1
|
Kruger J, Sus N, Moser A, Scholz S, Adler G, Venturelli S, Frank J. Low β-carotene bioaccessibility and bioavailability from high fat, dairy-based meal. Eur J Nutr 2024; 63:2261-2270. [PMID: 38753174 PMCID: PMC11377643 DOI: 10.1007/s00394-024-03423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/08/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The original aim of the study was to determine, in a double-blind 3-arm crossover human trial (n = 7), the effect of supplemental levels of iron (25 mg) and zinc (30 mg) on β-carotene (synthetic) bioavailability (10 h postprandial). However, despite the high dose of supplemental β-carotene (15 mg) consumed with the high fat (18 g), dairy-based breakfast test meal, there was a negligible postprandial response in plasma and triglyceride rich fraction β-carotene concentrations. We then systematically investigated the possible reasons for this low bioavailability of β-carotene. METHODS We determined (1) if the supplemental β-carotene could be micellised and absorbed by epithelial cells, using a Caco-2 cell model, (2) if the fat from the test meal was sufficiently bioavailable to facilitate β-carotene bioavailability, (3) the extent to which the β-carotene could have been metabolised and converted to retinoic acid/retinol and (4) the effect of the test meal matrix on the β-carotene bioaccessibility (in vitro digestion) and Caco-2 cellular uptake. RESULTS We found that (1) The supplemental β-carotene could be micellised and absorbed by epithelial cells, (2) the postprandial plasma triacylglycerol response was substantial (approximately 75-100 mg dL-1 over 10 h), indicating sufficient lipid bioavailability to ensure β-carotene absorption, (3) the high fat content of the meal (approximately 18 g) could have resulted in increased β-carotene metabolism, (4) β-carotene bioaccessibility from the dairy-based test meal was sixfold lower (p < 0.05) than when digested with olive oil. CONCLUSION The low β-carotene bioavailability is probably due to a combination of the metabolism of β-carotene to retinol by BCMO1 and interactions of β-carotene with the food matrix, decreasing the bioaccessibility. TRAIL REGISTRATION The human trail was retrospectively registered (ClinicalTrail.gov ID: NCT05840848).
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany.
- Department of Consumer and Food Sciences and Institute of Food Nutrition and Well-Being, University of Pretoria, Hatfield, Private Bag X20, Pretoria, 0028, South Africa.
| | - Nadine Sus
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Andrea Moser
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Sophie Scholz
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Guenther Adler
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| |
Collapse
|
2
|
Zhang M, Xiong J, Yang Z, Zhu B, Wu Y, Chen X, Wu X. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2024; 25:5592. [PMID: 38891781 PMCID: PMC11171921 DOI: 10.3390/ijms25115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and β, β-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro β-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with β-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its β-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the β-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically β-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Jingyi Xiong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Zonglin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Boxiang Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Yuting Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Sampaio P, Waitzberg DL, Machado NM, de Miranda Torrinhas RSM, Fonseca DC, Ferreira BAM, Marques M, Barcelos S, Ishida RK, Guarda IFMS, de Moura EGH, Sakai P, Santo MA, Heymsfield SB, Corrêa-Giannella ML, Passadore MD, Sala P. Gastrointestinal genetic reprogramming of vitamin A metabolic pathways in response of Roux-en-Y gastric bypass. INT J VITAM NUTR RES 2024; 94:27-36. [PMID: 36164727 DOI: 10.1024/0300-9831/a000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) is one of the most performed bariatric surgical techniques. However, RYGB commonly results, as side effects, in nutritional deficiencies. This study aimed to examine changes in the expression of vitamin A pathway encoding genes in the gastrointestinal tract (GI) and to evaluate the potential mechanisms associated with hypovitaminosis A after RYGB. Intestinal biopsies were obtained through double-balloon endoscopy in 20 women with obesity (age 46.9±6.2 years; body mass index [BMI] 46.5±5.3 kg/m2 [mean±SD]) before and three months after RYGB (BMI, 38.2±4.2 kg/m2). Intestinal mucosal gene microarray analyses were performed in samples using a Human GeneChip 1.0 ST array (Affymetrix). Vitamin A intake was assessed from 7-day food records and serum retinol levels were evaluated by electrochemiluminescence immunoassay. Our results showed the following genes with significant downregulation (p≤0.05): LIPF (-0.60), NPC1L1 (-0.71), BCO1 (-0.45), and RBP4 (-0.13) in the duodenum; CD36 (-0.33), and ISX (-0.43) in the jejunum and BCO1 (-0.29) in the ileum. No significant changes in vitamin A intake were found (784±694 retinol equivalents [RE] pre-operative vs. 809±753 RE post-operative [mean±SD]). Although patients were routinely supplemented with 3500 international units IU/day (equivalent to 1050 μg RE/day) of oral retinol palmitate, serum concentrations were lower in the post-operative when compared to pre-operative period (0.35±0.14 μg/L vs. 0.52±0.33 μg/L, respectively - P=0.07), both within the normal range. After RYGB, the simultaneous change in expression of GI genes, may impair carotenoid metabolism in the enterocytes, formation of nascent chylomicrons and transport of retinol, resulting in lower availability of vitamin A.
Collapse
Affiliation(s)
- Priscilla Sampaio
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Natasha Mendonça Machado
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | - Danielle C Fonseca
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Beatriz A M Ferreira
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Mariane Marques
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Samira Barcelos
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | | | | | - Paulo Sakai
- Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| | | | | | - Maria Lúcia Corrêa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, University of São Paulo, Brazil
| | | | - Priscila Sala
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| |
Collapse
|
4
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
5
|
Miao Q, Tang C, Yang Y, Zhao Q, Li F, Qin Y, Zhang J. Deposition and bioconversion law of β-carotene in laying hens after long-term supplementation under adequate vitamin A status in the diet. Poult Sci 2023; 102:103046. [PMID: 37708765 PMCID: PMC10502406 DOI: 10.1016/j.psj.2023.103046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of β-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary β-carotene treatment had no significant effects on laying hens' production performance and egg quality (P > 0.05), except the yolk color. The deposition of β-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the β-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in β-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of β-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of β-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, β-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of β-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Ewendt F, Lehmann A, Wodak MF, Stangl GI. All- trans Retinoic Acid and Beta-Carotene Increase Sclerostin Production in C2C12 Myotubes. Biomedicines 2023; 11:1432. [PMID: 37239103 PMCID: PMC10216713 DOI: 10.3390/biomedicines11051432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sclerostin is a protein secreted by osteocytes whose encoding gene SOST is regulated by mechanical stimuli, cytokines, and all-trans retinoic acid (ATRA) and mediates antianabolic effects on bone formation as an inhibitor of the canonical Wnt/β-catenin pathway. Interestingly, skeletal muscle has recently been identified as another source of sclerostin, suggesting that the musculature may play an important role in maintaining bone mass. However, regulators of muscular SOST expression are virtually unknown. This study investigates the influence of ATRA and the provitamin A derivative beta-carotene (β-C) on sclerostin synthesis in muscle cells. The impact of ATRA, its synthetic analog TTNPB, and β-C on Sost transcription was analyzed by qRT-PCR in C2C12 myotubes and the secreted sclerostin protein by ELISA. ATRA strongly increases the sclerostin synthesis in C2C12 myotubes in a dose-dependent manner. The stimulating effect of ATRA and TTNPB on Sost is largely reduced in the presence of the retinoic acid receptor inhibitor AGN193109. β-C also increases the Sost expression, but this effect vanishes when β-C is coincubated with beta-carotene 15,15'-monooxygenase 1 (BCMO1)-specific siRNA. Thus, ATRA is a potent stimulator of sclerostin release in muscle cells. β-C can also increase Sost mRNA abundance, but this effect depends on the conversion to a retinoid.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Anne Lehmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Maximilian F. Wodak
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Gabriele I. Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Dornburger Str. 25, 07743 Jena, Germany
| |
Collapse
|
7
|
Woelber JP, Reichenbächer K, Groß T, Vach K, Ratka-Krüger P, Bartha V. Dietary and Nutraceutical Interventions as an Adjunct to Non-Surgical Periodontal Therapy-A Systematic Review. Nutrients 2023; 15:nu15061538. [PMID: 36986267 PMCID: PMC10052653 DOI: 10.3390/nu15061538] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to conduct a systematic literature review on the influence of dietary and nutraceutical interventions as an adjunct to non-surgical periodontal therapy (NSPT). A literature search for randomized, controlled clinical trials (RCTs) was performed in PubMed, the Cochrane Library, and the Web of Science. Trial inclusion criteria included the application of a defined nutritional intervention (food, beverages, or supplements) adjunctive to NSPT compared to NSPT alone with at least one measured periodontal parameter (pocket probing depths (PPD) or clinical attachment level (CAL)). Of 462 search results, 20 clinical trials relating to periodontitis and nutritional interventions were identified, of which, in total, 14 studies could be included. Eleven studies examined supplements containing lycopene, folate, chicory extract, juice powder, micronutrients and plant extracts, omega-3 fatty acids, vitamin E, or vitamin D. Three studies examined food-based interventions (kiwifruit, green or oolong tea). Due to limited information on within-group differences in the studies, results were descriptively analyzed. A significant positive effect on periodontal parameters (PPD, bleeding on probing) was found for vitamin E, chicory extract, juice powder, green tea, and oolong tea. Heterogeneous effects were found for lycopene, folate, omega-3 fatty acids, and vitamin D. No effects on PPD were found for adjunct kiwifruit (in combination with NSPT). Risk of bias via RoB2 revealed a low risk of bias with some concerns. There was a high heterogeneity in the type of nutritional interventions. The adjunctive use of various supplements and green/oolong tea led to positive and significant effects of the nutritional interventions on clinical periodontal outcome parameters. In the context of non-surgical periodontal therapy, an adjunctive intake of micronutrients, omega-3 fatty acids, green/oolong tea, and polyphenols and flavonoids could be beneficial. Long-term clinical studies with full data reports (especially within-group differences) are needed for conducting a meta-analysis.
