1
|
Rybnikářová A, Buchal R, Pláteník J. Ferritin with methylglyoxal produces reactive oxygen species but remains functional. Free Radic Res 2024; 58:702-722. [PMID: 39508662 DOI: 10.1080/10715762.2024.2417281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Iron is necessary for life, but the simultaneous iron-catalyzed formation of reactive oxygen species (ROS) is involved in pathogenesis of many diseases. One of them is diabetes mellitus, a widespread disease with severe long-term complications, including neuropathy, retinopathy, and nephropathy. Much evidence points to methylglyoxal, a potent glycating agent, as the key mediator of diabetic complications. In diabetes, there is also a peculiar dysregulation of iron homeostasis, leading to an expansion of redox-active iron. This in vitro study focuses on the interaction of methylglyoxal with ferritin, which is the main cellular protein for iron storage. Methylglyoxal effectively liberates iron from horse spleen ferritin, as well as synthetic iron cores; in both cases, it is partially mediated by superoxide. The interaction of methylglyoxal with ferritin increases the production of hydrogen peroxide, much above the generation of peroxide by methylglyoxal alone, in an iron-dependent manner. Glycation with methylglyoxal results in structural changes in ferritin. All of these findings can be demonstrated with pathophysiologically relevant (submillimolar) methylglyoxal concentrations. However, the rate of iron release by ascorbate, the ferroxidase activity, or the diameter of gated pores even in intensely glycated ferritin is not altered. In conclusion, although the functional features of ferritin resist alterations due to glycation, the interaction of methylglyoxal with ferritin liberates iron and markedly increases ROS production, both of which could enhance oxidative stress in vivo. Our findings may have implications for the pathogenesis of long-term diabetic complications, as well as for the use of ferritin as a nanocarrier in chemotherapy.
Collapse
Affiliation(s)
- Adriana Rybnikářová
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Richard Buchal
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Jan Pláteník
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| |
Collapse
|
2
|
Chekanov K, Danko D, Tlyachev T, Kiselev K, Hagens R, Georgievskaya A. State-of-the-Art in Skin Fluorescent Photography for Cosmetic and Skincare Research: From Molecular Spectra to AI Image Analysis. Life (Basel) 2024; 14:1271. [PMID: 39459571 PMCID: PMC11509763 DOI: 10.3390/life14101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Autofluorescence is a remarkable property of human skin. It can be excited by UV and observed in the dark using special detection systems. The method of fluorescence photography (FP) is an effective non-invasive tool for skin assessment. It involves image capturing by a camera the emission of light quanta from fluorophore molecules in the skin. It serves as a useful tool for cosmetic and skincare research, especially for the detection of pathological skin states, like acne, psoriasis, etc. To the best of our knowledge, there is currently no comprehensive review that fully describes the application and physical principles of FP over the past five years. The current review covers various aspects of the skin FP method from its biophysical basis and the main fluorescent molecules of the skin to its potential applications and the principles of FP recording and analysis. We pay particular attention to recently reported works on the automatic analysis of FP based on artificial intelligence (AI). Thus, we argue that FP is a rapidly evolving technology with a wide range of potential applications. We propose potential directions of the development of this method, including new AI algorithms for the analysis and expanding the range of applications.
Collapse
Affiliation(s)
- Konstantin Chekanov
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Daniil Danko
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Timur Tlyachev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Konstantin Kiselev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Ralf Hagens
- Beiersdorf AG, Beiersdorfstraße 1-9, 22529 Hamburg, Germany;
| | | |
Collapse
|
3
|
Szkudlarek A. In Vitro Spectroscopic Investigation of Losartan and Glipizide Competitive Binding to Glycated Albumin: A Comparative Study. Int J Mol Sci 2024; 25:9698. [PMID: 39273644 PMCID: PMC11395140 DOI: 10.3390/ijms25179698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the interaction between pharmaceuticals and serum proteins is crucial for optimizing therapeutic strategies, especially in patients with coexisting chronic diseases. The primary goal of this study was to assess the potential changes in binding affinity and competition between glipizide (GLP, a second-generation sulfonylurea hypoglycemic drug) and losartan (LOS, a medication commonly prescribed for hypertension, particularly for patients with concurrent diabetes) with non-glycated (HSA) and glycated (gHSAGLC, gHSAFRC) human serum albumin using multiple spectroscopic techniques (fluorescence, UV-visible absorption, and circular dichroism spectroscopy). The results indicated that FRC is a more effective glycation agent for HSA than GLC, significantly altering the albumin structure and affecting the microenvironment around critical amino acid residues, Trp-214 and Tyr. These modifications reduce the binding affinity of LOS and GLP to gHSAGLC and gHSAFRC, compared to HSA, resulting in less stable drug-protein complexes. The study revealed that LOS and GLP interact nonspecifically with the hydrophobic regions of the albumin surface in both binary (ligand-albumin) and ternary systems (ligand-albumin-ligandconst) and specifically saturate the binding sites within the protein molecule. Furthermore, the presence of an additional drug (GLP in the LOS-albumin complex or LOS in the GLP-albumin complex) complicates the interactions, likely leading to competitive binding or displacement of the initially bound drug in both non-glycated and glycated albumins. Analysis of the CD spectra suggests mutual interactions between GLP and LOS, underscoring the importance of closely monitoring patients co-administered these drugs, to ensure optimal therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Mohammadpour A, Sadeghi M, Miroliaei M. Role of Structural Peculiarities of Flavonoids in Suppressing AGEs Generated From HSA/Glucose System. Appl Biochem Biotechnol 2024; 196:6296-6314. [PMID: 38351429 DOI: 10.1007/s12010-023-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 11/29/2024]
Abstract
The pathogenesis of diabetes is related to the amount of advanced glycation end products (AGEs) that are naturally generated from the attachment of glucose with tissue and circular proteins. Human serum albumin (HSA) is more susceptible to AGE occurrence than other circular proteins due to its sensitive sites and high abundance. Considering the location of hydroxyl groups in the structure of flavonoids, which play a major role in suppressing of AGEs generating pathways, the present study was conducted to compare the effect of the chemical peculiarities of five flavonoids: apigenin (AP), naringenin (NA), luteolin (LU), Quercetin (QU), and methylquercetin (MQ), in suppressing AGEs generated in the HSA/glucose system. The results showed that all used flavonoids are capable of quenching the fluorescence intensity of AGEs in vitro. Analytical methods including UV-visible spectroscopy, CD spectro-polarimetry, TNBS, DTNB, DNPH, Congo red assay, ThT, and ANS fluorescence were used to deeper analysis of flavonoid performance. The anti-AGE effects of flavonoids followed the order of LU > QU > MQ > AP > NA. Docking results showed that flavonoids are associated with glycation-prone lysines and arginine residues in the "Sudlow pocket" through non-covalent interactions. Hydroxylation at the C4' and the double bond between C2-C3 increase the antiglycation potential of used flavonoids, while methylation of the OH group at the C3 position decreases this effect. It was also found that hydroxylation at C3 can play a dual role in anti-glycation ability. These findings may introduce a new approach to the structure-inhibition relationship of flavonoids in the design of operative anti-glycemic agents.
