1
|
Abdillah AM, Lee JY, Lee YR, Yun JW. Modulatory roles of capsaicin on thermogenesis in C2C12 myoblasts and the skeletal muscle of mice. Chem Biol Interact 2025; 407:111380. [PMID: 39800145 DOI: 10.1016/j.cbi.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice. We employed molecular dynamics (MD), quantitative real-time polymerase chain reactions (qRT-PCR), immunoblots, staining methods, and assay kits to investigate the role of capsaicin on thermogenesis and its modulatory roles on the transient receptor potential cation channel subfamily V member 1 (TRPV1) and α-/β-adrenergic receptors (ARs) using in vitro and in vivo models. Our findings demonstrate that capsaicin treatment in high-fat diet-induced obese mice reduces weight gain and elevates the expression of UCP- and ATP-dependent thermogenic effectors through ATP-consuming calcium and creatine futile cycles. In vitro and in vivo models capsaicin treatment elevated the expression of sarcoendoplasmic/endoplasmic reticulum calcium ATPases (SERCA-1 and -2), ryanodine receptors (RYR-1 and -2), uncoupling proteins (UCP-2 and -3), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2), through activation of TRPV1, α1-, β2-, and β3-AR as well as the suppressed expression of α2-AR. Furthermore, our results also indicate that capsaicin promotes myotube development and enhances lipid metabolism in C2C12 cells. We found that capsaicin increased intracellular Ca2+ levels and the expression of the voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU), suggesting that elevated mitochondrial Ca2+ levels boost the expression of oxidative phosphorylation protein complexes via the activation of the ATP-futile cycle. Mechanistic studies in C2C12 cells revealed that TRPV1 is likely dispensable for capsaicin-induced thermogenesis, and TRPV1 and α1-AR may synergistically induce thermogenesis. Collectively, our findings have uncovered a novel mechanism of UCP- and ATP-dependent thermogenesis and its associated pathways in both cellular and animal models which is crucial for designing therapeutic strategies to address obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jae Young Lee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Young Rok Lee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
2
|
Ibayashi Y, Hasuzawa N, Nomura S, Kabashima M, Nagayama A, Iwata S, Kitamura M, Ashida K, Moriyama Y, Yamamoto K, Nomura M, Wang L. Mitochondrial fission is required for thermogenesis in brown adipose tissue. PLoS One 2024; 19:e0312352. [PMID: 39652536 PMCID: PMC11627380 DOI: 10.1371/journal.pone.0312352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is pivotal for maintaining body temperature and energy balance. Mitochondrial morphology is dynamically controlled by a balance between fusion and fission, which is crucial for cell differentiation, response to metabolic insults, and heat production. Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission. This study investigates the role of Drp1 in BAT development and thermogenesis by generating Drp1-deficient mice. These mice were created by crossing Drp1 floxed mice with fatty acid-binding protein 4-Cre (aP2-Cre) transgenic mice, resulting in aP2-Cre+/-Drp1flox/flox (aP2-Drp1f/f) mice. The aP2-Drp1f/f mice exhibited severe BAT and brain hypoplasia, with the majority dying within 48 hours postnatally, highlighting Drp1's crucial role in neonatal survival. Impaired thermogenic responses were observed in aP2-Drp1f/f mice, characterized by significantly decreased expression of thermogenic and lipogenic genes in BAT. Ultrastructural analysis revealed disrupted mitochondrial morphology and reduced lipid droplet content in BAT. The few surviving adult aP2-Drp1f/f mice also showed impaired BAT and brain development, along with BAT thermogenesis dysfunction during cold exposure. Our findings underscore the essential role of Drp1-mediated mitochondrial fission in BAT thermogenesis and neonatal survival, providing insights into potential therapeutic approaches for metabolic disorders.
Collapse
Affiliation(s)
- Yuta Ibayashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Nao Hasuzawa
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiji Nomura
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Masaharu Kabashima
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ayako Nagayama
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shimpei Iwata
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Miyuki Kitamura
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kenji Ashida
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshinori Moriyama
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
3
|
Amada A, Amada E, Mitobe Y, Nunobe S, Inagaki Y. The Influence of Total Fat Mass and Skeletal Muscle Mass Index on the Occurrence of Perioperative Hypothermia in Patients Undergoing Open Gastrectomy. Yonago Acta Med 2024; 67:321-328. [PMID: 39606740 PMCID: PMC11584239 DOI: 10.33160/yam.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Background Perioperative hypothermia, a common occurrence in patients undergoing general anesthesia, is defined as a core body temperature below 36°C. The relationship between patient body composition and the incidence of hypothermia remains underreported. This study aims to elucidate the association between body composition and perioperative hypothermia in patients undergoing open gastrectomy. Methods Patients undergoing open gastrectomy were enrolled in the study. Patients whose bladder temperature was lower than 36°C were allocated to the hypothermia group, and the other patients were allocated to the control group. The patient's body composition was evaluated by bioelectrical impedance analysis. Results A total of sixty-eight patients participated in this study. Among them, 34 experienced perioperative hypothermia (bladder temperature below 36°C) and were classified into the hypothermia group, while the remaining 34 were placed in the control group. The hypothermia group had a significantly higher body surface area per body weight. Additionally, the hypothermia group exhibited significantly lower total fat mass, skeletal muscle mass index, and basal metabolic rate (P < 0.05). However, body fat percentage and visceral fat mass did not differ significantly between the groups. Multivariate analysis identified total fat mass below 11.2 kg (HR 4.51, 95% CI: 1.35-15.03, P = 0.014) and skeletal muscle mass index below 10.06 kg/m2 (HR 5.61, 95% CI: 1.86-16.93, P = 0.002) as independent risk factors for perioperative hypothermia. Conclusions Low total fat mass and a low skeletal muscle mass index are significant risk factors for perioperative hypothermia in patients undergoing open gastrectomy. These risk factors could improve the accuracy of identifying high-risk patients for perioperative hypothermia.
