1
|
Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, Huang F, Yuan H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025; 313:122804. [PMID: 39236631 DOI: 10.1016/j.biomaterials.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Insulin resistance and pancreatic β-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet β-cell and enhanced pancreatic β-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Rui Tian
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Chenghong Liang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Yifan Jia
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Lingyun Zhao
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Qinyuan Xie
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China.
| |
Collapse
|
2
|
Wu C, Huang S, Liu Z, Wang Y, Zhu Y, Zang ZJ. Correlation between serum tryptophan metabolism and treatment efficacy of dapoxetine in patients with premature ejaculation: A pilot study. Andrology 2024; 12:1830-1840. [PMID: 38511846 DOI: 10.1111/andr.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Primary premature ejaculation (PPE) is a common male neurobiological disorder. Currently, there is consensus that the impairment in central serotonin (5-HT) neurotransmission constitutes a key pathogenic factor in PPE. Selective serotonin reuptake inhibitors (SSRIs) serve as the primary pharmacological intervention; however, a comprehensive elucidation of their mechanism of action remains incomplete. Owing to significant individual variability in efficacy, SSRIs exhibit a high discontinuation rate. Hence, there is an urgent need to address the selection of SSRIs for PPE treatment. OBJECTIVE This study aims to investigate the characteristics of tryptophan (TRP) metabolism in patients with PPE and to assess its influence on the efficacy of SSRIs. METHODS The exploratory study included a total of 16 patients with PPE and 16 control subjects who were healthy men without any sexual dysfunction. Upon enrollment in the study, all participants underwent a thorough medical history review and physical examination. Subsequently, their serum levels of TRP, its metabolites, large neutral amino acids (LNAAs), and metabolite ratios were assessed using a liquid chromatography-mass spectrometry (LC-MS) assay. After a period of 4 weeks of dapoxetine treatment, all patients with PPE underwent reassessment using the Premature Ejaculation Diagnostic Tool (PEDT) score and intravaginal ejaculatory latency time (IELT) test. RESULTS The ratio of serum TRP to other LNAAs (TRP/LNAAs) in patients with PPE was found to be significantly lower compared to the control group (P < 0.05). Conversely, the ratio of kynurenine to TRP (KYN/TRP) was observed to be significantly higher in the PPE patients compared to the control group (P < 0.05). Including the serum TRP/LNAAs ratio and KYN/TRP ratio in the prediction model yielded the highest prediction efficiency for PPE. There was a significant negative correlation between the ratio of TRP/LNAAs before the treatment and the IELT after 4 weeks of the treatment. Additionally, there was a significant positive correlation observed between the ratio of TRP/LNAAs before the treatment and the PEDT score after 4 weeks of the treatment. CONCLUSIONS This study demonstrates that the reduction in the TRP/LNAAs ratio and the elevation of the KYN/TRP ratio are significant characteristics associated with PPE. These findings suggest that diminished tryptophan availability in the brain and the activation of the kynurenine (KYN) pathway may play a role in the pathogenesis of PPE. The TRP/LNAAs ratio has potential as a reliable indicator of central serotonin (5-HT) levels. Considering the TRP/LNAAs ratio when selecting SSRIs for the treatment of PPE may enhance the response rate of this medication.
Collapse
Affiliation(s)
- Chenglun Wu
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengyu Huang
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Urology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| | - Zhuojie Liu
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixin Wang
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Zhaoqing Hospital, Zhaoqing, Guangdong, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Chi YY, Xiang JY, Li HM, Shi HY, Ning K, Shi C, Xiang H, Xie Q. Schisandra chinensis polysaccharide prevents alcohol-associated liver disease in mice by modulating the gut microbiota-tryptophan metabolism-AHR pathway axis. Int J Biol Macromol 2024; 282:136843. [PMID: 39461640 DOI: 10.1016/j.ijbiomac.2024.136843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Polysaccharides are one of the main active components of Schisandra chinensis and have been shown to possess diverse biological activities. In this study, we investigated the preventive effect of Schisandra chinensis polysaccharide (SCP) on alcohol-associated liver disease (ALD) by chronic-plus-binge ethanol feeding and the underlying mechanisms. The results suggest that supplementation with SCP prevents ALD by modulating gut microbiota and tryptophan (Trp) metabolism. SCP significantly enriched intestinal Lactobacillus, especially Lactobacillus reuteri, restored the content of intestinal indole derivatives (TRM, IAA, ILA, IALD) that can activate the aromatic hydrocarbon receptor (AHR), increased the colon AHR pathway activity, repaired intestinal barriers damage, reduced the circulating LPS, and inhibited the liver inflammation, oxidative stress, and lipid accumulation. The in vitro Trp metabolizing capacity was used to selected for a strain of L.reuteri whose in vitro proliferation was similarly promoted by SCP. Importantly, the gavage of the L.reuteri increased intestinal TRM content in mice. In addition, its ALD preventive effects were consistent with SCP and dependent on the colon AHR pathway. Our findings confirm that SCP may prevent ALD by mudulating the gut microbial-Trp metabolism-AHR pathway axis, suggesting that supplementation with the prebiotic SCP is an effective way to prevent ALD.
Collapse
Affiliation(s)
- Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Jun-Yan Xiang
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK.
| | - Hui-Min Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Hao-Yu Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, People's Republic of China.
