. High-quality EIR measurements can usefully supplement established metrics for seasonal malaria. The study's outcome is important for the improvement and validation of weather-driven dynamical mathematical malaria models that directly simulate EIR. Our results can contribute to the development of fit-for-purpose weather-driven malaria models to support health decision-making in the fight to control or eliminate malaria in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Edmund I. Yamba
- Department of Meteorology and Climate ScienceKwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
| | - Andreas H. Fink
- Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Kingsley Badu
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ernest O. Asare
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthYale UniversityNew HavenCTUSA
| | - Adrian M. Tompkins
- International Centre for Theoretical Physics, Earth System PhysicsTriesteItaly
| | - Leonard K. Amekudzi
- Department of Meteorology and Climate ScienceKwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
| |
Collapse
|
22
|
Basu R, Moles CM. Rational selection of an ideal oncolytic virus to address current limitations in clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37541726 DOI: 10.1016/bs.ircmb.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Oncolytic virus therapy (OVT) is a promising modality that leverages the propensity of natural or engineered viruses to selectively replicate in and kill cancer cells. Over the past decade, (pre)clinical studies have focused on the development and testing of adenovirus, herpes simplex virus, and vaccinia virus-based vectors. These studies have identified barriers to success confronting the field. Here, we propose a set of selection criteria or ideal properties of a successful oncolytic virus, which include lack of pathogenicity, low seroprevalence, selectivity (infection and replication), transgene carrying capacity, and genome stability. We use these requirements to analyze the oncolytic virus landscape, and then identify a potentially optimal species for platform development - vesicular stomatitis virus.
Collapse
|
23
|
Tadele G, Jaiteh FK, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Low genetic diversity of Plasmodium falciparum merozoite surface protein 1 and 2 and multiplicity of infections in western Ethiopia following effective malaria interventions. Malar J 2022; 21:383. [PMID: 36522733 PMCID: PMC9753253 DOI: 10.1186/s12936-022-04394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Fatou K Jaiteh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Plasmodium falciparum Merozoite Surface Proteins Polymorphisms and Treatment Outcomes among Patients with Uncomplicated Malaria in Mwanza, Tanzania. J Trop Med 2022; 2022:5089143. [DOI: 10.1155/2022/5089143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background. The severity of malaria infection depends on the host, parasite and environmental factors. Merozoite surface protein (msp) diversity determines transmission dynamics, P. falciparum immunity evasion, and pathogenesis or virulence. There is limited updated information on P. falciparum msp polymorphisms and their impact on artemether-lumefantrine treatment outcomes in Tanzania. Therefore, this study is aimed at examining msp genetic diversity and multiplicity of infection (MOI) among P. falciparum malaria patients. The influence of MOI on peripheral parasite clearance and adequate clinical and parasitological response (ACPR) was also assessed. Methods. Parasite DNA was extracted from dried blood spots according to the manufacture’s protocol. Primary and nested PCR were performed. The PCR products for both the block 2 region of msp1 and the block 3 regions of msp2 genes and their specific allelic families were visualized on a 2.5% agarose gel. Results. The majority of the isolates, 58/102 (58.8%) for msp1 and 69/115 (60.1%) for msp2, harboured more than one parasite genotypes. For the msp1 gene, K1 was the predominant allele observed (75.64%), whereas RO33 occurred at the lowest frequency (43.6%). For the msp2 gene, the 3D7 allele was observed at a higher frequency (81.7%) than the FC27 allele (76.9%). The MOIs were 2.44 for msp1 and 2.27 for msp2 (
). A significant correlation between age and multiplicity of infection (MOI) for msp1 or MOI for msp2 was not established in this study (rho = 0.074,
and rho = −0.129,
, respectively). Similarly, there was no positive correlation between parasite density at day 1 and MOI for both msp1 (rho = 0.113,
) and msp2 (rho = 0.043,
). The association between MOI and ACPR was not observed for either msp1 or mps2 (
and 0.296, respectively). Conclusions. This study reports high polyclonal infections, MOI and allelic frequencies for both msp1 and msp2. There was a lack of correlation between MOI and ACPR. However, a borderline significant correlation was observed between day 2 parasitaemia and MOI.
Collapse
|
25
|
Reda AG, Messele A, Mohammed H, Assefa A, Golassa L, Mamo H. Temporal dynamics of Plasmodium falciparum population in Metehara, east-central Ethiopia. Malar J 2022; 21:267. [PMID: 36109748 PMCID: PMC9479295 DOI: 10.1186/s12936-022-04277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.
Collapse
Affiliation(s)
- Abeba Gebretsadik Reda
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Alebachew Messele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
26
|
Wong W, Volkman S, Daniels R, Schaffner S, Sy M, Ndiaye YD, Badiane AS, Deme AB, Diallo MA, Gomis J, Sy N, Ndiaye D, Wirth DF, Hartl DL. R H: a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection. PNAS NEXUS 2022; 1:pgac187. [PMID: 36246152 PMCID: PMC9552330 DOI: 10.1093/pnasnexus/pgac187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R H, that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R H is flexible and can be applied to any type of genetic data. As a proof of concept, we used R H to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Sarah Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA 02115, USA
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stephen Schaffner
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Jules Gomis
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Ngayo Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar 10200, Senegal
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Opute AO, Akinkunmi JA, Funsho AO, Obaniyi AK, Anifowoshe AT. Genetic diversity of Plasmodium falciparum isolates in Nigeria. A review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The complexity of infection in malaria-endemic areas is exacerbated by the presence of genetically diverse Plasmodium falciparum strains. There is a risk that more virulent or drug-resistant versions of the disease may arise. Therefore, we reviewed most reported molecular markers that have been detailed to date in Nigeria.
Main body of the abstract
In this review, we have summarized the genetic diversity of P. falciparum in Nigeria using the two well-reported genes (msp1 and msp2) as genetic diversity biomarkers. The review includes the findings obtained from research conducted in all major geopolitical regions of the country. We found that MSP-2 infection complexity is generally moderate to high in the North-central region. However, in the South-West, there were several regions where the multiplicity of infection (MOI) was either low or extremely high.
Conclusion
Understanding how Nigeria's malaria situation fits into various reports on P. falciparum genetic variation can improve treatment and immunization options. This review will be helpful for future treatment strategies that would be tailored to the specific needs of Nigeria's malaria-endemic populations.