Collapse
Affiliation(s)
- Ayako Amada
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - En Amada
- Department of Surgery, Sonoda Daiichi Hospital, Tokyo 121-0813, Japan
| | - Yuta Mitobe
- Graduate School of Health and Welfare Science, International University of Health and Welfare, Tokyo 107-8402, Japan
| | - Souya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoshimi Inagaki
- Department of Anesthesiology, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| |
Collapse
|
4
|
Li FXZ, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:10077-10095. [PMID: 39371478 PMCID: PMC11456273 DOI: 10.2147/ijn.s441847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting β-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
5
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
6
|
Fernández-Verdejo R, Sanchez-Delgado G, Ravussin E. Energy Expenditure in Humans: Principles, Methods, and Changes Throughout the Life Course. Annu Rev Nutr 2024; 44:51-76. [PMID: 38759093 DOI: 10.1146/annurev-nutr-062122-031443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Humans require energy to sustain their daily activities throughout their lives. This narrative review aims to (a) summarize principles and methods for studying human energy expenditure, (b) discuss the main determinants of energy expenditure, and (c) discuss the changes in energy expenditure throughout the human life course. Total daily energy expenditure is mainly composed of resting energy expenditure, physical activity energy expenditure, and the thermic effect of food. Total daily energy expenditure and its components are estimated using variations of the indirect calorimetry method. The relative contributions of organs and tissues determine the energy expenditure under different physiological conditions. Evidence shows that energy expenditure varies along the human life course, at least in part due to changes in body composition, the mass and specific metabolic rates of organs and tissues, and levels of physical activity. This information is crucial to estimate human energy requirements for maintaining health throughout the life course.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
| | - Guillermo Sanchez-Delgado
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Sport and Health University Research Institute and "José Mataix Verdú" Institute of Nutrition and Food Technology, University of Granada, Granada, Spain
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
7
|
Diaz-Vegas A, Cooke KC, Cutler HB, Yau B, Masson SWC, Harney D, Fuller OK, Potter M, Madsen S, Craw NR, Zhang Y, Moreno CL, Kebede MA, Neely GG, Stöckli J, Burchfield JG, James DE. Deletion of miPEP in adipocytes protects against obesity and insulin resistance by boosting muscle metabolism. Mol Metab 2024; 86:101983. [PMID: 38960128 PMCID: PMC11292358 DOI: 10.1016/j.molmet.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP. OBJECTIVE To determine the role of miPEP in insulin resistance. METHODS To experimentally test this observation, we generated adipocyte-specific miPEP knockout mice to interrogate its role in the aetiology of insulin resistance. RESULTS We observed a strong phenotype characterised by enhanced insulin sensitivity and reduced adiposity, despite normal food intake and physical activity. Strikingly, these phenotypes vanished when mice were housed at thermoneutrality, suggesting that metabolic protection conferred by miPEP deletion hinges upon a thermoregulatory process. Tissue specific analysis of miPEP deficient mice revealed an increment in muscle metabolism, and upregulation of the protein FBP2 that is involved in ATP hydrolysis in the gluconeogenic pathway. CONCLUSION These findings suggest that miPEP deletion initiates a compensatory increase in skeletal muscle metabolism acting as a protective mechanism against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristen C Cooke
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harry B Cutler
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Belinda Yau
- School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Stewart W C Masson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Dylan Harney
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Oliver K Fuller
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Meg Potter
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Niamh R Craw
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Yiju Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
8
|
Hervas LS, do Amaral-Silva L, Sartori MR, Guadalupe-Silva A, Gargaglioni LH, Lerchner J, Oliveira MT, Bícego KC. Mitochondrial function in skeletal muscle contributes to reproductive endothermy in tegu lizards (Salvator merianae). Acta Physiol (Oxf) 2024; 240:e14162. [PMID: 38741523 DOI: 10.1111/apha.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
AIM In cyclic climate variations, including seasonal changes, many animals regulate their energy demands to overcome critical transitory moments, restricting their high-demand activities to phases of resource abundance, enabling rapid growth and reproduction. Tegu lizards (Salvator merianae) are ectotherms with a robust annual cycle, being active during summer, hibernating during winter, and presenting a remarkable endothermy during reproduction in spring. Here, we evaluated whether changes in mitochondrial respiratory physiology in skeletal muscle could serve as a mechanism for the increased thermogenesis observed during the tegu's reproductive endothermy. METHODS We performed high-resolution respirometry and calorimetry in permeabilized red and white muscle fibers, sampled during summer (activity) and spring (high activity and reproduction), in association with citrate synthase measurements. RESULTS During spring, the muscle fibers exhibited increased oxidative phosphorylation. They also enhanced uncoupled respiration and heat production via adenine nucleotide translocase (ANT), but not via uncoupling proteins (UCP). Citrate synthase activity was higher during the spring, suggesting greater mitochondrial density compared to the summer. These findings were consistent across both sexes and muscle types (red and white). CONCLUSION The current results highlight potential cellular thermogenic mechanisms in an ectothermic reptile that contribute to transient endothermy. Our study indicates that the unique feature of transitioning to endothermy through nonshivering thermogenesis during the reproductive phase may be facilitated by higher mitochondrial density, function, and uncoupling within the skeletal muscle. This knowledge contributes significant elements to the broader picture of models for the evolution of endothermy, particularly in relation to the enhancement of aerobic capacity.
Collapse
Affiliation(s)
- Livia Saccani Hervas
- Department of Animal Morphology and Physiology, São Paulo State University, Jaboticabal, Brazil
| | - Lara do Amaral-Silva
- Department of Biology, Wake Forest University, Winston Salem, North Carolina, USA
| | - Marina Rincon Sartori
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ane Guadalupe-Silva
- Department of Animal Morphology and Physiology, São Paulo State University, Jaboticabal, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University, Jaboticabal, Brazil
| | - Johannes Lerchner
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University, Jaboticabal, Brazil
| |
Collapse
|
9
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
10
|
Stanic S, Bardova K, Janovska P, Rossmeisl M, Kopecky J, Zouhar P. Prolonged FGF21 treatment increases energy expenditure and induces weight loss in obese mice independently of UCP1 and adrenergic signaling. Biochem Pharmacol 2024; 221:116042. [PMID: 38325495 DOI: 10.1016/j.bcp.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a β-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.
Collapse
Affiliation(s)
- Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
11
|
Zhang S, Williams KJ, Verlande-Ferrero A, Chan AP, Su GB, Kershaw EE, Cox JE, Maschek JA, Shapira SN, Christofk HR, de Aguiar Vallim TQ, Masri S, Villanueva CJ. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. J Lipid Res 2024; 65:100434. [PMID: 37640283 PMCID: PMC10839691 DOI: 10.1016/j.jlr.2023.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of β3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amandine Verlande-Ferrero
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Alvin P Chan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gino B Su
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, PA, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Alan Maschek
- Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
12
|
Giraud D, Pomportes L, Nicol C, Bertin D, Gardarein JL, Hays A. Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming. Temperature (Austin) 2024; 11:137-156. [PMID: 38846524 PMCID: PMC11152100 DOI: 10.1080/23328940.2024.2303332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 06/09/2024] Open
Abstract
Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higherV ˙ O2 in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min-1.kg-1) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min-1) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O2 saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.