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, People's Republic of China
| |
Collapse
|
4
|
Yang E, Jing S, Wang F, Wang H, Fu S, Yang L, Tian J, Golijanin DJ, El-Deiry WS, Cheng L, Wang Z. Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production. Cell Death Dis 2024; 15:688. [PMID: 39304650 DOI: 10.1038/s41419-024-07068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Mesenchymal stem cells (MSCs) in tumor microenvironment (TME) are crucial for the initiation, development, and metastasis of cancer. The impact and mechanism of MSCs on bladder cancer are uncertain. Here we analyzed 205 patient samples to explore the relationships between tumor-stroma ratio and clinicopathological features. A co-culture model and nude mouse transplantation were used to explore the biological roles and molecular mechanisms of MSCs on bladder cancer cells. We found that a high tumor-stroma ratio was significantly associated with a larger tumor size and higher T stage, pathological grade, number of vascular invasions, and poor overall survival. MSCs in TME promoted the ability of bladder cancer cells to proliferate, migrate, and invade in vitro and in vivo. Next, we demonstrated that MSCs enhance mitochondrial autophagy and mitochondrial biogenesis of bladder cancer cells, and increase energy production, thereby promoting bladder cancer cell progression. Kynurenine (Kyn) produced by MSCs could enhance mitochondrial function by activating the AMPK pathway. IDO1 inhibitor could reverse the tumor‑promoting effects of MSCs in vitro and in vivo. Our results demonstrated that tryptophan metabolites Kyn of MSCs in TME could enhance mitochondrial function by activating the AMPK pathway, thereby promoting bladder cancer cell progression.
Collapse
Affiliation(s)
- Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Fang Wang
- Medical experiment center, Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA
| | - Shengjun Fu
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Li Yang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Junqiang Tian
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China
| | - Dragan J Golijanin
- Division of Urology, Department of Surgery, The Warren Albert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA
| | - Liang Cheng
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Brown University Health, Providence, RI, USA.
- Division of Urology, Department of Surgery, The Warren Albert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA.
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital; Key Laboratory of Gansu Province for Urological Diseases; Gansu Urological Clinical Center, Lanzhou, China.
| |
Collapse
|
5
|
Tian H, Wang L, Aiken E, Ortega RJV, Hardy R, Placek L, Kozhaya L, Unutmaz D, Oh J, Yao X. Fast Targeted Metabolomics for Analyzing Metabolic Diversity of Bacterial Indole Derivatives in ME/CFS Gut Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605643. [PMID: 39131327 PMCID: PMC11312560 DOI: 10.1101/2024.07.29.605643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Disruptions in microbial metabolite interactions due to gut microbiome dysbiosis and metabolomic shifts may contribute to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and other immune-related conditions. The aryl hydrocarbon receptor (AhR), activated upon binding various tryptophan metabolites, modulates host immune responses. This study investigates whether the metabolic diversity-the concentration distribution-of bacterial indole pathway metabolites can differentiate bacterial strains and classify ME/CFS samples. A fast targeted liquid chromatography-parallel reaction monitoring method at a rate of 4 minutes per sample was developed for large-scale analysis. This method revealed significant metabolic differences in indole derivatives among B. uniformis strains cultured from human isolates. Principal component analysis identified two major components (PC1, 68.9%; PC2, 18.7%), accounting for 87.6% of the variance and distinguishing two distinct B. uniformis clusters. The metabolic difference between clusters was particularly evident in the relative contributions of indole-3-acrylate and indole-3-aldehyde. We further measured concentration distributions of indole derivatives in ME/CFS by analyzing fecal samples from 10 patients and 10 healthy controls using the fast targeted metabolomics method. An AdaBoost-LOOCV model achieved moderate classification success with a mean LOOCV accuracy of 0.65 (Control: precision of 0.67, recall of 0.60, F1-score of 0.63; ME/CFS: precision of 0.64, recall of 0.7000, F1-score of 0.67). These results suggest that the metabolic diversity of indole derivatives from tryptophan degradation, facilitated by the fast targeted metabolomics and machine learning, is a potential biomarker for differentiating bacterial strains and classifying ME/CFS samples. Mass spectrometry datasets are accessible at the National Metabolomics Data Repository (ST002308, DOI: 10.21228/M8G13Q; ST003344, DOI: 10.21228/M8RJ9N; ST003346, DOI: 10.21228/M8RJ9N).
Collapse
Affiliation(s)
- Huidi Tian
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elizabeth Aiken
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | | | - Rachel Hardy
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Lindsey Placek
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Lina Kozhaya
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Derya Unutmaz
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Julia Oh
- The Jackson Laboratory, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
7
|
Hu P, Yan X, Zeng Y, Jiang Z, Liu J, Feng WW. An UPLC-MS/MS method for targeted analysis of microbial and host tryptophan metabolism after administration of polysaccharides from Atractylodes macrocephala Koidz. in ulcerative colitis mice. J Pharm Biomed Anal 2023; 235:115585. [PMID: 37523866 DOI: 10.1016/j.jpba.2023.115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Botanic polysaccharides can be metabolized by gut microbiota into short-chain fatty acids (SCFAs) to exert extensive bioactivities, yet targeted analysis of the effect of botanic polysaccharides on other gut microbial metabolites is scarcely seen. Tryptophan metabolites such as indole and indole derivatives play import roles in health and disease development. Using polysaccharides from Atractylodes macrocephala Koidz. (AMP) in treating ulcerative colitis as the example, we checked the effects of AMP on tryptophan metabolites. After examination of pharmacological effects of AMP, we established an ultra-performance liquid chromatography coupled with mass spectrometry/mass spectrometry (UPLC-MS/MS) method to simultaneously determinate the levels of 30 tryptophan metabolites and used the method to determine the levels of these metabolites in feces and plasma. The detection results showed that 12 metabolites in feces can be detected, and 17 metabolites can be detected in plasma samples. In addition, we found out that total levels of aryl hydrocarbon receptor ligands were decreased in colitis model whereas AMP treatment can increase the levels of total ligands in both feces and plasma. The results indicated that the therapeutical effect of AMP on colitis was associated with modulation of fecal and host tryptophan metabolism. This study provides new insight into the molecular mechanisms of polysaccharides that the beneficial effects of polysaccharides can be achieved by modulating microbial tryptophan metabolism in addition to SCFAs.
