1
|
Cortés-Bautista S, Molins-Legua C, Campíns-Falcó P. Miniaturized liquid chromatography in environmental analysis. A review. J Chromatogr A 2024; 1730:465101. [PMID: 38941795 DOI: 10.1016/j.chroma.2024.465101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.
Collapse
Affiliation(s)
- S Cortés-Bautista
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - C Molins-Legua
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - P Campíns-Falcó
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Amutova F, Delannoy M, Akhatzhanova A, Akhmetsadykov N, Konuspayeva G, Jurjanz S. Generic methodology to prevent food contamination by soil born legacy POPs in free range livestock. Heliyon 2024; 10:e28533. [PMID: 38590844 PMCID: PMC10999928 DOI: 10.1016/j.heliyon.2024.e28533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Government monitoring commonly includes regulating POPs in animal feed and products of animal origin, with many countries setting Maximum Residue Levels (MRLs) to ensure safe tolerable concentrations. However, these MRLs do not address the presence of most POP families in soil, where concentrations can be much higher due to the contaminants' strong affinity and persistence in comparison to other environmental matrices. Extensive damage to food and production systems during a pollution incident causing soil contamination by POPs lead to severe economic and social consequences for the affected area. To mitigate these effects, it is crucial to implement necessary measures for consumer protection while also focusing on rehabilitating conditions for food production, tailored to both commercial farms and private holders. In this context, the present work aims to develop and test a methodology for assessing the tolerable concentration of the most cancerogenic legacy POPs in soil for various livestock animals in diverse rearing systems ensuring the safety of food of animal origin. Therefore, we summarize existing knowledge about the risk of POP transfer in different livestock breeding systems via soil exposure, and modeling via a backward calculation from the MRLs the corresponding tolerable quantity of POPs that may be ingested by animals in the considered rearing system. Results of these simulations showed that soil ingestion is a predominant contamination pathway, which is a central factor in the risk assessment of POP exposure on livestock farms, especially in free-range systems. In field conditions of POP exposure, low productive animals may be more susceptible to uptake through soil than high-yielding animals, even if the feed respected MRLs. Results show that PCDD/Fs revealed the lowest security ratio for low productive dairy cows (1.5) compared to high productive ones (52). Laying hens with a productivity of 45% show also as a high sensitivity to POPs exposure via soil ingestion. Indeed, their security ratio for PCDD/Fs, lindane and DDT were 3, 2 and 1, respectively. In perspective, proposed methodology can be adapted for assessing the risk of industrial POPs newly listed in the Stockholm Convention. In practice, it could be useful for food producers to apprehend their own risk of chemical contamination.
Collapse
Affiliation(s)
- Farida Amutova
- URAFPA, University de Lorraine-INRAE, 54000, Nancy, France
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | | | - Araylym Akhatzhanova
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | - Nurlan Akhmetsadykov
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
| | - Gaukhar Konuspayeva
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | - Stefan Jurjanz
- URAFPA, University de Lorraine-INRAE, 54000, Nancy, France
| |
Collapse
|
4
|
Zhang Y, Fu R, Lu Q, Ren T, Guo X, Di X. Switchable hydrophilicity solvent for extraction of pollutants in food and environmental samples: A review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Zhao H, Federigi I, Verani M, Carducci A. Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4892. [PMID: 36981806 PMCID: PMC10048819 DOI: 10.3390/ijerph20064892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution has become one of the most serious environmental problems, and microplastics (MPs, particles < 5 mm size) may behave as a vehicle of organic pollutants, causing detrimental effects to the environment. Studies on MP-sorbed organic pollutants lack methodological standardization, resulting in a low comparability and replicability. In this work, we reviewed 40 field studies of MP-sorbed organic contaminants using PRISMA guidelines for acquiring information on sampling and analytical protocols. The papers were also scored for their reliability on the basis of 7 criteria, from 0 (minimum) to 21 (maximum). Our results showed a great heterogeneity of the methods used for the sample collection, MPs extraction, and instruments for chemicals' identification. Measures for cross-contamination control during MPs analysis were strictly applied only in 13% of the studies, indicating a need for quality control in MPs-related research. The most frequently detected MP-sorbed chemicals were polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs). Most of the studies showed a good reliability (>75% of the total score), with 32 papers scoring 16 or higher. On the basis of the collected information, a standardizable protocol for the detection of MPs and MP-sorbed chemicals has been suggested for improving the reliability of MPs monitoring studies.