Collapse
Affiliation(s)
- Dorian Giraud
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
- Polytech Marseille, Aix-Marseille University, CNRS, IUSTI, Marseille, France
| | - Laura Pomportes
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Nicol
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | - Denis Bertin
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
- Faculty of Sport Science, Aix-Marseille University, CNRS, ISM, Marseille, France
| | | | - Arnaud Hays
- Faculty of Medical and Paramedical Sciences, Aix-Marseille University, HIPE Human Lab, Marseille, France
| |
Collapse
|
13
|
Zhu Y, Liu W, Qi Z. Adipose tissue browning and thermogenesis under physiologically energetic challenges: a remodelled thermogenic system. J Physiol 2024; 602:23-48. [PMID: 38019069 DOI: 10.1113/jp285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Kruglov AG, Romshin AM, Nikiforova AB, Plotnikova A, Vlasov II. Warm Cells, Hot Mitochondria: Achievements and Problems of Ultralocal Thermometry. Int J Mol Sci 2023; 24:16955. [PMID: 38069275 PMCID: PMC10707128 DOI: 10.3390/ijms242316955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments. A comparative analysis is conducted of the results obtained using these methods for the cytosol, nucleus, endo-/sarcoplasmic reticulum, and mitochondria, as well as their biological consistency. Special attention is given to the limitations, possible sources of errors and ambiguities of the sensor's responses. The issue of biological temperature limits in cells and organelles is considered. It is concluded that the elaboration of experimental protocols for ultralocal temperature measurements that take into account both the characteristics of biological systems, as well as the properties and limitations of each type of sensor is of critical importance for the generation of reliable results and further progress in this field.
Collapse
Affiliation(s)
- Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexey M. Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Arina Plotnikova
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), 115409 Moscow, Russia;
| | - Igor I. Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Sellers AJ, Khovalyg D, van Marken Lichtenbelt W. Thermoregulation of Tuvan pastoralists and Western Europeans during cold exposure. Am J Hum Biol 2023; 35:e23933. [PMID: 37314240 DOI: 10.1002/ajhb.23933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVES This study compared the metabolic and vascular responses, to whole-body and finger cold exposure, of a traditional population lifelong exposed to extreme cold winters with Western Europeans. METHODS Thirteen cold acclimatized Tuvan pastoralist adults (45 ± 9 years; 24.1 ± 3.2 kg/m2 ) and 13 matched Western European controls (43 ± 15 years; 22.6 ± 1.4 kg/m2 ) completed a whole-body cold (10°C) air exposure test and a cold-induced vasodilation (CIVD) test, which involved the immersion of the middle finger into ice-water for 30 min. RESULTS During the whole-body cold exposure, the durations until the onset of shivering for three monitored skeletal muscles were similar for both groups. Cold exposure increased the Tuvans' energy expenditure by (mean ± SD) 0.9 ± 0.7 kJ min-1 and the Europeans' by 1.3 ± 1.54 kJ min-1 ; these changes were not significantly different. The forearm-fingertip skin temperature gradient of the Tuvans was lower, indicating less vasoconstriction, than the Europeans during the cold exposure (0 ± 4.5°C vs. 8.8 ± 2.7°C). A CIVD response occurred in 92% of the Tuvans and 36% of the Europeans. In line, finger temperature during the CIVD test was higher in the Tuvans than the Europeans (13.4 ± 3.4°C vs. 3.9 ± 2.3°C). CONCLUSION Cold-induced thermogenesis and the onset of shivering were similar in both populations. However, vasoconstriction at the extremities was reduced in the Tuvans compared to the Europeans. The enhanced blood flow to the extremities could be beneficial for living in an extreme cold environment by improving dexterity, comfort, and reducing the risk of cold-injuries.
Collapse
Affiliation(s)
- Adam J Sellers
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Dolaana Khovalyg
- Laboratory of Integrated Comfort Engineering (ICE), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wouter van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Sarais F, Metzger K, Hadlich F, Kalbe C, Ponsuksili S. Transcriptomic Response of Differentiating Porcine Myotubes to Thermal Stress and Donor Piglet Age. Int J Mol Sci 2023; 24:13599. [PMID: 37686405 PMCID: PMC10487455 DOI: 10.3390/ijms241713599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival rate. In this study, we focused on the effects of thermal stress (35 °C, 39 °C, and 41 °C compared to 37 °C) on differentiating myotubes derived from the satellite cells of Musculus rhomboideus, isolated from two different developmental stages of thermolabile 5-day-old (p5) and thermostable 20-day-old piglets (p20). Analysis revealed statistically significant differential expression genes (DEGs) between the different cultivation temperatures, with a higher number of genes responding to cold treatment. These DEGs were involved in the macromolecule degradation and actin kinase cytoskeleton categories and were observed at lower temperatures (35 °C), whereas at higher temperatures (39 °C and 41 °C), the protein transport system, endoplasmic reticulum system, and ATP activity were more pronounced. Gene expression profiling of HSP and RBM gene families, which are commonly associated with cold and heat responses, exhibited a pattern dependent on temperature variability. Moreover, thermal stress exhibited an inhibitory effect on cell cycle, with a more pronounced downregulation during cold stress driven by ADGR genes. Additionally, our analysis revealed DEGs from donors with an undeveloped thermoregulation capacity (p5) and those with a fully developed thermoregulation capacity (p20) under various cultivation temperature. The highest number of DEGs and significant GO terms was observed under temperatures of 35 °C and 37 °C. In particular, under 35 °C, the DEGs were enriched in insulin, thyroid hormone, and calcium signaling pathways. This result suggests that the different thermoregulatory capacities of the donor piglets determined the ability of the primary muscle cell culture to differentiate into myotubes at different temperatures. This work sheds new light on the underlying molecular mechanisms that govern piglet differentiating myotube response to thermal stress and can be leveraged to develop effective thermal management strategies to enhance skeletal muscle growth.