Collapse
|
28
|
Rahim MAFA, Chuangchaiya S, Chanpum P, Palawong L, Kantee P, Dian ND, Lubis IND, Divis PCS, Kaneko A, Tetteh KKA, Idris ZM. Seroepidemiological surveillance, community perceptions and associated risk factors of malaria exposure among forest-goers in Northeastern Thailand. Front Cell Infect Microbiol 2022; 12:953585. [PMID: 36093204 PMCID: PMC9450859 DOI: 10.3389/fcimb.2022.953585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Malaria remains a major public health challenge in Thailand. Continuous assessment and understanding of the behavior and perceptions related to malaria exposure in the high-risk group are necessary to achieve the elimination goal. This study aimed to investigate the parasite prevalence, seroprevalence rate, knowledge, attitudes, and practices (KAP), and malaria risk factors in rural communities living close to a forested area in the northeastern part of Thailand. A community-based cross-sectional survey was conducted in three forest-goer communities (i.e., Ban Khok, Ban Koh, and Dong Yang) located in Khamcha-i district, Mukdahan Province, Thailand, from July to August 2019. Demographic, socioeconomic information and KAP data were collected using a structured questionnaire. Parasite prevalence was determined by microscopy. Seroprevalence was determined via ELISA using two Plasmodium falciparum (PfAMA-1 and PfMSP-119) and two Plasmodium vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analyzed using a reversible catalytic model to calculate seroconversion rate (SCR). Malaria parasite was not detected in any of the 345 participants. The overall malaria seroprevalence was 72.2% for PfAMA-1, 18.8% for PfMSP-119, 32.5% for PvAMA-1, and 4.4% for PvMSP-119. The proportion of seroprevalence for P. falciparum and P. vivax antigens was significantly highest in Ban Koh (35.1%, P < 0.001) and Don Yang (18.8%, P < 0.001), respectively. For all parasite antigens except PvMSP-119, the proportion of seropositive individuals significantly increased with age (P < 0.001). Based on the SCRs, there was a higher level of P. falciparum transmission than P. vivax. Regarding KAP, almost all respondents showed adequate knowledge and awareness about malaria. Nevertheless, significant effort is needed to improve positive attitudes and practices concerning malaria prevention measures. Multivariate regression analyses showed that living in Ban Koh was associated with both P. falciparum (adjusted odds ratio [aOR] 12.87, P < 0.001) and P. vivax (aOR 9.78, P < 0.001) seropositivities. We also found significant associations between age and seropositivity against P. falciparum and P. vivax antigens. The data suggest that seroepidemiological surveillance using AMA-1 and MSP-119 antigens may provide further evidence to reconstruct malaria exposure history. The absence of weak evidence of recent malaria transmission in Mukdahan Province is promising in the context of the disease elimination program.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A. Rahim
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sriwipa Chuangchaiya
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| | - Paisit Chanpum
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Laun Palawong
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Panuwat Kantee
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Nor Diyana Dian
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Inke Nadia D. Lubis
- Department of Paediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Paul C. S. Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zulkarnain Md Idris
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| |
Collapse
|
29
|
Ngowo HS, Limwagu AJ, Ferguson HM, Matthiopoulos J, Okumu FO, Nelli L. A statistical calibration tool for methods used to sample outdoor-biting mosquitoes. Parasit Vectors 2022; 15:293. [PMID: 35978415 PMCID: PMC9386948 DOI: 10.1186/s13071-022-05403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Improved methods for sampling outdoor-biting mosquitoes are urgently needed to improve surveillance of vector-borne diseases. Such tools could potentially replace the human landing catch (HLC), which, despite being the most direct option for measuring human exposures, raises significant ethical and logistical concerns. Several alternatives are under development, but detailed evaluation still requires common frameworks for calibration relative to HLC. The aim of this study was to develop and validate a statistical framework for predicting human-biting rates from different exposure-free alternatives. Methods We obtained mosquito abundance data (Anopheles arabiensis, Anopheles funestus and Culex spp.) from a year-long Tanzanian study comparing six outdoor traps [Suna Trap (SUN), BG Sentinel (BGS), M-Trap (MTR), M-Trap + CDC (MTRC), Ifakara Tent Trap-C (ITT-C) and Mosquito Magnet-X Trap (MMX)] and HLC. Generalised linear models were developed within a Bayesian framework to investigate associations between the traps and HLC, taking intra- and inter-specific density dependence into account. The best model was used to create a calibration tool for predicting HLC-equivalents. Results For An. arabiensis, SUN catches had the strongest correlation with HLC (R2 = 19.4), followed by BGS (R2 = 17.2) and MTRC (R2 = 13.1) catches. The least correlated catch was MMX (R2 = 2.5). For An. funestus, BGS had the strongest correlation with the HLC (R2 = 53.4), followed by MTRC (R2 = 37.4) and MTR (R2 = 37.4). For Culex mosquitoes, the traps most highly correlated with the HLC were MTR (R2 = 45.4) and MTRC (R2 = 44.2). Density dependence, both between and within species, influenced the performance of only BGS traps. An interactive Shiny App calibration tool was developed for this and similar applications. Conclusion We successfully developed a calibration tool to assess the performance of different traps for assessing outdoor-biting risk, and established a valuable framework for estimating human exposures based on the trap catches. The performance of candidate traps varied between mosquito taxa; thus, there was no single optimum. Although all the traps tested underestimated the HLC-derived exposures, it was possible to mathematically define their representativeness of the true biting risk, with or without density dependence. The results of this study emphasise the need to aim for a consistent and representative sampling approach, as opposed to simply seeking traps that catch the most mosquitoes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05403-7.
