1
|
Zhou Z, Chen R, Li P, Fan P, Ma L, Cai X, Hou Y, Li B, Su J. Natural borneol improves cellular uptake of curcumin to enhance its photodynamic bactericidal activity against Escherichia coli ATCC 8739. Food Microbiol 2025; 127:104686. [PMID: 39667858 DOI: 10.1016/j.fm.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Photodynamic inactivation (PDI), a non-thermal sterilization method, has attracted considerable attention due to its broad-spectrum antimicrobial activity, environmental friendliness and cost-effectiveness. Curcumin (Cur), a food-grade photosensitizer, exhibits photodynamic antimicrobial activity based primarily on its efficiency in intracellular accumulation. However, Cur's low water solubility and the barriers presented by the outer membrane of Gram-negative bacteria challenge its ability to penetrate the cytoplasm. Natural borneol (NB), a monoterpene food flavoring agent, has also been shown to improve the efficiency of drug absorption. In this study, we demonstrated that NB significantly improved the cellular uptake of Cur, thereby enhancing its photodynamic bactericidal activity against Gram-negative Escherichia coli (E. coli) ATCC 8739, a potential alternative to enterohemorrhagic E. coli O157:H7. This effect was attributed to NB's ability to disrupt the integrity of the E. coli bacterial membrane, thereby increasing cellular permeability. Transcriptomic analysis further confirmed that NB dysregulated the expression of genes associated with bacterial membrane structure and function in E. coli. Consequently, the increased accumulation of Cur in E. coli led to excessive production of intracellular reactive oxygen species (ROS) upon exposure to 6.5 J/cm2 blue light (BL). These ROS, analyzed biochemically and transcriptionally, primarily disrupted bacterial membrane structure and function, the antioxidant system, and ultimately caused bacterial death. Remarkably, this combined strategy not only reduced E. coli contamination in the tested orange juice, but also preserved its nutritional quality. In conclusion, this research provides an innovative and effective approach to maintaining food safety.
Collapse
Affiliation(s)
- Zhenlong Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Ruoxin Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Pengzhen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Penghui Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Lin Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xinyu Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Yuchao Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Binbin Li
- School of Architecture, South China University of Technology, Guangzhou, 510641, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
2
|
Yang M, Chao H, Hou Z, Wang L, Xu W, Zhao X. Antimicrobial activity of octyl gallate nanoemulsion combined with photodynamic technology and its effect on food preservation. Int J Food Microbiol 2025; 429:111023. [PMID: 39693859 DOI: 10.1016/j.ijfoodmicro.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Photodynamic inactivation, as a safe and effective antimicrobial technology that does not damage the organoleptic properties of the food itself, decreases the use of preservatives and is gradually gaining attention in the food industry. This study selected octyl gallate (OG) as an antimicrobial photosensitizer with eucalyptus oil as the oil phase and prepared it as an octyl gallate nanoemulsion (OG-NE) to ensure the delivery of the photosensitizer. Escherichia coli and Staphylococcus aureus inactivation with the OG-NE combined with photodynamic technology, as well as the effect on the quality of food products, was investigated. The results showed the successful preparation and homogeneous distribution of the OG-NE with an encapsulation rate of 85.18 %. The OG-NE's ability to produce single oxygen (1O2) was significantly higher, as shown by 1O2 production. The OG-NE combined photodynamic technique confirmed the effectiveness of microbial removal, demonstrating a significant increase in reactive oxygen species (ROS) and the permeability of the cell membrane. The effect of the OG-NE combined photodynamic technology on perch (microbiology, pH, whiteness, water holding capacity, TVB-N and TBA) and litchi (weight loss, titratable acid and sugar content) preservation was assessed. Food preservation experiments revealed that the OG-NE combined photodynamic technology exhibited a positive effect on food quality. The results indicated that the combination of the OG-NE and photodynamic technology provided a new alternative strategy for the food industry in antimicrobial and preservation.