Collapse
Affiliation(s)
- Fabio Sarais
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Katharina Metzger
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| |
Collapse
|
18
|
Li FXZ, Liu JJ, Xu F, Shan SK, Zheng MH, Lei LM, Lin X, Guo B, Li CC, Wu F, Tang KX, Cao YC, Wu YY, Duan JY, Wu YL, He SY, Chen X, Yuan LQ. Cold exposure protects against medial arterial calcification development via autophagy. J Nanobiotechnology 2023; 21:226. [PMID: 37461031 PMCID: PMC10351118 DOI: 10.1186/s12951-023-01985-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in β-glycerophosphate (β-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Camerino C. Oxytocin's Regulation of Thermogenesis May Be the Link to Prader-Willi Syndrome. Curr Issues Mol Biol 2023; 45:4923-4935. [PMID: 37367062 DOI: 10.3390/cimb45060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Prader-Willi Syndrome (PWS) is a genetic neurodevelopmental disorder that is caused by either the deletion of the paternal allele of 15q11-q13, maternal uniparental disomy of chromosome 15 or defects in the chromosome 15 imprinting centre and is characterized by cognitive impairment, hyperphagia and low metabolic rate with significant risk of obesity, as well as a variety of other maladaptive behaviours and autistic spectrum disorder (ASD). Many of the features seen in PWS are thought to be due to hypothalamic dysfunction resulting in hormonal abnormalities and impaired social functioning. The preponderance of evidence indicates that the Oxytocin system is dysregulated in PWS individuals and that this neuropeptide pathways may provide promising targets for therapeutic intervention although the process by which this dysregulation occurs in PWS awaits mechanistic investigation. PWS individuals present abnormalities in thermoregulation an impaired detection for temperature change and altered perception of pain indicating an altered autonomic nervous system. Recent studies indicate that Oxytocin is involved in thermoregulation and pain perception. This review will describe the update on PWS and the recent discoveries on Oxytocin regulation of thermogenesis together with the potential link between Oxytocin regulation of thermogenesis and PWS to create a new groundwork for the treatment of this condition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Zhou W, VanDuyne P, Zhang C, Liu Y, Riessen R, Barragan M, Rowitz BM, Teran-Garcia M, Boppart SA, Anakk S. Pathological bile acid concentrations in chronic cholestasis cause adipose mitochondrial defects. JHEP Rep 2023; 5:100714. [PMID: 37122689 PMCID: PMC10133756 DOI: 10.1016/j.jhepr.2023.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Although fat loss is observed in patients with cholestasis, how chronically elevated bile acids (BAs) impact white and brown fat depots remains obscure. Methods To determine the direct effect of pathological levels of BAs on lipid accumulation and mitochondrial function, primary white and brown adipocyte cultures along with fat depots from two separate mouse models of cholestatic liver diseases, namely (i) genetic deletion of farnesoid X receptor (Fxr); small heterodimer (Shp) double knockout (DKO) and (ii) injury by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), were used. Results As expected, cholestatic mice accumulate high systemic BA levels and exhibit fat loss. Here, we demonstrate that chronic exposure to pathological BA levels results in mitochondrial dysfunction and defective thermogenesis. Consistently, both DKO and DDC-fed mice exhibit lower body temperature. Importantly, thermoneutral (30 °C) housing of the cholestatic DKO mice rescues the decrease in brown fat mass, and the expression of genes responsible for lipogenesis and regulation of mitochondrial function. To overcome systemic effects, primary adipocyte cultures were treated with pathological BA concentrations. Mitochondrial permeability and respiration analysis revealed that BA overload is sufficient to reduce mitochondrial function in primary adipocytes, which is not as a result of cytotoxicity. Instead, we found robust reductions in uncoupling protein 1 (Ucp1), PR domain containing 16 (Prdm16), and deiodinase, iodothyronine, type II (Dio2) transcripts in brown adipocytes upon treatment with chenodeoxycholic acid, whereas taurocholic acid led to the suppression of Dio2 transcript. This BA-mediated decrease in transcripts was alleviated by pharmacological activation of UCP1. Conclusions High concentrations of BAs cause defective thermogenesis by reducing the expression of crucial regulators of mitochondrial function, including UCP1, which may explain the clinical features of hypothermia and fat loss observed in patients with cholestatic liver diseases. Impact and Implications We uncover a detrimental effect of chronic bile acid overload on adipose mitochondrial function. Pathological concentration of different BAs reduces the expression of distinct genes involved in energy expenditure, which can be mitigated with pharmacological UCP1 activation.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Philip VanDuyne
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yushan Liu
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ryan Riessen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Maribel Barragan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Blair M. Rowitz
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Corresponding author. Address: Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Tel.: +1 217 300 7905; fax: +1 217 244 5858.
| |
Collapse
|
21
|
Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int J Obes (Lond) 2023; 47:338-347. [PMID: 36774412 DOI: 10.1038/s41366-023-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
Exposure to low ambient temperatures has previously been demonstrated to markedly improve glucose homeostasis in both rodents and humans. Although the brown adipose tissue is key in mediating these beneficial effects in rodents, its contribution appears more limited in humans. Hence, the exact tissues and underlying mechanisms that mediate cold-induced improvements in glucose homeostasis in humans remain to be fully established. In this review, we evaluated the response of the main organs involved in glucose metabolism (i.e. pancreas, liver, (white) adipose tissue, and skeletal muscle) to cold exposure and discuss their potential contribution to cold-induced improvements in glucose homeostasis in humans. We here show that cold exposure has widespread effects on metabolic organs involved in glucose regulation. Nevertheless, cold-induced improvements in glucose homeostasis appear primarily mediated via adaptations within the skeletal muscle and (presumably) white adipose tissue. Since the underlying mechanisms remain elusive, future studies should be aimed at pinpointing the exact physiological and molecular mechanisms involved in humans. Nonetheless, cold exposure holds great promise as a novel, additive lifestyle approach to improve glucose homeostasis in insulin resistant individuals. Parts of this graphical abstract were created using (modified) images from Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License. TG = thermogenesis, TAG = triacylglycerol, FFA = free fatty acid, SLN = sarcolipin, UCP3 = uncoupling protein 3, β2-AR = beta-2 adrenergic receptor, SNS = sympathetic nervous system.
Collapse
|
22
|
Lac M, Tavernier G, Moro C. Does housing temperature influence glucose regulation and muscle-fat crosstalk in mice? Biochimie 2023:S0300-9084(23)00028-7. [PMID: 36758717 DOI: 10.1016/j.biochi.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
The robustness of scientific results is partly based on their reproducibility. Working with animal models, particularly in the field of metabolism, requires to avoid any source of stress to rule out a maximum of bias. Housing at room temperature is sufficient to induce thermal stress activating key thermogenic organs such as brown adipose tissue (BAT) and skeletal muscle. BAT covers most of the non-shivering thermogenesis in mice and burns a variety of fuels such as glucose and lipids. A high prevalence of BAT is associated with a strong protection against type 2 diabetes risk in humans, implying that BAT plays a key role in glucose homeostasis. However, thermal stress is poorly and inconsistently considered in experimental research. This thermal stress can significantly impede interpretation of phenotypes by favoring compensatory signaling pathways. Indeed, various studies revealed that thermoneutrality is essential to study metabolism in mice in order to reach a suitable level of "humanization". In this review, we briefly discuss if and how ambient temperature influence blood glucose homeostasis through BAT and muscle-fat crosstalk.
Collapse
Affiliation(s)
- Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France.
| |
Collapse
|
23
|
Janovska P, Zouhar P, Bardova K, Otahal J, Vrbacky M, Mracek T, Adamcova K, Lenkova L, Funda J, Cajka T, Drahota Z, Stanic S, Rustan AC, Horakova O, Houstek J, Rossmeisl M, Kopecky J. Impairment of adrenergically-regulated thermogenesis in brown fat of obesity-resistant mice is compensated by non-shivering thermogenesis in skeletal muscle. Mol Metab 2023; 69:101683. [PMID: 36720306 PMCID: PMC9922683 DOI: 10.1016/j.molmet.2023.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.