Collapse
Affiliation(s)
- Alireza Mohammadpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
5
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
6
|
Mukunda DC, Basha S, D'Souza MG, Chandra S, Ameera K, Stanley W, Mazumder N, Mahato KK. Label-free visualization of unfolding and crosslinking mediated protein aggregation in nonenzymatically glycated proteins. Analyst 2024; 149:4029-4040. [PMID: 38963259 DOI: 10.1039/d4an00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nonenzymatic glycation (NEG) unfolds and crosslinks proteins, resulting in aggregation. Label-free evaluation of such structural changes, without disturbing molecular integrity, would be beneficial for understanding the fundamental mechanisms of protein aggregation. The current study demonstrates the assessment of NEG-induced protein aggregation by combining autofluorescence (AF) spectroscopy and imaging. The methylglyoxal (MG) induced protein unfolding and the formation of cross-linking advanced glycation end-products (AGEs) leading to aggregation were evaluated using deep-UV-induced-autofluorescence (dUV-AF) spectroscopy in proteins with distinct structural characteristics. Since the AGEs formed on proteins are fluorescent, the study demonstrated the possibility of autofluorescence imaging of NEG-induced protein aggregates. Autofluorescence spectroscopy can potentially reveal molecular alterations such as protein unfolding and cross-linking. In contrast, AGE-based autofluorescence imaging offers a means to visually explore the structural arrangement of aggregates, regardless of whether they are amyloid or non-amyloid in nature.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - K Ameera
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Weena Stanley
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
7
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
8
|
Al-Bagmi MS, Alokail MS, Alenad AM, Alnaami AM, Abuelgassim AO, Khan MS. Mechanisms of inhibition of advanced glycation end-products (AGEs) and α-glucosidase by Heliotropium bacciferum: Spectroscopic and molecular docking analysis. Int J Biol Macromol 2024; 268:131609. [PMID: 38621555 DOI: 10.1016/j.ijbiomac.2024.131609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Diabetes mellitus is characterized by hyperglycemia that makes insulin more prone to glycation and form advanced glycation end products (AGEs). Here, we report the effect of glyoxal (GO) on the formation of AGEs using human insulin as model protein and their structural modifications. The present investigation also reports the anti-AGE potential of Heliotropium bacciferum (Leaf) extracts. The phytochemical analysis of H. bacciferum revealed that free phenolic extract contains higher amount of total phenolic (3901.58 ± 17.06 mg GAE/100 g) and total flavonoid content (30.41 ± 0.32 mg QE/100 g) when compared to bound phenolic extract. Naringin and caffeic acid were identified as the major phenolic ingredients by UPLC-PAD method. Furthermore, bound phenolics extract showed significantly higher DPPH and superoxide radicals scavenging activity (IC50 17.53 ± 0.36 μg/mL and 0.306 ± 0.038 mg/ mL, respectively) (p ≤ 0.05). Besides, the bound phenolics extract also showed significant (p ≤ 0.05) chelating power (IC50 0.063) compared to free phenolic extract. In addition, bound phenolic extract could efficiently trap GO under physiological conditions. Spectroscopic investigation of GO-modified insulin illustrated changes in the tertiary structure of insulin and formation of AGEs. On the other hand, no significant alteration in secondary structure was observed by far UV-CD measurement. Furthermore, H. bacciferum extract inhibited α-glucosidase activity and AGEs formation implicated in diabetes. Molecular docking analysis depicted that GO bind with human insulin in both chains and forms a stable complex with TYR A: 14, LEU A:13, ASN B:3, SER A:12 amino acid residues with binding energy of - 2.53 kcal/mol. However, caffeic acid binds to ASN A:18 and GLU A:17 residues of insulin with lower binding energy of -4.67 kcal/mol, suggesting its higher affinity towards human insulin compared to GO. Our finding showed promising activity of H. bacciferum against AGEs and its complications. The major phenolics like caffeic acid, naringin and their derivatives could be exploited for the drug development for management of AGEs in diabetes.
Collapse
Affiliation(s)
- Moneera Saud Al-Bagmi
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal M Alenad
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Balestra C, Baldelli S, Virgili F, Salvagno M, Mrakic-Sposta S, Fratantonio D. Pulsed Hyperoxia Acts on Plasmatic Advanced Glycation End Products and Advanced Oxidation Protein Products and Modulates Mitochondrial Biogenesis in Human Peripheral Blood Mononuclear Cells: A Pilot Study on the "Normobaric Oxygen Paradox". Int J Mol Sci 2024; 25:2394. [PMID: 38397071 PMCID: PMC10889761 DOI: 10.3390/ijms25042394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Fabio Virgili
- Interuniversitary Consortium "National Institute for Bio-Structures and Bio-Systems"-I.N.B.B., 13, 00136 Rome, Italy
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| |
Collapse
|
10
|
Risum AB, Bevilacqua M, Li C, Engholm-Keller K, Poojary MM, Rinnan Å, Lund MN. Resolving fluorescence spectra of Maillard reaction products formed on bovine serum albumin using parallel factor analysis. Food Res Int 2024; 178:113950. [PMID: 38309910 DOI: 10.1016/j.foodres.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Formation of Maillard reaction products (MRPs) is increasingly studied by the use of fluorescence spectroscopy, and most often, by measuring single excitation/emission pairs or use of unresolved spectra. However, due to the matrix complexity and potential co-formation of fluorescent oxidation products on tryptophan and tyrosine residues, this practice will often introduce errors in both identification and quantification. The present study investigates the combination of fluorescence excitation emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) to resolve the EEMs into its underlying fluorescent signals, allowing for better identification and quantification of MRPs. EEMs were recorded on a sample system of bovine serum albumin incubated at 40 °C for up to one week with either glucose, methylglyoxal or glyoxal added. Ten unique PARAFAC components were resolved, and assignment was attempted based on similarity with fluorescence of pure standards of MRPs and oxidation products and reported data from literature. Of the ten fluorescent PARAFAC components, tyrosine and buried and exposed tryptophan were resolved and identified, as well as the formation of specific MRPs (argpyrimidine and Nα-acetyl-Nδ-(5-methyl-4-imidazolon-2-yl)ornithine) and tryptophan oxidation products (kynurenine and dioxindolylalanine). The formation of the PARAFAC resolved protein modifications were qualitatively validated by liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Anne Bech Risum
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marta Bevilacqua
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Chengkang Li
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Kasper Engholm-Keller
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Åsmund Rinnan
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Jain A, Kishore N. Glycation and drug binding by serum albumin. VITAMINS AND HORMONES 2024; 125:89-115. [PMID: 38997173 DOI: 10.1016/bs.vh.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Accumulation of glycation products in patients with hyperglycaemic conditions can lead to their reaction with the proteins in the human system such as serum albumin, haemoglobin, insulin, plasma lipoproteins, lens proteins and collagen among others which have important biological functions. Therefore, it is important to understand if glycation of these proteins affects their normal action not only qualitatively, but also importantly quantitatively. Glycation of human serum albumin can easily be carried out over period of weeks and its drug transportability may be examined, in addition to characterisation of the amadori products. A combination of ultrasensitive isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and chromatography provides structure-property-energetics correlations which are important to obtain mechanistic aspects of drug recognition, conformation of the protein, and role of amadori products under conditions of glycation. The role of advance glycation end products is important in recognition of antidiabetic drugs. Further, the extent of glycation of the protein and its implication on drug transportability investigated by direct calorimetric methods enables unravelling mechanistic insights into role of functionality on drug molecules in the binding process, and hinderance in the recognition process, if any, as a result of glycation. It is possible that the drug binding ability of the protein under glycation conditions may not be adversely affected, or may even lead to strengthened ability. Rigorous studies on such systems with diverse functionality on the drug molecules is required which is essential in deriving guidelines for improvements in the existing drugs or in the synthesis of new molecular entities directed towards addressing diabetic conditions.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