Collapse
Affiliation(s)
- Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China, 610020
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China, 610020
| | - Yijia Zeng
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China, 610020; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zherui Jiang
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China, 610020
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wu-Wen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
9
|
Tagliamonte S, Barone Lumaga R, De Filippis F, Valentino V, Ferracane R, Guerville M, Gandolfi I, Barbara G, Ercolini D, Vitaglione P. Milk protein digestion and the gut microbiome influence gastrointestinal discomfort after cow milk consumption in healthy subjects. Food Res Int 2023; 170:112953. [PMID: 37316045 DOI: 10.1016/j.foodres.2023.112953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Many healthy people suffer from milk-related gastrointestinal discomfort (GID) despite not being lactose intolerant; the mechanisms underpinning such condition are unknown. This study aimed to explore milk protein digestion and related physiological responses (primary outcome), gut microbiome and gut permeability in 19 lactose-tolerant healthy nonhabitual milk consumers [NHMCs] reporting GID after consuming cow milk compared to 20 habitual milk consumers [HMCs] without GID. NHMCs and HMCs participated in a milk-load (250 mL) test, underwent blood sample collection at 6 time points over 6 h after milk consumption and collected urine samples and GID self-reports over 24 h. We measured the concentrations of 31 milk-derived bioactive peptides (BAPs), 20 amino acids, 4 hormones, 5 endocannabinoid system mediators, glucose and the dipeptidyl peptidase-IV (DPPIV) activity in blood and indoxyl sulfate in urine samples. Subjects also participated in a gut permeability test and delivered feces sample for gut microbiome analysis. Results showed that, compared to HMCs, milk consumption in NHMCs, along with GID, elicited a slower and lower increase in circulating BAPs, lower responses of ghrelin, insulin, and anandamide, a higher glucose response and serum DPPIV activity. The gut permeability of the two groups was similar, while the habitual diet, which was lower in dairy products and higher in the dietary-fibre-to-protein ratio in NHMCs, possibly shaped the gut microbiome; NHMCs exhibited lower abundance of Bifidobacteria, higher abundance of Prevotella and lower abundance of protease-coding genes, which may have reduced protein digestion, as evidenced by lower urinary excretion of indoxyl sulfate. In conclusion, the findings showed that a less efficient digestion of milk proteins, supported by a lower proteolytic capability of the gut microbiome, may explain GID in healthy people after milk consumption.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Roberta Barone Lumaga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mathilde Guerville
- Nutrition Department, Lactalis Research & Development, 35240 Retiers, France
| | - Ivana Gandolfi
- Nutrition Department, Lactalis Research & Development, 43038 Sala Baganza, Italy
| | - Giovanni Barbara
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy.
| |
Collapse
|
10
|
Jiang ZM, Zeng SL, Huang TQ, Lin Y, Wang FF, Gao XJ, Li J, Li P, Liu EH. Sinomenine ameliorates rheumatoid arthritis by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Sci Bull (Beijing) 2023:S2095-9273(23)00410-3. [PMID: 37422372 DOI: 10.1016/j.scib.2023.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 07/10/2023]
Abstract
Gut microbiota dysbiosis is associated with the development of rheumatoid arthritis (RA). Sinomenine (SIN) is an effective immunosuppressive and anti-inflammatory drug used for treating RA, but how SIN regulates gut microbiota to alleviate RA remains underexplored. To identify the critical gut microbial species and microbial metabolites associated with the RA-protective effects of SIN, the microbiota-dependent anti-RA effects of SIN were assessed by 16S rRNA gene sequencing, antibiotic treatment, and fecal microbiota transplantation. Metabolomics analysis, transcriptional analysis, and targeted bacteria/metabolites gavage were conducted to explore how SIN regulates gut microbiota to reduce the severity of RA. SIN could restore intestinal microbial balance by mainly modulating the abundance of Lactobacillus, and significantly relieve collagen-induced arthritis (CIA) symptoms in a gut microbiota-dependent manner. SIN significantly elevated microbial tryptophan metabolites indole-3-acrylic acid (IA), indole-3-propionic acid (IPA), and indole-3-acetic acid (IAA). Tryptophan metabolites supplementation could activate aryl hydrocarbon receptor (AhR) and regulate Th17/Treg balance in CIA rats. Intriguingly, SIN relieved the arthritis symptoms involving the enrichment of two beneficial anti-CIA Lactobacillus species, L. paracasei and L. casei by mono-colonization. The promising therapeutic function of SIN was mostly attributed to the activation of AhR by explicitly targeting the Lactobacillus and microbial tryptophan metabolites. The intestinal bacterium L. paracasei and L. casei may be used to reduce the severity of CIA.
Collapse
Affiliation(s)
- Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Su-Ling Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Fang-Fang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Xing-Jiao Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China.