Collapse
Affiliation(s)
- Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Otahal
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marek Vrbacky
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism and Laboratory of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdenek Drahota
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371, Oslo, Norway
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Houstek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
24
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Zhang D, Wang L, Ma S, Ma H, Liu D. Characterization of pig skeletal muscle transcriptomes in response to low temperature. Vet Med Sci 2022; 9:181-190. [PMID: 36480456 PMCID: PMC9857100 DOI: 10.1002/vms3.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The response of mammals to cold environment is a complex physiological activity, and its underlying mechanism must be analyzed from multiple perspectives. Skeletal muscle is an important thermogenic tissue that maintains body temperature in mammals. We dissected the molecular mechanism of pig skeletal muscle response to a cold environment by performing comparative transcriptome analysis in the Enshi black pig. METHODS Three pigs were subjected to acute cold stress (3 days), three pigs were subjected to cold acclimation (58 days), and three pigs were used as controls. RNA-seq was used to screen the differentially expressed genes (DEGs) of skeletal muscle. RESULTS Using RNA-seq methods, we identified 1241 DEGs within the acute cold stress group and 1886 DEGs within the cold acclimation group. Prolonged cold exposure induced more gene expression changes. A total of 540 key cold-responsive DEGs were found, and their trends were consistent within the acute cold stress group and cold acclimation group. Gene expression pattern analysis showed that there were significant differences between the low-temperature treatment groups and the control group, and there were also differences between individuals after long-term low-temperature treatment. Analysis of DEGs revealed that 134 pathways were significantly enriched in the cold adaptation group, 98 pathways were significantly enriched in the acute cold stress group, and 71 pathways were shared between the two groups. The 71 shared pathways were mainly related to lipid, amino acid, and carbohydrate metabolism; signal transduction; endocrine, immune, and nervous system; cardiovascular disease; infectious diseases caused by bacteria or viruses; and neurodegenerative disease. CONCLUSIONS In conclusion, this study provides insights into the molecular mechanism of porcine skeletal muscle response under low-temperature environment. The data may assist further research on the mechanism of pig response to cold exposure.
Collapse
Affiliation(s)
- DongJie Zhang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Liang Wang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - ShouZheng Ma
- College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| | - Hong Ma
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Di Liu
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| |
Collapse
|
26
|
Zhang Z, Shan L, Wang Y, Li W, Jiang M, Liang F, Feng S, Lu Z, Wang H, Dai J. Primate preoptic neurons drive hypothermia and cold defense. Innovation (N Y) 2022; 4:100358. [PMID: 36583100 PMCID: PMC9793322 DOI: 10.1016/j.xinn.2022.100358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining body temperature within a narrow range is vital for warm-blooded animals. In rodents, the preoptic area (POA) of the hypothalamus detects and regulates core body temperature. However, knowledge about the thermal regulation center in primates remains limited. Here, we show that activating a subpopulation of POA neurons by a chemogenetic strategy reliably induces hypothermia in anesthetized and freely moving macaques. Comprehensive monitoring of physiological parameters reveals that such hypothermia is accompanied by autonomic changes including a rise in heart rate, skeletal muscle activity, and correlated biomarkers in blood. Consistent with enhanced ambulatory movement during hypothermia, the animals show a full range of cold-defense behaviors. Resting-state fMRI confirms the chemogenetic activation of POA and charts a brain-wide network of thermoregulation. Altogether, our findings demonstrate the central regulation of body temperature in primates and pave the way for future application in clinical practice.
Collapse
Affiliation(s)
- Zhiting Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liang Shan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yuyin Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfang Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Minqing Jiang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Feng Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijing Feng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonghua Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen 518055, China
| | - Hong Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shenzhen Key Laboratory of Drug Addiction, Shenzhen 518055, China,Corresponding author
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen 518055, China,Corresponding author
| |
Collapse
|
27
|
Sellers AJ, Khovalyg D, Plasqui G, van Marken Lichtenbelt W. High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment. Sci Rep 2022; 12:20127. [PMID: 36418413 PMCID: PMC9684425 DOI: 10.1038/s41598-022-23975-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Research investigating thermoregulatory energy costs in free-living humans is limited. We determined the total energy expenditure (TEE) of Tuvan pastoralists living in an extreme cold environment and explored the contribution of physical activity and cold-induced thermogenesis. Twelve semi-nomadic pastoralists (47 ± 8 years, 64 ± 8 kg) living under traditional circumstances, in Tuva, south-central Siberia, Russia, were observed during two consecutive 6-day periods in winter. TEE was measured via the doubly labelled water technique. Skin and ambient temperatures, and physical activity were continuously monitored. The outdoor temperature during the observation period was - 27.4 ± 5.4 °C. During the daytime, the participants were exposed to ambient temperatures below 0 °C for 297 ± 131 min/day. The Tuvan pastoralists were more physically active compared to western populations (609 ± 90 min/day of light, moderate, and vigorous physical activity). In addition, TEE was 13.49 ± 1.33 MJ/day (3224 ± 318 kcal/day), which was significantly larger by 17% and 31% than predicted by body mass, and fat-free mass, respectively. Our research suggests the daily cold exposure combined with high levels of physical activity contributed to the elevated TEE. Future research should reconsider the assumption that energy costs due to thermoregulation are negligible in free-living humans.
Collapse
Affiliation(s)
- Adam J. Sellers
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Dolaana Khovalyg
- grid.5333.60000000121839049Laboratory of Integrated Comfort Engineering (ICE), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guy Plasqui
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Wouter van Marken Lichtenbelt
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.,Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
29
|
Haman F, Souza SCS, Castellani JW, Dupuis MP, Friedl KE, Sullivan-Kwantes W, Kingma BRM. Human vulnerability and variability in the cold: Establishing individual risks for cold weather injuries. Temperature (Austin) 2022; 9:158-195. [PMID: 36106152 PMCID: PMC9467591 DOI: 10.1080/23328940.2022.2044740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human tolerance to cold environments is extremely limited and responses between individuals is highly variable. Such physiological and morphological predispositions place them at high risk of developing cold weather injuries [CWI; including hypothermia and/or non-freezing (NFCI) and freezing cold injuries (FCI)]. The present manuscript highlights current knowledge on the vulnerability and variability of human cold responses and associated risks of developing CWI. This review 1) defines and categorizes cold stress and CWI, 2) presents cold defense mechanisms including biological adaptations, acute responses and acclimatization/acclimation and, 3) proposes mitigation strategies for CWI. This body of evidence clearly indicates that all humans are at risk of developing CWI without adequate knowledge and protective equipment. In addition, we show that while body mass plays a key role in mitigating risks of hypothermia between individuals and populations, NFCI and FCI depend mainly on changes in peripheral blood flow and associated decrease in skin temperature. Clearly, understanding the large interindividual variability in morphology, insulation, and metabolism is essential to reduce potential risks for CWI between and within populations.
