1
|
Jhulki S, Bhowmik B, Pal A. Enlightening the promising role of nanoparticle-based treatments against Naegleria fowleri-induced primary amoebic meningoencephalitis: A brain-eating disease. Microb Pathog 2025; 199:107234. [PMID: 39701479 DOI: 10.1016/j.micpath.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Naegleria fowleri, is the causative agent of Primary Amoebic Meningoencephalitis (PAM), a lethal acute brain inflammation with high mortality. The virulent and reproductively active trophozoite stage of N. fowleri migrates to central nervous system (CNS) by entering through nasal passage and causes severe neural infection, brain disease and inflammation with high mortality. In this review we present the current available information about N. fowleri, including its case reports, pathogenesis and the mechanism of host neuroinflammation associated with PAM. Various case reports reveal that the survival rate of patients with PAM is very low. Several anti-microbial, anti-parasitic and anti-inflammatory compounds such as doxycycline, amphotericin, acyclovir, miltefosine, ampicillin, ceftriaxone, azithromycin are widely used to treat PAM. Nanoparticles conjugated drug has now attracted better attention in dealing with free-living amoeba community. Conventional drugs are being conjugated with nanomaterials like gold (Au), sliver (Ag) etc. which have elicited better amoebicidal effect against N. fowleri than unconjugated drugs. This targeted strategy may prove helpful and possibly may reduce neural damage.
Collapse
Affiliation(s)
- Sunita Jhulki
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| | - Biplab Bhowmik
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| | - Aparajita Pal
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
2
|
Guerlais V, Allouch N, Moseman EA, Wojciechowska AW, Wojciechowski JW, Marcelino I. Transcriptomic profiling of "brain-eating amoeba" Naegleria fowleri infection in mice: the host and the protozoa perspectives. Front Cell Infect Microbiol 2024; 14:1490280. [PMID: 39735262 PMCID: PMC11682717 DOI: 10.3389/fcimb.2024.1490280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024] Open
Abstract
The free-living amoeba Naegleria fowleri (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates. Herein, we purified two new NF environmental isolates (NF45 and NF1) and tested their in vivo virulence using experimental infection in mice. We found that NF45 was highly virulent (NF45_HV) compared with NF1 (low virulence, NF1_LV), based on in vivo amoeba growth kinetics and mouse survival. To identify underlying differences, we conducted RNA-seq and bioinformatics analyses from the infected mouse brains. Our results showed that NF1_LV and NF45_HV modulated the expression of their genes during mouse brain infection. Differentially expressed genes (DEGs) in NF1_LV were mostly involved in Translational protein, Protein-binding activity modulator, Protein modifying enzyme, while DEGs in NF45_HV were related to DNA metabolism, Cytoskeletal protein, Protein-binding activity modulator. Proteases (namely the virulence factor Cathepsin B) were upregulated in NF1_LV, while downregulated in NF45_HV. When analyzing the host response against infection by these two NF strains, enrichment analyses uncovered genes and mechanisms related to the host immune responses and nervous systems. We detected more DEGs in NF1_LV infected mice compared to NF45_HV, related to blood brain barrier leakage, immune cell recruitment, cytokine production (including IL-6, IFN-Ɣ and TNFα), inflammation of astrocytes and microglia, and oligodendrocyte and neurons degeneration. Increased expression of neuromotor-related genes such as Adam22, Cacnb4 and Zic1 (activated by NF1_LV infection) and ChAt (activated by NF45_LV infection) could explain PAM symptoms such as muscle weakness and seizures. Globally, our results showed that NF isolated from the environment can have different levels of virulence and differentially modulate their gene expression during brain infection. We also provided, for the first time, a comprehensive information for the molecular mechanisms of neuro-immune and host-pathogen interactions during PAM disease. As the host and the protozoa are strongly implicated in PAM lethality, new therapies targeting both the parasite, and the host should be considered to treat PAM infection.