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210003, China.
| |
Collapse
|
11
|
Liu X, Wang L, Choera T, Fang X, Wang G, Chen W, Lee YW, Mohamed SR, Dawood DH, Shi J, Xu J, Keller NP. Paralogous FgIDO genes with differential roles in tryptophan catabolism, fungal development and virulence in Fusarium graminearum. Microbiol Res 2023; 272:127382. [PMID: 37030080 DOI: 10.1016/j.micres.2023.127382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Indoleamine 2,3-dioxygenase (Ido) is a tryptophan-degrading enzyme that is widely distributed across species. Ido catalyzes the first step of tryptophan (TRP) degradation and drives the de novo synthesis of nicotinamide adenine dinucleotide (NAD+) coenzymes via the kynurenine (KYN) pathway. The budding yeast Saccharomyces cerevisiae possesses a single IDO gene (BNA2) that is responsible for NAD+ synthesis, whereas a number of fungal species contain multiple IDO genes. However, the biological roles of IDO paralogs in plant pathogens remain unclear. In the current study, we identified three FgIDOs from the wheat head blight fungus Fusarium graminearum. FgIDOA/B/C expression was significantly induced upon TRP treatment. Targeted disruption of FgIDOA and/or FgIDOB caused different levels of NAD+ auxotrophy, thus resulting in pleotropic phenotypic defects. Loss of FgIDOA resulted in abnormal conidial morphology, reduced mycelial growth, decreased virulence in wheat heads and reduced deoxynivalenol accumulation. Exogenous addition of KYN or various intermediates involved in the KYN pathway rescued auxotrophy of the mutants. Metabolomics analysis revealed shifts toward alternative TRP degradation pathways to melatonin and indole derivatives in mutants lacking FgIDOB. Upregulation of partner genes in auxotrophic mutants and the capacity to rescue the auxotroph by overexpressing a partner gene indicated functional complementation among FgIDOA/B/C. Taken together, the results of this study provide insights into differential roles in paralogous FgIDOs and how fungal TRP catabolism modulates fungal development and virulence.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Liwen Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA
| | - Xin Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wenhua Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yin-Won Lee
- School of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Giza 12622, Egypt
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA.
| |
Collapse
|
12
|
Wang L, Deng Y, Peng R, Gao J, Li Z, Zhang W, Xu J, Wang B, Wang Y, Han H, Fu X, Tian Y, Yao Q. Metabolic engineering for the biosynthesis of bis-indolylquinone terrequinone A in Escherichia coli from L-tryptophan and prenol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:34. [PMID: 36859334 PMCID: PMC9979454 DOI: 10.1186/s13068-023-02284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Terrequinone A is a bis-indolylquinone natural product with antitumor activity. Due to its unique asymmetric quinone core structure and multiple functional groups, biosynthesis is more efficient and environmentally friendly than traditional chemical synthesis. Currently, most bis-indolylquinones are obtained by direct extraction from fungi or by chemical synthesis. By focusing on the biosynthesis of terrequinone A, we hope to explore the way to synthesize bis-indolylquinones de novo using Escherichia coli as a cell factory. RESULTS In this study, a terrequinone A synthesis pathway containing the tdiA-tdiE genes was constructed into Escherichia coli and activated by a phosphopantetheinyl transferase gene sfp, enabling the strain to synthesize 1.54 mg/L of terrequinone A. Subsequently, a two-step isopentenol utilization pathway was introduced to enhance the supply of endogenous dimethylallyl diphosphate (DMAPP) in E. coli, increasing the level of terrequinone A to 20.1 mg/L. By adjusting the L-tryptophan (L-Trp)/prenol ratio, the major product could be changed from ochrindole D to terrequinone A, and the content of terrequinone A reached the highest 106.3 mg/L under the optimized culture conditions. Metabolic analysis of L-Trp indicated that the conversion of large amounts of L-Trp to indole was an important factor preventing the further improvement of terrequinone A yield. CONCLUSIONS A comprehensive approach was adopted and terrequinone A was successfully synthesized from low-cost L-Trp and prenol in E. coli. This study provides a metabolic engineering strategy for the efficient synthesis of terrequinone A and other similar bis-indolylquinones with asymmetric quinone cores. In addition, this is the first report on the de novo biosyhthesis of terrequinone A in an engineered strain.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
13
|
Intestinal Stem Cells Damaged by Deoxycholic Acid via AHR Pathway Contributes to Mucosal Barrier Dysfunction in High-Fat Feeding Mice. Int J Mol Sci 2022; 23:ijms232415578. [PMID: 36555220 PMCID: PMC9779098 DOI: 10.3390/ijms232415578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
High-fat exposure leads to impaired intestinal barrier function by disrupting the function of intestinal stem cells (ISCs); however, the exact mechanism of this phenomenon is still not known. We hypothesize that high concentrations of deoxycholic acid (DCA) in response to a high-fat diet (HFD) affect aryl hydrocarbon receptor (AHR) signalling in ISCs and the intestinal barrier. For this purpose, C57BL/6J mice feeding on a low-fat diet (LFD), an HFD, an HFD with the bile acid binder cholestyramine, and a LFD with the DCA were studied. We found that high-fat feeding induced an increase in faecal DCA concentrations. An HFD or DCA diet disrupted the differentiation function of ISCs by downregulating AHR signalling, which resulted in decreased goblet cells (GCs) and MUC2, and these changes were reversed by cholestyramine. In vitro experiments showed that DCA downregulated the differentiation function of ISCs, which was reversed by the AHR agonist 6-formylindolo [3,2-b]carbazole (FICZ). Mechanistically, DCA caused a reduction in indoleamine 2,3-dioxygenase 1 (IDO1) in Paneth cells, resulting in paracrine deficiency of the AHR ligand kynurenine in crypts. We demonstrated for the first time that DCA disrupts intestinal mucosal barrier function by interfering with AHR signalling in ISCs. Supplementation with AHR ligands may be a new therapeutic target for HFD-related impaired intestinal barrier function.