Collapse
Affiliation(s)
- Halfan S Ngowo
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Alex J Limwagu
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Heather M Ferguson
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Fredros O Okumu
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Sukkanon C, Masangkay FR, Mala W, Kotepui KU, Wilairatana P, Chareonviriyaphap T, Kotepui M. Prevalence of Plasmodium spp. in Anopheles mosquitoes in Thailand: a systematic review and meta-analysis. Parasit Vectors 2022; 15:285. [PMID: 35933389 PMCID: PMC9357324 DOI: 10.1186/s13071-022-05397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
Background The entomological inoculation rate (EIR) is one of the key indices used to evaluate malaria transmission and vector control interventions. One of the components of the EIR is the sporozoite rate in Anopheles vectors. A systematic review and meta-analysis was performed to identify the prevalence of Plasmodium spp. in field-collected Anopheles species across Thailand. Methods This systematic review was registered under the PROSPERO number CRD42021297255. Studies that focused on the identification of Plasmodium spp. in Anopheles mosquitoes were identified from the electronic databases PubMed, Web of Science, and Scopus. The quality of the identified studies was determined using the Strengthening the Reporting of Observational Studies in Epidemiology approach. The proportion of Anopheles mosquitoes collected, Anopheles vectors for Plasmodium species, and specificity of Anopheles vectors for Plasmodium species were analyzed. The pooled prevalence of Plasmodium species among the primary vectors (Anopheles dirus, Anopheles minimus, and Anopheles maculatus) was estimated using the random-effects model. Results Of the 1113 studies identified, 31 were included in the syntheses. Of the 100,910 Anopheles mosquitoes identified for species and sibling species, An. minimus (40.16%), An. maculatus (16.59%), and Anopheles epiroticus (9.18%) were the most prevalent Anopheles species. Of the 123,286 Anopheles mosquitoes identified, 566 (0.46%) were positive for Plasmodium species. The highest proportions of Plasmodium species were identified in Anopheles hodgkini (2/6, 33.3%), Anopheles nigerrimus (2/24, 8.33%), Anopheles balabacensis (4/84, 4.76%), An. dirus (114/4956, 2.3%), Anopheles annularis (16/852, 1.88%), Anopheles kochi (8/519, 1.54%), Anopheles vagus (3/215, 1.4%), and Anopheles baimaii (1/86, 1.16%). The pooled prevalence of Plasmodium species identified in the main Anopheles vectors was 0.4% of that of Plasmodium species identified in An. dirus was 2.1%, that of Plasmodium species identified in An. minimus was 0.4%, and that of Plasmodium species identified in An. maculatus was 0.4%. Conclusions We found a low prevalence of Plasmodium infection in Anopheles mosquitoes across Thailand. Therefore, the use of EIR to determine the impact of vector control intervention on malaria parasite transmission and elimination in Thailand must be undertaken with caution, as a large number of Anopheles specimens may be required. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05397-2.
Collapse
Affiliation(s)
- Chutipong Sukkanon
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Wanida Mala
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.,Royal Society of Thailand, Sanam Suea Pa, Dusit, Bangkok, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
31
|
Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, MacInnis B, Mbwambo D, Garimo I, Chacky F, Aaron S, Lusasi A, Molteni F, Njau R, Cunningham JA, Lazaro S, Mohamed A, Juliano JJ, Bailey J, Ishengoma DS. Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa. Front Cell Infect Microbiol 2022; 12:757844. [PMID: 35909968 PMCID: PMC9326448 DOI: 10.3389/fcimb.2022.757844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.
Collapse
Affiliation(s)
- Beatus M. Lyimo
- National Institute for Medical Research, Dar es Salaam, Tanzania
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - David J. Giesbrecht
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | | | - Rashid A. Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Ruth B. Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Bronwyn MacInnis
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute, Boston, MA, United States
| | | | - Issa Garimo
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania
| | | | | | | | - Ritha Njau
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Jane A. Cunningham
- Global Malaria Programme, World Health Organization, Headquarters, Geneva, Switzerland
| | - Samwel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jonathan J. Juliano
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey A. Bailey
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | - Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Murindahabi MM, Takken W, Hakizimana E, van Vliet AJH, Poortvliet PM, Mutesa L, Koenraadt CJM. A handmade trap for malaria mosquito surveillance by citizens in Rwanda. PLoS One 2022; 17:e0266714. [PMID: 35544478 PMCID: PMC9094558 DOI: 10.1371/journal.pone.0266714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/27/2022] [Indexed: 11/18/2022] Open
Abstract
For effective sampling of mosquitoes in malaria surveillance programmes, it is essential to include attractive cues in traps. With the aim of implementing a citizen science project on malaria vectors in rural Rwanda, a handmade plastic bottle trap was designed and tested in the field to determine its effectiveness in capturing adult Anopheles gambiae sensu lato, the main malaria vector, and other mosquito species. Carbon dioxide (CO2) and light were used as attractive cues. CO2 was produced by inoculating sugar with yeast and water. Light was emitted from a torch by light-emitting diodes (LEDs). Under field conditions in rural Rwanda, three handmade trap designs were compared to Centers for Disease Control and Prevention miniature light traps (CDC-LT) in houses. The trap baited with yeast produced CO2 and light caught the highest number of mosquitoes compared to the traps baited with light alone or CO2 alone. The number of An. gambiae s.l. in the handmade trap with light and CO2 was approximately 9–10% of the number caught with a CDC light trap. This suggests that about 10 volunteers with a handmade trap could capture a similar-sized sample of An. gambiae as one CDC-LT would collect. Based on these findings, the handmade plastic bottle trap baited with sugar fermenting yeast and light represents an option for inclusion in mosquito surveillance activities in a citizen science context.
Collapse
Affiliation(s)
- Marilyn M. Murindahabi
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- College of Sciences and Technology, University of Rwanda, Kigali, Rwanda
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Emmanuel Hakizimana
- Malaria and other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Arnold J. H. van Vliet
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, The Netherlands
| | - P. Marijn Poortvliet
- Strategic Communication group, Wageningen University & Research, Wageningen, The Netherlands
| | - Leon Mutesa
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | |
Collapse
|
33
|
Sy M, Deme AB, Warren JL, Early A, Schaffner S, Daniels RF, Dieye B, Ndiaye IM, Diedhiou Y, Mbaye AM, Volkman SK, Hartl DL, Wirth DF, Ndiaye D, Bei AK. Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering. Sci Rep 2022; 12:938. [PMID: 35042879 PMCID: PMC8766587 DOI: 10.1038/s41598-021-04572-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022] Open
Abstract
Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space. In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate less than 1). Genetic identity (identity by state, IBS) was established using a 24-single nucleotide polymorphism molecular barcode, identity by descent was calculated from whole genome sequence data, and a hierarchical Bayesian regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance. One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.