Collapse
Affiliation(s)
- Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | | | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| |
Collapse
|
3
|
Kim JH, Sohn HJ, Shin HJ, Walz SE, Jung SY. Understanding the pathogenicity of Naegleria fowleri in association with N. fowleri antigen-1 (Nfa1). PARASITES, HOSTS AND DISEASES 2024; 62:385-398. [PMID: 39622651 PMCID: PMC11614482 DOI: 10.3347/phd.24025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 12/06/2024]
Abstract
Naegleria fowleri, a brain-eating amoeba, thrives in lakes and rivers with aquatic vegetation and causes primary amoebic meningoencephalitis (PAM) in humans. Most recently, it has become such a serious problem that N. fowleri was detected in tap water in Houston, USA. Several pathogenic factors are considered very important to destroy target cells in the brain. In particular, the food-cup where N. fowleri antigen-1 (Nfa1) is located, is strongly expressed in pseudopodia involved in the movement of N. fowleri, and is involved in phagocytosis by attaching to target cells. In this article, we reviewed the role of the Nfa1 protein and its associated pathogenicity. The nfa1 gene was cloned by cDNA library immunoscreening using infection serum and immune serum. Nfa1 protein is mainly distributed in pseudopodia important to movement and vacuoles. Moreover, heat shock protein 70, cathepsin-like proteare and Nf-actin are also associated with pseudopodia in which Nfa1 is localized. Interestingly, the amount of the nfa1 gene changed as N. fowleri trophozoites transformed into cysts. Polyclonal antiserum against Nfa1 showed a protective effect against cytotoxicity of approximately 19.7%. Nfa1-specific IgA antibodies prevent N. fowleri trophozoites from adhering to the nasal mucosa, delaying invasion. The nfa1-vaccinated mice showed significantly higher levels of Nfa1-specific antibody. The duration of anti-Nfa1 IgG in the vaccinated mice lasted 12 weeks, strongly suggesting that nfa1 is a significant pathogenic gene and that Nfa1 is a pathogenic protein. Several factors related to pseudopodia and locomotion have been linked to Nfa1. A clearer function of N. fowleri targeting nfa1 with other genes might enable target-based inhibition of N. fowleri pathogenicity.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828,
Korea
| | - Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499,
Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499,
Korea
| | - Stacy E. Walz
- Department of Clinical Laboratory Sciences, Arkansas State University, PO Box 910, State University, AR 72467,
USA
| | - Suk-Yul Jung
- Department of Clinical Laboratory Sciences, Arkansas State University, PO Box 910, State University, AR 72467,
USA
| |
Collapse
|
4
|
Packirisamy V. Terpenes: nature's secret weapon against the lethal Naegleria fowleri. Nat Prod Res 2024:1-3. [PMID: 39320897 DOI: 10.1080/14786419.2024.2405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Vinitha Packirisamy
- Sustainable Energy and Environment Research Unit, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
5
|
Chao-Pellicer J, Delgado-Hernández S, Arberas-Jiménez I, Sifaoui I, Tejedor D, García-Tellado F, Piñero JE, Lorenzo-Morales J. Synthesis and Biological Evaluation of Cyanoacrylamides and 5-Iminopyrrol-2-Ones Against Naegleria fowleri. ACS Infect Dis 2024; 10:3332-3345. [PMID: 39116454 DOI: 10.1021/acsinfecdis.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Primary amoebic meningoencephalitis is caused by the free-living amoeba Naegleria fowleri. The lack of standardized treatment has significantly contributed to the high fatality rates observed in reported cases. Therefore, this study aims to explore the anti-Naegleria activity of eight synthesized cyanoacrylamides and 5-iminopyrrol-2-ones. Notably, QOET-109, QOET-111, QOET-112, and QOET-114 exhibited a higher selectivity index against Naegleria compared to those of the rest of the compounds. Subsequently, these chemicals were assessed against the resistant stage of N. fowleri, demonstrating activity similar to that observed in the vegetative stage. Moreover, characteristic events of programmed cell death were evidenced, including chromatin condensation, increased plasma membrane permeability, mitochondrial damage, and heightened oxidative stress, among others. Finally, this research demonstrated the in vitro activity of the cyanoacrylamide and 5-iminopyrrol-2-one molecules, as well as the induction of metabolic event characteristics of regulated cell death in Naegleria fowleri.