Collapse
Affiliation(s)
- Ming Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huijing Chao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zihan Hou
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingling Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weizhuo Xu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
4
|
Prieto-Montero R, Tejón M, Albaya A, Arbeloa T, Chiara JL, Fanarraga ML, Martínez-Martínez V. Targeted photodynamic therapy: Gluconamide-modified cellulose nanocrystals as efficient photosensitizer delivery platforms against Gram-negative bacteria. Carbohydr Polym 2025; 348:122784. [PMID: 39562063 DOI: 10.1016/j.carbpol.2024.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) is an emerging strategy against resistant pathogenic bacteria, a serious global health threat. We describe herein the efficient preparation of photosensitized cellulose nanocrystals (CNC) using trialkoxysilane linkers for covalent incorporation of anionic (Rose Bengal: RB) and cationic (Toluidine blue O: TBO) photosensitizers (PSs), along with a N-alkyl-d-gluconamide ligand to specifically target Escherichia coli, as model nanosystems for aPDT. The synthesized nanomaterials exhibited high PS loading, high singlet oxygen quantum yield comparable to the solution, and good stability in aqueous media with minimal PS release under physiological conditions. Experimental viability tests in bacteria demonstrated their capability for aPDT, mitigating the inherent cytotoxicity of both PSs under dark conditions while retaining high phototoxicity against E. coli bacteria. The presence of gluconamide further enhanced photoactivity, highlighting the importance of surface functionalization with a specific bacterial ligand for improved efficacy. The CNC-supported RB system exhibited sufficient fluorescence for tracking via fluorescence microscopy, making it suitable for theranostics, integrating bioimaging and aPDT. Overall, photosensitized CNCs hold great promise as nanocarriers for combating topical infections caused by Gram-negative bacteria, addressing the urgent need for novel therapeutic strategies in infectious disease management while also mitigating antimicrobial resistance.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain; Grupo de Nanomedicina-IDIVAL, Universidad de Cantabria, Herrera Oria s/n, CP 39011 Santander, Spain
| | - Maite Tejón
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Andrea Albaya
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Teresa Arbeloa
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Mónica L Fanarraga
- Grupo de Nanomedicina-IDIVAL, Universidad de Cantabria, Herrera Oria s/n, CP 39011 Santander, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain.
| |
Collapse
|
5
|
Tavares da Silva R, José Dos Santos Franco A, Mayara de Souza Grilo M, Lima A, Alcântara Saraiva KL, de Siqueira Ferraz Carvalho R, Targino de Souza Pedrosa G, Schaffner DW, Magnani M. SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between fruits and gloves, survival on discarded gloves and inactivation by photodynamic treatment. Food Microbiol 2025; 125:104645. [PMID: 39448155 DOI: 10.1016/j.fm.2024.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024]
Abstract
This study assessed the SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between high-density polyethylene or polyvinyl chloride gloves and fruits (tomato and cucumber) using different inoculum levels (6.0 and 4.0 log PFU/sample). Bacteriophage φ6 survival on contaminated gloves was assessed over 9 days at 25 °C. The effectiveness of photodynamic treatment using curcumin as a photosensitizer to inactivate φ6 on fruits was determined. The fruit type and the glove material influenced the φ6 transfer. Longer contact times resulted in greater φ6 transfer. The highest φ6 transfer occurred from tomato to HDPE glove (0.8% or -1.1 log % transfer) after 30 s of contact at the higher inoculum level. Bacteriophage φ6 was detected on cross-contaminated HDPE gloves for up to 6 days. Bacteriophage φ6 survived better on vinyl gloves cross-contaminated by cucumber vs. tomato (detected up to 6 vs 3 days). Photodynamic inactivation of φ6 was time-dependent and varied with the tested fruit but was not influenced by viral starting concentration. Photodynamic treatment decreased the φ6 titer by 3.0 and 2.2 log PFU/sample in tomato and cucumber, respectively. Transmission electronic microscopy showed that photodynamic treatment changed the structure of the φ6 capsid. These findings may help in the management of SARS-CoV-2 contamination risks in fruit handling. They may also help in the establishment of effective measures to manage cross-contamination risk.