Collapse
Affiliation(s)
- Johan Peter Woelber
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Katharina Reichenbächer
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Tara Groß
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Zinkmattenstr. 6A, 79108 Freiburg, Germany
| | - Petra Ratka-Krüger
- Department for Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 75, 79106 Freiburg, Germany
| | - Valentin Bartha
- Department for Conservative Dentistry, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
9
|
Ytrestøyl T, Bou M, Dimitriou C, Berge GM, Østbye TK, Ruyter B. Dietary Level of the Omega-3 Fatty Acids EPA and DHA Influence the Flesh Pigmentation in Atlantic Salmon. AQUACULTURE NUTRITION 2023; 2023:5528942. [PMID: 36909926 PMCID: PMC9998164 DOI: 10.1155/2023/5528942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon with a start weight of 53 g were fed diets with different levels of EPA and DHA or a diet with 1 : 1 EPA+DHA (0%, 1.0%, and 2.0% of the diet). At 400 g, all fish groups were mixed and equally distributed in new tanks and fed three diets with 0.2%, 1.0%, or 1.7% of EPA+DHA. At 1200 g, the fish were transferred to seawater pens where they were fed the same three diets until they reached a slaughter size of 3.5 kg. The fillet concentration of astaxanthin and its metabolite idoxanthin was analysed before transfer to seawater pens at 1200 g and at slaughter. The fatty acid composition in the fillet was also analysed at the same time points. Salmon fed low levels of EPA and DHA had lower fillet astaxanthin concentration and higher metabolic conversion of astaxanthin to idoxanthin compared to salmon fed higher dietary levels of EPA and/or DHA. DHA had a more positive effect on fillet astaxanthin concentrations than EPA. There were positive correlations between fillet DHA, EPA, sum N-3 fatty acids, and fillet astaxanthin concentration. A negative correlation was found between the concentration of N-6 fatty acids in the fillet and the astaxanthin concentration.
Collapse
Affiliation(s)
- T. Ytrestøyl
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - M. Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - C. Dimitriou
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - G. M. Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - T.-K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - B. Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
10
|
Moon J, Ramkumar S, von Lintig J. Genetic tuning of β-carotene oxygenase-1 activity rescues cone photoreceptor function in STRA6-deficient mice. Hum Mol Genet 2023; 32:798-809. [PMID: 36150025 PMCID: PMC9941828 DOI: 10.1093/hmg/ddac242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Rod and cone photoreceptors in the retina mediate dim light and daylight vision, respectively. Despite their distinctive functions, rod and cone visual pigments utilize the same vitamin A-derived chromophore. To sustain vision, vitamin A precursors must be acquired in the gut, metabolized, and distributed to the eyes. Deficiencies in this pathway in inherited ocular disease states deplete cone photoreceptors from chromophore and eventually lead to cell death, whereas the more abundant rod photoreceptors are less affected. However, pathways that support cone function and survival under such conditions are largely unknown. Using biochemical, histological, and physiological approaches, we herein show that intervention with β-carotene in STRA6-deficient mice improved chromophore supply to cone photoreceptors. Relieving the inherent negative feedback regulation of β-carotene oxygenase-1 activity in the intestine by genetic means further bolstered cone photoreceptor functioning in the STRA6-deficient eyes. A vitamin A-rich diet, however, did not improve cone photoreceptor function in STRA6-deficiency. We provide evidence that the beneficial effect of β-carotene on cones results from favorable serum kinetics of retinyl esters in lipoproteins. The respective alterations in lipoprotein metabolism maintained a steady supply of retinoids to the STRA6-deficient eyes, which ameliorated the competition for chromophore between rod and cone photoreceptors. Together, our study elucidates a cone photoreceptor-survival pathway and unravels an unexpected metabolic connection between the gut and the retina.
Collapse
Affiliation(s)
- Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
The BCO2 Genotype and the Expression of BCO1, BCO2, LRAT, and TTPA Genes in the Adipose Tissue and Brain of Rabbits Fed a Diet with Marigold Flower Extract. Int J Mol Sci 2023; 24:ijms24032304. [PMID: 36768627 PMCID: PMC9916731 DOI: 10.3390/ijms24032304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
This study was undertaken to evaluate the effect of the BCO2 genotype and dietary supplementation with marigold flower extract on the expression of BCO1, BCO2, LRAT, and TTPA genes in the adipose tissue and brain of rabbits. The concentrations of lutein, zeaxanthin, β-carotene, retinol, and α-tocopherol were determined in samples collected from rabbits. Sixty young male Termond White rabbits were allocated to three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del, and del/del). Each group comprised two subgroups; one subgroup was administered a standard diet, whereas the diet offered to the other subgroup was supplemented with 6 g/kg of marigold flower extract. The study demonstrated that the BCO2 genotype may influence the expression levels of the BCO2, LRAT, and TTPA genes in adipose tissue, and TTPA and BCO1 genes in the brain. Moreover, an increase in the amount of lutein in the diet of BCO2 del/del rabbits may increase the expression of BCO1, LRAT, and TTPA genes in adipose tissue, and the expression of the BCO2 gene in the brain. Another finding of the study is that the content of carotenoids and α-tocopherol increases in both the adipose tissue and brain of BCO2 del/del rabbits.
Collapse
|
12
|
Strychalski J, Gugołek A, Antoszkiewicz Z, Fopp-Bayat D, Kaczorek-Łukowska E, Snarska A, Zwierzchowski G, Król-Grzymała A, Matusevičius P. The Effect of the BCO2 Genotype on the Expression of Genes Related to Carotenoid, Retinol, and α-Tocopherol Metabolism in Rabbits Fed a Diet with Aztec Marigold Flower Extract. Int J Mol Sci 2022; 23:ijms231810552. [PMID: 36142463 PMCID: PMC9506012 DOI: 10.3390/ijms231810552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of the BCO2 genotype and the addition of Aztec marigold flower extract to rabbit diets on the expression of BCO1, BCO2, LRAT, and TTPA genes in the liver. The levels of lutein, zeaxanthin, β-carotene, retinol, and α-tocopherol in the liver and blood serum of rabbits, as well as plasma biochemical parameters and serum antioxidant enzyme activities were also determined. Sixty male Termond White growing rabbits were divided into three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del and del/del); each group was divided into two subgroups: one subgroup received a standard diet, and the other subgroup was fed a diet supplemented with 6 g/kg of marigold flower extract. The obtained results indicate that the BCO2 genotype may affect the expression levels of BCO1 and BCO2 genes in rabbits. Moreover, the addition of marigold extract to the diet of BCO2 del/del rabbits may increase the expression level of the BCO2 gene. Finally, an increase in the amount of lutein in the diet of rabbits with the BCO2 del/del genotype contributes to its increased accumulation in the liver and blood of animals without compromising their health status or liver function.
Collapse
Affiliation(s)
- Janusz Strychalski
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-895-234-442
| | - Andrzej Gugołek
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Anna Snarska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Grzegorz Zwierzchowski
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Paulius Matusevičius
- Department of Animal Breeding and Nutrition, Faculty of Animal Husbandry Technology, Lithuanian University of Health Sciences, Tilžes 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
13
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Lindsay WR, Mendonça R, Slight MW, Prager M, Andersson MX, Mundy NI, Andersson S. Seasonal but not sex-biased gene expression of the carotenoid ketolase, CYP2J19, in the sexually dichromatic southern red bishop ( Euplectes orix). ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35937912 DOI: 10.5061/dryad.ht76hdrjg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intense red colours in birds are often owing to ketocarotenoids (KCs). In many land birds, KCs are oxidized from dietary yellow precursors, presumably by the avian carotenoid ketolase CYP2J19, the regulation and constraints of which have important implications for condition-dependence and honest signalling of carotenoid colour displays. We investigated hepatic CYP2J19 gene expression in the seasonally and sexually dichromatic southern red bishop (Euplectes orix) in relation to season, sex, progression of the prenuptial moult, testis size, body condition, redness and circulating sex steroids. A coloration function of CYP2J19 is supported by a seasonal upregulation prior to and during the carotenoid-depositing stage of the male prenuptial moult. However, CYP2J19 expression was similarly high in females (which do not moult prenuptially), and remained high in males after moult, suggesting additional or alternative roles of hepatic CYP2J19 or its products, such as detoxification or antioxidant functions. In males, the CYP2J19 upregulation preceded and was unrelated to the rise in plasma testosterone, but was correlated with androstenedione, probably of adrenal origin and compatible with luteinizing hormone-induced and (in females) oestrogen-suppressed moult. Finally, contrary to ideas that carotenoid ketolation rate mediates honest signalling of male quality, CYP2J19 expression was not related to plumage redness or male body condition.