12
|
Riaz S, Siddiqui S, Abul Qais F, Mateen S, Moin S. Inhibitory effect of baicalein against glycation in HSA: an in vitro approach. J Biomol Struct Dyn 2024; 42:935-947. [PMID: 37098813 DOI: 10.1080/07391102.2023.2201856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Hyperglycaemia accelerates the aging process significantly. Diabetes problems can be mitigated by inhibiting glycation. To learn more about glycation and antiglycation mediated by methyl glyoxal and baicalein, we studied human serum albumin as a model protein. A Methylglyoxal (MGO) incubation period of seven days at 37 degrees Celsius induced glycation of Human Serum Albumin.s Hyperchromicity, decreased tryptophan and intrinsic fluorescence, increased AGE-specific fluorescence, and reduced mobility were all seen in glycated human serum albumin (MGO-HSA) in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Fourier transform infrared spectroscopy (FT-IR) and then far ultraviolet dichroism were used to detect secondary and tertiary structural perturbations (CD). The Congo red assay (CR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) all verified the presence of amyloid-like clumps. Structure (carbonyl groups on ketoamine moieties) (CO), physiological problems including diabetes mellitus, and cardiovascular disease, etc. are linked to the structural and functional changes in glycated HSA, as proven by these studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Riaz
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Sana Siddiqui
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
Nishinaka T, Hatipoglu OF, Wake H, Watanabe M, Toyomura T, Mori S, Nishibori M, Takahashi H. Different modulation of STING/TBK1/IRF3 signaling by advanced glycation end products. Arch Biochem Biophys 2023; 750:109808. [PMID: 37918647 DOI: 10.1016/j.abb.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of compounds that are non-enzymatically produced by reactions between carbonyl compounds and proteins. Many types of AGEs are produced according to the type or concentration of the reacting carbonyl compound. We have previously demonstrated that a glycolaldehyde-derived AGE suppresses stimulator of interferon gene (STING)/TANK-binding kinase 1 (TBK1)/interferon regulatory transcription factor 3 (IRF3), which is a component of the innate immune system. In this report, we investigated the effects of AGEs prepared by several carbonyl compounds on STING/TBK1/IRF3 signaling. AGEs used in the present study were numbered based on the carbonyl compound type: AGE1, derived from glucose; AGE2, derived from glyceraldehyde; AGE3, derived from glycolaldehyde; AGE4, derived from methylglyoxal; and AGE5, derived from glyoxal. AGEs derived from aldehyde (AGE2 and AGE3) and dicarbonyl compounds (AGE4 and AGE5) suppressed cyclic GMP-AMP (cGAMP)-induced activation of STING/TBK1/IRF3 signaling, with different suppression efficiencies observed. Lysine modification by carbonyl compounds was related to the efficiency of the suppressive effect on STING/TBK1/IRF3 signaling. Among the AGEs used, only AGE1 enhanced cGAMP-induced activation of STING/TBK1/IRF3 signaling. Enhancing the modulation of STING/TBK1/IRF3 signaling by AGE1 was mediated by toll-like receptor 4. These results indicated that modulation of STING/TBK1/IRF3 signaling by prepared AGEs is dependent on the type and concentration of the carbonyl compound present. Modulating STING/TBK1/IRF3 signaling by AGEs may involve modification of lysine residues in proteins.
Collapse
Affiliation(s)
- Takashi Nishinaka
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Drug Development, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
14
|
Kamml J, Acevedo C, Kammer DS. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior. J Mech Behav Biomed Mater 2023; 148:106198. [PMID: 37890341 PMCID: PMC11519298 DOI: 10.1016/j.jmbbm.2023.106198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
15
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
16
|
Kamelnia R, Goliaei B, Peyman Shariatpanahi S, Mehrnejad F, Ghasemi A, Zare Karizak A, Ebrahim-Habibi A. Chemical Modification of the Amino Groups of Human Insulin: Investigating Structural Properties and Amorphous Aggregation of Acetylated Species. Protein J 2023:10.1007/s10930-023-10131-7. [PMID: 37395911 DOI: 10.1007/s10930-023-10131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
The efficacy of human recombinant insulin can be affected by its aggregation. Effects of acetylation were observed on insulin structure, stability, and aggregation at 37 and 50 °C and pH of 5.0 and 7.4 with the use of spectroscopy, circular dichroism (CD), dynamic light scattering (DLS), and atomic force microscopy (AFM). Raman and FTIR results were indicative of structural changes in AC-INS, and CD analyses showed a slight increase in β-sheet content in AC-INS. Melting temperature (Tm) measurements indicated an overall more stable structure and spectroscopic assessment showed a more compact one. Formation of amorphous aggregates was followed over time and kinetics parameters showed a longer nucleation phase (higher t* amount) and lower aggregates amount (lower Alim) for acetylated insulin (AC-INS) compared to native (N-INS) in all tested conditions. The results of amyloid-specific probes approved the formation of amorphous aggregates. Size particle and microscopic analysis suggested that AC-INS was less prone to form aggregates, which were smaller if formed. In conclusion, this study has demonstrated that controlled acetylation of insulin may lead to its higher stability and lower propensity toward amorphous aggregation and has provided insight into the result of this type of post-translational protein modification.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ashkan Zare Karizak
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Jalal Al Ahmad Highway, Tehran, 1411713137, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Qureshi MA, Amir M, Khan RH, Musarrat J, Javed S. Glycation reduces the binding dynamics of aflatoxin B 1 to human serum albumin: a comprehensive spectroscopic and computational investigation. J Biomol Struct Dyn 2023; 41:14797-14811. [PMID: 37021366 DOI: 10.1080/07391102.2023.2194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
18
|
Abouelezz HM, Shehatou GS, Shebl AM, Salem HA. A standardized pomegranate fruit extract ameliorates thioacetamide-induced liver fibrosis in rats via AGE-RAGE-ROS signaling. Heliyon 2023; 9:e14256. [PMID: 36938469 PMCID: PMC10015255 DOI: 10.1016/j.heliyon.2023.e14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
This work aimed to investigate a possible mechanism that may mediate the hepatoprotective effects of pomegranate fruit extract (PFE) against thioacetamide (THIO)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly allocated into four groups (n = 8 each): control; PFE (150 mg/kg/day, orally); THIO (200 mg/kg, i.p, 3 times a week); and THIO and PFE-treated groups. Oral PFE treatment decreased liver/body weight ratio by 12.4%, diminished serum function levels of ALT, AST, ALP, LDH, and total bilirubin, increased serum albumin, boosted hepatic GSH (by 35.6%) and SOD (by 17.5%), and significantly reduced hepatic levels of ROS, MDA, 4-HNE, AGEs, and RAGE in THIO-fibrotic rats relative to untreated THIO group. Moreover, PFE administration downregulated the hepatic levels of profibrotic TGF-β1 (by 23.0%, P < 0.001) and TIMP-1 (by 41.5%, P < 0.001), attenuated α-SMA protein expression, decreased serum HA levels (by 41.3%), and reduced the hepatic levels of the fibrosis markers hydroxyproline (by 26.0%, P < 0.001), collagen type IV (by 44.3%, P < 0.001) and laminin (by 43.4%, P < 0.001) compared to the untreated THIO group. The histopathological examination has corroborated these findings, where PFE decreased hepatic nodule incidence, attenuated portal necroinflammation and reduced extent of fibrosis. These findings may suggest that oral PFE administration could slow the progression of hepatic fibrogenesis via reducing hepatic levels of AGEs, RAGE, ROS, TGF-β1, and TIMP-1.