Collapse
|
14
|
A New Electrochemical Method to Determine Tryptophan in Fruit Juices: Development and Validation. Foods 2022; 11:foods11142149. [PMID: 35885391 PMCID: PMC9315539 DOI: 10.3390/foods11142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid usually found in fruit juices. Its determination is necessary for food companies because of its relation to human health. In this work, a new electrochemical method based on sonogel–carbon electrodes (SNGCEs) was developed and validated using an ultra performance liquid chromatography (UPLC) method as a reference method for the determination of Trp in fruit juices. Cyclic voltammetry (CV), chronoamperometry, and differential pulse voltammetry (DPV) techniques were applied to investigate the oxidation of Trp on a previously polarized SNGCE surface in a Britton–Robinson (BR) buffer solution at pH 3.6. The operating conditions for electroanalysis were optimized using a Box–Behnken design (BBD), obtaining an oxidation peak for Trp at 0.749 V. The linear range for this method was from 0.1 to 5 mg/L. The intraday and interday precision, expressed as a relative standard deviation (RSD), were 3.1% and 2.7%, respectively. The average recovery was 99.01%, and the limit of detection and quantitation were 0.33 and 1.09 mg/L, respectively. Therefore, from the quality analytical parameters obtained, it can be concluded that the new electrochemical method can be successfully used for the routine analysis of Trp in fruit juices. As far as we are concerned, this is the first time that a methodology for Trp determination was performed in this kind of real food matrices.
Collapse
|
15
|
Zhang QF, Xiao HM, Zhan JT, Yuan BF, Feng YQ. Simultaneous determination of indole metabolites of tryptophan in rat feces by chemical labeling assisted liquid chromatography-tandem mass spectrometry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Yue R, Chen GY, Xie G, Hao L, Guo W, Sun X, Jia W, Zhang Q, Zhou Z, Zhong W. Activation of PPARα-catalase pathway reverses alcoholic liver injury via upregulating NAD synthesis and accelerating alcohol clearance. Free Radic Biol Med 2021; 174:249-263. [PMID: 34390780 PMCID: PMC8437058 DOI: 10.1016/j.freeradbiomed.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Alcohol metabolism in the liver simultaneously generates toxic metabolites and disrupts redox balance, but the regulatory mechanisms have not been fully elucidated. The study aimed to characterize the role of PPARα in alcohol detoxification. Hepatic PPARα and catalase levels were examined in patients with severe alcoholic hepatitis. Mouse studies were conducted to determine the effect of PPARα reactivation by Wy14,643 on alcoholic hepatotoxicity and how catalase is involved in mediating such effects. Cell culture study was conducted to determine the effect of hydrogen peroxide on cellular NAD levels. We found that the protein levels of PPARα and catalase were significantly reduced in the livers of patients with severe alcoholic hepatitis. PPARα reactivation by Wy14,643 effectively reversed alcohol-induced liver damage in mice. Global and targeted metabolites analysis revealed a fundamental role of PPARα in regulating the tryptophan-NAD pathway. Notably, PPARα activation completely switched alcohol metabolism from the CYP2E1 pathway to the catalase pathway along with accelerated alcohol clearance. Catalase knockout mice were incompetent in alcohol metabolism and hydrogen peroxide clearance and were more susceptible to alcohol-induced liver injury. Hydrogen peroxide-treated hepatocytes had a reduced size of cellular NAD pool. These data demonstrate a key role of PPARα in regulating hepatic alcohol detoxification. Catalase-mediated hydrogen peroxide removal represents an underlying mechanism of how PPARα preserves the NAD pool. The study provides a new angle of view about the PPARα-catalase pathway in combating alcohol toxicity.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Guan-Yuan Chen
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Guoxiang Xie
- Shanghai Key Laboratory of Diabetes, Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Wei Jia
- Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Nutrition, and University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Nutrition, and University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| |
Collapse
|
18
|
Ning XL, Li YZ, Huo C, Deng J, Gao C, Zhu KR, Wang M, Wu YX, Yu JL, Ren YL, Luo ZY, Li G, Chen Y, Wang SY, Peng C, Yang LL, Wang ZY, Wu Y, Qian S, Li GB. X-ray Structure-Guided Discovery of a Potent, Orally Bioavailable, Dual Human Indoleamine/Tryptophan 2,3-Dioxygenase (hIDO/hTDO) Inhibitor That Shows Activity in a Mouse Model of Parkinson's Disease. J Med Chem 2021; 64:8303-8332. [PMID: 34110158 DOI: 10.1021/acs.jmedchem.1c00303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan 2,3-dioxygenase (hTDO) have been closely linked to the pathogenesis of Parkinson's disease (PD); nevertheless, development of dual hIDO1 and hTDO inhibitors to evaluate their potential efficacy against PD is still lacking. Here, we report biochemical, biophysical, and computational analyses revealing that 1H-indazole-4-amines inhibit both hIDO1 and hTDO by a mechanism involving direct coordination with the heme ferrous and ferric states. Crystal structure-guided optimization led to 23, which manifested IC50 values of 0.64 and 0.04 μM to hIDO1 and hTDO, respectively, and had good pharmacokinetic properties and brain penetration in mice. 23 showed efficacy against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse motor coordination deficits, comparable to Madopar, an anti-PD medicine. Further studies revealed that different from Madopar, 23 likely has specific anti-PD mechanisms involving lowering IDO1 expression, alleviating dopaminergic neurodegeneration, reducing inflammatory cytokines and quinolinic acid in mouse brain, and increasing kynurenic acid in mouse blood.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Brain/pathology
- Cell Line, Tumor
- Crystallography, X-Ray
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/therapeutic use
- Humans
- Indazoles/chemical synthesis
- Indazoles/metabolism
- Indazoles/therapeutic use
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Male
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Molecular Structure
- Neuroprotective Agents/chemical synthesis
- Neuroprotective Agents/metabolism
- Neuroprotective Agents/therapeutic use
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/pathology
- Protein Binding
- Structure-Activity Relationship
- Tryptophan Oxygenase/antagonists & inhibitors
- Tryptophan Oxygenase/metabolism
- Mice
Collapse