Collapse
Affiliation(s)
- Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Alyson José Dos Santos Franco
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Atila Lima
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | | | | | - Geany Targino de Souza Pedrosa
- Milk and Dairy Products Laboratory, Food Technology Academic Unit, Agrifood Science and Technology Center, Federal University of Campina Grande, Campus Pombal, 58840-000, Pombal, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
6
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2024; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Domínguez AB, Ziental D, Dlugaszewska J, Sobotta L, Torres T, Rodríguez-Morgade MS. Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes. Eur J Med Chem 2024; 285:117214. [PMID: 39788060 DOI: 10.1016/j.ejmech.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches. Under low light regimes, the two hydrophilic PS1a and PS2a, as well as the amphiphilic PS3a show much stronger response against Gram-positive MRSA than that observed for the typical phthalocyanines designed for PDI, namely zinc(II) and palladium(II) complexes, as well as free-base Pcs. Besides, PS1a, PS2a and PS3a show remarkably high activity against the Gram-negative E. coli, although weak fungicidal character against fluconazole-resistant C. albicans. Contrasting, the structurally different, amphiphilic PS4a shows only slight activity for Gram-positive bacteria, despite its ability to cross cell membrane and reach internal organelles. Still, PS4a shows a positive synergistic effect against MRSA when combined with doxycycline, exhibiting an increased activity from about 1.5 to about 4.9 log reduction under the light dose of 30 J/cm2 and the 0.125 mg/L subinhibitory dose of doxycycline.
Collapse
Affiliation(s)
- Ana Belén Domínguez
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; IMDEA-Nanociencia, c/Faraday 9, Cantoblanco, 28049, Madrid, Spain.
| | - M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
9
|
Caires CSA, Lima THN, Nascimento RC, Araujo LO, Aguilera LF, Caires ARL, Oliveira SL. Photoinactivation of Multidrug-Resistant mcr-1-Positive E. coli Using PCPDTBT Conjugated Polymer Nanoparticles under White Light. ACS APPLIED BIO MATERIALS 2024; 7:7404-7412. [PMID: 39423350 DOI: 10.1021/acsabm.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The issue of antimicrobial resistance is an escalating concern within the scope of global health. It is predicted that the existence of antibiotic-resistant bacteria might result in an estimated annual death of up to 10 million by 2050, along with possible economic losses ranging from 100 to 210 trillion. This study reports the production of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] nanoparticles (PCPDTBT-NPs) by nanoprecipitation as an alternative to tackle this problem. The size, shape, and optical features of these conjugated polymer NPs were analyzed. Their efficacy as photosensitizers against nonresistant (ATCC) and multidrug-resistant mcr-1-positive Escherichia coli was assessed under white light doses of 250 and 375 J·cm-2. PCPDTBT-NPs inactivated both E. coli strains exposed to white light at an intensity of 375 J·cm-2, while no antimicrobial effect was observed in the group not exposed to white light. Reactive oxygen species and singlet oxygen were detected using DCFH-DA and DPBF probes, allowing the investigation of the photoinactivation pathways. This work showcases PCPDTBT-NPs as photosensitizers to eliminate multidrug-resistant bacteria through photodynamic inactivation employing visible light.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Escola de Saúde, Santa Casa de Campo Grande, 79002-201 Campo Grande, MS, Brazil
| | - Thalita H N Lima
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Rafael C Nascimento
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Leandro O Araujo
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Laís F Aguilera
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Anderson R L Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
10
|
Gamelas SRD, Pereira C, Faustino MAF, Almeida A, Lourenço LMO. Unveiling the potent antimicrobial photodynamic therapy in Gram-positive and Gram-negative bacteria - Water remediation with monocharged chlorins. CHEMOSPHERE 2024; 367:143593. [PMID: 39433099 DOI: 10.1016/j.chemosphere.2024.143593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Water pollution is a significant concern worldwide, and it includes contaminants such as antibiotic-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) offers a non-invasive and non-toxic alternative for the inactivation of these microorganisms. So, this study reports the synthesis, structural characterisation, photophysical properties, and aPDT efficacy of cationic free-base and zinc(II) chlorin (Chl) derivatives bearing N,N-dimethylpyrrolydinium groups (H2Chl 1a and ZnChl 1b). The aPDT assays were performed against two bacterial models: Staphylococcus aureus (Gram-(+)) and Escherichia coli (Gram-(-)). The H2Chl 1a and ZnChl 1b distinct's solubility profile, coupled with their ability to generate singlet oxygen (1O2) under light exposure, (H2Chl 1a, ФΔ = 0.58 < TPP, ФΔ = 0.65 < ZnChl 1b, ФΔ = 0.83) opens up their potential application as photosensitizers (PS) in aPDT. The effectiveness of H2Chl 1a and ZnChl 1b at 1.0 and 5.0 μM in aPDT against S. aureus and E. coli at 500 W m-2 (total exposure time: 60-120 min) showed a viability reduction >6.0 log10 CFU mL-1. Additionally, KI was used as a coadjuvant to potentiate the photoinactivation of E. coli, reaching the method's detection limit (>4.0 log10 RLU). As most of the PS developed to inactivate Gram-negative bacteria are cationic with three or more charges, the fact that the H2Chl 1a and ZnChl 1b with only one cationic charge photoinactivate E. coli at low concentrations and with a reduced light dose, it is an importing discovery that deserves further exploration. These monocharged chlorin dyes have the potential for water remediation.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