Collapse
Affiliation(s)
- Hadeer M. Abouelezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author.
| | - George S.G. Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Abdelhadi M. Shebl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Gayer AV, Yakimov BP, Sluchanko NN, Shirshin EA. Multifarious analytical capabilities of the UV/Vis protein fluorescence in blood plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122028. [PMID: 36327910 DOI: 10.1016/j.saa.2022.122028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Autofluorescence of blood plasma has been broadly considered as a prospective disease screening method. However, the assessment of such intrinsic fluorescence is mostly phenomenological, and its origin is still not fully understood, complicating its use in the clinical practice. Here we present the detailed evaluation of analytical capabilities, variability, and formation of blood plasma protein fluorescence based on the open dataset of excitation-emission matrices measured for ∼300 patients with suspected colorectal cancer, and our supporting model experiments. Using high-resolution size-exclusion chromatography coupled with comprehensive spectral analysis, we demonstrate, for the first time, the dominant role of HSA in the formation of blood plasma fluorescence in the visible spectral range (excitation wavelength >350 nm), presumably caused by its oxidative modifications. Furthermore, the diagnostic value of the tryptophan emission, as well as of the tyrosine fluorescence and visible fluorescence of proteins is shown by building a tree-based classification model that uses a small subset of physically interpretable fluorescence features for distinguishing between the control group and cancer patients with >80% accuracy. The obtained results extend current understanding and approaches used for the analysis of blood plasma fluorescence and pave the way for novel autofluorescence-based disease screening methods.
Collapse
Affiliation(s)
- Alexey V Gayer
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow 119048, Russia
| | - Boris P Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow 119048, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow 119048, Russia.
| |
Collapse
|
20
|
Panda A, Sabnam K, De S, Dasgupta S. Non-enzymatic glycation of human angiogenin: Effects on enzymatic activity and binding to hRI and DNA. Biochimie 2022; 208:151-159. [PMID: 36592684 DOI: 10.1016/j.biochi.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The effects of non-enzymatic glycation on the structural and functional properties of human angiogenin (hAng) have been investigated with respect to the formation of advanced glycated end products (AGEs), on prolonged treatment with d-Glucose, d-Fructose and d-Ribose at 37 °C. Fluorescence studies show the formation of fluorescent AGEs which exhibit emission maxima at 406 nm and 435 nm. Glycation of hAng with ribose leads to the maximum loss of its functional characteristic properties, as compared to fructose and glucose, along with the formation of higher oligomers. An increase in the incubation time results in the formation of higher oligomers with a concomitant decrease in the ribonucleolytic activity. The increase in the hydrodynamic radii of the glycated samples compared to native hAng is indicative of structural perturbations. The ribonucleolytic activity and the DNA binding ability of glycated hAng has been investigated by an agarose gel-based assay. Glycated hAng was unable to bind with human placental ribonuclease inhibitor (hRI), otherwise known to form one of the strongest protein-protein interaction systems with an affinity in the femtomolar range.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kabira Sabnam
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
21
|
Panasenko OM, Ivanov VA, Mikhalchik EV, Gorudko IV, Grigorieva DV, Basyreva LY, Shmeleva EV, Gusev SA, Kostevich VA, Gorbunov NP, Sokolov AV. Methylglyoxal-Modified Human Serum Albumin Binds to Leukocyte Myeloperoxidase and Inhibits its Enzymatic Activity. Antioxidants (Basel) 2022; 11:2263. [PMID: 36421449 PMCID: PMC9686918 DOI: 10.3390/antiox11112263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.
Collapse
Affiliation(s)
- Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Medical Biophysics of the Institute for Translative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor A. Ivanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Elena V. Mikhalchik
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Liliya Yu. Basyreva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
22
|
Association between Urinary Advanced Glycation End Products and Subclinical Inflammation in Children and Adolescents: Results from the Italian I.Family Cohort. Nutrients 2022; 14:nu14194135. [PMID: 36235787 PMCID: PMC9571918 DOI: 10.3390/nu14194135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Advanced Glycation End Products (AGEs) have been positively correlated with inflammation in adults, while inconsistent evidence is available in children. We evaluated the association between urinary AGEs, measured by fluorescence spectroscopy, and biomarkers of subclinical inflammation in 676 healthy children/adolescents (age 11.8 ± 1.6 years, M ± SD) from the Italian cohort of the I.Family project. Urinary fluorescent AGEs were used as independent variable and high-sensitivity C-reactive protein (hs-CRP) was the primary outcome, while other biomarkers of inflammation were investigated as secondary outcomes. Participants with urinary AGEs above the median of the study population showed statistically significantly higher hs-CRP levels as compared to those below the median (hs-CRP 0.44 ± 1.1 vs. 0.24 ± 0.6 mg/dL, M ± SD p = 0.002). We found significant positive correlations between urinary AGEs and hs-CRP (p = 0.0001), IL-15 (p = 0.001), IP-10 (p = 0.006), and IL-1Ra (p = 0.001). At multiple regression analysis, urinary AGEs, age, and BMI Z-score were independent variables predicting hs-CRP levels. We demonstrated for the first time, in a large cohort of children and adolescents, that the measurement of fluorescent urinary AGEs may represent a simple, noninvasive, and rapid technique to evaluate the association between AGEs and biomarkers of inflammation. Our data support a role of AGEs as biomarkers of subclinical inflammation in otherwise healthy children and adolescents.
Collapse
|
23
|
Pirmoradian M, Hooshmand T, Najafi F, Haghbin Nazarpak M, Davaie S. Design, synthesis, and characterization of a novel dual cross-linked gelatin-based bioadhesive for hard and soft tissues adhesion capability. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Many surgical treatments require a suitable tissue adhesive that maintains its performance in wet conditions and can be applied simultaneously for hard and soft tissues. In the present study, a dual cross-linked tissue adhesive was synthesized by mixing the gelatin methacryloyl (Gel-MA) and gelatin-dopamine conjugate (Gel-Dopa). The setting reaction was based on a photopolymerization process in the presence of a combination of riboflavin and triethanolamine and a chemical cross-linking process attributed to the genipin as a natural cross-linker. Modified gelatin macromolecules were characterized and the best wavelength for free radical generation in the presence of riboflavin was obtained. Tissue adhesives were prepared with 30% hydrogels of Gel-MA and Gel-Dopa with different ratios in distilled water. The gelation occurred in a short time after light irradiation. The chemical, mechanical, physical, and cytotoxicity properties of the tissue adhesives were evaluated. The results showed that despite photopolymerization, chemical crosslinking with genipin played a more critical role in the setting process. Water uptake, degradation behavior, cytotoxicity, and adhesion properties of the adhesives were correlated with the ratio of the components. The SEM images showed a porous structure that could ensure the entry of cells and nutrients into the surgical area. While acceptable properties in most experiments were observed, all features were improved as the Gel-Dopa ratio increased. Also, the obtained hydrogels revealed excellent adhesive properties, particularly with bone even after wet incubation, and it was attributed to the amount of gelatin-dopamine conjugate. From the obtained results, it was concluded that a dual adhesive hydrogel based on gelatin macromolecules could be a good candidate as a tissue adhesive in wet condition.