Collapse
Affiliation(s)
- Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La laguna, Tenerife, Islas Canarias 38200, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna, Tenerife, Islas Canarias 38206, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La laguna, Tenerife, Islas Canarias 38200, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La laguna, Tenerife, Islas Canarias 38200, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna, Tenerife, Islas Canarias 38206, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna, Tenerife, Islas Canarias 38206, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La laguna, Tenerife, Islas Canarias 38200, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La laguna, Tenerife, Islas Canarias 38200, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
6
|
Vidal AS, Zauli RC, Batista WL, Xander P. Extracellular vesicles release from protozoa parasite and animal model. CURRENT TOPICS IN MEMBRANES 2024; 94:85-106. [PMID: 39370214 DOI: 10.1016/bs.ctm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Diseases caused by protozoan parasites, such as leishmaniasis, trypanosomiasis, and malaria, are highly complex and together continue to cause high annual morbidity and mortality. The search for new compounds in environmental biodiversity, repositioning known drugs, and developing vaccines using old and innovative technologies have been employed to discover vaccines and new and alternative treatments. Extracellular vesicles (EVs) can carry parasite antigens, creating a new possibility to develop an effective and affordable platform for treatment, vaccines, and drug delivery. Thus, the evaluation of EVs in animal models can and should be explored among the countless biomedical applications. Herein, we will address the concept of EVs, their acquisition and characterization in protozoan parasite models, and the primary studies using these vesicles in therapeutic applications.
Collapse
Affiliation(s)
- Andrey Sladkevicius Vidal
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Rogéria Cristina Zauli
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | - Patricia Xander
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil; Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil.
| |
Collapse
|
7
|
Flores-Suárez B, Bonilla-Lemus P, Rojas-Hernández S, Terrazas-Valdés LL, Carrasco-Yépez MM. THE 72-KDA PROTEIN OF NAEGLERIA FOWLERI PLAYS AN IMPORTANT ROLE IN THE ADHESION OF TROPHOZOITES TO BALB/C MICE NASAL EPITHELIUM. J Parasitol 2024; 110:360-374. [PMID: 39134068 DOI: 10.1645/22-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Naegleria fowleri is a protozoan that causes primary amebic meningoencephalitis (PAM). The infection occurs when the trophozoites enter the nasal cavity, adhere to the nasal mucosa, invade the epithelium, and migrate until they reach the olfactory bulb. Like other pathogens, there is evidence that the adhesion of N. fowleri to host cells is an important factor in the process of cytopathogenicity and disease progression. However, the factors involved in the adhesion of the pathogen to the cells of the nasal epithelium have not been characterized. The objective of this study was to identify a protein on the surface of N. fowleri, which could act as adhesin to the mouse nasal epithelium in the PAM model. The interaction between proteins of extracts of N. fowleri and cells of the nasal epithelium of BALB/c mice was analyzed using overlay and Western blot assays. A 72-kDa band of N. fowleri interacted directly with epithelial cell proteins, this polypeptide band was purified and analyzed by mass spectrometry. Analysis revealed that polypeptide bands of 72 kDa contained peptides that matched the membrane protein, actin 1 and 2, and Hsp70. Moreover, the N. fowleri extracts resolved in 2D-SDS-PAGE showed that 72-kDa spot interacted with proteins of mouse epithelial cells, which include characteristics of the theoretical data of molecular weight and pH obtained in the analysis by mass spectrometry. Immunofluorescence tests showed that this protein is located on the surface of trophozoites and plays an important role in the adhesion of amoeba either in vitro or in vivo assays, suggesting that this protein contributes during the N. fowleri invasion and migration to the brain, causing primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- B Flores-Suárez