Affiliation(s)
- Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu-Zhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cui Huo
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ji Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Gao
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Xiang Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ya-Li Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zong-Yuan Luo
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Si-Yao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ling-Ling Yang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhou-Yu Wang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
20
|
Lai Y, Liu CW, Chi L, Ru H, Lu K. High-Resolution Metabolomics of 50 Neurotransmitters and Tryptophan Metabolites in Feces, Serum, and Brain Tissues Using UHPLC-ESI-Q Exactive Mass Spectrometry. ACS OMEGA 2021; 6:8094-8103. [PMID: 33817468 PMCID: PMC8014936 DOI: 10.1021/acsomega.0c05789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 05/31/2023]
Abstract
Recent evidence indicates that tryptophan metabolites and neurotransmitters are potential mediators of the microbiome-gut-brain interaction. Here, a high-resolution ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) assay was developed and validated for quantifying 50 neurotransmitters, tryptophan metabolites, and bacterial indole derivatives in mouse serum, feces, and brain. The lower limit of quantitation for the 50 compounds ranged from 0.5 to 100 nmol/L, and sample preparation procedures were adapted for individual compounds to allow quantitation within linearity of the assay with a correlation coefficient >0.99. Reproducibility was tested by intra- and interday precision and accuracy of analysis: intra- and interday precision at the lower limit of quantitation was less than 20% for all compounds, with over two-thirds of the compounds achieving an interday precision below 10%, while the interday accuracy at the lower limit of quantitation ranged from 82.3 to 128.0% for all compounds. The analyte recovery was assessed based on sample-spiked stable-isotope-labeling standards, illustrating a need to consider matrix-specific recovery discrepancies when performing interorgan comparison. Carryover was evaluated by intermittent solvent blank injection. The assay was successfully applied to determining the concentration profiles of neurotransmitter and tryptophan metabolites in serum, feces, and brain of conventionally raised specific pathogen-free (SPF) C57BL/6 mice. Our method may serve as a useful analytical resource for investigating the roles of tryptophan metabolism and neurotransmitter signaling in host-microbiota interaction.
Collapse
|
21
|
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact 2020; 335:109348. [PMID: 33278462 PMCID: PMC7710351 DOI: 10.1016/j.cbi.2020.109348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 Mpro. A search for natural, antimicrobial products with the 2-pyridone moiety was undertaken herein, and their calculated potency as inhibitors of SARS-CoV-2 Mpro was investigated. Thirty-three natural products containing the 2-pyridone scaffold were identified from the literature. An in silico methodology using AutoDock was employed to predict the binding energies and inhibition constants (Ki values) for each 2-pyridone-containing compound with SARS-CoV-2 Mpro. This consisted of molecular optimization of the 2-pyridone compound, docking of the compound with a crystal structure of SARS-CoV-2 Mpro, and evaluation of the predicted interactions and ligand-enzyme conformations. All compounds investigated bound to the active site of SARS-CoV-2 Mpro, close to the catalytic dyad (His-41 and Cys-145). Thirteen molecules had predicted Ki values <1 μM. Glu-166 formed a key hydrogen bond in the majority of the predicted complexes, while Met-165 had some involvement in the complex binding as a close contact to the ligand. Prominent 2-pyridone compounds were further evaluated for their ADMET properties. This work has identified 2-pyridone natural products with calculated potent inhibitory activity against SARS-CoV-2 Mpro and with desirable drug-like properties, which may lead to the rapid discovery of a treatment for COVID-19. 2-pyridone-scaffold is an inhibitory pharmacophore for SARS-CoV-2 Mpro. Thirty-three natural, antimicrobial products identified with 2-pyridone moiety. All 2-pyridone natural products bind to active site of SARS-CoV-2 Mproin silico. Thirteen molecules found to have potent inhibitory activity against SARS-CoV-2 Mpro. Inhibition of SARS-CoV-2 by natural 2-pyridones may lead to treatment of COVID-19.
Collapse
Affiliation(s)
- Katrina L Forrestall
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Darcy E Burley
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Meghan K Cash
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian R Pottie
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Chemistry, Faculty of Science, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Medicine (Neurology), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
22
|
Galla Z, Rajda C, Rácz G, Grecsó N, Baráth Á, Vécsei L, Bereczki C, Monostori P. Simultaneous determination of 30 neurologically and metabolically important molecules: A sensitive and selective way to measure tyrosine and tryptophan pathway metabolites and other biomarkers in human serum and cerebrospinal fluid. J Chromatogr A 2020; 1635:461775. [PMID: 33302138 DOI: 10.1016/j.chroma.2020.461775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Concurrent measurement of tyrosine, tryptophan and their metabolites, and other co-factors could help to diagnose and better understand a wide range of metabolic and neurological disorders. The two metabolic pathways are closely related to each other through co-factors, regulator molecules and enzymes. By using high performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry, we present a robust, selective and comprehensive method to determine 30 molecules within 20 min using a Waters Atlantis dC18. The method was validated according to the guideline of European Medicines Agency on bioanalytical method validation. Analytical performance met all the EMA requirements and the assay covered the relevant clinical concentrations. Linear correlation coefficients were all >0.998. Intra-day and inter-day accuracy were between 80-119% and 81-117%, precision 1-19% respectively. The method was applied to measure TYR, TRP and their metabolites, and other neurologically important molecules in human serum and CSF samples. The assay can facilitate the diagnosis and is suitable for determination of reference values in clinical laboratories.