Collapse
|
24
|
Sakly R, Wolffenbuttel BHR, Khochtali I, Bouida W, Boubaker H, Nouira S, Abid S, Kerkeni M. Increased skin autofluorescence of advanced glycation end products (AGEs) in subjects with cardiovascular risk factors. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Mikhalchik EV, Ivanov VA, Borodina IV, Pobeguts OV, Smirnov IP, Gorudko IV, Grigorieva DV, Boychenko OP, Moskalets AP, Klinov DV, Panasenko OM, Filatova LY, Kirzhanova EA, Balabushevich NG. Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin. Int J Mol Sci 2022; 23:ijms23147840. [PMID: 35887188 PMCID: PMC9321525 DOI: 10.3390/ijms23147840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Correspondence: ; Tel.: +7-499-2464352
| | - Victor A. Ivanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Borodina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Igor P. Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Olga P. Boychenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Alexander P. Moskalets
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Luboff Y. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Ekaterina A. Kirzhanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Nadezhda G. Balabushevich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| |
Collapse
|
26
|
Baralić M, Spasojević I, Miljuš G, Šunderić M, Robajac D, Dobrijević Z, Gligorijević N, Nedić O, Penezić A. Albumin at the intersection between antioxidant and pro-oxidant in patients on peritoneal dialysis. Free Radic Biol Med 2022; 187:105-112. [PMID: 35640817 DOI: 10.1016/j.freeradbiomed.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
Albumin (HSA) is a multifunctional protein and due to its free Cys34 thiol group, represents a main source of free thiols in the circulation. This property of HSA, combined with its ability to sequester redox active Cu(II) ions, makes HSA a dominant circulatory antioxidant. End stage kidney disease (ESRD) is a condition accompanied by elevated oxidative stress. The aim of the present study was to examine changes in the antioxidative capacity of HSA and Cu(II) binding affinity in patients on peritoneal dialysis (PD), and relate it to the Cys34 thiol group content and other structural changes of this molecule. HSA molecules are modified in ESRD patients subjected to PD, having significantly lower thiol group and bound Cu(II) content, reduced antioxidant capacity, an increased content of advanced glycation end-products and altered conformation. Also, Cu(II) binding capacity of HSA in these patients is impaired, since a significant portion of the high-affinity metal-binding site is unable to interact with Cu(II). Taking into account that the concentration of Cu(II) in the circulation of ESRD patients is much higher than in healthy persons and that Cu(II) binding capacity of HSA in these patients is significantly impaired, HSA may be considered as a novel circulatory pro-oxidant, thus exacerbating oxidative stress.
Collapse
Affiliation(s)
- Marko Baralić
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Nephrology, Clinical Centre of Serbia, 11000, Belgrade, Serbia.
| | - Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, 11000, Belgrade, Serbia.
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Miloš Šunderić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Dragana Robajac
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Zorana Dobrijević
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
27
|
Sarmah S, Goswami A, Kumar Belwal V, Singha Roy A. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action. Food Res Int 2022; 157:111358. [DOI: 10.1016/j.foodres.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
28
|
Mukunda DC, Joshi VK, Chandra S, Siddaramaiah M, Rodrigues J, Gadag S, Nayak UY, Mazumder N, Satyamoorthy K, Mahato KK. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence. Int J Biol Macromol 2022; 213:279-296. [DOI: 10.1016/j.ijbiomac.2022.05.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/25/2022] [Accepted: 05/22/2022] [Indexed: 01/03/2023]
|
29
|
Glycation modulates alpha-synuclein fibrillization kinetics: a sweet spot for inhibition. J Biol Chem 2022; 298:101848. [PMID: 35314196 PMCID: PMC9034100 DOI: 10.1016/j.jbc.2022.101848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
Glycation is a nonenzymatic posttranslational modification (PTM) known to be increased in the brains of hyperglycemic patients. Alpha-synuclein (αSN), a central player in the etiology of Parkinson’s disease, can be glycated at lysine residues, thereby reducing αSN fibril formation in vitro and modulating αSN aggregation in cells. However, the molecular basis for these effects is unclear. To elucidate this, we investigated the aggregation of αSN modified by eight glycating agents, namely the dicarbonyl compound methylglyoxal (MGO) and the sugars ribose, fructose, mannose, glucose, galactose, sucrose, and lactose. We found that MGO and ribose modify αSN to the greatest extent, and these glycation products are the most efficient inhibitors of fibril formation. We show glycation primarily inhibits elongation rather than nucleation of αSN and has only a modest effect on the level of oligomerization. Furthermore, glycated αSN is not significantly incorporated into fibrils. For both MGO and ribose, we discovered that a level of ∼5 modifications per αSN is optimal for inhibition of elongation. The remaining sugars showed a weak but optimal inhibition at ∼2 modifications per αSN. We propose that this optimal level balances the affinity for the growing ends of the fibril (which decreases with the extent of modification) with the ability to block incorporation of subsequent αSN subunits (which increases with modification). Our results are not only relevant for other αSN PTMs but also for understanding PTMs affecting other fibrillogenic proteins and may thus open novel avenues for therapeutic intervention in protein aggregation disorders.
Collapse
|
30
|
Glyoxal induced glycative insult suffered by immunoglobulin G and fibrinogen proteins: A comparative physicochemical characterization to reveal structural perturbations. Int J Biol Macromol 2022; 205:283-296. [PMID: 35192903 DOI: 10.1016/j.ijbiomac.2022.02.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
Glycation of proteins results in structural alteration, functional deprivation, and generation of advanced glycation end products (AGEs). Reactive oxygen species (ROS) that are generated during in vivo autoxidation of glucose induces glycoxidation of intermediate glycation-adducts, which in turn give rise to aldehyde and/or ketone groups containing dicarbonyls or reactive carbonyl species (RCS). RCS further reacts non-enzymatically and starts the glycation-oxidation vicious cycle, thus exacerbating oxidative, carbonyl, and glycative stress in the physiological system. Glyoxal (GO), a reactive dicarbonyl that generates during glycoxidation and lipid peroxidation, contributes to glycation. This in vitro physicochemical characterization study focuses on GO-induced glycoxidative damage suffered by immunoglobulin G (IgG) and fibrinogen proteins. The structural alterations were analyzed by UV-vis, fluorescence, circular dichroism, and Fourier transform infrared (FT-IR) spectroscopy. Ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), free lysine, free arginine, carboxymethyllysine (CML), and protein aggregation were also quantified. Structural perturbations, increased concentration of ketoamines, protein carbonyls, HMF, and malondialdehyde (MDA) were reported in glycated proteins. The experiment results also validate increased oxidative stress and AGEs formation i.e. IgG-AGEs and Fib-AGEs. Thus, we can conclude that AGEs formation during GO-mediated glycation of IgG and fibrinogen could hamper normal physiology and might play a significant role in the pathogenesis of diabetes-associated secondary complications.
Collapse
|
31
|
Poly-2-methyl-2-oxazoline–modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A 2022; 119:2120694119. [PMID: 35131859 PMCID: PMC8833185 DOI: 10.1073/pnas.2120694119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)–modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.
Collapse
|
32
|
Ghosh R, Kishore N. Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions. Biochimie 2021; 193:16-37. [PMID: 34688791 DOI: 10.1016/j.biochi.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022]
Abstract
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.