Collapse
Affiliation(s)
- Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Angela Early
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen Schaffner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,College of Natural, Behavioral and Health Sciences, Simmons University, Boston, MA, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
34
|
Lagnika HO, Moussiliou A, Agonhossou R, Sovegnon P, Djihinto OY, Medjigbodo AA, Djossou L, Amoah LE, Ogouyemi-Hounto A, Djogbenou LS. Plasmodium falciparum msp1 and msp2 genetic diversity in parasites isolated from symptomatic and asymptomatic malaria subjects in the South of Benin. Parasitol Res 2022; 121:167-175. [PMID: 34993632 DOI: 10.1007/s00436-021-07399-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Symptomatic and asymptomatic malaria patients are considered as the reservoirs of human Plasmodium. In the present study, we have evaluated the Plasmodium falciparum merozoite surface protein-1 (Pfmsp1) and protein-2 (Pfmsp2) genetic diversity among the symptomatic and asymptomatic malaria infection from health facilities in Cotonou, Benin Republic. A cross-sectional study recruited 158 individuals, including 77 from the asymptomatic and 81 from the symptomatic groups. The parasites were genotyped using Nested Polymerase Chain Reaction. Samples identified as Plasmodium falciparum were genotyped for their genetic diversity. No significant difference was observed in the overall multiplicity of infection (MOI) between the asymptomatic and symptomatic groups. In the symptomatic group, the overall frequency of K1, MAD20, and RO33 allelic family was more predominant (98.5%) followed by 3D7 (87.3%) and FC27 (83.1%). However, in asymptomatic group, the K1 alleles were the most prevalent (100%) followed by FC27 (89.9%), 3D7 (76.8%), MAD20 (60.5%), and RO33 (35.5%). The frequency of multiple allelic types (K1+MAD20+RO33) at the Pfmsp1 loci in the symptomatic infections was significantly higher when compared to that of the asymptomatic ones (97% vs. 34%, p < 0.05), whereas no difference was observed in the frequency of multiple allelic types (3D7 and FC27) at the Pfmsp2 loci between the two groups. The high presence of msp1 multiple infections in the symptomatic group compared to asymptomatic ones suggests an association between the genetic diversity and the onset of malaria symptoms. These data can provide valuable information in the development of a vaccine that could reduce the symptomatic disease.
Collapse
Affiliation(s)
- Hamirath Odée Lagnika
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Azizath Moussiliou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Pierre Sovegnon
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Oswald Yédjinnavênan Djihinto
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Adandé Assogba Medjigbodo
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Luc Salako Djogbenou
- Tropical Infectious Diseases Research Centre, University of Abomey-Calavi, 01BP 526, Cotonou, Benin.
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin.
| |
Collapse
|
35
|
Hashemi M, Schneider KA. Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies. PLoS One 2021; 16:e0261889. [PMID: 34965279 PMCID: PMC8716058 DOI: 10.1371/journal.pone.0261889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Background The UN’s Sustainable Development Goals are devoted to eradicate a range of infectious diseases to achieve global well-being. These efforts require monitoring disease transmission at a level that differentiates between pathogen variants at the genetic/molecular level. In fact, the advantages of genetic (molecular) measures like multiplicity of infection (MOI) over traditional metrics, e.g., R0, are being increasingly recognized. MOI refers to the presence of multiple pathogen variants within an infection due to multiple infective contacts. Maximum-likelihood (ML) methods have been proposed to derive MOI and pathogen-lineage frequencies from molecular data. However, these methods are biased. Methods and findings Based on a single molecular marker, we derive a bias-corrected ML estimator for MOI and pathogen-lineage frequencies. We further improve these estimators by heuristical adjustments that compensate shortcomings in the derivation of the bias correction, which implicitly assumes that data lies in the interior of the observational space. The finite sample properties of the different variants of the bias-corrected estimators are investigated by a systematic simulation study. In particular, we investigate the performance of the estimator in terms of bias, variance, and robustness against model violations. The corrections successfully remove bias except for extreme parameters that likely yield uninformative data, which cannot sustain accurate parameter estimation. Heuristic adjustments further improve the bias correction, particularly for small sample sizes. The bias corrections also reduce the estimators’ variances, which coincide with the Cramér-Rao lower bound. The estimators are reasonably robust against model violations. Conclusions Applying bias corrections can substantially improve the quality of MOI estimates, particularly in areas of low as well as areas of high transmission—in both cases estimates tend to be biased. The bias-corrected estimators are (almost) unbiased and their variance coincides with the Cramér-Rao lower bound, suggesting that no further improvements are possible unless additional information is provided. Additional information can be obtained by combining data from several molecular markers, or by including information that allows stratifying the data into heterogeneous groups.
Collapse
Affiliation(s)
- Meraj Hashemi
- Department of Applied Computer- and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
- * E-mail:
| | - Kristan A. Schneider
- Department of Applied Computer- and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
36
|
Gupta H, Wassmer SC. Harnessing the Potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 2021; 11:793954. [PMID: 34976869 PMCID: PMC8716737 DOI: 10.3389/fcimb.2021.793954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
38
|
Neal AT. Distribution of clones among hosts for the lizard malaria parasite Plasmodium mexicanum. PeerJ 2021; 9:e12448. [PMID: 34760403 PMCID: PMC8570175 DOI: 10.7717/peerj.12448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Malaria parasites reproduce asexually, leading to the production of large numbers of genetically identical parasites, here termed a clonal line or clone. Infected hosts may harbor one or more clones, and the number of clones in a host is termed multiplicity of infection (MOI). Understanding the distribution of parasite clones among hosts can shed light on the processes shaping this distribution and is important for modeling MOI. Here, I determine whether the distribution of clones of the lizard malaria parasite Plasmodium mexicanum differ significantly from statistical distributions commonly used to model MOI and logical extensions of these models. Methods The number of clones per infection was assessed using four microsatellite loci with the maximum number of alleles at any one locus used as a simple estimate of MOI for each infection. I fit statistical models (Poisson, negative binomial, zero-inflated models) to data from four individual sites to determine a best fit model. I also simulated the number of alleles per locus using an unbiased estimate of MOI to determine whether the simple (but potentially biased) method I used to estimate MOI influenced model fit. Results The distribution of clones among hosts at individual sites differed significantly from traditional Poisson and negative binomial distributions, but not from zero-inflated modifications of these distributions. A consistent excess of two-clone infections and shortage of one-clone infections relative to all fit distributions was also observed. Any bias introduced by the simple method for estimating of MOI did not appear to qualitatively alter the results. Conclusions The statistical distributions used to model MOI are typically zero-truncated; truncating the Poisson or zero-inflated Poisson yield the same distribution, so the reasonable fit of the zero-inflated Poisson to the data suggests that the use of the zero-truncated Poisson in modeling is adequate. The improved fit of zero-inflated distributions relative to standard distributions may suggest that only a portion of the host population is located in areas suitable for transmission even at small sites (<1 ha). Collective transmission of clones and premunition may also contribute to deviations from standard distributions.