Collapse
|
6
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
7
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Ruan F, Liu C, Hu W, Ruan J, Ding X, Zhang L, Yang C, Zuo Z, He C, Huang J. Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118977. [PMID: 35157936 DOI: 10.1016/j.envpol.2022.118977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 05/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
9
|
Simonnet-Laprade C, Bayen S, McGoldrick D, McDaniel T, Hutinet S, Marchand P, Vénisseau A, Cariou R, Le Bizec B, Dervilly G. Evidence of complementarity between targeted and non-targeted analysis based on liquid and gas-phase chromatography coupled to mass spectrometry for screening halogenated persistent organic pollutants in environmental matrices. CHEMOSPHERE 2022; 293:133615. [PMID: 35038446 DOI: 10.1016/j.chemosphere.2022.133615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/12/2023]
Abstract
This study explored the complementarity between targeted (TS) and non-targeted screening (NTS) based on liquid and gas-phase chromatography coupled to (high-resolution) mass spectrometry (LC-/GC-(HR)MS) for the comprehensive characterization of organohalogen fingerprints within a set of Lake Ontario lake trout samples. The concentrations of 86 legacy, emerging and novel halogenated compounds (HCs), were determined through 4 TS approaches involving no less than 6 hyphenated systems. In parallel, an innovative NTS strategy, involving both LC and GC-Q-Orbitrap, was implemented to specifically highlight halogenated signals. Non-targeted HRMS data were processed under the HaloSeeker software based on Cl and Br isotopic ratio and mass defect to extend the screening to unsuspected and unknown HCs. A total of 195 halogenated mass spectral features were characterized in the Lake Ontario lake trout, including well known HCs (PCBs, PBDEs, PBBs, DDT and their degradation products), emerging HCs (novel brominated flame retardants, short-, medium- and long-chain chlorinated paraffins) or suggested molecular formula (mainly polychlorinated ones). Among the 122 HCs highlighted by TS, only 21 were identified by NTS. These results fueled a discussion on the potential and limitations of both approaches, and the current position of NTS within environmental and health monitoring programs.
Collapse
Affiliation(s)
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - D McGoldrick
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - T McDaniel
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - S Hutinet
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - P Marchand
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - A Vénisseau
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - R Cariou
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - B Le Bizec
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - G Dervilly
- Oniris, INRAE, LABERCA, 44307, Nantes, France.
| |
Collapse
|
10
|
Drábová L, Dvořáková D, Urbancová K, Gramblička T, Hajšlová J, Pulkrabová J. Critical Assessment of Clean-Up Techniques Employed in Simultaneous Analysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in Fatty Samples. TOXICS 2022; 10:toxics10010012. [PMID: 35051054 PMCID: PMC8781265 DOI: 10.3390/toxics10010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022]
Abstract
Interference of residual lipids is a very common problem in ultratrace analysis of contaminants in fatty matrices. Therefore, quick and effective clean-up techniques applicable to multiple groups of analytes are much needed. Cartridge and dispersive solid-phase extraction (SPE and dSPE) are often used for this purpose. In this context, we evaluated the lipid clean-up efficiency and performance of four commonly used sorbents—silica, C18, Z-Sep, and EMR-lipid—for the determination of organic pollutants in fatty fish samples (10%) extracted using ethyl acetate or the QuEChERS method. Namely, 17 polychlorinated biphenyls (PCBs), 22 organochlorine pesticides (OCPs), 13 brominated flame retardants (BFRs), 19 per- and polyfluoroalkyl substances (PFAS), and 16 polycyclic aromatic hydrocarbons (PAHs) were determined in this study. The clean-up efficiency was evaluated by direct analysis in real time coupled with time-of-flight mass spectrometry (DART-HRMS). The triacylglycerols (TAGs) content in the purified extracts were significantly reduced. The EMR-lipid sorbent was the most efficient of the dSPE sorbents used for the determination of POPs and PAHs in this study. The recoveries of the POPs and PAHs obtained by the validated QuEChERS method followed by the dSPE EMR-lipid sorbent ranged between 59 and 120%, with repeatabilities ranging between 2 and 23% and LOQs ranging between 0.02 and 1.50 µg·kg−1.
Collapse
|
11
|
Place BJ, Ulrich EM, Challis JK, Chao A, Du B, Favela K, Feng YL, Fisher CM, Gardinali P, Hood A, Knolhoff AM, McEachran AD, Nason SL, Newton SR, Ng B, Nuñez J, Peter KT, Phillips AL, Quinete N, Renslow R, Sobus JR, Sussman EM, Warth B, Wickramasekara S, Williams AJ. An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Anal Chem 2021; 93:16289-16296. [PMID: 34842413 PMCID: PMC8848292 DOI: 10.1021/acs.analchem.1c02660] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.
Collapse
Affiliation(s)
- Benjamin J. Place
- National Institute of Standards and Technology, Gaithersburg, MD, USA 20899,Corresponding author,
| | - Elin M. Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | | | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA 92626
| | - Kristin Favela
- Southwest Research Institute, San Antonio, TX, USA 78238
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Christine M. Fisher
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | - Piero Gardinali
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Alan Hood
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Ann M. Knolhoff
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | | | - Sara L. Nason
- Connecticut Agricultural Experiment Station, New Haven, CT, USA 06511
| | - Seth R. Newton
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Brian Ng
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Jamie Nuñez
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Katherine T. Peter
- National Institute of Standards and Technology, Charleston, SC, USA 29412
| | - Allison L. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA 27711
| | - Natalia Quinete
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Ryan Renslow
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Eric M. Sussman
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Samanthi Wickramasekara
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| |
Collapse
|
12
|
Wagner M, Andrew Lin KY, Oh WD, Lisak G. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption - A mini review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125325. [PMID: 33601143 DOI: 10.1016/j.jhazmat.2021.125325] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
The global population growth demands intensification of anthropogenic processes, thus leading to inter alia pollution of both land and aquatic environments with toxic organic compounds. Particularly harmful synthetic compounds are classified as persistent organic pollutants (POPs). Their relatively high chemical resistance resulted in a worldwide ban or strict control on the use of POPs. The majority of POPs were commonly used as pesticides, and unfortunately, some of them are still utilized as an aid in agricultural practices. Therefore, environmental monitoring in terms of reliable detection and quantification of pesticidal POPs is an ever-increasing need. Chemical sensors and adsorption materials crafted for specific pesticide operate on host-guest interactions should provide selectivity and sensitivity, thus leading to the detection of target molecule down to the nanomolar range. This could be achieved with materials exhibiting a very large active surface area, well-defined structure, and high stability. The novel materials studied in that context are metal-organic frameworks (MOFs). The structure of various MOFs can be functionalized to provide desired host-guest interactions. In this mini-review, we critically discuss the application of MOFs for the detection and adsorption of selected pesticides that are classified as POPs according to the Stockholm Convention.