Collapse
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| |
Collapse
|
33
|
Sharma G, Bhattacharya R, Krishna S, Alomar SY, Alkhuriji AF, Warepam M, Kumari K, Rahaman H, Singh LR. Structural and Functional Characterization of Covalently Modified Proteins Formed By a Glycating Agent, Glyoxal. ACS OMEGA 2021; 6:20887-20894. [PMID: 34423196 PMCID: PMC8374913 DOI: 10.1021/acsomega.1c02300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
Glycation, the main consequence of hyperglycemia, is one of the major perpetrators of diabetes and several other conditions, including coronary and neurodegenerative complications. Such a hyperglycemic condition is represented by a large increase in levels of various glycation end products including glyoxal, methylglyoxal, and carboxymethyl-lysine among others. These glycation end products are known to play a crucial role in diabetic complications due to their ability to covalently modify important proteins and enzymes, specifically at lysine residues (a process termed as glycation), making them non-functional. Previous studies have largely paid attention on characterization and identification of these reactive glycating agents. Structural and functional consequences of proteins affected by glycation have not yet been critically investigated. We have made a systematic investigation on the early conformational changes and functional alterations brought about by a glycating agent, glyoxal, on different proteins. We found that the early event in glycation includes an increase in hydrodynamic diameter, followed by minor structural alterations sufficient to impair enzyme activity. The study indicates the importance of glyoxal-induced early structural alteration of proteins toward the pathophysiology of hyperglycemia/diabetes and associated conditions.
Collapse
Affiliation(s)
- Gurumayum
Suraj Sharma
- Department
of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110095, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Snigdha Krishna
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Suliman Y. Alomar
- Doping
Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afrah F. Alkhuriji
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11495, Saudi Arabia
| | - Marina Warepam
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | - Kritika Kumari
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hamidur Rahaman
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | | |
Collapse
|
34
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
35
|
Wiglusz K, Żurawska-Płaksej E, Rorbach-Dolata A, Piwowar A. How Does Glycation Affect Binding Parameters of the Albumin-Gliclazide System in the Presence of Drugs Commonly Used in Diabetes? In Vitro Spectroscopic Study. Molecules 2021; 26:molecules26133869. [PMID: 34202801 PMCID: PMC8270297 DOI: 10.3390/molecules26133869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this research, the selected drugs commonly used in diabetes and its comorbidities (gliclazide, cilazapril, atorvastatin, and acetylsalicylic acid) were studied for their interactions with bovine serum albumin-native and glycated. Two different spectroscopic methods, fluorescence quenching and circular dichroism, were utilized to elucidate the binding interactions of the investigational drugs. The glycation process was induced in BSA by glucose and was confirmed by the presence of advanced glycosylation end products (AGEs). The interaction between albumin and gliclazide, with the presence of another drug, was confirmed by calculation of association constants (0.11-1.07 × 104 M-1). The nature of changes in the secondary structure of a protein depends on the drug used and the degree of glycation. Therefore, these interactions may have an influence on pharmacokinetic parameters.
Collapse
Affiliation(s)
- Katarzyna Wiglusz
- Department of Analytical Chemistry, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland;
| | - Ewa Żurawska-Płaksej
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-784-0453
| | - Anna Rorbach-Dolata
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
| |
Collapse
|
36
|
Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria Prevents Glucose-Induced Protein Glycation in Eye Lens Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1473. [PMID: 34206140 PMCID: PMC8228845 DOI: 10.3390/nano11061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.
Collapse
Affiliation(s)
- Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Yvonne Barnett
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
| | - Barbara K. Pierscionek
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
- School of Life Science and Education, Staffordshire University College Road, Stoke on Trent ST4 2DE, UK
| |
Collapse
|
37
|
The Different Colors of mAbs in Solution. Antibodies (Basel) 2021; 10:antib10020021. [PMID: 34073775 PMCID: PMC8161444 DOI: 10.3390/antib10020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The color of a therapeutic monoclonal antibody solution is a critical quality attribute. Consistency of color is typically assessed at time of release and during stability studies against preset criteria for late stage clinical and commercial products. A therapeutic protein solution's color may be determined by visual inspection or by more quantitative methods as per the different geographical area compendia. The nature and intensity of the color of a therapeutic protein solution is typically determined relative to calibrated standards. This review covers the analytical methodologies used for determining the color of a protein solution and presents an overview of protein variants and impurities known to contribute to colored recombinant therapeutic protein solutions.
Collapse
|
38
|
Paats J, Adoberg A, Arund J, Fridolin I, Lauri K, Leis L, Luman M, Tanner R. Optical Method and Biochemical Source for the Assessment of the Middle-Molecule Uremic Toxin β2-Microglobulin in Spent Dialysate. Toxins (Basel) 2021; 13:toxins13040255. [PMID: 33807387 PMCID: PMC8067283 DOI: 10.3390/toxins13040255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Optical monitoring of spent dialysate has been used to estimate the removal of water-soluble low molecular weight as well as protein-bound uremic toxins from the blood of end stage kidney disease (ESKD) patients. The aim of this work was to develop an optical method to estimate the removal of β2-microglobulin (β2M), a marker of middle molecule (MM) uremic toxins, during hemodialysis (HD) treatment. Ultraviolet (UV) and fluorescence spectra of dialysate samples were recorded from 88 dialysis sessions of 22 ESKD patients, receiving four different settings of dialysis treatments. Stepwise regression was used to obtain the best model for the assessment of β2M concentration in the spent dialysate. The correlation coefficient 0.958 and an accuracy of 0.000 ± 0.304 mg/L was achieved between laboratory and optically estimated β2M concentrations in spent dialysate for the entire cohort. Optically and laboratory estimated reduction ratio (RR) and total removed solute (TRS) of β2M were not statistically different (p > 0.35). Dialytic elimination of MM uremic toxin β2M can be followed optically during dialysis treatment of ESKD patients. The main contributors to the optical signal of the MM fraction in the spent dialysate were provisionally identified as tryptophan (Trp) in small peptides and proteins, and advanced glycation end-products.
Collapse
Affiliation(s)
- Joosep Paats
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
- Correspondence:
| | - Annika Adoberg
- Centre of Nephrology, North Estonia Medical Centre, 13419 Tallinn, Estonia; (A.A.); (L.L.)
| | - Jürgen Arund
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
| | - Ivo Fridolin
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
| | - Kai Lauri
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
- SYNLAB Eesti OÜ, 10138 Tallinn, Estonia
| | - Liisi Leis
- Centre of Nephrology, North Estonia Medical Centre, 13419 Tallinn, Estonia; (A.A.); (L.L.)
| | - Merike Luman
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
- Centre of Nephrology, North Estonia Medical Centre, 13419 Tallinn, Estonia; (A.A.); (L.L.)
| | - Risto Tanner
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia; (J.A.); (I.F.); (K.L.); (M.L.); (R.T.)
| |
Collapse
|
39
|
Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants (Basel) 2021; 10:antiox10030424. [PMID: 33802107 PMCID: PMC7999557 DOI: 10.3390/antiox10030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The advanced glycation end-products (AGEs) arise from non-enzymatic reactions of sugar with protein side chains, some of which are oxido-reductive in nature. Enhanced production of AGEs plays an important role in the pathogenesis of diabetic complications as well as in natural aging, renal failure, oxidative stress, and chronic inflammation. The aim of this work is to study antiglycation effects of polyphenol compounds extracted by hazelnut skin that represents an example of polyphenols-rich food industry by-product, on AGEs formation. AGEs derived from incubation of bovine serum albumin (BSA) and methylglyoxal (MGO) were characterized by fluorescence. The phenolics identification and total polyphenol content in hazelnut skin extracts were analyzed by HPLC-MS and the Folin–Ciocalteu method, respectively. Antioxidant efficacy was evaluated by monitoring total antioxidant activity to assess the ABTS radical scavenging activity of samples by TEAC assay and oxygen radical absorbance capacity (ORAC) assay, expressed as millimoles of Trolox equivalents per gram of sample. Data here presented suggest that phenolic compounds in hazelnut skin have an inhibitory effect on the BSA-AGEs model in vitro, and this effect is concentration-dependent. The putative role of the hazelnut skin antioxidative properties for hindering AGEs formation is also discussed. Because of AGEs contribution to the pathogenesis of several chronic diseases, foods enriched, or supplements containing natural bioactive molecules able to inhibit their production could be an interesting new strategy for supporting therapeutic approaches with a positive effect on human health.