Collapse
Affiliation(s)
- Willow R Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Rute Mendonça
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Mathilda Waleij Slight
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Maria Prager
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, 10691 Stockholm, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| |
Collapse
|
15
|
Lindsay WR, Mendonça R, Slight MW, Prager M, Andersson MX, Mundy NI, Andersson S. Seasonal but not sex-biased gene expression of the carotenoid ketolase, CYP2J19, in the sexually dichromatic southern red bishop ( Euplectes orix). ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35937912 DOI: 10.6084/m9.figshare.c.6114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intense red colours in birds are often owing to ketocarotenoids (KCs). In many land birds, KCs are oxidized from dietary yellow precursors, presumably by the avian carotenoid ketolase CYP2J19, the regulation and constraints of which have important implications for condition-dependence and honest signalling of carotenoid colour displays. We investigated hepatic CYP2J19 gene expression in the seasonally and sexually dichromatic southern red bishop (Euplectes orix) in relation to season, sex, progression of the prenuptial moult, testis size, body condition, redness and circulating sex steroids. A coloration function of CYP2J19 is supported by a seasonal upregulation prior to and during the carotenoid-depositing stage of the male prenuptial moult. However, CYP2J19 expression was similarly high in females (which do not moult prenuptially), and remained high in males after moult, suggesting additional or alternative roles of hepatic CYP2J19 or its products, such as detoxification or antioxidant functions. In males, the CYP2J19 upregulation preceded and was unrelated to the rise in plasma testosterone, but was correlated with androstenedione, probably of adrenal origin and compatible with luteinizing hormone-induced and (in females) oestrogen-suppressed moult. Finally, contrary to ideas that carotenoid ketolation rate mediates honest signalling of male quality, CYP2J19 expression was not related to plumage redness or male body condition.
Collapse
Affiliation(s)
- Willow R Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Rute Mendonça
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Mathilda Waleij Slight
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Maria Prager
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, 10691 Stockholm, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| |
Collapse
|
16
|
Lindsay WR, Mendonça R, Slight MW, Prager M, Andersson MX, Mundy NI, Andersson S. Seasonal but not sex-biased gene expression of the carotenoid ketolase, CYP2J19, in the sexually dichromatic southern red bishop ( Euplectes orix). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220434. [PMID: 35937912 PMCID: PMC9346373 DOI: 10.1098/rsos.220434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 05/11/2023]
Abstract
Intense red colours in birds are often owing to ketocarotenoids (KCs). In many land birds, KCs are oxidized from dietary yellow precursors, presumably by the avian carotenoid ketolase CYP2J19, the regulation and constraints of which have important implications for condition-dependence and honest signalling of carotenoid colour displays. We investigated hepatic CYP2J19 gene expression in the seasonally and sexually dichromatic southern red bishop (Euplectes orix) in relation to season, sex, progression of the prenuptial moult, testis size, body condition, redness and circulating sex steroids. A coloration function of CYP2J19 is supported by a seasonal upregulation prior to and during the carotenoid-depositing stage of the male prenuptial moult. However, CYP2J19 expression was similarly high in females (which do not moult prenuptially), and remained high in males after moult, suggesting additional or alternative roles of hepatic CYP2J19 or its products, such as detoxification or antioxidant functions. In males, the CYP2J19 upregulation preceded and was unrelated to the rise in plasma testosterone, but was correlated with androstenedione, probably of adrenal origin and compatible with luteinizing hormone-induced and (in females) oestrogen-suppressed moult. Finally, contrary to ideas that carotenoid ketolation rate mediates honest signalling of male quality, CYP2J19 expression was not related to plumage redness or male body condition.
Collapse
Affiliation(s)
- Willow R. Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Rute Mendonça
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Mathilda Waleij Slight
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Maria Prager
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, 10691 Stockholm, Sweden
| | - Mats X. Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| | - Nicholas I. Mundy
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413 -90 Gothenburg, Sweden
| |
Collapse
|
17
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
18
|
Wang Y, Wang J, Zhao Y, Liu P, Cai D, Zhang X, Gao L. Regulatory mechanisms of Beta-carotene and BCMO1 in adipose tissues: A gene enrichment-based bioinformatics analysis. Hum Exp Toxicol 2022; 41:9603271211072871. [PMID: 35306905 DOI: 10.1177/09603271211072871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beta-carotene (β-carotene, BC) is one of the carotenoids most commonly consumed by humans. BCMO1 is expressed in various human tissues and is considered to be a key enzyme that converts BC into vitamin A. Studies indicated that BC-derived carotenoid signaling molecules affected the physiological functions of fat cells. In order to investigate the role and possible molecular mechanism of BC in mouse adipocytes, we conducted 4-group and 2-group difference analysis based on the data of GSE27271 chip in the Gene Expression Omnibus database. Genes differentially expressed in the inguinal white adipose tissue of mice were screened out and combined with the STRING database to construct protein-protein interaction (PPI) networks. Among them, Alb (albumin), Mug1 (murinoglobulin-1) and Uox (urate oxidase) genes were at relatively key positions and may affect the action of BC. Besides, Ppara (peroxisome proliferator-activated receptor alpha), Acly (ATP-citrate lyase) and Fabp5 (fatty acid-binding protein 5) genes constituted functional partners with many genes in the PPI network, and these genes may be Bcmo1 targeting molecules. Gene Ontology (GO) function and signaling pathways enrichment analysis were performed on the genes with protein interaction relationship in the PPI network. Fatty acid binding, cholesterol metabolic process, and regulation of fatty acid metabolic process were significantly enriched, and PPAR signaling pathway showed the most significant, indicating that BC and Bcmo1 might synergistically affect body metabolic functions such as fat metabolism. In general, BC and Bcmo1 may play a role in fat metabolism in mice, thereby affecting other functions or diseases.
Collapse
Affiliation(s)
- Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Pingxiang Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
19
|
Zumaraga MPP, Arquiza JMRA, Concepcion MA, Perlas L, Alcudia-Catalma MN, Rodriguez M. Genotype Effects on β-Carotene Conversion to Vitamin A: Implications on Reducing Vitamin A Deficiency in the Philippines. Food Nutr Bull 2021; 43:25-34. [PMID: 34903070 DOI: 10.1177/03795721211060229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The study aimed to identify two beta-carotene 15,15'-monooxygenase (BCMO1) mutations, namely R267S and A379V, and determine their association with vitamin A status among Filipinos 6 to 19 years old respondents of the 2013 Philippine National Nutrition Survey living in the National Capital Region. MATERIALS AND METHODS This study followed cross-sectional design. Whole blood specimen was collected in the morning and was used as source of genomic DNA and serum for retinol concentration determination. Fisher exact test was performed to determine whether genotype frequencies were associated to retinol concentrations/vitamin A deficiency status. A level of P < .05 was identified as significant. RESULTS A total of 693 Filipino children and adolescents were included. Of the 693, there were at least 7.6% who bears the combined mutations for R267S + A379V. Association analysis showed that an inverse relationship exists between the A379V TT variant and vitamin A status. Although the exact role of these identified polymorphisms on retinol/carotenoid metabolism need to be confirmed in dedicated functional studies. CONCLUSION This study has identified for the first time the presence of 2 nonsynonymous genetic variants/mutations in the coding region of BCMO1 gene. Interestingly, one of these two variants, the A379V T, was found to be associated with vitamin A status. It is, therefore, warranted to investigate the role of BCMO1 variants for the success of supplementation programs and fortification efforts among vulnerable populations in this region. Genetic variability should be considered for future provitamin A supplementation recommendations among children and adolescents in the Philippines.