Collapse
Affiliation(s)
- Michal Wagner
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
13
|
Rozaini MNH, Saad B, Yahaya N, Lim JW, Mohd Aris MN, Ramachandran MR. Determination of Three Endocrine Disruptors in Water Samples by Ultrasound-Assisted Salt-Induced Liquid-Liquid Microextraction (UA-SI-LLME) and High-Performance Liquid Chromatography – Diode Array Detection (HPLC-DAD). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1919691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Nur’ Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Muhammad Naeim Mohd Aris
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | | |
Collapse
|
14
|
Karthigadevi G, Manikandan S, Karmegam N, Subbaiya R, Chozhavendhan S, Ravindran B, Chang SW, Awasthi MK. Chemico-nanotreatment methods for the removal of persistent organic pollutants and xenobiotics in water - A review. BIORESOURCE TECHNOLOGY 2021; 324:124678. [PMID: 33461128 DOI: 10.1016/j.biortech.2021.124678] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
While the technologies available today can generate high-quality water from wastewater, the majority of the wastewater treatment plants are not intended to eliminate emerging xenobiotic pollutants, pharmaceutical and personal care items. Most endocrine disrupting compounds (EDCs) and personal care products (PPCPs) are more arctic than most regulated pollutants, and several of them have acid or critical functional groups. Together with the trace occurrence, EDCs and PPCPs create specific challenges for removal and subsequent improvements of wastewater treatment plants. Various technologies have been investigated extensively because they are highly persistent which leads to bioaccumulation. Researchers are increasingly addressing the human health hazards of xenobiotics and their removal. The emphasis of this review was on the promising methods available, especially nanotechnology, for the treatment of xenobiotic compounds that are accidentally released into the setting. In terms of xenobiotic elimination, nanotechnology provides better treatment than chemical treatments and their degradation mechanisms are addressed.
Collapse
Affiliation(s)
- Guruviah Karthigadevi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China; Department of Biotechnology, Sri Venkateswara College of Engineering, (Autonomous), Sriperumbudur TK - 602 117, Tamil Nadu, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem - 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box. 21692, Kitwe, Zambia
| | | | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Colapicchioni V, Mosca S, Cerasa M, Benedetti P, Guerriero E, Perilli M, Rotatori M. Evaluation of the concentration of the toxic 2,3,6,7-tetrachlorobiphenylene in air after an electrical material fire. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122284. [PMID: 32120222 DOI: 10.1016/j.jhazmat.2020.122284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
It is known that when fires or explosions involve electrical systems, along with PCDDs and PCDFs, polychlorinated biphenylenes (PCBPs) are also produced. These chlorinated tricyclic aromatic pollutants were noticed in fire rubbles and after the World Trade Center destruction. However, the analytical difficulties in developing an efficient method have limited the knowledge of their environmental distribution. In light of the equipotency of 2,3,6,7-TeCBP and 2,3,7,8-TeCDD, PCBPs call for more accurate investigations. In this paper, for the first time, the level and persistence of 2,3,6,7-TeCBP have been investigated in air samples (both indoor and outdoor) after a fire broke out in an industrial building. GC-MS/MS analysis revealed that 2,3,6,7-TeCBP concentrations after the fire (3046 fg/m3 at the "epicentre") were remarkably higher than that of the 2,3,7,8-TeCDD. Moreover, the monitoring for over two years has demonstrated the persistent nature of this compound. 2,3,6,7-TeCBP was also analyzed in two different ambient air scenario: industrial and periurban areas and in both cases its concentrations were no matter of concern, confirming the correlation of 2,3,6,7-TeCBP with fire episodes. Collectively, 2,3,6,7-TeCBP, because of its toxicity, concentration and persistence, is a crucial compound in the evaluation of the health effects correlated with fires of electrical systems.
Collapse
Affiliation(s)
- Valentina Colapicchioni
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Silvia Mosca
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Marina Cerasa
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Paolo Benedetti
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Ettore Guerriero
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Mattia Perilli
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| | - Mauro Rotatori
- Italian National Research Council - Institute for Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29, 300 00015, Monterotondo, RM, Italy.
| |
Collapse
|
16
|
Al-Alam J, Baroudi F, Chbani A, Fajloun Z, Millet M. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors. J Chromatogr A 2020; 1621:461006. [PMID: 32156459 DOI: 10.1016/j.chroma.2020.461006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
This paper reports an optimized multiresidue extraction strategy based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction procedure and on solid-phase microextraction (SPME) for the simultaneous screening of 120 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls from the terrestrial snail Helix aspersa. The optimized extraction method was based on QuEChERS using acetonitrile, followed by dispersive-Solid-phase extraction clean-up using primary secondary amine and octadecyl (C18) sorbents. The obtained extracts were analyzed by liquid chromatography coupled with tandem mass spectrometry and gas chromatography coupled with tandem mass spectrometry. This latest technique was preceded by a pre-concentration step using SPME with appropriate fibers. Afterwards, the method was validated for its linearity, sensitivity, recovery, and precision. Results showed high sensitivity, accuracy, and precision, with limits of detection and quantification lower than 20 ng g - 1 for most considered pollutants. Both inter and intra-day analyses revealed low relative standard deviation (%), which was lower than 20% for most targeted compounds. Moreover, the obtained regression coefficient (R2) was higher than 0.98 and the recoveries were higher than 60% for the majority of the assessed pollutants.