Collapse
|
40
|
Korwar AM, Zhang Q. Comprehensive Quantification of Carboxymethyllysine-Modified Peptides in Human Plasma. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:744-752. [PMID: 33512994 PMCID: PMC8075102 DOI: 10.1021/jasms.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A prolonged hyperglycemic condition in diabetes mellitus results in glycation of plasma proteins. N(ε)-Carboxymethyllysine (CML) is a well-known protein advanced glycation end product, and one of its mechanisms of formation is through further oxidation of Amadori compound modified lysine (AML). Unlike enrichment of AML peptides using boronate affinity, biochemical enrichment methods are scarce for comprehensive profiling of CML-modified peptides. To address this problem, we used AML peptide sequence and site of modification as template library to identify and quantify CML peptides. In this study, a parallel reaction monitoring workflow was developed to comprehensively quantify CML modified peptides in Type 1 diabetic subjects' plasma with good and poor glycemic control (n = 20 each). A total of 58 CML modified peptides were quantified, which represented 57 CML modification sites in 19 different proteins. Out of the 58 peptides, five were significantly higher in poor glycemic control samples with the area under the receiver operating characteristic curve ≥0.83. These peptides could serve as promising indicators of glycemic control in Type 1 diabetes management.
Collapse
Affiliation(s)
- Arvind M. Korwar
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Corresponding author: Dr. Qibin Zhang, UNCG Center for Translational Biomedical Research, 600 Laureate Way, Kannapolis, NC 28081,
| |
Collapse
|
41
|
Kumar A, Datta LP, Samanta S, Arora H, Govindaraju T. Benzothiazole‐Phenothiazine Conjugate Based Molecular Probe for the Differential Detection of Glycated Albumin. Isr J Chem 2021. [DOI: 10.1002/ijch.202000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashish Kumar
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Harshit Arora
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| |
Collapse
|
42
|
Attenuation of methylglyoxal-induced glycation and cellular dysfunction in wound healing by Centella cordifolia. Saudi J Biol Sci 2021; 28:813-824. [PMID: 33424371 DOI: 10.1016/j.sjbs.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 01/13/2023] Open
Abstract
Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/μg fraction) and showed strong antioxidant (59.95 ± 7.18 μM TE/μg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.
Collapse
Key Words
- AGA, minoguanidine hydrochloride
- AGEs, Advanced glycation end products
- AlCl3, Aluminum chloride
- Antiglycation
- BSA, Bovine serum albumin
- Centella
- DMEM, Dulbecco's Modified Eagle Medium
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- Diabetic complications
- EA, Ethyl acetate fraction
- ECM, Extracellular matrix
- FN, Fibronectin
- HEPES, Hydroxyethyl piperazineethanesulfonic acid
- HPLC-PDA
- HPLC-PDA, High performance liquid chromatography equipped with photodiode array detector
- HbA1c, Hemoglobin A1c
- MGO, Methylglyoxal
- Methylglyoxal
- NaNO2, Sodium nitrite
- NaOH, Sodium hydroxide
- PBS, Phosphate buffered saline
- RAGE, Receptor for advanced glycation endproducts
- ROS, Reactive oxygen species
- SDS-PAGE, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- TLC, Thin-layer chromatography
- TNBSA, 2,4,6-trinitrobenzene sulfonic acid
- TNBSA, Trinitrobenzene sulfonic acid
- TPC, Total phenolic content
- Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
- Wounds
Collapse
|
43
|
Minimal invasive fluorescence methods to quantify advanced glycation end products (AGEs) in skin and plasma of humans. Methods 2021; 203:103-107. [PMID: 33412280 DOI: 10.1016/j.ymeth.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are non-enzymatic modifications of proteins and lipids, which are spontaneously produced in the body in relation with several human diseases. Their relevance on protein functions alteration, either structural or enzymatic is under study, but their value as biomarkers or predictors of disease progression and clinical outcomes is unquestionable. The heterogeneity and amplitude of these modifications make their analysis difficult, although, different methods have been developed for specific AGEs based on colorimetric reactions, immunoassays or chromatography. However, for a massive application on human population, methods based on the autofluorescence of some AGEs stand out. Several qualities of these methods such as label-free measurement, rapidity, cost-effectiveness, and minimal invasiveness make them very useful for periodic measurements in critically ill patients and for the analysis of large populations. Here we explain the rationale of these methods, and we present a step-by-step protocol and the equipment requirements to carry out the estimation of AGE content in skin and plasma. AGE plasma content and skin accumulation are temporally related, so AGE plasmatic levels are a possible predictor of skin AGE content. On the other hand, AGE skin accumulation is a surrogate or an indicator of past AGE levels in plasma and in the rest of the body. AGE levels or their variations have shown to be related with prognosis of several diseases, so they can be used as predictor biomarkers for clinicians.
Collapse
|
44
|
Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int J Biol Macromol 2020; 165:2275-2285. [PMID: 33058977 DOI: 10.1016/j.ijbiomac.2020.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
The post-translational modification of proteins by nonenzymatic glycation (NEG) and the accumulation of AGEs are the two underlying factors associated with the long-term pathogenesis in diabetes. Glyoxal (GO) is a reactive intermediate which has the ability to modify proteins and generate AGEs at a faster rate. Human serum albumin (HSA) being the most abundant serum protein has a higher chance to be modified by NEG. The key objective of the present study is to investigate the potency of chrysin and luteolin as antiglycating and antifibrillating agents in the GO-mediated glycation and fibril formation of HSA. AGEs formation were confirmed from the absorption and fluorescence spectral measurements. Both the flavonoids were able to quench the AGEs fluorescence intensity in vitro indicating the antiglycating nature of the molecules. The formation of fibrils in the GO-modified HSA was confirmed by the Thioflavin T (ThT) fluorescence assay and the flavonoids were found to exihibit the antifibrillation properties in vitro. Docking results suggested that both the flavonoids interact with various amino acid residues of subdomain IIA including glycation prone lysines and arginines via non-covalent forces and further stabilized the structure of HSA, which further explains their mechanisms of action as antiglycating and antifibrillating agents.
Collapse
|
45
|
Brito MM, Angrimani DDSR, Rui BR, Kawai GKV, Losano JDA, Vannucchi CI. Effect of senescence on morphological, functional and oxidative features of fresh and cryopreserved canine sperm. Aging Male 2020; 23:279-286. [PMID: 29993302 DOI: 10.1080/13685538.2018.1487931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The present research aimed to compare the hormonal profile, sperm quality and freezability of young and senile dogs. Dogs were assigned into Young Group (n = 11) and Senile Group (n = 11), additionally divided into Fresh Semen Group and Cryopreserved Semen Group. Males were evaluated for libido score and blood estrogen and testosterone assay. Sperm morphofunctional evaluations were performed based on Computer Assisted Sperm Analysis, morphology, mitochondrial activity, mitochondrial membrane potential, plasma and acrosomal membrane integrity, and DNA fragmentation. Sperm oxidative features were: protein oxidation, lipid peroxidation and production of advanced glycation end-products. Young dogs had higher libido score, sperm velocity average pathway, linearity of motility and mitochondrial activity index and lower percentage of major defects, total defects and proximal cytoplasmic droplet, despite the lack of difference between hormone profile of aged dogs. Fresh semen of senile dogs had increased percentage of spermatozoa with high mitochondrial membrane potential compared to young dogs and to cryopreserved sperm. Cryopreserved semen of young dogs had higher acrosomal membrane integrity compared to the Senile Group. In conclusion, sperm of aged dogs have reduced quality, signaled by higher morphological defects, ultimately altering sperm mitochondrial function and sperm kinetics. Furthermore, spermatozoa from senile dogs are more sensible to cryoinjury.