Collapse
Affiliation(s)
- François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - Sara C. S. Souza
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - John W. Castellani
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Maria-P. Dupuis
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - Karl E. Friedl
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Wendy Sullivan-Kwantes
- Biophysics and Biomedical Modeling Division, Defence Research Development Canada-Toronto, Defence Research and Development Canada, Ontario, Canada
| | - Boris R. M. Kingma
- Netherlands Organization for Applied Scientific Research, Department of Human Performance, Unit Defence, Safety and Security, Soesterberg, The Netherlands
| |
Collapse
|
30
|
Dumont L, Lessard R, Semeniuk K, Chahrour H, McCormick JJ, Acosta FM, Blondin DP, Haman F. Thermogenic responses to different clamped skin temperatures in cold-exposed men and women. Am J Physiol Regul Integr Comp Physiol 2022; 323:R149-R160. [PMID: 35411809 DOI: 10.1152/ajpregu.00268.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite many decades of research examining thermoregulatory responses under varying cold stresses in humans, very little is known about the variability in metabolic heat production and shivering activity. Here, we used a novel closed-loop mean skin temperature clamping technique with a liquid-conditioned suit to isolate the effects of mean skin temperature on the subjective evaluation of thermal sensation, heat production, shivering responses, and oxidative fuel selection in young, lean and healthy men (n = 12) and women (n = 12). Our results showed a skin temperature-dependent increase in metabolic heat production (5.2±1.0 kJ/min, 5.9±1.0 kJ/min and 7.0±1.0 kJ/min with skin temperature maintained at 31°C, 29°C and 27°C, respectively; P< 0.0001) and shivering intensity in both men and women (0.6±0.1 %MVC, 1.1±0.4 %MVC and 2.5±0.7 %MVC, respectively; P<0.0001), including sex-dependent differences in heat production at all three temperatures (P < 0.005). Even when controlling for lean body mass and fat mass, sex differences persisted (P = 0.048 and P = 0.004, respectively), whereas controlling for differences in body surface area eliminated these differences. Interestingly, there were no sex differences in the cold-induced change in thermogenesis. Despite clamping skin temperature, there was tremendous variability in the rate of heat production and shivering intensity. Collectively this data suggests that many of the inter-individual differences in thermogenesis and shivering may be explained by differences in morphology and body composition.
Collapse
Affiliation(s)
- Lauralyne Dumont
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology and Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Quebec, Canada
| | - Raphael Lessard
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Kevin Semeniuk
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | | | | | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute, Faculty of Sports Science, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Medicine, Division of Neurology, Université de Sherbrooke and Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Quebec, Canada
| | - Francois Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
31
|
Funda J, Villena JA, Bardova K, Adamcova K, Irodenko I, Flachs P, Jedlickova I, Haasova E, Rossmeisl M, Kopecky J, Janovska P. Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat. Dis Model Mech 2022; 15:dmm049223. [PMID: 35466996 PMCID: PMC9066513 DOI: 10.1242/dmm.049223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jiří Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Illaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivana Jedlickova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
32
|
Križančić Bombek L, Čater M. Skeletal Muscle Uncoupling Proteins in Mice Models of Obesity. Metabolites 2022; 12:metabo12030259. [PMID: 35323702 PMCID: PMC8955650 DOI: 10.3390/metabo12030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
Collapse
|
33
|
Tang Y, Zong H, Kwon H, Qiu Y, Pessin JB, Wu L, Buddo KA, Boykov I, Schmidt CA, Lin CT, Neufer PD, Schwartz GJ, Kurland IJ, Pessin J. TIGAR deficiency enhances skeletal muscle thermogenesis by increasing neuromuscular junction cholinergic signaling. eLife 2022; 11:73360. [PMID: 35254259 PMCID: PMC8947760 DOI: 10.7554/elife.73360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.
Collapse
Affiliation(s)
- Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Hyokjoon Kwon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Yunping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Licheng Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Katherine A Buddo
- Department of Physiology, East Carolina University, Greenville, United States
| | - Ilya Boykov
- Department of Physiology, East Carolina University, Greenville, United States
| | - Cameron A Schmidt
- Department of Physiology, East Carolina University, Greenville, United States
| | - Chien-Te Lin
- Department of Physiology, East Carolina University, Greenville, United States
| | - P Darrell Neufer
- Department of Physiology, East Carolina University, Greenville, United States
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
34
|
Lovering AT, Kelly TS, DiMarco KG, Bradbury KE, Charkoudian N. Implications of a patent foramen ovale on environmental physiology and pathophysiology: Do we know the hole story? J Physiol 2022; 600:1541-1553. [PMID: 35043424 DOI: 10.1113/jp281108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
The foramen ovale is an essential component of the foetal circulation contributing to oxygenation and carbon dioxide elimination that remains patent under certain circumstances, in ∼ 30% of the healthy adult population, without major negative sequelae in most. Adults with a patent foramen ovale (PFO) have a greater tendency to develop symptoms of acute mountain sickness and high-altitude pulmonary oedema upon ascent to high altitude, and PFO presence is associated with worse cardiopulmonary function in chronic mountain sickness. This increase in altitude illness prevalence may be related to dysregulated cerebral blood flow associated with altered respiratory chemoreflex sensitivity; however, the mechanisms remain to be elucidated. Interestingly, men with a PFO appear to have a shift in thermoregulatory control to higher internal temperatures, both at rest and during exercise, and they have blunted thermal tachypnea. The teleological "reason" for this thermoregulatory shift is unclear, but the shift of ∼0.5°C in core body temperature does not appear to be sufficient to have any significant negative consequences in terms of risk of heat illness. Further work in this area is needed, particularly in women, to evaluate mechanisms of heat storage and dissipation in these individuals as compared to people without a PFO. Consequences of a PFO in SCUBA divers include a greater incidence of unprovoked decompression sickness, but whether PFO is beneficial or detrimental to breath hold diving remains unexplored. Whether PFO presence will explain interindividual variability in responses to, and consequences from, other environmental stressors such as spaceflight remain entirely unknown. Abstract figure legend Associations between PFO and altitude illnesses, core body temperature and diving. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tyler S Kelly
- University of Oregon, Department of Human Physiology, Eugene, OR
| | | | - Karleigh E Bradbury
- University of Oregon, Department of Human Physiology, Eugene, OR.,United States Army Research Institute of Environmental Medicine, Thermal & Mountain Medicine Division, Natick, MA
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Thermal & Mountain Medicine Division, Natick, MA
| |
Collapse
|
35
|
Xu Z, Chen W, Wang L, Zhou Y, Nong Q, Valencak TG, Wang Y, Xie J, Shan T. Cold Exposure Affects Lipid Metabolism, Fatty Acids Composition and Transcription in Pig Skeletal Muscle. Front Physiol 2021; 12:748801. [PMID: 34690816 PMCID: PMC8526723 DOI: 10.3389/fphys.2021.748801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
Cold exposure promotes glucose oxidation and modulates the lipid metabolism in adipose tissue, but it is still not fully clear whether cold exposure could affect meat quality and fatty acid metabolism in skeletal muscle of pig in vivo. Here, we kept finishing pigs under cold or room temperature overnight and determined the effects of cold exposure on meat quality, fatty acids composition and transcriptional changes in skeletal muscle of pigs. We found that cold exposure significantly reduced the meat colour24 h and pH24 h, without affecting carcass characteristics and other meat quality traits. Considerable changes were found in the proportions of individual fatty acids and the total content of saturated fatty acid, polyunsaturated fatty acids, monounsaturated fatty acid and n3-fatty acids. RNA-seq results showed upregulated fatty acid biosynthesis genes and downregulated mitochondrial beta-oxidation genes. The lipid metabolism in cold-treated longissimus dorsi muscle might be regulated by functions of the lipoprotein particle, the extracellular matrix, and the PPAR signaling pathways. Our study revealed the potential of cold exposure to regulate the lipid metabolism and fatty acid composition in skeletal muscle of farmed animals.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co., Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
36
|
Millet J, Siracusa J, Tardo-Dino PE, Thivel D, Koulmann N, Malgoyre A, Charlot K. Effects of Acute Heat and Cold Exposures at Rest or during Exercise on Subsequent Energy Intake: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13103424. [PMID: 34684424 PMCID: PMC8538265 DOI: 10.3390/nu13103424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
The objective of this meta-analysis was to assess the effect of acute heat/cold exposure on subsequent energy intake (EI) in adults. We searched the following sources for publications on this topic: PubMed, Ovid Medline, Science Direct and SPORTDiscus. The eligibility criteria for study selection were: randomized controlled trials performed in adults (169 men and 30 women; 20–52 years old) comparing EI at one or more meals taken ad libitum, during and/or after exposure to heat/cold and thermoneutral conditions. One of several exercise sessions could be realized before or during thermal exposures. Two of the thirteen studies included examined the effect of heat (one during exercise and one during exercise and at rest), eight investigated the effect of cold (six during exercise and two at rest), and three the effect of both heat and cold (two during exercise and one at rest). The meta-analysis revealed a small increase in EI in cold conditions (g = 0.44; p = 0.019) and a small decrease in hot conditions (g = −0.39, p = 0.022) for exposure during both rest and exercise. Exposures to heat and cold altered EI in opposite ways, with heat decreasing EI and cold increasing it. The effect of exercise remains unclear.