- Laboratorio de Microbiología Ambiental. Proyecto CyMA, UIICSE, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, C.P. 54090, Estado de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México
| | - P Bonilla-Lemus
- Laboratorio de Microbiología Ambiental. Proyecto CyMA, UIICSE, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, C.P. 54090, Estado de México, México
| | - S Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, México
| | - L L Terrazas-Valdés
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, C.P. 54090, Estado de México, México
| | - M M Carrasco-Yépez
- Laboratorio de Microbiología Ambiental. Proyecto CyMA, UIICSE, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, C.P. 54090, Estado de México, México
| |
Collapse
|
8
|
Akbar N, Siddiqui R, El-Gamal MI, Khan NA, Zaraei SO, Saeed BQ, Alharbi AM, Dash NR. Next generation imidazothiazole and imidazooxazole derivatives as potential drugs against brain-eating amoebae. Parasitol Res 2024; 123:241. [PMID: 38864931 DOI: 10.1007/s00436-024-08255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Managing primary amoebic meningoencephalitis, induced by Naegleria fowleri poses a complex medical challenge. There is currently no specific anti-amoebic drug that has proven effectiveness against N. fowleri infection. Ongoing research endeavours are dedicated to uncovering innovative treatment strategies, including the utilization of drugs and immune modulators targeting Naegleria infection. In this study, we explored the potential of imidazo[2,1-b]thiazole and imidazooxazole derivatives that incorporate sulfonate and sulfamate groups as agents with anti-amoebic properties against N. fowleri. We assessed several synthesized compounds (1f, 1m, 1q, 1s, and 1t) for their efficacy in eliminating amoebae, their impact on cytotoxicity, and their influence on the damage caused to human cerebral microvascular endothelial (HBEC-5i) cells when exposed to the N. fowleri (ATCC 30174) strain. The outcomes revealed that, among the five compounds under examination, 1m, 1q, and 1t demonstrated notable anti-parasitic effects against N. fowleri (P ≤ 0.05). Compound 1t exhibited the highest anti-parasitic activity, reducing N. fowleri population by 80%. Additionally, three compounds, 1m, 1q, and 1t, significantly mitigated the damage inflicted on host cells by N. fowleri. However, the results of cytotoxicity analysis indicated that while 1m and 1q had minimal cytotoxic effects on endothelial cells, compound 1t caused moderate cytotoxicity (34%). Consequently, we conclude that imidazo[2,1-b]thiazole and imidazooxazole derivatives containing sulfonate and sulfamate groups exhibit a marked capacity to eliminate amoebae viability while causing limited toxicity to human cells. In aggregate, these findings hold promise that could potentially evolve into novel therapeutic options for treating N. fowleri infection.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS,, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Mohammed I El-Gamal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, UAE
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Seyed-Omar Zaraei
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Balsam Qubais Saeed
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| |
Collapse
|
9
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Ali M, Rice CA, Byrne AW, Paré PE, Beauvais W. Modelling dynamics between free-living amoebae and bacteria. Environ Microbiol 2024; 26:e16623. [PMID: 38715450 DOI: 10.1111/1462-2920.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.