12
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
13
|
Repetowski P, Warszyńska M, Kostecka A, Pucelik B, Barzowska A, Emami A, İşci Ü, Dumoulin F, Dąbrowski JM. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and Platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48937-48954. [PMID: 39241197 PMCID: PMC11420872 DOI: 10.1021/acsami.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/08/2024]
Abstract
Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Marta Warszyńska
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Anna Kostecka
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Atefeh Emami
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | - Ümit İşci
- Faculty
of Technology, Department of Metallurgical & Materials Engineering, Marmara University, Istanbul 34722, Türkiye
| | - Fabienne Dumoulin
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | | |
Collapse
|
14
|
Lai JM, Chen J, Navia JC, Durkee H, Gonzalez A, Rowaan C, Arcari T, Aguilar MC, Llanes K, Ziebarth N, Martinez JD, Miller D, Flynn HW, Amescua G, Parel JM. Enhancing Rose Bengal penetration in ex vivo human corneas using iontophoresis. Ther Deliv 2024; 15:567-575. [PMID: 39023301 PMCID: PMC11412146 DOI: 10.1080/20415990.2024.2371778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in ex vivo human corneas.Methods: Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.Results: Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 μm vs. 100 ± 5.7 μm, p < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 μm vs. 407 ± 69 μm, p = 0.432).Conclusion: Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.
Collapse
Affiliation(s)
- James M Lai
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Justin Chen
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Carlos Navia
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Heather Durkee
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alex Gonzalez
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cornelis Rowaan
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Timothy Arcari
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mariela C Aguilar
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Noel Ziebarth
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jaime D Martinez
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Darlene Miller
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harry W Flynn
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jean-Marie Parel
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
Alves LVGL, Sanchez LP, Tedesco AC, de Souza Salvador SL, Souza-Gabriel AE, Milori Corona SA. Efficiency of the photodynamic therapy on viability of Streptococcus mutans in the oral cavity using chitosan nanoparticles: an in vitro study. Lasers Med Sci 2024; 39:184. [PMID: 39020076 DOI: 10.1007/s10103-024-04133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE This study aimed to investigate the efficiency of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm in the oral cavity using the photosensitizer chloroaluminum phthalocyanine encapsulated in chitosan nanoparticles (ClAlPc/Ch) at three preirradiation times. METHODS Biofilms of Streptococcus mutans strains (ATCC 25,175) were cultivated on bovine tooth blocks and exposed to a 10% sucrose solution three times a day for 1 min over three consecutive days. The samples were randomly distributed into five treatment groups (n = 5): (I) aPDT with ClAlPc/Ch with a preirradiation time of 5 min (F5), (II) aPDT with ClAlPc/Ch with a preirradiation time of 15 min (F15), (III) aPDT with ClAlPc/Ch with a preirradiation time of 30 min (F30), (IV) 0.12% chlorhexidine digluconate (CHX), and (V) 0.9% saline solution (NaCl). After treatment, the S. mutans biofilms formed on each specimen were collected to determine the number of viable bacteria (colony-forming units (CFU)/mL). Data were analyzed for normality using the Shapiro-Wilk test and the analysis of variance (ANOVA) and Tukey HSD tests to analyze the number of viable bacteria (α = 0.05). RESULTS The one-way ANOVA showed a difference between the groups (p = 0.0003), and the Tukey HSD posttest showed that CHX had the highest microbial reduction of S. mutans, not statistically different from the F5 and F15 groups, whereas the NaCl group had the lowest microbial reduction statistically similar to the F30 group. CONCLUSION The results demonstrate that aPDT mediated by ClAlPc/Ch when used at preirradiation times of 5-15 min can be an effective approach in controlling cariogenic biofilm of S. mutans, being an alternative to 0.12% CHX.