Collapse
Affiliation(s)
- Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged.
| | - Cecília Rajda
- Department of Neurology, University of Szeged, Hungary
| | - Gábor Rácz
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged
| | - Nóra Grecsó
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged
| | - Ákos Baráth
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged
| | - László Vécsei
- Department of Neurology, University of Szeged, Hungary; Department of Neurology, MTA-SZTE Neuroscience Research Group, Interdisciplinary Excellence Centre, Faculty of Medicine, Universtiy of Szeged, Hungary
| | - Csaba Bereczki
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged
| |
Collapse
|
23
|
LC-QTOF/MS determination of tryptophan and kynurenine in infant formulas. J Pharm Biomed Anal 2020; 191:113619. [PMID: 32942102 DOI: 10.1016/j.jpba.2020.113619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
A rapid, reliable and sensitive liquid chromatography quadrupole time-of-flight mass spectrometry method for the determination of tryptophan and its metabolite kynurenine in milk formulas for neonates and infants was developed and validated. Two extraction techniques based on EMR Lipid QuEChERS and liquid-liquid extraction with diethyl ether to extract lipids and methanol to precipitate the protein were tested and compared. Four different infant formula products were randomly selected and evaluated for the effect of co-extracted matrix components on the quantitative analysis results. The influence of matrix components on analytical signals was normalized by the use of stable isotope-labeled standards and matrix-matched calibration. The developed method was found to be sensitive and effective for both analytes in all the examined infant formulas with satisfactory linearity (R2 ≥ 0.9995), recovery in the range of 75.7% ± 4.5 - 99.0% ± 1.1, and intra- and inter-day precision with the coefficient of variation below 6.3% and 17.9%, respectively. The limits of detection (LOD) and quantification (LOQ) for both compounds differed significantly between the examined formulas. The LOD and LOQ values were found to be in the range of 2.18-9.85 μg/g and 6.61-29.84 μg/g for the determination of tryptophan and in the range of 0.21-2.71 μg/g and 0.63-8.23 μg/g for the determination of kynurenine, respectively. The method was proved to be suitable for the determination of tryptophan and kynurenine in infant formulas, and it can be used to study the link between tryptophan metabolism via kynurenine pathway and metabolic disorders in infants.
Collapse
|
24
|
The effect of a selective estrogen receptor modulator – raloxifene – on the levels of tryptophan and kynurenic acid in the livers of rats as studied via RP-HPLC-FL. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2020. [DOI: 10.2478/cipms-2020-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The levels of tryptophan (TRP) and its main metabolite kynurenic acid (KYNA) were measured in rat livers treated with raloxifene – a selective estrogen receptor modulator. The research was conducted by applying high-performance liquid chromatography on a 5 μm Zorbax Eclipse XDB-C18 column. Selective fluorescence detection (FL) was performed at an excitation of 219 nm and emission of 360 nm for TRP and KYNA. The assays showed good linearity (R2 >0.95) within the tested ranges of 0.045-0.20 µg mL−1, 0.025-0.32 µg mL−1, respectively, for KYNA and TRP. The limits of the detection were found to be 0.1480 ng mL−1 for KYNA and 0.0332 ng mL-1 for TRP. The deproteinization of the liver homogenate samples was accomplished by 80% methanol addition combined with boiling precipitation. The average recovery values were between 94.84% and 99.54% with RSDs no more than 5.5%. The work revealed that raloxifene decreased the mean value of tryptophan, as compared with the control group, while simultaneously leaving kynurenic acid at the same level. For the first time the research suggests that, in the case of raloxifene therapy, tryptophan is not metabolized via the kynurenine pathway.
Collapse
|
25
|
Fan M, Lu D, You R, Chen C, Lu Y, Wu Y, Shen H, Feng S. Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and colorimetric assay. Anal Chim Acta 2020; 1119:52-59. [DOI: 10.1016/j.aca.2020.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
26
|
Setoudeh N, Jahani S, Kazemipour M, Foroughi MM, Hassani Nadiki H. Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|
28
|
Tombari RJ, Saunders CM, Wu CY, Dunlap LE, Tantillo DJ, Olson DE. Ex Vivo Analysis of Tryptophan Metabolism Using 19F NMR. ACS Chem Biol 2019; 14:1866-1873. [PMID: 31449387 DOI: 10.1021/acschembio.9b00548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tryptophan, an essential amino acid, is metabolized into a variety of small molecules capable of impacting human physiology, and aberrant tryptophan metabolism has been linked to a number of diseases. There are three principal routes by which tryptophan is degraded, and thus methods for measuring metabolic flux through these pathways can be used to understand the factors that perturb tryptophan metabolism and potentially to measure disease biomarkers. Here, we describe a method utilizing 6-fluorotryptophan as a probe for detecting tryptophan metabolites in ex vivo tissue samples via 19F nuclear magnetic resonance. As a proof of concept, we demonstrate that 6-fluorotryptophan can be used to measure changes in tryptophan metabolism resulting from antibiotic-induced changes in gut microbiota composition. Taken together, we describe a general strategy for monitoring amino acid metabolism using 19F nuclear magnetic resonance that is operationally simple and does not require chromatographic separation of metabolites.