Collapse
Affiliation(s)
- Allison T Neal
- Department of Biology, Norwich University, Northfield, VT, United States of America
| |
Collapse
|
39
|
Amoah B, McCann RS, Kabaghe AN, Mburu M, Chipeta MG, Moraga P, Gowelo S, Tizifa T, van den Berg H, Mzilahowa T, Takken W, van Vugt M, Phiri KS, Diggle PJ, Terlouw DJ, Giorgi E. Identifying Plasmodium falciparum transmission patterns through parasite prevalence and entomological inoculation rate. eLife 2021; 10:65682. [PMID: 34672946 PMCID: PMC8530514 DOI: 10.7554/elife.65682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and temporal variations in the PR and EIR of a given geographical region and modelling the relationship between the two metrics may provide a fuller picture of the malaria epidemiology of the region to inform control activities. Methods Using geostatistical methods, we compare the spatial and temporal patterns of Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi. We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical models. Results Hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a 1-month delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable changes in PR. Conclusions Our study emphasises the need for integrated malaria control strategies that combine vector and human host managements monitored by both entomological and parasitaemia indices. Funding This work was supported by Stichting Dioraphte grant number 13050800.
Collapse
Affiliation(s)
- Benjamin Amoah
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Robert S McCann
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, United States
| | - Alinune N Kabaghe
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Monicah Mburu
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Michael G Chipeta
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Paula Moraga
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Tinashe Tizifa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Themba Mzilahowa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Michele van Vugt
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Kamija S Phiri
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Peter J Diggle
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Dianne J Terlouw
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emanuele Giorgi
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
40
|
Wakeman BS, Shakamuri P, McDonald MA, Weinberg J, Svoboda P, Murphy MK, Kariuki S, Mace K, Elder E, Rivera H, Qvarnstrom Y, Pohl J, Shi YP. Development of a new peptide-bead coupling method for an all peptide-based Luminex multiplexing assay for detection of Plasmodium falciparum antibody responses. J Immunol Methods 2021; 499:113148. [PMID: 34560073 DOI: 10.1016/j.jim.2021.113148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Using a recombinant protein antigen for antibody testing shows a sum of antibody responses to multiple different immune epitopes existing in the protein antigen. In contrast, the antibody testing to an immunogenic peptide epitope reflects a singular antibody response to the individual peptide epitope. Therefore, using a panel of peptide epitopes provides an advantage for profiling multiple singular antibody responses with potential to estimate recent malaria exposure in human infections. However, transitioning from malaria immune epitope peptide-based ELISA to an all peptide bead-based multiplex Luminex assay presents some challenges including variation in the ability of different peptides to bind beads. The aim of this study was to develop a peptide coupling method while demonstrating the utility of these peptide epitopes from multiple stage antigens of Plasmodium falciparum for measuring antibodies. Successful coupling of peptide epitopes to beads followed three steps: 1) development of a peptide tag appended to the C-terminus of each peptide epitope consisting of beta-alanine-lysine (x 4)--cysteine, 2) bead modification with a high concentration of adipic acid dihydrazide, and 3) use of the peptide epitope as a blocker in place of the traditional choice, bovine serum albumin (BSA). This new method was used to couple 12 peptide epitopes from multiple stage specific antigens of P. falciparum, 1 Anopheles mosquito salivary gland peptide, and 1 Epstein-Barr virus peptide as an assay control. The new method was applied to testing of IgG in pooled samples from 30 individuals with previously repeated malaria exposure in western Kenya and IgM and IgG in samples from 37 U.S. travelers with recent exposure to malaria. The new peptide-bead coupling method and subsequent multiplex Luminex assay showed reliable detection of IgG to all 14 peptides in Kenyan samples. Among 37 samples from U.S. travelers recently diagnosed with malaria, IgM and IgG to the peptide epitopes were detected with high sensitivity and variation. Overall, the U.S. travelers had a much lower positivity rates of IgM than IgG to different peptide epitopes, ranging from a high of 62.2% positive for one epitope to a low of only 5.4% positive for another epitope. In contrast, the travelers had IgG positive rates from 97.3% to 91.9% to various peptide epitopes. Based on the different distribution in IgM and IgG positivity to overall number of peptide epitopes and to the number of pre-erythrocytic, erythrocytic, gametocytic, and salivary stage epitopes at the individual level, four distinct patterns of IgM and IgG responses among the 37 samples from US travelers were observed. Independent peptide-bead coupling and antibody level readout between two different instruments also showed comparable results. Overall, this new coupling method resolves the peptide-bead coupling challenge, is reproducible, and can be applied to any other immunogenic peptide epitopes. The resulting all peptide bead-based multiplex Luminex assay can be expanded to include other peptide epitopes of P. falciparum, different malaria species, or other diseases for surveillance, either in US travelers or endemic areas.
Collapse
Affiliation(s)
- B S Wakeman
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - P Shakamuri
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - M A McDonald
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - J Weinberg
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - P Svoboda
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - M K Murphy
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - S Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.
| | - K Mace
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - E Elder
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - H Rivera
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Y Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - J Pohl
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Y P Shi
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
41
|
Hendry JA, Kwiatkowski D, McVean G. Elucidating relationships between P.falciparum prevalence and measures of genetic diversity with a combined genetic-epidemiological model of malaria. PLoS Comput Biol 2021; 17:e1009287. [PMID: 34411093 PMCID: PMC8407561 DOI: 10.1371/journal.pcbi.1009287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/31/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022] Open
Abstract
There is an abundance of malaria genetic data being collected from the field, yet using these data to understand the drivers of regional epidemiology remains a challenge. A key issue is the lack of models that relate parasite genetic diversity to epidemiological parameters. Classical models in population genetics characterize changes in genetic diversity in relation to demographic parameters, but fail to account for the unique features of the malaria life cycle. In contrast, epidemiological models, such as the Ross-Macdonald model, capture malaria transmission dynamics but do not consider genetics. Here, we have developed an integrated model encompassing both parasite evolution and regional epidemiology. We achieve this by combining the Ross-Macdonald model with an intra-host continuous-time Moran model, thus explicitly representing the evolution of individual parasite genomes in a traditional epidemiological framework. Implemented as a stochastic simulation, we use the model to explore relationships between measures of parasite genetic diversity and parasite prevalence, a widely-used metric of transmission intensity. First, we explore how varying parasite prevalence influences genetic diversity at equilibrium. We find that multiple genetic diversity statistics are correlated with prevalence, but the strength of the relationships depends on whether variation in prevalence is driven by host- or vector-related factors. Next, we assess the responsiveness of a variety of statistics to malaria control interventions, finding that those related to mixed infections respond quickly (∼months) whereas other statistics, such as nucleotide diversity, may take decades to respond. These findings provide insights into the opportunities and challenges associated with using genetic data to monitor malaria epidemiology.