Collapse
Affiliation(s)
- Marwa Ali
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Christopher A Rice
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering (RHCE), Purdue University, West Lafayette, Indiana, USA
| | - Andrew W Byrne
- One Health Scientific Support Unit, National Disease Control Centre, Agriculture House, Dublin, Ireland
| | - Philip E Paré
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Wendy Beauvais
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Sohn HJ, Park AY, Lee JH, Yun KH, Song KJ, Kim JH, Shin HJ. Amoebicidal effect of chlorine dioxide gas against pathogenic Naegleria fowleri and Acanthamoeba polyphaga. Parasitol Res 2024; 123:192. [PMID: 38652173 DOI: 10.1007/s00436-024-08215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - A-Young Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Heon Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kyu-Hwa Yun
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kyoung-Ju Song
- Chunsu Mountain Medicinal Herb Research Association, Bundanggu, 13637, Republic of Korea
| | - Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
12
|
Köseoğlu AE, Özgül F, Işıksal EN, Şeflekçi Y, Tülümen D, Özgültekin B, Deniz Köseoğlu G, Özyiğit S, Ihlamur M, Ekenoğlu Merdan Y. In silico discovery of diagnostic/vaccine candidate antigenic epitopes and a multi-epitope peptide vaccine (NaeVac) design for the brain-eating amoeba Naegleria fowleri causing human meningitis. Gene 2024; 902:148192. [PMID: 38253295 DOI: 10.1016/j.gene.2024.148192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Naegleria fowleri, the brain-eating amoeba, is a free-living amoeboflagellate with three different life cycles (trophozoite, flagellated, and cyst) that lives in a variety of habitats around the world including warm freshwater and soil. It causes a disease called naegleriasis leading meningitis and primary amoebic meningoencephalitis (PAM) in humans. N. fowleri is transmitted through contaminated water sources such as insufficiently chlorinated swimming pool water or contaminated tap water, and swimmers are at risk. N. fowleri is found all over the world, and most infections were reported in both developed and developing countries with high mortality rates and serious clinical findings. Until now, there is no FDA approved vaccine and early diagnosis is urgent against this pathogen. In this study, by analyzing the N. fowleri vaccine candidate proteins (Mp2CL5, Nfa1, Nf314, proNP-A and proNP-B), it was aimed to discover diagnostic/vaccine candidate epitopes and to design a multi-epitope peptide vaccine against this pathogen. After the in silico evaluation, three prominent diagnostic/vaccine candidate epitopes (EAKDSK, LLPHIRILVY, and FYAKLLPHIRILVYS) with the highest antigenicities were discovered and a potentially highly immunogenic/antigenic multi-epitope peptide vaccine (NaeVac) was designed against the brain-eating amoeba N. fowleri causing human meningitis.
Collapse
Affiliation(s)
- Ahmet Efe Köseoğlu
- Duisburg-Essen University, Faculty of Chemistry, Department of Environmental Microbiology and Biotechnology, Essen, Germany.
| | - Filiz Özgül
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Elif Naz Işıksal
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey; Biruni University, Faculty of Pharmacy, Department of Pharmacy, Istanbul, Turkey
| | - Yusuf Şeflekçi
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Deniz Tülümen
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Buminhan Özgültekin
- Bogaziçi University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | | | - Sena Özyiğit
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Murat Ihlamur
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey; Yıldız Technical University, Graduate School of Science and Engineering, Department of Bioengineering, Istanbul, Turkey
| | - Yağmur Ekenoğlu Merdan
- Biruni University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
13
|
Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Ann Med Surg (Lond) 2024; 86:2032-2048. [PMID: 38576920 PMCID: PMC10990330 DOI: 10.1097/ms9.0000000000001843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.
Collapse
Affiliation(s)
| | - Nawal Khaliq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rabbia Munsab
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Hafsa Shah
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
14
|
Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A. Nanoparticle-Terpene Fusion: A Game-Changer in Combating Primary Amoebic Meningoencephalitis Caused by Naegleria fowleri. ACS OMEGA 2024; 9:11597-11607. [PMID: 38497026 PMCID: PMC10938409 DOI: 10.1021/acsomega.3c08844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 03/19/2024]
Abstract
Pathogenic Naegleria fowleri (N. fowleri) are opportunistic free-living amoebae and are the causative agents of a very rare but severe brain infection called primary amoebic meningoencephalitis (PAM). The fatality rate of PAM in reported cases is more than 95%. Most of the drugs used againstN. fowleri infections are repurposed drugs. Therefore, a large number of compounds have been tested againstN. fowleri in vitro, but most of the tested compounds showed high toxicity and an inability to cross the blood-brain barrier. Andrographolide, forskolin, and borneol are important natural compounds that have shown various valuable biological properties. In the present study, the nanoconjugates (AND-AgNPs, BOR-AgNPs, and FOR-AgNPs) of these compounds were synthesized and assessed against both stages (trophozoite and cyst) ofN. fowleri for their antiamoebic and cysticidal potential in vitro. In addition, cytotoxicity and host cell pathogenicity were also evaluated in vitro. FOR-AgNPs were the most potent nanoconjugate and showed potent antiamoebic activity againstN. fowleriwith an IC50 of 26.35 μM. Nanoconjugates FOR-AgNPs, BOR-AgNPs, and AND-AgNPs also significantly inhibit the viability of N. fowleri cysts. Cytotoxicity assessment showed that these nanoconjugates caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 μg/mL, while also effectively reducing the cytopathogenicity of N. fowleri trophozoites to the HaCaT cells. The outcomes of our experiments have unveiled substantial potential for AND-AgNPs, BOR-AgNPs, and FOR-AgNPs in the realm of developing innovative alternative therapeutic agents to combat infections caused by N. fowleri. This study represents a significant step forward in the pursuit of advanced strategies for managing such amoebic infections, laying the foundation for the development of novel and more effective therapeutic modalities in the fight against free-living amoebae.