Collapse
Affiliation(s)
- Josephine Al-Alam
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France; Lebanese American University, School of Engineering, Byblos, Lebanon
| | - Firas Baroudi
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Asma Chbani
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Department of Biology, Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Veenaas C, Ripszam M, Glas B, Liljelind I, Claeson AS, Haglund P. Differences in chemical composition of indoor air in rooms associated/not associated with building related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137444. [PMID: 32325564 DOI: 10.1016/j.scitotenv.2020.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.
Collapse
Affiliation(s)
- Cathrin Veenaas
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bo Glas
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
18
|
Veenaas C, Ripszam M, Haglund P. Analysis of volatile organic compounds in indoor environments using thermal desorption with comprehensive two-dimensional gas chromatography and high-resolution time-of-flight mass spectrometry. J Sep Sci 2020; 43:1489-1498. [PMID: 32052921 DOI: 10.1002/jssc.201901103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
Building-related health effects are frequently observed. Several factors have been listed as possible causes including temperature, humidity, light conditions, presence of particulate matter, and microorganisms or volatile organic compounds. To be able to link exposure to specific volatile organic compounds to building-related health effects, powerful and comprehensive analytical methods are required. For this purpose, we developed an active air sampling method that utilizes dual-bed tubes loaded with TENAX-TA and Carboxen-1000 adsorbents to sample two parallel air samples of 4 L each. For the comprehensive volatile organic compounds analysis, an automated thermal desorption comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry method was developed and used. It allowed targeted analysis of approximately 90 known volatile organic compounds with relative standard deviations below 25% for the vast majority of target volatile organic compounds. It also allowed semiquantification (no matching standards) of numerous nontarget air contaminants using the same data set. The nontarget analysis workflow included peak finding, background elimination, feature alignment, detection frequency filtering, and tentative identification. Application of the workflow to air samples from 68 indoor environments at a large hospital complex resulted in a comprehensive volatile organic compound characterization, including 178 single compounds and 13 hydrocarbon groups.
Collapse
Affiliation(s)
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4361. [PMID: 31717330 PMCID: PMC6888492 DOI: 10.3390/ijerph16224361] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Persistent organic pollutants (POPs) present in foods have been a major concern for food safety due to their persistence and toxic effects. To ensure food safety and protect human health from POPs, it is critical to achieve a better understanding of POP pathways into food and develop strategies to reduce human exposure. POPs could present in food in the raw stages, transferred from the environment or artificially introduced during food preparation steps. Exposure to these pollutants may cause various health problems such as endocrine disruption, cardiovascular diseases, cancers, diabetes, birth defects, and dysfunctional immune and reproductive systems. This review describes potential sources of POP food contamination, analytical approaches to measure POP levels in food and efforts to control food contamination with POPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huixiao Hong
- U.S. Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA; (W.G.); (B.P.); (S.S.); (G.Y.); (W.G.); (W.Z.); (W.T.)
| |
Collapse
|
20
|
Comparison of Pre-Processing and Variable Selection Strategies in Group-Based GC×GC-TOFMS Analysis. SEPARATIONS 2019. [DOI: 10.3390/separations6030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemometric analysis of comprehensive two-dimensional chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) data has been reported with various workflows, yet little effort has been devoted to evaluating the impacts of workflow variation on study conclusions. The report presented herein aims to investigate the effects of different pre-processing and variable selection strategies on the scores’ plot outputs from GC×GC-TOFMS data acquired from lavender and tea tree essential oils. Our results suggest that pre-processing, such as applying log transformation to the data set, can result in significant differentiation of sample clustering when compared to only mean centering. Additionally, exploring differences between analysis of variance, Fisher-ratio, and partial least squares-discriminant analysis feature selection resulted in little variation in scores plots. This work highlights the effects different chemometric workflows can have on results to help facilitate harmonization efforts.
Collapse
|
21
|
Pastor-Belda M, Campillo N, Arroyo-Manzanares N, Torres C, Pérez-Cárceles MD, Hernández-Córdoba M, Viñas P. Bioaccumulation of Polycyclic Aromatic Hydrocarbons for Forensic Assessment Using Gas Chromatography-Mass Spectrometry. Chem Res Toxicol 2019; 32:1680-1688. [PMID: 31304742 DOI: 10.1021/acs.chemrestox.9b00213] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered xenobiotics of a potentially carcinogenic nature, being accumulated in the fatty tissue of the body. The objective of this work was the development and validation of a new analytical method to check the bioaccumulation of these toxic compounds in human organs obtained from autopsies. The contaminants were first isolated from the tissues by salt-assisted liquid-liquid extraction in acetonitrile. Because of the low concentrations of these compounds in the human body, a dispersive liquid-liquid microextraction procedure was included. The preconcentrated samples were analyzed by gas chromatography-mass spectrometry to identify the compounds. Principal component analysis was applied to show the natural clustering of forensic samples and orthogonal partial least-squares discriminant analysis to develop a multivariate regression method, which permitted the classification of samples. The quantification limits for the 13 PAHs (acenaphthylene, fluorene, phenanthrene, anthracene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-cd)pyrene) analyzed were in the 0.06-0.44 ng g-1 range, depending on the compound, while the mean intraday relative standard deviation of about 7% demonstrated the high precision of the method. Linearity was verified in the 0.5-200 ng g-1 range, and the enrichment factors were between 55 and 122. The results provided by the analysis of seven different human organs (brain, liver, kidney, lung, heart, spleen, and abdominal fat) from eight autopsies confirmed the PAH-bioaccumulation capacity of human body, fat showing the highest degree of bioaccumulation. The present work is the first study on PAH contamination in different organs obtained from autopsies, being PAH detected in most human samples at values ranged from 0 to 19 ng g-1.