Collapse
Affiliation(s)
- Jason A. Hendry
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Lopez L, Koepfli C. Systematic review of Plasmodium falciparum and Plasmodium vivax polyclonal infections: Impact of prevalence, study population characteristics, and laboratory procedures. PLoS One 2021; 16:e0249382. [PMID: 34115783 PMCID: PMC8195386 DOI: 10.1371/journal.pone.0249382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple infections of genetically distinct clones of the same Plasmodium species are common in many malaria endemic settings. Mean multiplicity of infection (MOI) and the proportion of polyclonal infections are often reported as surrogate marker of transmission intensity, yet the relationship with traditional measures such as parasite prevalence is not well understood. We have searched Pubmed for articles on P. falciparum and P. vivax multiplicity, and compared the proportion of polyclonal infections and mean MOI to population prevalence. The impact of the genotyping method, number of genotyping markers, method for diagnosis (microscopy/RDT vs. PCR), presence of clinical symptoms, age, geographic region, and year of sample collection on multiplicity indices were assessed. For P. falciparum, 153 studies met inclusion criteria, yielding 275 individual data points and 33,526 genotyped individuals. The proportion of polyclonal infections ranged from 0-96%, and mean MOI from 1-6.1. For P. vivax, 54 studies met inclusion criteria, yielding 115 data points and 13,325 genotyped individuals. The proportion of polyclonal infections ranged from 0-100%, and mean MOI from 1-3.8. For both species, the proportion of polyclonal infections ranged from very low to close to 100% at low prevalence, while at high prevalence it was always high. Each percentage point increase in prevalence resulted in a 0.34% increase in the proportion of polyclonal P. falciparum infections (P<0.001), and a 0.78% increase in the proportion of polyclonal P. vivax infections (P<0.001). In multivariable analysis, higher prevalence, typing multiple markers, diagnosis of infections by PCR, and sampling in Africa were found to result in a higher proportion of P. falciparum polyclonal infections. For P. vivax, prevalence, year of study, typing multiple markers, and geographic region were significant predictors. In conclusion, polyclonal infections are frequently present in all settings, but the association between multiplicity and prevalence is weak.
Collapse
Affiliation(s)
- Luis Lopez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
43
|
Edwards HM, Dixon R, Zegers de Beyl C, Celhay O, Rahman M, Myint Oo M, Lwin T, Lin Z, San T, Thwe Han K, Myaing Nyunt M, Plowe C, Stresman G, Hall T, Drakeley C, Hamade P, Aryal S, Roca-Feltrer A, Hlaing T, Thi A. Prevalence and seroprevalence of Plasmodium infection in Myanmar reveals highly heterogeneous transmission and a large hidden reservoir of infection. PLoS One 2021; 16:e0252957. [PMID: 34106995 PMCID: PMC8189444 DOI: 10.1371/journal.pone.0252957] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Malaria incidence in Myanmar has significantly reduced over recent years, however, completeness and timeliness of incidence data remain a challenge. The first ever nationwide malaria infection and seroprevalence survey was conducted in Myanmar in 2015 to better understand malaria epidemiology and highlight gaps in Annual Parasite Index (API) data. The survey was a cross-sectional two-stage stratified cluster-randomised household survey conducted from July-October 2015. Blood samples were collected from household members for ultra-sensitive PCR and serology testing for P. falciparum and P. vivax. Data was gathered on demography and a priori risk factors of participants. Data was analysed nationally and within each of four domains defined by API data. Prevalence and seroprevalence of malaria were 0.74% and 16.01% nationwide, respectively. Prevalent infection was primarily asymptomatic P. vivax, while P. falciparum was predominant in serology. There was large heterogeneity between villages and by domain. At the township level, API showed moderate correlation with P. falciparum seroprevalence. Risk factors for infection included socioeconomic status, domain, and household ownership of nets. Three K13 P. falciparum mutants were found in highly prevalent villages. There results highlight high heterogeneity of both P. falciparum and P. vivax transmission between villages, accentuated by a large hidden reservoir of asymptomatic P. vivax infection not captured by incidence data, and representing challenges for malaria elimination. Village-level surveillance and stratification to guide interventions to suit local context and targeting of transmission foci with evidence of drug resistance would aid elimination efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zaw Lin
- Ministry of Health and Sports, Yangon, Myanmar
| | - Thiri San
- Ministry of Health and Sports, Yangon, Myanmar
| | - Kay Thwe Han
- Parasitology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Myaing Myaing Nyunt
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Plowe
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gillian Stresman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tom Hall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Aung Thi
- Ministry of Health and Sports, Yangon, Myanmar
| |
Collapse
|
44
|
McCann RS, Kabaghe AN, Moraga P, Gowelo S, Mburu MM, Tizifa T, Chipeta MG, Nkhono W, Di Pasquale A, Maire N, Manda-Taylor L, Mzilahowa T, van den Berg H, Diggle PJ, Terlouw DJ, Takken W, van Vugt M, Phiri KS. The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial. Malar J 2021; 20:232. [PMID: 34022912 PMCID: PMC8140568 DOI: 10.1186/s12936-021-03769-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Current standard interventions are not universally sufficient for malaria elimination. The effects of community-based house improvement (HI) and larval source management (LSM) as supplementary interventions to the Malawi National Malaria Control Programme (NMCP) interventions were assessed in the context of an intensive community engagement programme. METHODS The study was a two-by-two factorial, cluster-randomized controlled trial in Malawi. Village clusters were randomly assigned to four arms: a control arm; HI; LSM; and HI + LSM. Malawi NMCP interventions and community engagement were used in all arms. Household-level, cross-sectional surveys were conducted on a rolling, 2-monthly basis to measure parasitological and entomological outcomes over 3 years, beginning with one baseline year. The primary outcome was the entomological inoculation rate (EIR). Secondary outcomes included mosquito density, Plasmodium falciparum prevalence, and haemoglobin levels. All outcomes were assessed based on intention to treat, and comparisons between trial arms were conducted at both cluster and household level. RESULTS Eighteen clusters derived from 53 villages with 4558 households and 20,013 people were randomly assigned to the four trial arms. The mean nightly EIR fell from 0.010 infectious bites per person (95% CI 0.006-0.015) in the baseline year to 0.001 (0.000, 0.003) in the last year of the trial. Over the full trial period, the EIR did not differ between the four trial arms (p = 0.33). Similar results were observed for the other outcomes: mosquito density and P. falciparum prevalence decreased over 3 years of sampling, while haemoglobin levels increased; and there were minimal differences between the trial arms during the trial period. CONCLUSIONS In the context of high insecticide-treated bed net use, neither community-based HI, LSM, nor HI + LSM contributed to further reductions in malaria transmission or prevalence beyond the reductions observed over two years across all four trial arms. This was the first trial, as far as the authors are aware, to test the potential complementary impact of LSM and/or HI beyond levels achieved by standard interventions. The unexpectedly low EIR values following intervention implementation indicated a promising reduction in malaria transmission for the area, but also limited the usefulness of this outcome for measuring differences in malaria transmission among the trial arms. Trial registration PACTR, PACTR201604001501493, Registered 3 March 2016, https://pactr.samrc.ac.za/ .