Collapse
Affiliation(s)
- Mark Pretzel P Zumaraga
- Department of Science and Technology - Food and Nutrition Research Institute, Taguig City, Metro Manila, Philippines
| | | | - Mae Anne Concepcion
- Department of Science and Technology - Food and Nutrition Research Institute, Taguig City, Metro Manila, Philippines
| | - Leah Perlas
- Department of Science and Technology - Food and Nutrition Research Institute, Taguig City, Metro Manila, Philippines
| | - Ma Neda Alcudia-Catalma
- Department of Science and Technology - Food and Nutrition Research Institute, Taguig City, Metro Manila, Philippines
| | - Marietta Rodriguez
- Department of Science and Technology - Food and Nutrition Research Institute, Taguig City, Metro Manila, Philippines
| |
Collapse
|
20
|
Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, Schmid-Staiger U, Bischoff SC. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum tricornutum in Healthy Young Adults. Mar Drugs 2021; 19:700. [PMID: 34940699 PMCID: PMC8709223 DOI: 10.3390/md19120700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
The microalgae Phaeodactylum tricornutum (PT) contains valuable nutrients such as proteins, polyunsaturated omega-3 fatty acids (n-3 PUFA), particularly eicosapentaenoic acid (EPA) and some docosahexaenoic acid (DHA), carotenoids such as fucoxanthin (FX), and beta-glucans, which may confer health benefits. In a randomized intervention trial involving 22 healthy individuals, we administered for two weeks in a crossover manner the whole biomass of PT (5.3 g/day), or fish oil (FO) containing equal amounts of EPA and DHA (together 300 mg/day). In an additional experiment, sea fish at 185 g/week resulting in a similar EPA and DHA intake was administered in nine individuals. We determined the bioavailability of fatty acids and carotenoids and assessed safety parameters. The intake of PT resulted in a similar increase in the n-3 PUFA and EPA content and a decrease in the PUFA n-6:n-3 ratio in plasma. PT intake caused an uptake of FX that is metabolized to fucoxanthinol (FXOH) and amarouciaxanthin A (AxA). No relevant adverse effects occurred following PT consumption. The study shows that PT is a safe and effective source of EPA and FX-and likely other nutrients-and therefore should be considered as a future sustainable food item.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| |
Collapse
|
21
|
Sowa M, Mourao L, Sheftel J, Kaeppler M, Simons G, Grahn M, Davis CR, von Lintig J, Simon PW, Pixley KV, Tanumihardjo SA. Overlapping Vitamin A Interventions with Provitamin A Carotenoids and Preformed Vitamin A Cause Excessive Liver Retinol Stores in Male Mongolian Gerbils. J Nutr 2020; 150:2912-2923. [PMID: 32455433 PMCID: PMC8023580 DOI: 10.1093/jn/nxaa142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/27/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vitamin A (VA) deficiency is a public health problem in some countries. Fortification, supplementation, and increased provitamin A consumption through biofortification are efficacious, but monitoring is needed due to risk of excessive VA intake when interventions overlap. OBJECTIVES Two studies in 28-36-d-old male Mongolian gerbils simulated exposure to multiple VA interventions to determine the effects of provitamin A carotenoid consumption from biofortified maize and carrots and preformed VA fortificant on status. METHODS Study 1 was a 2 × 2 × 2 factorial design (n = 85) with high-β-carotene maize, orange carrots, and VA fortification at 50% estimated gerbil needs, compared with white maize and white carrot controls. Study 2 was a 2 × 3 factorial design (n = 66) evaluating orange carrot and VA consumption through fortification at 100% and 200% estimated needs. Both studies utilized 2-wk VA depletion, baseline evaluation, 9-wk treatments, and liver VA stores by HPLC. Intestinal scavenger receptor class B member 1 (Scarb1), β-carotene 15,15'-dioxygenase (Bco1), β-carotene 9',10'-oxygenase (Bco2), intestine-specific homeobox (Isx), and cytochrome P450 26A1 isoform α1 (Cyp26a1) expression was analyzed by qRT-PCR in study 2. RESULTS In study 1, liver VA concentrations were significantly higher in orange carrot (0.69 ± 0.12 μmol/g) and orange maize groups (0.52 ± 0.21 μmol/g) compared with baseline (0.23 ± 0.069 μmol/g) and controls. Liver VA concentrations from VA fortificant alone (0.11 ± 0.053 μmol/g) did not differ from negative control. In study 2, orange carrot significantly enhanced liver VA concentrations (0.85 ± 0.24 μmol/g) relative to baseline (0.43 ± 0.14 μmol/g), but VA fortificant alone (0.42 ± 0.21 μmol/g) did not. Intestinal Scarb1 and Bco1 were negatively correlated with increasing liver VA concentrations (P < 0.01, r2 = 0.25-0.27). Serum retinol concentrations did not differ. CONCLUSIONS Biofortified carrots and maize without fortification prevented VA deficiency in gerbils. During adequate provitamin A dietary intake, preformed VA intake resulted in excessive liver stores in gerbils, despite downregulation of carotenoid absorption and cleavage gene expression.
Collapse
Affiliation(s)
- Margaret Sowa
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luciana Mourao
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikayla Kaeppler
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabrielle Simons
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Grahn
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Philipp W Simon
- Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin V Pixley
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
23
|
Harrison EH, Kopec RE. Enzymology of vertebrate carotenoid oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158653. [PMID: 32035229 PMCID: PMC10655466 DOI: 10.1016/j.bbalip.2020.158653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/09/2023]
Abstract
Mammals and higher vertebrates including humans have only three members of the carotenoid cleavage dioxygenase family of enzymes. This review focuses on the two that function as carotenoid oxygenases. β-Carotene 15,15'-dioxygenase (BCO1) catalyzes the oxidative cleavage of the central 15,15' carbon-carbon double of β-carotene bond by addition of molecular oxygen. The product of the reaction is retinaldehyde (retinal or β-apo-15-carotenal). Thus, BCO1 is the enzyme responsible for the conversion of provitamin A carotenoids to vitamin A. It also cleaves the 15,15' bond of β-apocarotenals to yield retinal and of lycopene to yield apo-15-lycopenal. β-Carotene 9',10'-dioxygenase (BCO2) catalyzes the cleavage of the 9,10 and 9',10' double bonds of a wider variety of carotenoids, including both provitamin A and non-provitamin A carotenoids, as well as the xanthophylls, lutein and zeaxanthin. Indeed, the enzyme shows a marked preference for utilization of these xanthophylls and other substrates with hydroxylated terminal rings. Studies of the phenotypes of BCO1 null, BCO2 null, and BCO1/2 double knockout mice and of humans with polymorphisms in the enzymes, has clarified the role of these enzymes in whole body carotenoid and vitamin A homeostasis. These studies also demonstrate the relationship between enzyme expression and whole body lipid and energy metabolism and oxidative stress. In addition, relationships between BCO1 and BCO2 and the development or risk of metabolic diseases, eye diseases and cancer have been observed. While the precise roles of the enzymes in the pathophysiology of most of these diseases is not presently clear, these gaps in knowledge provide fertile ground for rigorous future investigations. This article is part of a Special Issue entitled Carotenoids: Recent Advances in Cell and Molecular Biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Earl H Harrison
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, USA.
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Foods for Health Discovery Theme, Ohio State University, USA
| |
Collapse
|
24
|
Lietz G. Overlapping Vitamin A Intervention Programs: Should We Be Concerned with Excessive Intakes? J Nutr 2020; 150:2849-2851. [PMID: 33021314 PMCID: PMC7675028 DOI: 10.1093/jn/nxaa288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
|
25
|
Raiten DJ, Darnton-Hill I, Tanumihardjo SA, Suchdev PS, Udomkesmalee E, Martinez C, Mazariegos DI, Mofu M, Kraemer K, Martinez H. Perspective: Integration to Implementation (I-to-I) and the Micronutrient Forum-Addressing the Safety and Effectiveness of Vitamin A Supplementation. Adv Nutr 2020; 11:185-199. [PMID: 31566677 PMCID: PMC7442412 DOI: 10.1093/advances/nmz100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/07/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
An ongoing challenge to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance that are safe, efficacious, and avoid unintended consequences. The integration to effective implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the generation, translation, and implementation of evidence to public health guidance/programs. The I-to-I approach was developed under the auspices of the Micronutrient Forum and has been previously applied to the question of safety and effectiveness of interventions to prevent and treat nutritional iron deficiency. The present article applies the I-to-I approach to questions regarding the safety and utility of large-dose vitamin A supplementation programs, and presents the authors' perspective on key aspects of the topic, including coverage of the basic and applied biology of vitamin A nutrition and assessment, clinical implications, and an overview of the extant data with regard to both the justification for and utility of available intervention strategies. The article includes some practical considerations based on specific country experiences regarding the challenges of implementing vitamin A-related programs. This is followed by an overview of some challenges associated with engagement of the enabling communities that play a critical role in the implementation of these types of public health interventions. The article concludes with suggestions for potential approaches to move this important agenda forward.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ian Darnton-Hill
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- The Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA, USA
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Parminder S Suchdev
- Department of Pediatrics and Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Emorn Udomkesmalee
- Department of Human Nutrition, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Carolina Martinez
- Instituto de Nutrición de Centro América y Panamá (INCAP), Guatemala City, Guatemala
| | - Dora Inés Mazariegos
- Instituto de Nutrición de Centro América y Panamá (INCAP), Guatemala City, Guatemala
| | - Musonda Mofu
- National Food and Nutrition Commission, Lusaka, Zambia
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Homero Martinez
- Nutrition International, Ottawa, Ontario, Canada
- Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| |
Collapse
|
26
|
Kim YS, Gong X, Rubin LP, Choi SW, Kim Y. β-Carotene 15,15'-oxygenase inhibits cancer cell stemness and metastasis by regulating differentiation-related miRNAs in human neuroblastoma. J Nutr Biochem 2019; 69:31-43. [PMID: 31048207 DOI: 10.1016/j.jnutbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Neuroblastoma (NB) is the most common pediatric malignancy and is considered to possess cancer stem cells (CSCs) properties which can drive tumor initiation and metastasis. β-carotene 15,15'-oxygenase (BCO1) is the main enzyme that catalyzes the first step in vitamin A biosynthesis from pro-vitamin A carotenoids. Retinoids (vitamin A) play a critical role in NB differentiation. However, the biological functions of BCO1 in NB remained to be elucidated. Here, we investigated the effects of BCO1 on NB CSCs with stably expressing BCO1 in NB cells. We show that BCO1 significantly suppressed self-renewal and markers of NB CSCs. Moreover, BCO1 inhibited the metastatic potential of NB cells and suppressed the enzymatic activity and expression of MMPs, as well as expression of HIF-1α and its downstream targets. In vivo, BCO1 reduced the metastatic incidence and volumes of metastatic tumors and downregulated the expression of CSCs markers, MMPs, and HIF-1α in tumor tissues of a mouse xenograft model. A possible mechanism underlying the anti-cancer activities of BCO1 is proposed based on miRNAs sequencing array data which suggests a role for BCO1 in regulating miRNAs associated with neuronal differentiation, cell-cell adhesion, and the Wnt signaling pathway. Thus, our results demonstrate new chemotherapeutic roles for BCO1 in malignant NB that mediate suppression of cancer stemness and metastasis.