Collapse
Affiliation(s)
- Marta Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum" , University of Murcia , E-30100 Murcia , Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum" , University of Murcia , E-30100 Murcia , Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum" , University of Murcia , E-30100 Murcia , Spain
| | - Carmen Torres
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB-Arrixaca) , University of Murcia , 30120 Murcia , Spain
| | - María Dolores Pérez-Cárceles
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB-Arrixaca) , University of Murcia , 30120 Murcia , Spain
| | - Manuel Hernández-Córdoba
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum" , University of Murcia , E-30100 Murcia , Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum" , University of Murcia , E-30100 Murcia , Spain
| |
Collapse
|
22
|
Persistent organic pollutants, pesticides, and the risk of thyroid cancer: systematic review and meta-analysis. Eur J Cancer Prev 2019; 28:344-349. [DOI: 10.1097/cej.0000000000000481] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Amaral MSS, Marriott PJ. The Blossoming of Technology for the Analysis of Complex Aroma Bouquets-A Review on Flavour and Odorant Multidimensional and Comprehensive Gas Chromatography Applications. Molecules 2019; 24:E2080. [PMID: 31159223 PMCID: PMC6600270 DOI: 10.3390/molecules24112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Multidimensional approaches in gas chromatography have been established as potent tools to (almost) attain fully resolved analyses. Flavours and odours are important application fields for these techniques since they include complex matrices, and are of interest for both scientific study and to consumers. This article is a review of the main research studies in the above theme, discussing the achievements and challenges that demonstrate a maturing of analytical separation technology.
Collapse
Affiliation(s)
- Michelle S S Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
24
|
Yang L, Wang S, Peng X, Zheng M, Yang Y, Xiao K, Liu G. Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:107-115. [PMID: 30739845 DOI: 10.1016/j.scitotenv.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Clarifying the occurrences of organic chemicals in fly ash produced during industrial thermal processes is important for improving our understanding of the formation mechanisms of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs), halogenated PAHs, dioxins, and other unintentional persistent organic pollutants. We developed a highly sensitive gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap/MS) method and applied it to screening of organic pollutants in fly ash samples from multiple industrial thermal processes. The GC-Orbitrap/MS method could detect and quantify organic pollutants at part per billion (ppb) levels. In total, 96 organic chemicals, including alkanes, benzene derivatives, phenols, polycyclic aromatic hydrocarbons, and biphenyl derivatives were identified in the fly ash samples. Several organic chemicals with chlorine or bromine substituents were abundant in secondary copper smelter fly ash, and these might act as precursors for formation of dioxins, brominated dioxins, and other dioxin-like compounds. Several chlorinated and brominated PAH compounds were also found in the secondary copper smelter fly ash. PAHs were dominant chemicals in the secondary aluminum smelter fly ash samples, and were present in much higher concentrations than in the samples from other industries. This indicates that there are different chemical formation pathways in different industries. Possible formation pathways of PAHs and dioxins were investigated and deduced in this study. These results improve our understanding of the formation mechanisms of toxic unintentional persistent organic pollutants and could be useful for reducing their source emissions.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Wang
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Xing Peng
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Rozentale I, Zacs D, Bartkevics V. Application of Dopant-Assisted Atmospheric Pressure Photoionisation HPLC-MS Method for the Sensitive Determination of Polycyclic Aromatic Hydrocarbons in Dark Chocolate. J Chromatogr Sci 2019; 57:220-229. [PMID: 30395170 DOI: 10.1093/chromsci/bmy103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/16/2018] [Indexed: 11/15/2022]
Abstract
Multiple food research studies have shown that the polycyclic aromatic hydrocarbon (PAHs) are frequently found in processed cocoa products and chocolate. In a present study a method based on dopant-assisted atmospheric pressure photoionisation (DA-APPI) combined with a liquid chromatography/high-resolution mass spectrometer (HPLC-HRMS) for high-sensitivity analysis of four EU marker PAHs in dark chocolate samples was developed and fully validated according to the performance criteria set in EU guidelines. PAHs detection was achieved by HRMS in positive electrospray ionization mode with toluene used as a dopant to enhance the ionization efficiency of non-polar PAHs. The on-column instrument detection limits ranged from 0.8 to 1.2 pg for all four marker compounds. The method detection limits ranged from 0.016 to 0.024 μg kg-1 expressed on fat basis. The elaborated method was successfully applied to the analysis of four EU marker PAHs in dark chocolate samples. The presence of benzo[a]anthracene, benzo[b]fluoranthene and chrysene revealed at detectable levels in 100% of the samples, while benzo[a]pyrene was revealed in 77% of the samples, with its content ranging from 0.08 to 2.90 μg kg-1 fat.