Collapse
Affiliation(s)
- Robert S McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Alinune N Kabaghe
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Paula Moraga
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Monicah M Mburu
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Tinashe Tizifa
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael G Chipeta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Malawi-Liverpool Wellcome Trust Clinical Research Program, Blantyre, Malawi
| | - William Nkhono
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Aurelio Di Pasquale
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicolas Maire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucinda Manda-Taylor
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Themba Mzilahowa
- MAC Communicable Diseases Action Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Diggle
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Dianne J Terlouw
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool Wellcome Trust Clinical Research Program, Blantyre, Malawi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Michèle van Vugt
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamija S Phiri
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
| |
Collapse
|
45
|
Abstract
Serology data are an increasingly important tool in malaria surveillance, especially in low transmission settings where the estimation of parasite-based indicators is often problematic. Existing methods rely on the use of thresholds to identify seropositive individuals and estimate transmission intensity, while making assumptions about the temporal dynamics of malaria transmission that are rarely questioned. Here, we present a novel threshold-free approach for the analysis of malaria serology data which avoids dichotomization of continuous antibody measurements and allows us to model changes in the antibody distribution across age in a more flexible way. The proposed unified mechanistic model combines the properties of reversible catalytic and antibody acquisition models, and allows for temporally varying boosting and seroconversion rates. Additionally, as an alternative to the unified mechanistic model, we also propose an empirical approach to analysis where modelling of the age-dependency is informed by the data rather than biological assumptions. Using serology data from Western Kenya, we demonstrate both the usefulness and limitations of the novel modelling framework.
Collapse
|
46
|
Mitchell RM, Zhou Z, Sheth M, Sergent S, Frace M, Nayak V, Hu B, Gimnig J, Ter Kuile F, Lindblade K, Slutsker L, Hamel MJ, Desai M, Otieno K, Kariuki S, Vigfusson Y, Shi YP. Development of a new barcode-based, multiplex-PCR, next-generation-sequencing assay and data processing and analytical pipeline for multiplicity of infection detection of Plasmodium falciparum. Malar J 2021; 20:92. [PMID: 33593329 PMCID: PMC7885407 DOI: 10.1186/s12936-021-03624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Simultaneous infection with multiple malaria parasite strains is common in high transmission areas. Quantifying the number of strains per host, or the multiplicity of infection (MOI), provides additional parasite indices for assessing transmission levels but it is challenging to measure accurately with current tools. This paper presents new laboratory and analytical methods for estimating the MOI of Plasmodium falciparum. METHODS Based on 24 single nucleotide polymorphisms (SNPs) previously identified as stable, unlinked targets across 12 of the 14 chromosomes within P. falciparum genome, three multiplex PCRs of short target regions and subsequent next generation sequencing (NGS) of the amplicons were developed. A bioinformatics pipeline including B4Screening pathway removed spurious amplicons to ensure consistent frequency calls at each SNP location, compiled amplicons by SNP site diversity, and performed algorithmic haplotype and strain reconstruction. The pipeline was validated by 108 samples generated from cultured-laboratory strain mixtures in different proportions and concentrations, with and without pre-amplification, and using whole blood and dried blood spots (DBS). The pipeline was applied to 273 smear-positive samples from surveys conducted in western Kenya, then providing results into StrainRecon Thresholding for Infection Multiplicity (STIM), a novel MOI estimator. RESULTS The 24 barcode SNPs were successfully identified uniformly across the 12 chromosomes of P. falciparum in a sample using the pipeline. Pre-amplification and parasite concentration, while non-linearly associated with SNP read depth, did not influence the SNP frequency calls. Based on consistent SNP frequency calls at targeted locations, the algorithmic strain reconstruction for each laboratory-mixed sample had 98.5% accuracy in dominant strains. STIM detected up to 5 strains in field samples from western Kenya and showed declining MOI over time (q < 0.02), from 4.32 strains per infected person in 1996 to 4.01, 3.56 and 3.35 in 2001, 2007 and 2012, and a reduction in the proportion of samples with 5 strains from 57% in 1996 to 18% in 2012. CONCLUSION The combined approach of new multiplex PCRs and NGS, the unique bioinformatics pipeline and STIM could identify 24 barcode SNPs of P. falciparum correctly and consistently. The methodology could be applied to field samples to reliably measure temporal changes in MOI.
Collapse
Affiliation(s)
- Rebecca M Mitchell
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
- Department of Computer Science, Emory University, Atlanta, USA
- School of Nursing, Emory University, Atlanta, USA
| | - Zhiyong Zhou
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, CDC, Atlanta, USA
| | - Sheila Sergent
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Michael Frace
- Biotechnology Core Facility Branch, Division of Scientific Resources, CDC, Atlanta, USA
| | - Vishal Nayak
- Office of Infectious Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA
| | - Bin Hu
- Office of Infectious Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA
| | - John Gimnig
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | | | - Kim Lindblade
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Laurence Slutsker
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Mary J Hamel
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Meghna Desai
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ymir Vigfusson
- Department of Computer Science, Emory University, Atlanta, USA.
| | - Ya Ping Shi
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA.