Collapse
Affiliation(s)
- Kavitha Rajendran
- School
of American Education, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Usman Ahmed
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Alexia Chloe Meunier
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology
Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Orange 2800, New South Wales, Australia
| | - Ruqaiyyah Siddiqui
- Department
of Microbiota Research Centre, Istinye University, Istanbul 34010, Turkey
| | - Ayaz Anwar
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
15
|
Arberas-Jiménez I, Rodríguez-Expósito RL, Sifaoui I, Chao-Pellicer J, Sancho L, Urruticoechea A, Piñero JE, Lorenzo-Morales J. Influence of salt and temperature in the growth of pathogenic free-living amoebae. Front Microbiol 2024; 15:1356452. [PMID: 38426057 PMCID: PMC10902715 DOI: 10.3389/fmicb.2024.1356452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Free-living amoebae are an extensive group of protistans that can be found in a wide variety of environments. Among them, the Acanthamoeba genus and Naegleria fowleri stand out as two of the most pathogenic amoebae and with a higher number of reported cases. N. fowleri is mainly found in warm freshwater water bodies whereas amoebae of the Acanthamoeba genus are broadly distributed through natural and anthropogenic environments. In this regard, the management and the control of the amoebic populations in swimming pools has become a major public health challenge for institutions. Methods The aim of this work was to evaluate the growth pattern of trophozoites of A. griffini and N. fowleri at different temperatures and salt concentrations. Results and discussion Our results showed that A. griffini resisted a higher concentration of salt than N. fowleri. Moreover, no trophozoites could withstand the salt levels of the sea in in vitro conditions. This work supports the contention that salinity could represent an important and useful tool for the control of the most pathogenic amoebic populations in recreational water bodies.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Luis Sancho
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal, Donostia-San Sebastían, Spain
- Universidad de Navarra, Tecnun, Manuel Lardizabal, Donostia-San Sebastían, Spain
| | | | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Retana Moreira L, Cornet-Gomez A, Sepulveda MR, Molina-Castro S, Alvarado-Ocampo J, Chaves Monge F, Jara Rojas M, Osuna A, Abrahams Sandí E. Providing an in vitro depiction of microglial cells challenged with immunostimulatory extracellular vesicles of Naegleria fowleri. Front Microbiol 2024; 15:1346021. [PMID: 38374922 PMCID: PMC10876093 DOI: 10.3389/fmicb.2024.1346021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a rapid and acute infection of the central nervous system with a fatal outcome in >97% of cases. Due to the infrequent report of cases and diagnostic gaps that hinder the possibility of recovering clinic isolates, studies related to pathogenesis of the disease are scarce. However, the secretion of cytolytic molecules has been proposed as a factor involved in the progression of the infection. Several of these molecules could be included in extracellular vesicles (EVs), making them potential virulence factors and even modulators of the immune response in this infection. In this work, we evaluated the immunomodulatory effect of EVs secreted by two clinic isolates of Naegleria fowleri using in vitro models. For this purpose, characterization analyses between EVs produced by both isolates were first performed, for subsequent gene transcription analyses post incubation of these vesicles with primary cultures from mouse cell microglia and BV-2 cells. Analyses of morphological changes induced in primary culture microglia cells by the vesicles were also included, as well as the determination of the presence of nucleic acids of N. fowleri in the EV fractions. Results revealed increased expression of NOS, proinflammatory cytokines IL-6, TNF-α, and IL-23, and the regulatory cytokine IL-10 in primary cultures of microglia, as well as increased expression of NOS and IL-13 in BV-2 cells. Morphologic changes from homeostatic microglia, with small cellular body and long processes to a more amoeboid morphology were also observed after the incubation of these cells with EVs. Regarding the presence of nucleic acids, specific Naegleria fowleri DNA that could be amplified using both conventional and qPCR was confirmed in the EV fractions. Altogether, these results confirm the immunomodulatory effects of EVs of Naegleria fowleri over microglial cells and suggest a potential role of these vesicles as biomarkers of primary acute meningoencephalitis.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - M. Rosario Sepulveda