Collapse
Affiliation(s)
- Irina Rozentale
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga, Latvia.,University of Latvia, Jelgavas Street 1, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga, Latvia.,University of Latvia, Jelgavas Street 1, Riga, Latvia
| |
Collapse
|
26
|
Bowman DT, Jobst KJ, Helm PA, Kleywegt S, Diamond ML. Characterization of Polycyclic Aromatic Compounds in Commercial Pavement Sealcoat Products for Enhanced Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3157-3165. [PMID: 30753781 DOI: 10.1021/acs.est.8b06779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coal tar-based sealcoat (CTSC) products are an urban source of polycyclic aromatic compounds (PACs) to the environment. However, efforts to assess the environmental fate and impacts of CTSC-derived PACs are hindered by the ubiquity of (routinely monitored) PACs released from other environmental sources. To advance source identification of CTSC-derived PACs, we use comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (GC × GC/HRMS) to characterize the major and minor components of CTSC products in comparison to those in other sources of PACs, viz., asphalt-based sealcoat products, diesel particulate, diesel fuel, used motor oil and roofing shingles. GC × GC/HRMS analyses of CTSC products led to the confident assignment of compounds with 88 unique elemental compositions, which includes a set of 240 individual PACs. Visualization of the resulting profiles using Kendrick mass defect plots and hierarchical cluster analysis highlighted compositional differences between the sources. Profiles of alkylated PAHs, and heteroatomic (N, O, S) PACs enabled greater specificity in source differentiation. Isomers of specific polycyclic aromatic nitrogen heterocycles (PANHs) were diagnostic for coal tar-derived PAC sources. The compounds identified and methods used for this identification are anticipated to aid in future efforts on risk assessment and source apportionment of PACs in environmental matrices.
Collapse
Affiliation(s)
- David T Bowman
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
| | - Karl J Jobst
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4M1 , Canada
| | - Paul A Helm
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
- School of the Environment , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3E8 , Canada
| | - Sonya Kleywegt
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
| | - Miriam L Diamond
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
- School of the Environment , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3E8 , Canada
| |
Collapse
|
27
|
Abstract
A novel approach to analysis of complex gaseous mixtures is presented. The approach is based on the utilization of a compact gas chromatograph in combination with an array of highly integrated and selective metal oxide (MOX) sensors. Thanks to the implementation of a multisensory detector, the device collects multiple chromatograms in a single run. The sensors in the integrated MEMS platform are very distinct in their catalytic properties. Hence, the time separation by chromatographic column is complemented by catalytic separation by a multisensory detector. Furthermore, the device can perform the analysis in a broad range of concentrations, from ppb to hundreds of ppm. Low ppb and even sub-ppb levels of detection for some analytes were achieved. As a part of this effort, nanocomposite gas sensors were synthesized for selective detection of hydrogen sulfide, mercaptans, alcohols, ketones, and heavy hydrocarbons.
Collapse
|
28
|
Bowman DT, Warren LA, McCarry BE, Slater GF. Profiling of individual naphthenic acids at a composite tailings reclamation fen by comprehensive two-dimensional gas chromatography-mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1522-1531. [PMID: 30308920 DOI: 10.1016/j.scitotenv.2018.08.317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are naturally occurring in the Athabasca oil sands region (AOSR) and accumulate in tailings as a result of water-based extraction processes. NAs exist as a complex mixture, so the development of an analytical technique to characterize them has been an on-going challenge. The aim of this study was to use comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry to monitor individual NAs within a wetland reclamation site in the AOSR. Samples were collected from four monitoring wells at the site and the extracts were found to contain numerous resolved isomers of classical (monocyclic-, bicyclic-, adamantane-, indane-, and tetralin-type carboxylic acids) and sulfur-containing NAs (thiamonocyclic- and thiophene-type carboxylic acids). The absolute abundances of the monitored NAs were compared between four monitoring wells and unique profiles were observed at each well. Few significant changes in absolute abundances were observed over the sampling period, with the exception of one well (Well 6A). In addition, isomeric percent compositions were calculated for each set of structural isomers, and one-way analysis of variance (ANOVA) and two-dimensional hierarchical cluster analysis revealed high spatial variation at the site. However, consistent distributions were observed at each of the monitoring wells for some sets of NA isomers (such as: adamantane NAs), which may be useful for forensic applications, such as identifying sources of contamination or demonstrating biodegradation. The methods and results presented in this study demonstrate the utility of monitoring individual NAs, since both changes in absolute abundances of individual NAs and the distribution of NA isomers have the ability to provide insight into their sources and the processes controlling their concentrations that are not only of relevance to the Alberta Oil Sands, but also to other petroleum deposits and environmental systems.