Collapse
Affiliation(s)
- Juliette Millet
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Pierre-Emmanuel Tardo-Dino
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - David Thivel
- Laboratory AME2P, University of Clermont Auvergne, 63170 Aubière, France;
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Ecole du Val-de-Grâce, 1, Place Alphonse Laveran, 75230 Paris, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Correspondence: ; Tel.: +33-(1)78-65-13-03
| |
Collapse
|
37
|
Greenfield AM, Charkoudian N, Alba BK. Influences of ovarian hormones on physiological responses to cold in women. Temperature (Austin) 2021; 9:23-45. [DOI: 10.1080/23328940.2021.1953688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew Martin Greenfield
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Billie Katherine Alba
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
38
|
Camerino C. Oxytocin Involvement in Body Composition Unveils the True Identity of Oxytocin. Int J Mol Sci 2021; 22:ijms22126383. [PMID: 34203705 PMCID: PMC8232088 DOI: 10.3390/ijms22126383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
The origin of the Oxytocin/Vasopressin system dates back about 600 million years. Oxytocin (Oxt) together with Vasopressin (VP) regulate a diversity of physiological functions that are important for osmoregulation, reproduction, metabolism, and social behavior. Oxt/VP-like peptides have been identified in several invertebrate species and they are functionally related across the entire animal kingdom. Functional conservation enables future exploitation of invertebrate models to study Oxt’s functions not related to pregnancy and the basic mechanisms of central Oxt/VP signaling. Specifically, Oxt is well known for its effects on uteri contractility and milk ejection as well as on metabolism and energy homeostasis. Moreover, the striking evidence that Oxt is linked to energy regulation is that Oxt- and Oxytocin receptor (Oxtr)-deficient mice show late onset obesity. Interestingly Oxt−/− or Oxtr−/− mice develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is expressed in a diversity of skeletal muscle phenotypes and regulates thermogenesis and bone mass. Oxt may increases skeletal muscle tonicity and/or increases body temperature. In this review, the author compared the three most recent theories on the effects of Oxt on body composition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology (Section of Pharmacology), School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
39
|
Sharma B, Sengupta T, Chandra Vishwakarma L, Akhtar N, Mallick HN. Muscle temperature is least altered during total sleep deprivation in rats. J Therm Biol 2021; 98:102910. [PMID: 34016337 DOI: 10.1016/j.jtherbio.2021.102910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
It has often been said that the brain is mostly benefitted from sleep. To understand the importance of sleep, extensive studies on other organs are too required. One such unexplored area is the understanding of muscle physiology during the sleep-wake cycle. Changes in muscle tone with different sleep phases are evident from the rapid eye movement sleep muscle atonia. There is variation in brain and body temperature during sleep stages, the brain temperature being higher during rapid eye movement sleep than slow-wave sleep. However, the change in muscle temperature with different sleep stages is not known. In this study, we have implanted pre-calibrated K-type thermocouples in the hypothalamus and the dorsal nuchal muscle, and a peritoneal transmitter to monitor the hypothalamic, muscle, and body temperature respectively in rats during 24 h sleep-wake cycle. The changes in muscle, body, and hypothalamic temperature during total sleep deprivation were also monitored. During normal sleep-wake stages, the temperature in the decreasing order was that of the hypothalamus, body, and muscle. Total sleep deprivation by gentle handling caused a significant increase in hypothalamic and body temperature, while there was least change in the muscle temperature. The circadian rhythm of the hypothalamic and body temperature in the sleep-deprived rats was disrupted, while the same was preserved in the muscle temperature. The results of our study show that muscle atonia during rapid eye movement sleep is a physiologically regulated thermally quiescent muscle state offering a conducive environment for muscle rest and repair.
Collapse
Affiliation(s)
- Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Physiology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
| | - Lal Chandra Vishwakarma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Nasreen Akhtar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Hruda Nanda Mallick
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurgaon, Haryana, 122505, India.
| |
Collapse
|
40
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
41
|
Bal NC, Gupta SC, Pant M, Sopariwala DH, Gonzalez-Escobedo G, Turner J, Gunn JS, Pierson CR, Harper SQ, Rafael-Fortney JA, Periasamy M. Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function? Front Physiol 2021; 12:633058. [PMID: 33732165 PMCID: PMC7956958 DOI: 10.3389/fphys.2021.633058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.
Collapse
Affiliation(s)
- Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Subash C Gupta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meghna Pant
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Danesh H Sopariwala
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Joanne Turner
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John S Gunn
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, United States
| | - Scott Q Harper
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
42
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
43
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
44
|
The New Frontier in Oxytocin Physiology: The Oxytonic Contraction. Int J Mol Sci 2020; 21:ijms21145144. [PMID: 32708109 PMCID: PMC7404128 DOI: 10.3390/ijms21145144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) is a nine amino acid peptide important in energy regulation and is essential to stress-related disorders. Specifically, low Oxt levels are associated with obesity in human subjects and diet-induced or genetically modified animal models. The striking evidence that Oxt is linked to energy regulation is that Oxt- and oxytocin receptor (Oxtr)-deficient mice show a phenotype characterized by late onset obesity. Oxt-/- or Oxtr-/- develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is differentially expressed in skeletal muscle exerting a protective effect toward the slow-twitch muscle after cold stress challenge in mice. We hypothesized that Oxt potentiates the slow-twitch muscle as it does with the uterus, triggering "the oxytonic contractions". Physiologically, this is important to augment muscle strength in fight/flight response and is consistent with the augmented energetic need at time of labor and for the protection of the offspring when Oxt secretion spikes. The normophagic obesity of Oxt-/- or Oxtr-/- mice could have been caused by decreased skeletal muscle tonicity which drove the metabolic phenotype. In this review, we summarized our findings together with the recent literature on this fascinating subjects in a "new oxytonic perspective" over the physicology of Oxt.