Collapse
Affiliation(s)
- Luísa Valente Gotardo Lara Alves
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry), University of São Paulo (USP), Avenida do Café, S/ No, Ribeirão Preto, Sao Paulo, 14040-904, Brazil
| | - Luiza Pejon Sanchez
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry), University of São Paulo (USP), Avenida do Café, S/ No, Ribeirão Preto, Sao Paulo, 14040-904, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineers, Photobiology and Photomedicine Research Group, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Luiz de Souza Salvador
- Department of Clinical Toxicology and Bromatology of the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Evangelista Souza-Gabriel
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry), University of São Paulo (USP), Avenida do Café, S/ No, Ribeirão Preto, Sao Paulo, 14040-904, Brazil
| | - Silmara Aparecida Milori Corona
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry), University of São Paulo (USP), Avenida do Café, S/ No, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| |
Collapse
|
16
|
Majumdar D, Philip JE, Gassoumi B, Ayachi S, Abdelaziz B, Tüzün B, Roy S. Supramolecular clumps of μ 2-1,3-acetate bridges of Cd(II)-Salen complex: Synthesis, spectroscopic characterization, crystal structure, DFT quantization's, and antifungal photodynamic therapy. Heliyon 2024; 10:e29856. [PMID: 38707382 PMCID: PMC11066650 DOI: 10.1016/j.heliyon.2024.e29856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The article divulges the crystal growth, synthesis, and X-ray structure characterization of one centrosymmetric cadmium complex, [Cd{CdL(μ2-1,3-acetate)}2] using Salen ligand (SL). The complex is further characterized using spectroscopic and analytical techniques, including DRS, SEM-EDX, PXRD, and ICP-MS. The crystallographic study showed that the complex has a monoclinic space P21/c. Addison parameters (Ʈ) show the hexagonal geometry of the central Cd(II) metal ion. Hirshfeld surface and 2-D fingerprint confirm supramolecular contacts despite weak C-H⋯O and C-H···π interactions. Energy frameworks, FMOs, global reactivity parameters, MEP, and energy bandgap explain the complex reactivity outlook. The complex inter- and intramolecular bonding interactions were explored through natural bond orbital (NBO), QTAIM, NCI-RDG, Electron Location Function (ELF), and Localized Orbital Locator (LOL) quantization methods. In addition, the complex and its synthetic components in vitro antibacterial efficacy were investigated using Gram-positive and Gram-negative microbial strains. SAR (structure-activity relationship) correlates with biological potency. Molecular docking assessed antimicrobial potency with proteins S. aureus (PDB ID: 1JIJ), C. albicans (PDB ID: 1M7A), E. coli (PDB ID: 1T9U), P. aeruginosa (PDB ID: 2UV0), and A. Niger (PDB ID: 3K4P). The findings are backed by the Protein-Ligand Interaction Profiler (PLIP). The antifungal potency and cell viability test of C. albicans were conducted using photodynamic therapy (APDT).
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| | | | - Bouzid Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Sciences of Monastir, Avenue of Environment, 5000, Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
| | - Balkis Abdelaziz
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
| | - Burak Tüzün
- Sivas Cumhuriyet University, Sivas Vocational School, Department of Plant and Animal Production, TR-58140, Sivas, Turkey
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
17
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
18
|
Malec D, Warszyńska M, Repetowski P, Siomchen A, Dąbrowski JM. Enhancing Visible-Light Photocatalysis with Pd(II) Porphyrin-Based TiO 2 Hybrid Nanomaterials: Preparation, Characterization, ROS Generation, and Photocatalytic Activity. Molecules 2023; 28:7819. [PMID: 38067548 PMCID: PMC10707769 DOI: 10.3390/molecules28237819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 04/07/2024] Open
Abstract