Collapse
Affiliation(s)
- David T Bowman
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W., Hamilton L8S 4M1, ON, Canada
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main St W., Hamilton L8S 4K1, ON, Canada; Department of Civil Engineering, University of Toronto, 35 St. George St. Toronto, ON M5S 1A4, Canada
| | - Brian E McCarry
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W., Hamilton L8S 4M1, ON, Canada
| | - Gregory F Slater
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W., Hamilton L8S 4M1, ON, Canada; School of Geography and Earth Sciences, McMaster University, 1280 Main St W., Hamilton L8S 4K1, ON, Canada.
| |
Collapse
|
29
|
A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Anal Chim Acta 2019; 1047:71-80. [DOI: 10.1016/j.aca.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 11/23/2022]
|
30
|
Baktash MY, Asem Yousefi A, Bagheri H. Implementing a superhydrophobic substrate in immersed solvent-supported microextraction as a novel strategy for determination of organic pollutants in water samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:104-110. [PMID: 30041126 DOI: 10.1016/j.ecoenv.2018.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
In this research, a new approach for extraction and determination of polycyclic aromatic hydrocarbons from sea and rain water samples was developed by implementing a superhydrophobic substrate and consuming the least amount of solvent. This version of solvent-supported microextraction enabled us to perform the procedure in the immersion mode with the slightest troubles arising from water leakage into the gas chromatography. The superhydrophobic property leads to the fixation of extracting solvent on the substrate surface during water sampling. To prepare a superhydrophobic substrate, a piece of melamine foam was coated by tannic acid and silica nanoparticles using methyltrimethoxysilane and tetramethyl orthosilicate. The morphology of the prepared foams was studied by scanning electron microscopy. The developed solvent-supported microextraction method in combination with gas chromatography-mass spectrometry was applied to the isolation and determination of some typical polycyclic aromatic hydrocarbons from aquatic media. Influential parameters such as substrate nature, extractive solvent, eluting solvent and its quantity and extraction time were investigated. The limits of detection and quantification of the method under the optimized conditions were 0.01-0.11 µg L-1 and 0.03-1.01 µg L-1, respectively. The relative standard deviations at the concentration level of 20 µg L-1 were between 3% and 14% (n = 3). The linearity of calibration curves ranged from 0.03 to 60 µg L-1. The implementation of the solvent-supported method to the analysis of real water samples was quite successful and the relative recoveries were between 88% and 107%.
Collapse
Affiliation(s)
- Mohammad Yahya Baktash
- Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Aida Asem Yousefi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
31
|
Doolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31848-31862. [PMID: 28884389 PMCID: PMC6208721 DOI: 10.1007/s11356-017-0048-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/29/2017] [Indexed: 04/12/2023]
Abstract
In Kyrgyzstan, many former storehouses and dump sites for obsolete pesticides exist. In 2009/2010, an inventory and assessment of these sites including risks of environmental hazard has been conducted by FAO and the World Bank. Monitoring revealed high concentration of pesticides listed as persistent organic pollutants (POPs). The purpose of this research was to study the microbial structural complexes of the pesticide-contaminated soils in these dumping zones, and to search for and select microorganism's destructors with cytochrome P450 genes for pesticide degradation. Culture-dependent and culture-independent approaches were used to determine the taxonomic composition of these bacterial communities. The universal primer set for the 16S ribosomal RNA (rRNA) gene and the specific primer set P450R were used to amplify the cytochrome P450 hydroxylase gene. In soils from Suzak A and B and soils from Balykchy dumping sites, the bacteria from the Actinobacteria phylum (Micrococcus genus) were dominant. These bacteria made up 32-47% of the indigenous local microflora; bacteria species from the Pseudomonas genus (Gammaproteobacteria phylum) made up 23% in Suzak, 12% in Balykchy soils. Bacillus species from the Firmicutes phylum were found only in Suzak soils. The 16S rRNA analyses and the specific primer set P450R have revealed bacteria with cytochrome genes which are directly involved in the degradation process of organic carbon compounds. Experiments were carried out to help select active degraders from the bacterial populations isolated and used to degrade Aldrin in laboratory. Active bacterial strains from the Pseudomonas fluorescens and Bacillus polymyxa population were selected which demonstrated high rates of degradation activity on Aldrin.
Collapse
Affiliation(s)
- Tinatin Doolotkeldieva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan.
| | - Maxabat Konurbaeva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan
| | - Saykal Bobusheva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan
| |
Collapse
|
32
|
Muscalu AM, Górecki T. Comprehensive two-dimensional gas chromatography in environmental analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Kędziora-Koch K, Wasiak W. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. J Chromatogr A 2018; 1565:1-18. [DOI: 10.1016/j.chroma.2018.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
|
34
|
Gruber B, Weggler B, Jaramillo R, Murrell K, Piotrowski P, Dorman F. Comprehensive two-dimensional gas chromatography in forensic science: A critical review of recent trends. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Brits M, Gorst-Allman P, Rohwer ER, De Vos J, de Boer J, Weiss JM. Comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry for screening of organohalogenated compounds in cat hair. J Chromatogr A 2018; 1536:151-162. [DOI: 10.1016/j.chroma.2017.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/06/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
|
36
|
Zhang L, Luo Y, Zhao Y, Guan B, Zhang L, Yu B, Zhang W. Silver nanoparticle-incorporated ultralong hydroxyapatite nanowires with internal reference as SERS substrate for trace environmental pollutant detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03743d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Silver nanoparticle-incorporated HAPNWs as SERS substrates exhibit unique characteristics including stability, convenience and simple and environmentally friendly preparation.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Boxin Guan
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
37
|
Strungaru SA, Nicoara M, Teodosiu C, Micu D, Plavan G. Toxic metals biomonitoring based on prey-predator interactions and environmental forensics techniques: A study at the Romanian-Ukraine cross border of the Black Sea. MARINE POLLUTION BULLETIN 2017; 124:321-330. [PMID: 28751028 DOI: 10.1016/j.marpolbul.2017.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Marine cross-border areas are ideal for monitoring pollutants so as to increase ecosystems protection. This study was conducted at the Romanian-Ukraine border of the Black Sea to reveal evidence of contamination with toxic metals based on biomonitoring of: cadmium, lead, total chromium, nickel and copper at different water depths and prey-predator interactions, combined with environmental forensics techniques of biological sampling and separation in witnesses size groups. The species used were Mytilus galloprovincialis L. and Rapana venosa V. collected at 17.5m, 28m and 35m depth. An atomic absorption spectrometer with a high-resolution continuum source and graphite furnace was used for toxic metals quantification in various samples: sediments, soft tissue, stomach content, muscular leg, hepatopancreas. The best sample type, based on the pathology of metal location and bioaccumulation, is the hepatopancreas from R. venosa that proved a significant decrease of cadmium and lead at lower depths.