Collapse
Affiliation(s)
- Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, South Korea
| | - Xiaoming Gong
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Lewis P Rubin
- Georgetown University Medical Center, Washington, DC, USA
| | - Sang-Woon Choi
- Chaum Life Center CHA University, Seoul 06062, South Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
27
|
Nie M, Zhang Z, Liu C, Li D, Huang W, Liu C, Jiang N. Hesperetin and Hesperidin Improved β-Carotene Incorporation Efficiency, Intestinal Cell Uptake, and Retinoid Concentrations in Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3363-3371. [PMID: 30827104 DOI: 10.1021/acs.jafc.9b00551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary constituents can influence the bioavailability of carotenoids. This study investigated the effect of citrus flavanones on β-carotene (Bc) bioavailability using four experimental models: in vitro digestion procedure, synthetic mixed micelles, Caco-2 cell monolayers, and gavage experiments in mice. The addition of hesperetin (Hes, 25 μM) and hesperidin (Hes-G, 25 μM) standards significantly increased the incorporation efficiency of the Bc standard to 68.7 ± 3.6 and 75.2 ± 7.5% ( p < 0.05), respectively. However, the addition of naringenin (Nar, 25 μM) and naringin (Nar-G, 25 μM) standards significantly reduced the incorporation efficiency of Bc by 23.8 and 26.4%, respectively ( p < 0.05). The increases in scavenger receptor class B type I (SR-BI) expression promoted by citrus flavanones played an important role in Bc cellular absorption in the Caco-2 cell model. Furthermore, after 3 days of gavage, four citrus flavanones (7.5 mg kg-1 day-1) increased the retinoid concentrations in tissues; in contrast, after 7 days of gavage, Nar and Nar-G significantly decreased hepatic retinoid concentrations ( p < 0.05). This finding suggested that the incorporation efficiency into micelles was the main step governing carotenoid bioavailability.
Collapse
Affiliation(s)
- Meimei Nie
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- College of Food and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Chunquan Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- College of Food and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Dajing Li
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Wuyang Huang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Chunju Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Ning Jiang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| |
Collapse
|
28
|
Guest NS, Horne J, Vanderhout SM, El-Sohemy A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr 2019; 6:8. [PMID: 30838211 PMCID: PMC6389634 DOI: 10.3389/fnut.2019.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
An individual's dietary and supplement strategies can influence markedly their physical performance. Personalized nutrition in athletic populations aims to optimize health, body composition, and exercise performance by targeting dietary recommendations to an individual's genetic profile. Sport dietitians and nutritionists have long been adept at placing additional scrutiny on the one-size-fits-all general population dietary guidelines to accommodate various sporting populations. However, generic "one-size-fits-all" recommendations still remain. Genetic differences are known to impact absorption, metabolism, uptake, utilization and excretion of nutrients and food bioactives, which ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are experimental approaches that use genomic information and genetic testing technologies to examine the role of individual genetic differences in modifying an athlete's response to nutrients and other food components. Although there have been few randomized, controlled trials examining the effects of genetic variation on performance in response to an ergogenic aid, there is a growing foundation of research linking gene-diet interactions on biomarkers of nutritional status, which impact exercise and sport performance. This foundation forms the basis from which the field of sport nutrigenomics continues to develop. We review the science of genetic modifiers of various dietary factors that impact an athlete's nutritional status, body composition and, ultimately athletic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Justine Horne
- Department of Health and Rehabilitation Sciences, University of Western Ontario, London, ON, Canada
| | - Shelley M Vanderhout
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| |
Collapse
|
29
|
Bohn T, Desmarchelier C, El SN, Keijer J, van Schothorst E, Rühl R, Borel P. β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 2019; 78:68-87. [PMID: 30747092 DOI: 10.1017/s0029665118002641] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, rue 1 A-B Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Sedef N El
- Engineering Faculty, Food Engineering Department, Ege University, Izmir, Turkey
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Patrick Borel
- C2VN, Aix-Marseille Univ., INRA, INSERM, Marseille, France
| |
Collapse
|
30
|
Molecular cloning, expression pattern of β-carotene 15,15-dioxygenase gene and association analysis with total carotenoid content in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:34-41. [PMID: 30502389 DOI: 10.1016/j.cbpb.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
β-carotene-15,15-dioxygenase is an enzyme involved in carotenoid metabolism to catalyze oxidative cleavage of β-carotene at its central double bond to two molecules of retinal in intestinal cells of vertebrate. In this study, we cloned and characterized β-carotene-15,15-dioxygenase in pearl oyster Pinctada fucata martensii (PmβCDOX). The full length of PmβCDOX gene was 1802 bp, including 1554 bp of the open reading frame (ORF) that encoded 517 amino acids, a 5'UTR of 134 bp and a 3' UTR of 114 bp. PmβCDOX was expressed at various tissues with highest level in hepatopancreas. Eighteen and fifteen single nucleotide polymorphisms (SNPs) were separately obtained in the exon and promoter of PmβCDOX. Eight SNPs (six SNPs in the exon and two SNPs in the promoter region) were significantly associated to total carotenoid content (TCC) (P < .05). The eight SNPs of significantly associated TCC were divided three haploblocks. Haplotypes CCTT had larger TCC than other haplotypes. The present results suggest that PmβCDOX is involved in carotenoid metabolism in pearl oyster. Our study will be helpful for development gene marker in selective breeding programs for TCC trait of the species.
Collapse
|
31
|
Lockyer S, White A, Buttriss JL. Biofortified crops for tackling micronutrient deficiencies - what impact are these having in developing countries and could they be of relevance within Europe? NUTR BULL 2018. [DOI: 10.1111/nbu.12347] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - A. White
- British Nutrition Foundation; London UK
| | | |
Collapse
|
32
|
Yu D, Zhang R, Wang Y, Zou D, Li T, Tang H, Jiang L, Wang L. Purification of β-carotene 15,15′-monooxygenase from pig intestine and its enzymatic hydrolysis of pigment in soybean oil. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dianyu Yu
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Ruchun Zhang
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Yuqi Wang
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Dezhi Zou
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Tingting Li
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Honglin Tang
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Lianzhou Jiang
- College of Food Science and Technology; Northeast Agricultural University; Harbin 150030 China
| | - Liqi Wang
- School of Computer and Information Engineering; Harbin University of Commerce; Harbin 150028 China
| |
Collapse
|
33
|
Takitani K, Kishi K, Miyazaki H, Koh M, Tamaki H, Inoue A, Tamai H. Altered Expression of Retinol Metabolism-Related Genes in an ANIT-Induced Cholestasis Rat Model. Int J Mol Sci 2018; 19:ijms19113337. [PMID: 30373117 PMCID: PMC6274878 DOI: 10.3390/ijms19113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
Cholestasis is defined as a reduction of bile secretion caused by a dysfunction of bile formation. Insufficient bile secretion into the intestine undermines the formation of micelles, which may result in the reduced absorption of lipids and fat-soluble vitamins. Here, we investigated the retinol homeostasis and the alterations of retinol metabolism-related genes, including β-carotene 15,15′ monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), cytochrome P450 26A1 (CYP26A1), and retinoic acid receptors (RAR) β, in a α-naphthyl isothiocyanate (ANIT)-induced cholestasis rat model. Moreover, we examined the expression of the farnesoid X receptor (FXR) target genes. Our results showed that plasma retinol levels were decreased in ANIT rats compared to control rats. On the contrary, hepatic retinol levels were not different between the two groups. The expression of FXR target genes in the liver and intestine of cholestasis model rats was repressed. The BCMO expression was decreased in the liver and increased in the intestine of ANIT rats compared to control rats. Finally, the hepatic expression of LRAT, RARβ, and ALDH1A1 in cholestatic rats was decreased compared to the control rats, while the CYP26A1 expression of the liver was not altered. The increased expression of intestinal BCMO in cholestasis model rats might compensate for decreased circulatory retinol levels. The BCMO expression might be regulated in a tissue-specific manner to maintain the homeostasis of retinol.