| |
Collapse
|
47
|
Murindahabi MM, Takken W, Misago X, Niyituma E, Umupfasoni J, Hakizimana E, van Vliet AJH, Poortvliet PM, Mutesa L, Murindahabi NK, Koenraadt CJM. Monitoring mosquito nuisance for the development of a citizen science approach for malaria vector surveillance in Rwanda. Malar J 2021; 20:36. [PMID: 33423679 PMCID: PMC7798336 DOI: 10.1186/s12936-020-03579-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many countries, including Rwanda, have mosquito monitoring programmes in place to support decision making in the fight against malaria. However, these programmes can be costly, and require technical (entomological) expertise. Involving citizens in data collection can greatly support such activities, but this has not yet been thoroughly investigated in a rural African context. METHODS Prior to the implementation of such a citizen-science approach, a household entomological survey was conducted in October-November 2017 and repeated one year later in Busoro and Ruhuha sectors, in southern and eastern province of Rwanda, respectively. The goal was to evaluate the perception of mosquito nuisance reported by citizens as a potential indicator for malaria vector hotspots. Firstly, mosquito abundance and species composition were determined using Centers for Disease Control and Prevention (CDC) light traps inside the houses. Secondly, household members were interviewed about malaria risk factors and their perceived level of mosquito nuisance. RESULTS Tiled roofs, walls made of mud and wood, as well as the number of occupants in the house were predictors for the number of mosquitoes (Culicidae) in the houses, while the presence of eaves plus walls made of mud and wood were predictors for malaria vector abundance. Perception of mosquito nuisance reported indoors tended to be significantly correlated with the number of Anopheles gambiae sensu lato (s.l.) and Culicidae collected indoors, but this varied across years and sectors. At the village level, nuisance also significantly correlated with An. gambiae s.l. and total mosquito density, but only in 2018 while not in 2017. CONCLUSIONS Perception of mosquito nuisance denoted in a questionnaire survey could be used as a global indicator of malaria vector hotspots. Hence, involving citizens in such activities can complement malaria vector surveillance and control.
Collapse
Affiliation(s)
- Marilyn Milumbu Murindahabi
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.,College of Sciences and Technology, University of Rwanda, Kigali, Rwanda
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Xavier Misago
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Elias Niyituma
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Jackie Umupfasoni
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Emmanuel Hakizimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - Arnold J H van Vliet
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, The Netherlands
| | - P Marijn Poortvliet
- Strategic Communication Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Leon Mutesa
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | |
Collapse
|
48
|
Shaw WR, Holmdahl IE, Itoe MA, Werling K, Marquette M, Paton DG, Singh N, Buckee CO, Childs LM, Catteruccia F. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathog 2020; 16:e1009131. [PMID: 33382824 PMCID: PMC7774842 DOI: 10.1371/journal.ppat.1009131] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022] Open
Abstract
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.
Collapse
Affiliation(s)
- W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inga E. Holmdahl
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kristine Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Meghan Marquette
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren M. Childs
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Dabira ED, Soumare HM, Lindsay SW, Conteh B, Ceesay F, Bradley J, Kositz C, Broekhuizen H, Kandeh B, Fehr AE, Nieto-Sanchez C, Ribera JM, Peeters Grietens K, Smit MR, Drakeley C, Bousema T, Achan J, D'Alessandro U. Mass Drug Administration With High-Dose Ivermectin and Dihydroartemisinin-Piperaquine for Malaria Elimination in an Area of Low Transmission With High Coverage of Malaria Control Interventions: Protocol for the MASSIV Cluster Randomized Clinical Trial. JMIR Res Protoc 2020; 9:e20904. [PMID: 33211022 PMCID: PMC7714640 DOI: 10.2196/20904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND With a decline in malaria burden, innovative interventions and tools are required to reduce malaria transmission further. Mass drug administration (MDA) of artemisinin-based combination therapy (ACT) has been identified as a potential tool to further reduce malaria transmission, where coverage of vector control interventions is already high. However, the impact is limited in time. Combining an ACT with an endectocide treatment that is able to reduce vector survival, such as ivermectin (IVM), could increase the impact of MDA and offer a new tool to reduce malaria transmission. OBJECTIVE The study objective is to evaluate the impact of MDA with IVM plus dihydroartemisinin-piperaquine (DP) on malaria transmission in an area with high coverage of malaria control interventions. METHODS The study is a cluster randomized trial in the Upper River Region of The Gambia and included 32 villages (16 control and 16 intervention). A buffer zone of ~2 km was created around all intervention clusters. MDA with IVM plus DP was implemented in all intervention villages and the buffer zones; control villages received standard malaria interventions according to the Gambian National Malaria Control Program plans. RESULTS The MDA campaigns were carried out from August to October 2018 for the first year and from July to September 2019 for the second year. Statistical analysis will commence once the database is completed, cleaned, and locked. CONCLUSIONS This is the first cluster randomized clinical trial of MDA with IVM plus DP. The results will provide evidence on the impact of MDA with IVM plus DP on malaria transmission. TRIAL REGISTRATION ClinicalTrials.gov NCT03576313; https://clinicaltrials.gov/ct2/show/NCT03576313. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/20904.
Collapse
Affiliation(s)
- Edgard Diniba Dabira
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Harouna M Soumare
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Steven W Lindsay
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Bakary Conteh
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Fatima Ceesay
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - John Bradley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christian Kositz
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Balla Kandeh
- National Malaria Control Program, The Gambia, Banjul, Gambia
| | - Alexandra E Fehr
- Medical Anthropology Unit, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
| | - Claudia Nieto-Sanchez
- Medical Anthropology Unit, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joan Muela Ribera
- Medial Anthropology Research Center, Universitat Rovira i Virgili, Tarragona, Spain
| | - Koen Peeters Grietens
- Medical Anthropology Unit, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Menno Roderick Smit
- Amsterdam Centre for Global Child Health, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands, Amsterdam, Netherlands
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jane Achan
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| |
Collapse
|
50
|
McCann RS, Cohee LM, Goupeyou-Youmsi J, Laufer MK. Maximizing Impact: Can Interventions to Prevent Clinical Malaria Reduce Parasite Transmission? Trends Parasitol 2020; 36:906-913. [PMID: 32917511 PMCID: PMC7581555 DOI: 10.1016/j.pt.2020.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Malaria interventions may reduce the burden of clinical malaria disease, the transmission of malaria parasites, or both. As malaria interventions are developed and evaluated, including those interventions primarily targeted at reducing disease, they may also impact parasite transmission. Achieving global malaria eradication will require optimizing the transmission-reducing potential of all available interventions. Herein, we discuss the relationship between malaria parasite transmission and disease, including mechanisms by which disease-targeting interventions might also impact parasite transmission. We then focus on three malaria interventions with strong evidence for reducing the burden of clinical malaria disease and examine their potential for also reducing malaria parasite transmission.
Collapse
Affiliation(s)
- Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessy Goupeyou-Youmsi
- MAC Communicable Diseases Action Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|