Collapse
Affiliation(s)
- Maíra Morales Brito
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Daniel de Souza Ramos Angrimani
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Bruno Rogério Rui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - João Diego Agostini Losano
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Camila Infantosi Vannucchi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Feroz A, Khaki PSS, Khan MS, Bano B. Protein aggregation as a consequence of non-enzymatic glycation: Therapeutic intervention using aspartic acid and arginine. Int J Biol Macromol 2020; 163:1844-1858. [PMID: 32956747 DOI: 10.1016/j.ijbiomac.2020.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
Non-enzymatic glycation tempted AGEs of proteins are currently at the heart of a number of pathological conditions. Production of chemically stable AGEs can permanently alter the protein structure and function, concomitantly leading to dilapidated situations. Keeping in perspective, present study aims to report the glycation induced structural and functional modification of a cystatin type isolated from rai mustard seeds, using RSC-glucose and RSC-ribose as model system. Among the sugars studied, ribose was found to be most potent glycating agent as evident from different biophysical assays. During the course of incubation, RSC was observed to pass through a series of structural intermediates as revealed by circular dichroism, altered intrinsic fluorescence and high ANS binding. RSC incubation with ribose post day 36 revealed the possible buildup of β structures as observed in CD spectral analysis, hinting towards the generation of aggregated structures in RSC. High thioflavin T fluorescence and increased Congo red absorbance together with enhanced turbidity of the modified form confirmed the aggregation of RSC. The study further revealed anti-glycation and anti-aggregation potential of amino acids; aspartic acid and arginine as they prevented and/or slowed down the process of AGEs and β structure buildup in a concentration dependent manner with arginine proving to be the most effective one.
Collapse
Affiliation(s)
- Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, U.P., India; Department of Biosciences, Integral University, Lucknow, U.P., India.
| | | | - Mohd Sajid Khan
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, U.P., India; Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, U.P., India.
| |
Collapse
|
47
|
Effects of the age/rage axis in the platelet activation. Int J Biol Macromol 2020; 166:1149-1161. [PMID: 33161078 DOI: 10.1016/j.ijbiomac.2020.10.270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Platelet activity is essential in cardiovascular diseases. Therefore our objective was to evaluate the main effects of activating RAGE in platelets which are still unknown. A search for RAGE expression in different databases showed poor or a nonexistent presence in platelets. We confirmed the expression in platelets and secreted variable of RAGE (sRAGE). Platelets from elderly adults expressed in resting showed 3.2 fold more RAGE from young individuals (p < 0.01) and 3.3 fold with TRAP-6 (p < 0.001). These results could indicate that the expression of RAGE is more inducible in older adults. Then we found that activating RAGE with AGE-BSA-derived from methylglyoxal and subthreshold TRAP-6, showed a considerable increase with respect to the control in platelet aggregation and expression of P-selectin (respectively, p < 0.01). This effect was almost completely blocked by using a specific RAGE inhibitor (FSP-ZM1), confirming that RAGE is important for the function and activation platelet. Finally, we predict the region stimulated by AGE-BSA is located in region V of RAGE and 13 amino acids are critical for its binding. In conclusion, the activation of RAGE affects platelet activation and 13 amino acids are critical for its stimulation, this information is crucial for future possible treatments for CVD.
Collapse
|
48
|
Naffa R, Gaar J, Zhang W, Maidment C, Shehadi I, Etxabide A, Holmes G, Kavianinia I, Brimble M. Rapid and simultaneous analysis of advanced glycation end products on silica hydride column: Comparison of ultraviolet, fluorescence, and mass spectrometry detectors. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rafea Naffa
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Jakob Gaar
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Wenkai Zhang
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Catherine Maidment
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Ihsan Shehadi
- College of Science Department of Chemistry University of Sharjah Sharjah UAE
| | - Alaitz Etxabide
- School of Chemical Sciences University of Auckland Auckland New Zealand
- ALITEC Research Group Department of Agronomy Biotechnology and Food School of Agricultural Engineering Public University of Navarre (upna/nup) Pamplona‐Iruña Spain
| | - Geoff Holmes
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Margaret Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
49
|
A New Insight into Meloxicam: Assessment of Antioxidant and Anti-Glycating Activity in In Vitro Studies. Pharmaceuticals (Basel) 2020; 13:ph13090240. [PMID: 32927809 PMCID: PMC7558080 DOI: 10.3390/ph13090240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Meloxicam is a non-steroidal anti-inflammatory drug, which has a preferential inhibitory effect to cyclooxyganase-2 (COX-2). Although the drug inhibits prostaglandin synthesis, the exact mechanism of meloxicam is still unknown. This is the first study to assess the effect of meloxicam on protein glyco-oxidation as well as antioxidant activity. For this purpose, we used an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal and methylglyoxal were used as glycating agents, while chloramine T was used as an oxidant. We evaluated the antioxidant properties of albumin (2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity, total antioxidant capacity and ferric reducing antioxidant power), the intensity of protein glycation (Amadori products, advanced glycation end products) and glyco-oxidation (dityrosine, kynurenine, N-formylkynurenine, tryptophan and amyloid-β) as well as the content of protein oxidation products (advanced oxidation protein products, carbonyl groups and thiol groups). We have demonstrated that meloxicam enhances the antioxidant properties of albumin and prevents the protein oxidation and glycation under the influence of various factors such as sugars, aldehydes and oxidants. Importantly, the antioxidant and anti-glycating activity is similar to that of routinely used antioxidants such as captopril, Trolox, reduced glutathione and lipoic acid as well as protein glycation inhibitors (aminoguanidine). Pleiotropic action of meloxicam may increase the effectiveness of anti-inflammatory treatment in diseases with oxidative stress etiology.
Collapse
|
50
|
Zunkel K, Simm A, Bartling B. Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol 2020; 141:111333. [PMID: 32298726 DOI: 10.1016/j.fct.2020.111333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Reactive carbonyls, including methylglyoxal (MG), are considered toxic compounds in foodstuffs because they irreversibly modify proteins and produce advanced glycation end products (AGEs). Therefore, we studied the long-term effect of increased MG intake in mature adult mice. Six-month-old C57BL/6N mice received MG by drinking water (2.5 mg/ml; i.e., 200-300 mg/kg BW/d) until death. This treatment caused an immediate strong increase in urine MG and a delayed moderate increase in plasma MG. At 24 months of age, mice administered MG showed no changes in the blood and tissue activity of glyoxalase-1 (Glo1), an intracellular MG-detoxifying enzyme; no signs of renal insufficiency and diabetes, including unchanged AGE modifications of plasma and vessel proteins; reduced tumour incidence; and slightly increased survival. Mice simultaneously deficient in the receptor for AGEs (RAGE) and overexpressing Glo1 exhibited higher basal plasma MG levels and did generally not respond to long-term MG intake. In vitro experiments supported the minor relevance of Glo1 in the detoxification of circulating MG but the important role of plasma albumin as an MG scavenger. In conclusion, the detoxification of dietary MG through renal excretion and further mechanisms largely prevents the toxicity of MG and possibly other food-derived reactive carbonyls in mature adults.
Collapse
Affiliation(s)
- Katja Zunkel
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Animal Health Management, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|