Collapse
Affiliation(s)
- Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Kanta Kishi
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Miyazaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Pediatrics, Osaka Rosai Hospital, Osaka 591-8025, Japan.
| | - Maki Koh
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hirofumi Tamaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Medicine, Shinseikai Daiichi Hospital, Aichi 468-0031, Japan.
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| |
Collapse
|
34
|
Gille A, Neumann U, Louis S, Bischoff SC, Briviba K. Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Dong XL, Pan CX, Zhang MJ. A Novel Gene Bombyx mori Carotenoid Oxygenases and Retinal Isomerase (BmCORI) Related to β-Carotene Depletion. Biochem Genet 2018. [PMID: 29536214 DOI: 10.1007/s10528-018-9853-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carotenoids are the precursors of Vitamin A. They are cleaved by carotenoid oxygenase and then isomerized by retinoid isomerase. In this study, we identified a gene, Bombyx mori Carotenoid Oxygenases and Retinal Isomerase (BmCORI), which was the homolog of β-carotene 15,15'-monooxygenase and the retinal pigment epithelium protein of 65 kD. Further analysis indicated that the expression of BmCORI in silkworms was significantly higher in females than in males. We also found that the β-carotene content in BmCORI-expressed human embryonic kidney 293 cells was significantly lower than in the controls, while the lutein content showed a slight difference. These results suggested that BmCORI is related to carotenoid depletion, especially β-carotene depletion. Our research provides new insight into the study of BmCORI function.
Collapse
Affiliation(s)
- Xiao-Long Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| | - Cai-Xia Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Min-Juan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
36
|
Cooperstone JL, Goetz HJ, Riedl KM, Harrison EH, Schwartz SJ, Kopec RE. Relative contribution of α-carotene to postprandial vitamin A concentrations in healthy humans after carrot consumption. Am J Clin Nutr 2017; 106:59-66. [PMID: 28515067 PMCID: PMC5486200 DOI: 10.3945/ajcn.116.150821] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Asymmetric α-carotene, a provitamin A carotenoid, is cleaved to produce retinol (vitamin A) and α-retinol (with negligible vitamin A activity). The vitamin A activity of α-carotene-containing foods is likely overestimated because traditional analytic methods do not separate α-retinol derivatives from active retinol.Objective: This study aimed to accurately characterize intestinal α-carotene cleavage and its relative contribution to postprandial vitamin A in humans after consumption of raw carrots.Design: Healthy adults (n = 12) consumed a meal containing 300 g raw carrot (providing 27.3 mg β-carotene and 18.7 mg α-carotene). Triglyceride-rich lipoprotein fractions of plasma were isolated and extracted, and α-retinyl palmitate (αRP) and retinyl palmitate were measured over 12 h postprandially via high-performance liquid chromatography-tandem mass spectrometry. The complete profile of all α-retinyl esters and retinyl esters was measured at 6 h, and total absorption of α- and β-carotene was calculated.Results: αRP was identified and quantified in every subject. No difference in preference for absorption of β- over α-carotene was observed (adjusting for dose, 28% higher, P = 0.103). After absorption, β-carotene trended toward preferential cleavage compared with α-carotene (22% higher, P = 0.084). A large range of provitamin A carotenoid conversion efficiencies was observed, with α-carotene contributing 12-35% of newly converted vitamin A (predicted contribution = 25.5%). In all subjects, a majority of α-retinol was esterified to palmitic acid (as compared with other fatty acids).Conclusions: α-Retinol is esterified in the enterocyte and transported in the blood analogous to retinol. The percentage of absorption of α-carotene from raw carrots was not significantly different from β-carotene when adjusting for dose, although a trend toward higher cleavage of β-carotene was observed. The results demonstrate large interindividual variability in α-carotene conversion. The contribution of newly absorbed α-carotene to postprandial vitamin A should not be estimated but should be measured directly to accurately assess the vitamin A capacity of α-carotene-containing foods. This trial was registered at clinicaltrials.gov as NCT01432210.
Collapse
Affiliation(s)
| | | | - Ken M Riedl
- Department of Food Science and Technology and
| | - Earl H Harrison
- Division of Human Nutrition, The Ohio State University, Columbus, OH; and
| | | | - Rachel E Kopec
- Division of Human Nutrition, The Ohio State University, Columbus, OH; and .,Security and Quality of Products of Plant Origin, Unité Mixte de Recherche (UMR) 408, French National Institute for Agricultural Research (INRA), Avignon, France
| |
Collapse
|
37
|
Provitamin A carotenoids from an engineered high-carotenoid maize are bioavailable and zeaxanthin does not compromise β-carotene absorption in poultry. Transgenic Res 2017. [DOI: 10.1007/s11248-017-0029-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 2017; 61:1600685. [PMID: 28101967 PMCID: PMC5516247 DOI: 10.1002/mnfr.201600685] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Carotenoid dietary intake and their endogenous levels have been associated with a decreased risk of several chronic diseases. There are indications that carotenoid bioavailability depends, in addition to the food matrix, on host factors. These include diseases (e.g. colitis), life-style habits (e.g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also their association with disease risk. For instance, digestion enzymes fostering micellization (PNLIP, CES), expression of uptake/efflux transporters (SR-BI, CD36, NPC1L1), cleavage enzymes (BCO1/2), intracellular transporters (FABP2), secretion into chylomicrons (APOB, MTTP), carotenoid metabolism in the blood and liver (LPL, APO C/E, LDLR), and distribution to target tissues such as adipose tissue or macula (GSTP1, StARD3) depend on the activity of these proteins. In addition, human microbiota, e.g. via altering bile-acid concentrations, may play a role in carotenoid bioavailability. In order to comprehend individual, variable responses to these compounds, an improved knowledge on intra-/interindividual factors determining carotenoid bioavailability, including tissue distribution, is required. Here, we highlight the current knowledge on factors that may explain such intra-/interindividual differences.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of HealthStrassenLuxembourg
| | | | - Lars O. Dragsted
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Charlotte S. Nielsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology IHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralph Rühl
- Paprika Bioanalytics BTDebrecenHungary
- MTA‐DE Public Health Research Group of the Hungarian Academy of SciencesFaculty of Public HealthUniversity of DebrecenDebrecenHungary
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Patrick Borel
- NORT, Aix‐Marseille Université, INRAINSERMMarseilleFrance
| |
Collapse
|
39
|
Green MH, Ford JL, Oxley A, Green JB, Park H, Berry P, Boddy AV, Lietz G. Plasma Retinol Kinetics and β-Carotene Bioefficacy Are Quantified by Model-Based Compartmental Analysis in Healthy Young Adults with Low Vitamin A Stores. J Nutr 2016; 146:2129-2136. [PMID: 27511941 PMCID: PMC5037873 DOI: 10.3945/jn.116.233486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/25/2016] [Accepted: 06/23/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Model-based compartmental analysis of data on plasma retinol kinetics after administration of labeled retinol provides unique information about whole-body vitamin A metabolism. If labeled β-carotene is coadministered, its bioefficacy relative to the retinol reference dose can also be estimated. OBJECTIVES The objectives were to model plasma retinol kinetics after administration of labeled preformed vitamin A and provitamin A β-carotene and to determine relative β-carotene bioefficacy. METHODS We used the Simulation, Analysis and Modeling software (WinSAAM version 3.0.8; http://www.WinSAAM.org) to analyze previously collected data on plasma [13C10]- and [13C5]retinol kinetics for 14 d after oral administration of 1 mg [13C10]retinyl acetate and 2 mg [13C10]β-carotene in oil to 30 healthy young adults of European ancestry [13 men, 17 women; mean ± SD age: 24.5 ± 4.2 y; mean ± SD body weight: 65.2 ± 10 kg; mean ± SD body mass index (in kg/m2): 22.5 ± 1.9] with moderate vitamin A intakes. RESULTS A 6-component model provided the best fit to the data, including compartments for initial metabolism of vitamin A, plasma retinol, and extravascular vitamin A storage. The disposal rate was 6.7 ± 3.1 μmol/d, fractional catabolic rate was 6.0% ± 2.3%/d, and vitamin A stores were 123 ± 71 μmol. Relative β-carotene bioefficacy, based on the ratio of the areas under the fraction of dose curves calculated by WinSAAM, averaged 13.5% ± 6.02% (retinol activity equivalents = 7.7:1.0 μg). Interindividual variation in relative β-carotene bioefficacy was high (CV: 44%). CONCLUSIONS Vitamin A kinetics in these young adults were best described by essentially the same model that had been previously developed by using data for older adults with higher vitamin A stores; differences in parameter values reflected differences in vitamin A status. Estimated β-carotene bioefficacy was relatively low but similar to previously reported estimates obtained by graphical methods. This trial was registered at the UK Clinical Research Network as UKCRN 7413.