Novel hybrid TiO2-based materials were obtained by adsorption of two different porphyrins on the surface of nanoparticles-commercially available 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and properly modified metalloporphyrin-5,10,15,20-tetrakis(2,6-difluoro-3-sulfophenyl)porphyrin palladium(II) (PdF2POH). The immobilization of porphyrins on the surface of TiO2 was possible due to the presence of sulfonyl groups. To further elevate the adsorption of porphyrin, an anchoring linker-4-hydroxybenzoic acid (PHBA)-was used. The synthesis of hybrid materials was proven by electronic absorption spectroscopy, dynamic light scattering (DLS), and photoelectrochemistry. Results prove the successful photosensitization of TiO2 to visible light by both porphyrins. However, the presence of the palladium ion in the modifier structure played a key role in strong adsorption, enhanced charge separation, and thus effective photosensitization. The incorporation of halogenated metalloporphyrins into TiO2 facilitates the enhancement of the comprehensive characteristics of the investigated materials and enables the evaluation of their performance under visible light. The effectiveness of reactive oxygen species (ROS) generation was also determined. Porphyrin-based materials with the addition of PHBA seemed to generate ROS more effectively than other composites. Interestingly, modifications influenced the generation of singlet oxygen for TPPS but not hydroxyl radical, in contrast to PdF2POH, where singlet oxygen generation was not influenced but hydroxyl radical generation was increased. Palladium (II) porphyrin-modified materials were characterized by higher photostability than TPPS-based nanostructures, as TPPS@PHBA-P25 materials showed the highest singlet oxygen generation and may be oxidized during light exposure. Photocatalytic activity tests with two model pollutants-methylene blue (MB) and the opioid drug tramadol (TRML)-confirmed the light dose-dependent degradation of those two compounds, especially PdF2POH@P25, which led to the virtually complete degradation of MB.
Collapse
Affiliation(s)
- Dawid Malec
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Anton Siomchen
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| |
Collapse
|
19
|
Zhang X, Wang T, Ma W, Bi L. The study on the effect of amino acid porphyrin conjugate-mediated antimicrobial photodynamic therapy on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2023; 43:103684. [PMID: 37393048 DOI: 10.1016/j.pdpdt.2023.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) based on the action of visible light and photosensitizers has emerged as a promising microbial reduction and alternative to antibiotics resistance to cariogenic pathogens. The present research aims to evaluate the antimicrobial effect of aPDT mediated by a new photosensitizer (amino acid porphyrin conjugate 4i) on Streptococcus mutans (S. mutans) biofilm. Qualitative morphologic characteristics of S. mutans biofilms are shown by scanning electron microscopy (SEM). The colony plate counting method is used to measure the dark toxicity and the phototoxicity of different concentrations of 4i-aPDT to S. mutans biofilms. MTT assay is conducted to investigate the effect of 4i mediated aPDT on the metabolic activity of S. mutans biofilm. Changes in structure morphology, bacterial density and extracellular matrix of S. mutans biofilm are observed by SEM. The distribution of living and dead bacteria in biofilm is detected using Confocal laser microscopy (CLSM). The results indicate that single laser irradiation has no antibacterial effect on S. mutans biofilms. With the increase of 4i concentration or the prolongation of laser irradiation time, the antibacterial effect of 4i-mediated aPDT on S. mutans biofilm is more statistically significant compared to the control. When the concentration of 62.5 µmol/L 4i is continuously illuminated for 10 min, the logarithm of the colonies in the biofilm shows a reduction of 3.4 log10. MTT assay detected absorbance values of biofilm by 4i-mediated aPDT are the lowest, indicating a significant decrease in biofilm metabolic activity. SEM analysis shows that 4i mediated aPDT reduced the quantity and density of S. mutans. A dense red fluorescence image of the 4i-aPDT treated biofilm is observed under CLSM, indicating that the dead bacteria are widely distributed.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Tao Wang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wei Ma
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
20
|
Mammari N, Duval RE. Photothermal/Photoacoustic Therapy Combined with Metal-Based Nanomaterials for the Treatment of Microbial Infections. Microorganisms 2023; 11:2084. [PMID: 37630644 PMCID: PMC10458754 DOI: 10.3390/microorganisms11082084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
21
|