Collapse
Affiliation(s)
- Stefan-Adrian Strungaru
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, 700505, Iasi, Romania
| | - Mircea Nicoara
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, 700505, Iasi, Romania
| | - Carmen Teodosiu
- "Gheorghe Asachi" Technical University of Iasi, Department of Environmental Engineering and Management, 73, "Prof. Dr. D. Mangeron" Street, 700050, Iasi, Romania.
| | - Dragos Micu
- National Institute for Marine Research and Development "Grigore Antipa", 900581, Constanta, Romania
| | - Gabriel Plavan
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, 700505, Iasi, Romania
| |
Collapse
|
38
|
Al-Alam J, Fajloun Z, Chbani A, Millet M. A multiresidue method for the analysis of 90 pesticides, 16 PAHs, and 22 PCBs in honey using QuEChERS–SPME. Anal Bioanal Chem 2017; 409:5157-5169. [DOI: 10.1007/s00216-017-0463-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/21/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022]
|
39
|
Rodríguez-Navas C, Rosende M, Miró M. In-vitro physiologically based extraction of solid materials: Do we have reliable analytical methods for bioaccessibility studies of emerging organic contaminants? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Samanipour S, Dimitriou-Christidis P, Nabi D, Arey JS. Elevated Concentrations of 4-Bromobiphenyl and 1,3,5-Tribromobenzene Found in Deep Water of Lake Geneva Based on GC×GC-ENCI-TOFMS and GC×GC-μECD. ACS OMEGA 2017; 2:641-652. [PMID: 31457461 PMCID: PMC6641002 DOI: 10.1021/acsomega.6b00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 05/31/2023]
Abstract
We quantified the concentrations of two little-studied brominated pollutants, 1,3,5-tribromobenzene (TBB) and 4-bromobiphenyl (4BBP), in the deep water column and sediments of Lake Geneva. We found aqueous concentrations of 625 ± 68 pg L-1 for TBB and 668 ± 86 pg L-1 for 4BBP over a depth range of 70-191.5 m (near-bottom depth), based on duplicate measurements taken at five depths during three separate 1 month sampling periods at our sampling site near Vidy Bay. These levels of TBB and 4BBP were 1 or 2 orders of magnitude higher than the quantified aqueous concentrations of the components of the pentabrominated biphenyl ether technical mixture, which is a flame retardant product that had a high production volume in Europe before 2001. We observed statistically significant vertical concentration trends for both TBB and 2,2',4,4',6-pentabromobiphenyl ether in the deep water column, which indicates that transport and/or degradation processes affect these compounds. These measurements were enabled by application of a comprehensive two-dimensional gas chromatograph coupled to an electron capture negative chemical ionization time-of-flight mass spectrometer (GC×GC-ENCI-TOFMS) and to a micro-electron capture detector (GC×GC-μECD). GC×GC-ENCI-TOFMS and GC×GC-μECD were found to be >10× more sensitive toward brominated pollutants than conventional GC×GC-EI-TOFMS (with an electron impact (EI) ionization source), the latter of which had insufficient sensitivity to detect these emerging brominated pollutants in the analyzed samples. GC×GC also enabled the estimation of several environmentally relevant partitioning properties of TBB and 4BBP, further confirming previous evidence that these pollutants are bioaccumulative and have long-range transport potential.
Collapse
Affiliation(s)
- Saer Samanipour
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Norwegian
Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Petros Dimitriou-Christidis
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Firmenich, Route des Jeunes 1, 1227 Les Acacias, Switzerland
| | - Deedar Nabi
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Bigelow
Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine 04544, United
States
| | - J. Samuel Arey
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
41
|
Chaudhuri S, DiScenza DJ, Smith B, Yocum R, Levine M. Array-based detection of isomeric and analogous analytes employing synthetically modified fluorophore attached β-cyclodextrin derivatives. NEW J CHEM 2017. [DOI: 10.1039/c7nj02968c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Improved selectivity and sensitivity using covalent fluorophore–cyclodextrin analogues resulted in 100% successful classification for five classes of analytes.
Collapse
Affiliation(s)
| | | | - Benjamin Smith
- Department of Chemistry
- University of Rhode Island
- Kingston
- USA
| | - Reid Yocum
- Department of Chemistry
- University of Rhode Island
- Kingston
- USA
| | - Mindy Levine
- Department of Chemistry
- University of Rhode Island
- Kingston
- USA
| |
Collapse
|
42
|
Congener specific determination of polychlorinated naphthalenes in sediment and biota by gas chromatography high resolution mass spectrometry. J Chromatogr A 2017; 1479:169-176. [DOI: 10.1016/j.chroma.2016.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
|