Collapse
Affiliation(s)
- Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Jennifer Lynn Ford
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | | | - Joanne Balmer Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | | | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Alan V Boddy
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | |
Collapse
|
40
|
Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, Lietz G, Schulze K, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J Nutr 2016; 146:1816S-48S. [PMID: 27511929 PMCID: PMC4997277 DOI: 10.3945/jn.115.229708] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-informed advice to anyone with an interest in the role of nutrition in health. The BOND program provides information with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect, which will be especially useful for readers who want to assess nutrient status. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutritional status at the individual and population levels. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, folate, zinc, iron, vitamin A, and vitamin B-12. This review of vitamin A is the current article in this series. Although the vitamin was discovered >100 y ago, vitamin A status assessment is not trivial. Serum retinol concentrations are under homeostatic control due in part to vitamin A's use in the body for growth and cellular differentiation and because of its toxic properties at high concentrations. Furthermore, serum retinol concentrations are depressed during infection and inflammation because retinol-binding protein (RBP) is a negative acute-phase reactant, which makes status assessment challenging. Thus, this review describes the clinical and functional indicators related to eye health and biochemical biomarkers of vitamin A status (i.e., serum retinol, RBP, breast-milk retinol, dose-response tests, isotope dilution methodology, and serum retinyl esters). These biomarkers are then related to liver vitamin A concentrations, which are usually considered the gold standard for vitamin A status. With regard to biomarkers, future research questions and gaps in our current understanding as well as limitations of the methods are described.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Georg Lietz
- Newcastle University, Newcastle, United Kingdom
| | - Kerry Schulze
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD; and
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
41
|
Palmer AC, Chileshe J, Hall AG, Barffour MA, Molobeka N, West KP, Haskell MJ. Short-Term Daily Consumption of Provitamin A Carotenoid-Biofortified Maize Has Limited Impact on Breast Milk Retinol Concentrations in Zambian Women Enrolled in a Randomized Controlled Feeding Trial. J Nutr 2016; 146:1783-92. [PMID: 27466608 DOI: 10.3945/jn.116.233700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Provitamin A carotenoid-biofortified maize is a conventionally bred staple crop designed to help prevent vitamin A deficiency. Lactating women are a potential target group, because regularly eating biofortified maize may increase vitamin A in breast milk-a critical source of vitamin A for breastfeeding infants. OBJECTIVE We assessed whether daily consumption of biofortified orange maize would increase the retinol concentration in the breast milk of Zambian women. METHODS Lactating women (n = 149) were randomly assigned to receive orange maize delivering 600 μg retinol equivalents (REs)/d as carotenoid plus placebo (OM), low-carotenoid white maize plus 600 μg REs/d as retinyl palmitate (VA), or white maize plus placebo (WM). Boiled maize (287 g dry weight/d) was served as 2 meals/d, 6 d/wk for 3 wk. We measured initial and final breast milk plasma retinol and β-carotene concentrations, and plasma inflammatory protein concentrations. RESULTS Groups were comparable at enrollment, with an overall geometric mean milk retinol concentration of 0.95 μmol/L (95% CI: 0.86, 1.05 μmol/L); 56% of samples had milk retinol <1.05 μmol/L. Median capsule and maize intake was 97% and 258 g dry weight/d, respectively. Final milk β-carotene did not vary across groups (P = 0.76). Geometric mean (95% CI) milk retinol concentration tended to be higher in the OM [1.15 μmol/L (0.96, 1.39 μmol/L)] and VA [1.17 μmol/L (0.99, 1.38 μmol/L)] groups than in the WM group [0.91 μmol/L (0.72, 1.14 μmol/L); P = 0.13], and the proportion of women with milk retinol <1.05 μmol/L was 52.1%, 42.9%, and 36.7% in the WM, OM, and VA groups, respectively (P-trend = 0.16). CONCLUSIONS Daily biofortified maize consumption did not increase mean milk retinol concentration in lactating Zambian women; however, there was a plausible downward trend in the risk of low milk retinol across intervention groups. This trial was registered at clinicaltrials.gov as NCT01922713.
Collapse
Affiliation(s)
- Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Andrew G Hall
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, Davis, CA
| | - Maxwell A Barffour
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ngosa Molobeka
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Marjorie J Haskell
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
42
|
Huebbe P, Lange J, Lietz G, Rimbach G. Dietary beta-carotene and lutein metabolism is modulated by the APOE genotype. Biofactors 2016; 42:388-96. [PMID: 27040933 DOI: 10.1002/biof.1284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
The human apolipoprotein E (APOE) genotype has been suggested to interact with nutrient metabolism particularly with lipid soluble vitamins. Plasma carotenoid levels are determined by numerous dietary and genetic factors with high inter-individual variation; however, the APOE genotype has not been systematically examined so far. Our aim was to investigate the effect of the APOE genotype on dietary carotenoid metabolism with special regard to transcriptional regulation of carotenoid absorption, cleavage and adipocyte fat storage. We supplemented targeted replacement mice expressing human APOE3 and APOE4 isoforms with dietary beta-carotene (BC) and lutein (LUT) for 8 weeks. Plasma BC and adipose tissue BC and LUT levels were in trend lower in APOE4 than APOE3 mice, while hepatic expression of the beta-carotene oxygenases BCO1 and BCO2 was significantly higher. In contrast to the liver, mRNA levels of proteins involved in carotenoid absorption and cleavage in the small intestinal mucosa as well as of adipogenic markers in the adipose tissue were not different between APOE3 and APOE4 mice. Our data suggest that the hepatic carotenoid cleavage activity is higher in APOE4 mice partially reducing the circulation and extra-hepatic accumulation of intact carotenoids as compared to APOE3. Therefore we suggest considering the APOE genotype as modulator of carotenoid status in the future. © 2016 BioFactors, 42(4):388-396, 2016.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Jennifer Lange
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Georg Lietz
- School of Agriculture, Food and Rural Development, Human Nutrition Research Centre, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| |
Collapse
|
43
|
Wu L, Guo X, Wang W, Medeiros DM, Clarke SL, Lucas EA, Smith BJ, Lin D. Molecular aspects of β, β-carotene-9', 10'-oxygenase 2 in carotenoid metabolism and diseases. Exp Biol Med (Maywood) 2016; 241:1879-1887. [PMID: 27390265 DOI: 10.1177/1535370216657900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Carotenoids, the carotenes and xanthophylls, are essential components in human nutrition. β, β-carotene-9', 10'-oxygenase 2 (BCO2), also named as β, β-carotene-9', 10'-dioxygenase 2 (BCDO2) catalyzes the asymmetrical cleavage of carotenoids, whereas β, β-carotene-15, 15'-monooxygenase (BCMO1) conducts the symmetrical cleavage of pro-vitamin A carotenoids into retinoid. Unlike BCMO1, BCO2 has a broader substrate specificity and has been considered an alternative way to produce vitamin A. In contrast to BCMO1, a cytoplasmic protein, BCO2 is located in the inner mitochondrial membrane. The difference in cellular compartmentalization may reflect the different substrate specificity and physiological functions with respect to BCMO1 and BCO2. The BCO2 gene mutations are proven to be associated with yellow color of skin and fat tissue and milk in livestock. Mutation in intron 2 of BCO2 gene is also supposed to be related to the expression of IL-18, a pro-inflammatory cytokine associated with obesity, cardiovascular diseases, and type 2 diabetes. Further, BCO2 is associated with the development of mitochondrial oxidative stress, macular degeneration, anemia, and hepatic steatosis. This review of the literature will mostly address recent updates regarding the role of BCO2 in carotenoid metabolism, and discuss the potential impacts of BCO2 protein and the mutations in mammalian diseases.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS 66506, USA
| | - Denis M Medeiros
- College of Graduate Studies, University of Missouri-Kansas City, Kansas City, MO 64112, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
44
|
Lietz G, Furr HC, Gannon BM, Green MH, Haskell M, Lopez-Teros V, Novotny JA, Palmer AC, Russell RM, Tanumihardjo SA, Van Loo-Bouwman CA. Current Capabilities and Limitations of Stable Isotope Techniques and Applied Mathematical Equations in Determining Whole-Body Vitamin A Status. Food Nutr Bull 2016; 37:S87-S103. [PMID: 27053491 DOI: 10.1177/0379572116630642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Retinol isotope dilution (RID) methodology provides a quantitative estimate of total body vitamin A (VA) stores and is the best method currently available for assessing VA status in adults and children. The methodology has also been used to test the efficacy of VA interventions in a number of low-income countries. Infections, micronutrient deficiencies (eg, iron and zinc), liver disease, physiological age, pregnancy, and lactation are known or hypothesized to influence the accuracy of estimating total body VA stores using the isotope dilution technique. OBJECTIVE Our objectives were to review the strengths and limitations of RID methods, to discuss what is known about the impact of various factors on results, and to summarize contributions of model-based compartmental analysis to assessing VA status. METHODS Relevant published literature is reviewed and discussed. RESULTS Various equations and compartmental modeling have been used to estimate the total body VA stores using stable isotopes, including a newer 3-day equation that provides an estimate of total body VA stores in healthy adults. At present, there is insufficient information on absorption of the isotope tracer, and there is a need to further investigate how various factors impact the application of RID techniques in field studies. CONCLUSIONS Isotope dilution methodology can provide useful estimates of total body VA stores in apparently healthy populations under controlled study conditions. However, more research is needed to determine whether the method is suitable for use in settings where there is a high prevalence of infection, iron deficiency, and/or liver disease.