Mahmoud M, Richter P, Lebert M, Burkovski A. Photodynamic Activity of Chlorophyllin and Polyethylenimine on Pseudomonas aeruginosa Planktonic, Biofilm and Persister Cells. Int J Mol Sci 2023; 24:12098. [PMID: 37569471 PMCID: PMC10419130 DOI: 10.3390/ijms241512098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Antimicrobial photodynamic inactivation is considered a promising antimicrobial approach that may not develop resistance in the near future. Here, we investigate the influence of the photosensitizer chlorophyllin (CHL) and the cationic permeabilizer polyethylenimine (PEI), exposed to a red light-emitting diode, on the human pathogen Pseudomonas aeruginosa free-living planktonic cells, the sessile biofilm and persister cells. The broth microdilution checkerboard method was used to test antimicrobial susceptibility. As a substrate for biofilms, the Calgary biofilm device was used, and the quantification of the biofilm biomass was carried out using a crystal violet assay. Serine hydroxamate was used for the induction of persisters. Our findings reveal that PEI ameliorates the antimicrobial activity of CHL against P. aeruginosa planktonic and biofilm states, and the concentration required to eradicate the bacteria in the biofilm is more than fourfold that is required to eradicate planktonic cells. Interestingly, the persister cells are more susceptible to CHL/PEI (31.25/100 µg mL-1) than the growing cells by 1.7 ± 0.12 and 0.4 ± 0.1 log10 reduction, respectively, after 15 min of illumination. These data demonstrate that CHL excited with red light together with PEI is promising for the eradication of P. aeruginosa, and the susceptibility of P. aeruginosa to CHL/PEI is influenced by the concentrations and the exposure time.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
- Dairy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Space Biology Unlimited S.A.S., 33000 Bordeaux, France
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
| |
Collapse
|
22
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
23
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
24
|
Anusha P, Ragavendran C, Kamaraj C, Sangeetha K, Thesai AS, Natarajan D, Malafaia G. Eco-friendly bioremediation of pollutants from contaminated sewage wastewater using special reference bacterial strain of Bacillus cereus SDN1 and their genotoxicological assessment in Allium cepa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160935. [PMID: 36527898 DOI: 10.1016/j.scitotenv.2022.160935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The present study aimed to assess the Bacillus cereus SDN1 native bacterium's ability to clean up contaminated or polluted water. The isolated bacterium was identified by its morphological and biochemical characteristics, which were then confirmed at the genus level. Furthermore, the isolated B. cereus (NCBI accession No: MW828583) was identified genomically by PCR amplifying 16 s rDNA using a universal primer. The phylogenetic analysis of the rDNA sequence was analyzed to determine the taxonomic and evolutionary profile of the isolate of the previously identified Bacillus sp. Besides, B. cereus and the bacterial consortium were treated using sewage wastewater. After 15 days of treatment, the following pollutants or chemicals were reduced: total hardness particles removal varied from 63.33 % to 67.55 %, calcium removal varied from 90 % to 93.33 %, and total nitrate decreased range from 37.77 % to 22.22 %, respectively. Electrical conductivity ranged from 1809 mS/cm to 2500 mS/cm, and pH values ranged from 6.5 to 8.95. The outcome of in-situ remediation results suggested that B. cereus has a noticeable remediation efficiency to the suspended particles. A root tip test was also used to investigate the genotoxicity of treated and untreated sewage-contaminated waters on onion (Allium cepa) root cells. The highest chromosomal aberrations and mitotic inhibition were found in roots exposed to contaminated sewage water, and their results displayed chromosome abnormalities, including disorganized, sticky chain, disturbed metaphase, chromosomal displacement in anaphase, abnormal telophase, spindle disturbances, and binucleate cells observed in A. cepa exposed to untreated contaminated water. The study can thus be applied as a biomarker to detect the genotoxic impacts of sewage water pollution on biota. Furthermore, based on an identified bacterial consortium, this work offers a low-cost and eco-favorable method for treating household effluents.
Collapse
Affiliation(s)
- Ponniah Anusha
- Department of Science and Humanities, Kongunadu College of Engineering and Technology, Tholurpatti, Trichy 621 215, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Kanagaraj Sangeetha
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | | | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil.; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil..