Collapse
Affiliation(s)
- Robert J. Tombari
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Carla M. Saunders
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Chun-Yi Wu
- Bioanalysis and Pharmacokinetics Core Facility, University of California, Davis, Sacramento, California 95817, United States
| | - Lee E. Dunlap
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Center for Neuroscience, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
29
|
Prongmanee W, Alam I, Asanithi P. Hydroxyapatite/Graphene oxide composite for electrochemical detection of L-Tryptophan. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Whiley L, Nye LC, Grant I, Andreas N, Chappell KE, Sarafian MH, Misra R, Plumb RS, Lewis MR, Nicholson JK, Holmes E, Swann JR, Wilson ID. Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Quantification of Tryptophan Metabolites and Markers of Gut Health in Serum and Plasma-Application to Clinical and Epidemiology Cohorts. Anal Chem 2019; 91:5207-5216. [PMID: 30848589 PMCID: PMC6503468 DOI: 10.1021/acs.analchem.8b05884] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A targeted
ultrahigh-performance liquid chromatography tandem mass
spectrometry with electrospray ionization (UHPLC-ESI-MS/MS) method
has been developed for the quantification of tryptophan and its downstream
metabolites from the kynurenine and serotonin pathways. The assay
coverage also includes markers of gut health and inflammation, including
citrulline and neopterin. The method was designed in 96-well plate
format for application in multiday, multiplate clinical and epidemiology
population studies. A chromatographic cycle time of 7 min enables
the analysis of two 96-well plates in 24 h. To protect chromatographic
column lifespan, samples underwent a two-step extraction, using solvent
protein precipitation followed by delipidation via solid-phase extraction
(SPE). Analytical validation reported accuracy of each analyte <20%
for the lowest limit of quantification and <15% for all other quality
control (QC) levels. The analytical precision for each analyte was
2.1–12.9%. To test the applicability of the method to multiplate
and multiday preparations, a serum pool underwent periodic repeat
analysis during a run consisting of 18 plates. The % CV (coefficient
of variation) values obtained for each analyte were <15%. Additional
biological testing applied the assay to samples collected from healthy
control participants and two groups diagnosed with inflammatory bowel
disease (IBD) (one group treated with the anti-inflammatory 5-aminosalicylic
acid (5-ASA) and one group untreated), with results showing significant
differences in the concentrations of picolinic acid, kynurenine, and
xanthurenic acid. The short analysis time and 96-well plate format
of the assay makes it suitable for high-throughput targeted UHPLC-ESI-MS/MS
metabolomic analysis in large-scale clinical and epidemiological population
studies.
Collapse
Affiliation(s)
- Luke Whiley
- UK Dementia Research Institute, Burlington Danes Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom.,MRC-NIHR National Phenome Centre, IRDB Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom
| | - Leanne C Nye
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Isobelle Grant
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom.,Waters Corporation , Milford , Massachusetts 01757 , United States
| | - Nick Andreas
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Katie E Chappell
- MRC-NIHR National Phenome Centre, IRDB Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom
| | - Magali H Sarafian
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Ravi Misra
- St. Marks Hospital and Academic Institute , Watford Road , Middlesex, London HA1 3UJ , United Kingdom
| | - Robert S Plumb
- Waters Corporation , Milford , Massachusetts 01757 , United States
| | - Matthew R Lewis
- MRC-NIHR National Phenome Centre, IRDB Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom
| | - Jeremy K Nicholson
- Australian National Phenome Centre , Murdoch University , Harry Perkins Building , Perth , Western Australia 6150 , Australia
| | - Elaine Holmes
- UK Dementia Research Institute, Burlington Danes Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom.,MRC-NIHR National Phenome Centre, IRDB Building , Imperial College London , Hammersmith Hospital, London W12 0NN , United Kingdom.,Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom.,Australian National Phenome Centre , Murdoch University , Harry Perkins Building , Perth , Western Australia 6150 , Australia
| | - Jonathan R Swann
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Ian D Wilson
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, South Kensington Campus , London SW7 2AZ , United Kingdom
| |
Collapse
|
31
|
Determination of Tryptophan and Its Major Metabolites in Fluid from the Anterior Chamber of the Eye in Diabetic Patients with Cataract by Liquid Chromotography Mass Spectrometry (LC-MS/MS). Molecules 2018; 23:molecules23113012. [PMID: 30453653 PMCID: PMC6278302 DOI: 10.3390/molecules23113012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Tryptophan (TRP) is to an essential amino acid and its catabolites are significant to human health. By using ultra-high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS), levels of three major components of kynurenic pathway namely tryptophan (TRP), kynurenic acid (KYNA) and kynurenine (KYN) in fluid from the anterior chamber of the eye were determined. The analysis was carried out on a Synergi 4 μ Fusion-RP column using gradient elution mode. For quantitative determination, l-tryptophan-amino-15N, 99 ATOM % 15N was used as an internal standard. The method was linear in the concentration range 4–2000 ng mL−1 for TRP, KYNA and KYN. The mean recoveries measured at four concentration levels for TRP, KYN and KYNA included the following ranges 94.3–96.1; 91.0–95.0; and 96.0–97.6%, respectively. The intra-day precision parameters were smaller than 4.4, 6.4 and 5% respectively. The developed method was applied to study the level of TRP, KYNA and KYN in eye fluid for the retrospective case series which included 28 patients suffering from cataracts and diabetes (n = 8). The experimental data was subjected to statistical analysis. The Mann-Whitney U-test revealed clear differences in the level of TRP catabolites and the ratios of TRP/KYN representing the activities of specific enzyme of kynurenine pathway in examined groups of patients. A level of probability p < 0.05 was used throughout a paper to denote statistically significant differences between the groups.
Collapse
|