Collapse
|
45
|
Mugele H, Oliver SJ, Gagnon D, Lawley JS. Integrative crosstalk between hypoxia and the cold: Old data and new opportunities. Exp Physiol 2020; 106:350-358. [DOI: 10.1113/ep088512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Hendrik Mugele
- Department of Sport Science University of Innsbruck Innsbruck Austria
| | - Samuel J. Oliver
- Extremes Research Group School of Sport, Health and Exercise Sciences Bangor University Wales UK
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre Montreal Heart Institute Montréal Quebec Canada
- Department of Pharmacology and Physiology Faculty of Medicine Université de Montréal Montréal Quebec Canada
| | - Justin S. Lawley
- Department of Sport Science University of Innsbruck Innsbruck Austria
| |
Collapse
|
46
|
Schneider M, Ziegler T, Kolter L. Thermoregulation in Malayan sun bears (Helarctos malayanus) and its consequences for in situ conservation. J Therm Biol 2020; 91:102646. [PMID: 32716887 DOI: 10.1016/j.jtherbio.2020.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
Thermoregulation in Malayan sun bears is not fully understood. Therefore, in this study the effect of meteorological variables on both behavioural and autonomic thermoregulatory mechanisms in sun bears was examined in order to identify temperature thresholds for the activation of various thermoregulatory mechanisms. Infrared thermography was used to non‒invasively determine body surface temperature (TS) distribution in relation to ambient temperature (TA) and to determine the thermoneutral zone (TNZ) of sun bears. Thermographic measurements were performed on 10 adult sun bears at TA between 5 °C and 30 °C in three European zoos. To assess behaviours that contribute to thermoregulation, nine adult sun bears were observed at TA ranging from 5 °C to 34 °C by instantaneous scan sampling in 60 s intervals for a total of 787 h. Thermographic measurements revealed that the TNZ of sun bears lies between 24 °C and 28 °C and that heat is equally dissipated over the body surface. Behavioural data showed that behaviours related to thermoregulation occurred in advance of energetically costly autonomic mechanisms, and were highly correlated with TA and solar radiation. While the temperature threshold for the onset of thermoregulatory behaviours below the TNZ lies around 15 °C, which is well below the lower critical temperature (TLC) assessed by thermography, the onset for behaviours to prevent overheating occurred at 28 °C, which was closer to the estimated upper critical temperature (TUC) of sun bears. These findings provide useful data on the thermal requirements of sun bears with respect to the species potential to cope with the effects of climate change and deforestation which are occurring in their natural range. Furthermore, these results may have important implications for the care and welfare of bears in captivity and should be taken into consideration, when designing and managing facilities.
Collapse
Affiliation(s)
- Marion Schneider
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| | - Thomas Ziegler
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| | - Lydia Kolter
- AG Zoologischer Garten Köln, Riehler Str. 173, 50735, Cologne, Germany.
| |
Collapse
|
47
|
McInnis K, Haman F, Doucet É. Humans in the cold: Regulating energy balance. Obes Rev 2020; 21:e12978. [PMID: 31863637 DOI: 10.1111/obr.12978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
For humans to maintain a stable core temperature in cold environments, an increase in energy expenditure (EE) is required. However, little is known about how cold stimulus impacts energy balance as a whole, as energy intake (EI) has been largely overlooked. This review focuses on the current state of knowledge regarding how cold exposure (CE) impacts both EE and EI, while highlighting key gaps and shortcomings in the literature. Animal models clearly reveal that CE produces large increases in EE, while decreasing environmental temperatures results in a significant negative dose-response effect in EI (r=-.787, P<.001), meaning animals eat more as temperature decreases. In humans, multiple methods are used to administer cold stimuli, which result in consistent yet quantitatively small increases in EE. However, only two studies have measured ad libitum food intake in combination with acute CE in humans. Chronic CE (i.e., cold acclimation) studies have been shown to produce minimal changes in body weight, with an average compensation of ~126%. Although more studies are required to investigate how cold impacts EI in humans, results presented in this review warrant caution before presenting or considering CE as a potential adjunct to weight loss strategies.
Collapse
Affiliation(s)
- Kurt McInnis
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
48
|
Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, Israni NS, Johnson JW, Lea HJ, Linderman JD, O'Mara AE, Zhu KY, Cypess AM. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem 2019; 295:1926-1942. [PMID: 31914415 DOI: 10.1074/jbc.rev119.007363] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The current obesity pandemic results from a physiological imbalance in which energy intake chronically exceeds energy expenditure (EE), and prevention and treatment strategies remain generally ineffective. Approaches designed to increase EE have been informed by decades of experiments in rodent models designed to stimulate adaptive thermogenesis, a long-term increase in metabolism, primarily induced by chronic cold exposure. At the cellular level, thermogenesis is achieved through increased rates of futile cycling, which are observed in several systems, most notably the regulated uncoupling of oxidative phosphorylation from ATP generation by uncoupling protein 1, a tissue-specific protein present in mitochondria of brown adipose tissue (BAT). Physiological activation of BAT and other organ thermogenesis occurs through β-adrenergic receptors (AR), and considerable effort over the past 5 decades has been directed toward developing AR agonists capable of safely achieving a net negative energy balance while avoiding unwanted cardiovascular side effects. Recent discoveries of other BAT futile cycles based on creatine and succinate have provided additional targets. Complicating the current and developing pharmacological-, cold-, and exercise-based methods to increase EE is the emerging evidence for strong physiological drives toward restoring lost weight over the long term. Future studies will need to address technical challenges such as how to accurately measure individual tissue thermogenesis in humans; how to safely activate BAT and other organ thermogenesis; and how to sustain a negative energy balance over many years of treatment.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Zahraa Abdul Sater
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas M Cassimatis
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - James W Johnson
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Joyce D Linderman
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Alana E O'Mara
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
49
|
Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985) 2019; 126:1598-1606. [PMID: 30896355 PMCID: PMC6620656 DOI: 10.1152/japplphysiol.01133.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 03/17/2019] [Indexed: 01/24/2023] Open
Abstract
Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% (P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplement the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation. NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.
Collapse
Affiliation(s)
- Kyle Gordon
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - Denis P Blondin
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa , Canada
| | - Brian J Friesen
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | | | - Glen P Kenny
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| |
Collapse
|