| |
Collapse
|
25
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
26
|
The influence of structural effects and the solvent properties on spectral, generation characteristics, photostability and lipophilicity of 1,3,5,7-tetramethyl-BODIPY and its alkylated and iodinated derivatives. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Gill AK, Shah S, Yadav P, Shanavas A, Neelakandan PP, Patra D. A visible-light activated ROS generator multilayer film for antibacterial coatings. J Mater Chem B 2022; 10:9869-9877. [PMID: 36437801 DOI: 10.1039/d2tb01454h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The current scenario of antibiotic-resistant bacteria and pandemics caused by viruses makes research in the area of antibacterial and antiviral materials and surfaces more urgent than ever. In this regard, salicylideneimine based tetracoordinate boron-containing organic compounds are emerging as a new class of photosensitizers for singlet oxygen generation. However, the inherent inability of small organic molecules to be processed limits their potential use in functional coatings. Here we show the synthesis of a novel polymer functionalized with diiodosalicylideneimine-boron difluoride (PEI-BF2) and its utility for surface coating inside glass vials via layer-by-layer (LbL) assembly. The multilayer thin films are characterized using AFM and UV-Vis spectroscopy and the resultant coatings display excellent stability. The multilayer coating could be activated using visible light, and owing to the photocatalytic activity of the incorporated PEI-BF2, the surface coating is able to generate singlet oxygen efficiently upon light irradiation. Further, the multilayer coated surfaces exhibit remarkable antimicrobial activity towards both Gram-positive and Gram-negative bacteria under a variety of conditions. Thus, owing to the simple synthesis and the convenient methodology adopted for the preparation of multilayer coatings, the material reported here could pave the way for the development of sunlight activated large area self-sterile surfaces.
Collapse
Affiliation(s)
- Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India. .,Centre for Nanoscience and Nanotechnology, Panjab University, Sector-25, Chandigarh - 160036, India
| | - Sanchita Shah
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Pranjali Yadav
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Debabrata Patra
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| |
Collapse
|
28
|
Trochowski M, Kobielusz M, Pucelik B, Dąbrowski JM, Macyk W. Dihydroxyanthraquinones as stable and cost-effective TiO2 photosensitizers for environmental and biomedical applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Machado CS, Seeger MG, Moreira KS, Burgo TAL, Iglesias BA, Vogel FSF, Cargnelutti JF. In vitro porphyrin-based photodynamic therapy against mono and polyculture of multidrug-resistant bacteria isolated from integumentary infections in animals. Photodiagnosis Photodyn Ther 2022; 40:103179. [PMID: 36334907 DOI: 10.1016/j.pdpdt.2022.103179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Multidrug-resistant (MDR) organisms have been frequently isolated from integumentary lesions of animals, and these lesions are usually infected by more than one pathogen. This study evaluated an in vitro antimicrobial photodynamic therapy (aPDT) using two water-soluble tetra-cationic porphyrins (3-H2TMeP and 4-H2TMeP) against mono and polyculture of MDR bacteria isolated from dogs, cats, and horses. Ten isolates of MDR bacteria (two of each species: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus pseudointermedius) were used to evaluate aPDT against the monoculture using a non-cytotoxic concentration of 3-H2TMeP and 4-H2TMeP porphyrins (40 µM), with 30 min of light irradiation in Gram-positive and 90 min for Gram-negative bacteria. The aPDT using the 4-H2TMeP porphyrin was also tested against five different polycultures (Coagulase positive Staphylococcus (CPS) and Pseudomonas sp.; E. coli and Proteus sp.; Pseudomonas sp. and Proteus sp.; CPS and E. coli; and CPS and Proteus sp.) for 90 min. The efficacy of both treatments was evaluated by plating the solution exposed to light or kept in the dark and counting the colonies forming units after 24 h of incubation at 37 °C. Atomic force microscope analysis was used to map bacteria morphological changes and extract adhesion force parameters from the bacteria membranes. Only the 4-H2TMeP porphyrin had antibacterial activity against MDR bacteria in monoculture, especially S. pseudointermedius and P. aeruginosa. In polyculture, the 4-H2TMeP porphyrin reduced bacterial concentrations (p < 0.05) in the associations of E. coli and S. pseudointermedius, P. aeruginosa and S. pseudointermedius, and P. aeruginosa and P. mirabilis. These results showed that aPDT using 4-H2TMeP is a good option for future associations of aPDT and other therapies or in vivo research.
Collapse
Affiliation(s)
- Carolina S Machado
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Marlane G Seeger
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Kelly S Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Thiago A L Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil; Department of Chemistry and Environmental Sciences, Ibilce, São Paulo state University (Unesp), São José do Rio Preto, São Paulo, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos - Departamento de Química, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| | - Fernanda S F Vogel
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Juliana F Cargnelutti
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| |
Collapse
|
30
|
Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites. Int J Mol Sci 2022; 23:ijms232012519. [DOI: 10.3390/ijms232012519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan’s structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.
Collapse
|
31
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|