Collapse
Affiliation(s)
- Georg Lietz
- Newcastle University, Newcastle, United Kingdom
| | | | | | - Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Marjorie Haskell
- Program in International and Community Nutrition and Department of Nutrition, University of California, Davis, CA, USA
| | | | - Janet A Novotny
- Beltsville Human Nutrition Research Center, United States Department of Agriculture, Beltsville, MD, USA
| | - Amanda C Palmer
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
45
|
Zhu MM, Wang SL, Fan MT. Isolation and Identification of a Novelβ-Carotene Degrading Microorganism from Sea Buckthorn Juice. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2015.1129501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Gao YY, Ji J, Jin L, Sun BL, Xu LH, Wang CK, Bi YZ. Xanthophyll supplementation regulates carotenoid and retinoid metabolism in hens and chicks. Poult Sci 2016; 95:541-9. [DOI: 10.3382/ps/pev335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/03/2015] [Indexed: 01/19/2023] Open
|
47
|
Strychalski J, Gugołek A, Antoszkiewicz Z, Kowalska D, Konstantynowicz M. Biologically active compounds in selected tissues of white-fat and yellow-fat rabbits and their production performance parameters. Livest Sci 2016. [DOI: 10.1016/j.livsci.2015.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Mondloch S, Gannon BM, Davis CR, Chileshe J, Kaliwile C, Masi C, Rios-Avila L, Gregory JF, Tanumihardjo SA. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high liver vitamin A stores. Am J Clin Nutr 2015; 102:497-504. [PMID: 26178727 PMCID: PMC6546228 DOI: 10.3945/ajcn.115.112383] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biomarkers of micronutrient status are needed to best define deficiencies and excesses of essential nutrients. OBJECTIVE We evaluated several supporting biomarkers of vitamin A status in Zambian children to determine whether any of the biomarkers were consistent with high liver retinol stores determined by using retinol isotope dilution (RID). DESIGN A randomized, placebo-controlled, biofortified maize efficacy trial was conducted in 140 rural Zambian children from 4 villages. A series of biomarkers were investigated to better define the vitamin A status of these children. In addition to the assessment of total-body retinol stores (TBSs) by using RID, tests included analyses of serum carotenoids, retinyl esters, and pyridoxal-5'-phosphate (PLP) by using high-pressure liquid chromatography, retinol-binding protein by using ELISA, and alanine aminotransferase (ALT) activity by using a colorimetric assay. RESULTS Children (n = 133) were analyzed quantitatively for TBSs by using RID. TBSs, retinyl esters, some carotenoids, and PLP differed by village site. Serum carotenoids were elevated above most nonintervened reference values for children. α-Carotene, β-carotene, and lutein values were >95th percentile from children in the US NHANES III, and 13% of children had hypercarotenemia (defined as total carotenoid concentration >3.7 μmol/L). Although only 2% of children had serum retinyl esters >10% of total retinol plus retinyl esters, 16% of children had >5% as esters, which was consistent with high liver retinol stores. Ratios of serum retinol to retinol-binding protein did not deviate from 1.0, which indicated full saturation. ALT activity was low, which was likely due to underlying vitamin B-6 deficiency, which was confirmed by very low serum PLP concentrations. CONCLUSIONS The finding of hypervitaminosis A in Zambian children was supported by high circulating concentrations of carotenoids and mildly elevated serum retinyl esters. ALT-activity assays may be compromised with co-existing vitamin B-6 deficiency. Nutrition education to improve intakes of whole grains and animal-source foods may enhance vitamin B-6 status in Zambians.
Collapse
Affiliation(s)
- Stephanie Mondloch
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | - Chisela Kaliwile
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | - Cassim Masi
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | | | | | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI;
| |
Collapse
|
49
|
Borel P, Desmarchelier C, Nowicki M, Bott R. A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Dietary β-Carotene Bioavailability in Healthy Men. J Nutr 2015; 145:1740-7. [PMID: 26063065 DOI: 10.3945/jn.115.212837] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/21/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The bioavailability of β-carotene, the main dietary provitamin A carotenoid, varies among individuals. It is not known whether this variability can affect long-term β-carotene, and hence vitamin A, status. OBJECTIVES We hypothesized that variations in genes involved in β-carotene absorption and postprandial metabolism could at least partially explain the high interindividual variability in β-carotene bioavailability. Thus, the main objectives of this study were to identify associated single-nucleotide polymorphisms (SNPs), and to estimate whether populations with different allele frequencies at these SNPs could have different abilities to absorb provitamin A carotenoids. METHODS In this single-group design, 33 healthy, nonobese adult men were genotyped with the use of whole-genome microarrays. After an overnight fast, they consumed a test meal containing 100 g tomato puree providing 0.4 mg β-carotene. The postprandial plasma chylomicron β-carotene concentration was then measured at regular time intervals over 8 h. Partial least squares (PLS) regression was used to identify the best combination of SNPs in or near candidate genes (54 genes representing 2172 SNPs) that was associated with the postprandial chylomicron β-carotene response (incremental β-carotene area-under-the-curve concentration over 8 h in chylomicrons). RESULTS The postprandial chylomicron β-carotene response was highly variable (CV = 105%) and was positively correlated with the fasting plasma β-carotene concentration (r = 0.78; P < 0.0001). A significant (P = 6.54 × 10(-3)) multivalidated PLS regression model, which included 25 SNPs in 12 genes, explained 69% of the variance in the postprandial chylomicron β-carotene response, i.e., β-carotene bioavailability. CONCLUSIONS Interindividual variability in β-carotene bioavailability appears to be partially modulated by a combination of SNPs in 12 genes. This variability likely affects the long-term blood β-carotene status. A theoretic calculation of β-carotene bioavailability in 4 populations of the international HapMap project suggests that populations with different allele frequencies in these SNPs might exhibit a different ability to absorb dietary β-carotene. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Patrick Borel
- French National Institute for Agricultural Research, UMR INRA 1260, Marseille, France; French National Institute of Health and Medical Research, UMR_S 1062, Marseille, France; and Aix-Marseille Université, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Charles Desmarchelier
- French National Institute for Agricultural Research, UMR INRA 1260, Marseille, France; French National Institute of Health and Medical Research, UMR_S 1062, Marseille, France; and Aix-Marseille Université, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Marion Nowicki
- French National Institute for Agricultural Research, UMR INRA 1260, Marseille, France; French National Institute of Health and Medical Research, UMR_S 1062, Marseille, France; and Aix-Marseille Université, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Romain Bott
- French National Institute for Agricultural Research, UMR INRA 1260, Marseille, France; French National Institute of Health and Medical Research, UMR_S 1062, Marseille, France; and Aix-Marseille Université, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| |
Collapse
|
50
|
Takitani K, Inoue K, Koh M, Miyazaki H, Inoue A, Kishi K, Tamai H. Altered retinol status and expression of retinol-related proteins in streptozotocin-induced type 1 diabetic model rats. J Clin Biochem Nutr 2015. [PMID: 26060349 DOI: 10.3164/jcbn.14.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes is a metabolic disorder characterized by chronic hyperglycemia. Advanced diabetes is associated with severe complications and impaired nutritional status. Here, we assessed the expression of retinol-associated proteins, including β-carotene 15,15'-monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), and cytochrome P450 26A1 (CYP26A1), and measured retinol levels in the plasma and liver of streptozotocin (STZ)-induced type 1 diabetic model rats. Compared to the levels in the control rats, retinol levels in the plasma and liver of STZ rats were decreased and increased, respectively. Hepatic expression of the LRAT gene in STZ rats was lower than that in the controls. In the liver of STZ rats, the expression of ALDH1A1, a retinal metabolizing enzyme was higher, whereas ALDH1A2 expression was lower than in the controls. Hepatic CYP26A1 expression in STZ rats was significantly higher than in the control rats. BCMO expression levels in the liver and intestine of STZ rats were much lower than those of the controls. Altered BCMO expression might affect retinol status. It is considered that the metabolic availability of retinol was lessened despite the accelerated catabolism of retinol; therefore, retinol mobilization may be unbalanced in the liver of rats in the type 1 diabetic state.
Collapse
Affiliation(s)
- Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Keisuke Inoue
- Department of Pediatrics, Hirakata City Hospital, 2-14-1 Kinyahonmachi, Hirakata-shi, Osaka 573-1013, Japan
| | - Maki Koh
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Hiroshi Miyazaki
- Department of Pediatrics, Osaka Rosai Hospital, 1179-3 Nagasonecho, Kita-ku, Sakai-shi, Osaka 591-8025, Japan
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Kanta Kishi
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| |
Collapse
|