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Silvia Molina-Castro
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Johan Alvarado-Ocampo
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Frida Chaves Monge
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariana Jara Rojas
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
17
|
Sharma V, Madia VN, Tudino V, Nguyen JV, Debnath A, Messore A, Ialongo D, Patacchini E, Palenca I, Basili Franzin S, Seguella L, Esposito G, Petrucci R, Di Matteo P, Bortolami M, Saccoliti F, Di Santo R, Scipione L, Costi R, Podust LM. Miconazole-like Scaffold is a Promising Lead for Naegleria fowleri-Specific CYP51 Inhibitors. J Med Chem 2023; 66:17059-17073. [PMID: 38085955 PMCID: PMC10758121 DOI: 10.1021/acs.jmedchem.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 μM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Vandna Sharma
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Center for Discovery
and Innovation in Parasitic Diseases, University
of California San Diego, La Jolla, California 92093, United States
| | - Valentina Noemi Madia
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Valeria Tudino
- Dipartimento
di Biotecnologie, Università degli
Studi di Siena, Chimica e Farmacia via Aldo Moro 2, Siena 53100, Italy
| | - Jennifer V. Nguyen
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Center for Discovery
and Innovation in Parasitic Diseases, University
of California San Diego, La Jolla, California 92093, United States
| | - Anjan Debnath
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Center for Discovery
and Innovation in Parasitic Diseases, University
of California San Diego, La Jolla, California 92093, United States
| | - Antonella Messore
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Davide Ialongo
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Elisa Patacchini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Irene Palenca
- Department
of Physiology and Pharmacology “V. Erspamer”, “Sapienza″ Università di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Silvia Basili Franzin
- Department
of Physiology and Pharmacology “V. Erspamer”, “Sapienza″ Università di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Luisa Seguella
- Department
of Physiology and Pharmacology “V. Erspamer”, “Sapienza″ Università di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Giuseppe Esposito
- Department
of Physiology and Pharmacology “V. Erspamer”, “Sapienza″ Università di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Rita Petrucci
- Dipartimento
di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via Castro Laurenziano 7, Rome 00161, Italy
| | - Paola Di Matteo
- Dipartimento
di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via Castro Laurenziano 7, Rome 00161, Italy
| | - Martina Bortolami
- Dipartimento
di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, Via Castro Laurenziano 7, Rome 00161, Italy
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian
Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Roberto Di Santo
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Luigi Scipione
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Roberta Costi
- Dipartimento
di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci
Bolognetti, “Sapienza” Università
di Roma, p.le Aldo Moro 5, Rome I-00185, Italy
| | - Larissa M. Podust
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Center for Discovery
and Innovation in Parasitic Diseases, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Yuan A, Fong H, Nguyen JV, Nguyen S, Norman P, Cullum R, Fenical W, Debnath A. High-Throughput Screen of Microbial Metabolites Identifies F 1F O ATP Synthase Inhibitors as New Leads for Naegleria fowleri Infection. ACS Infect Dis 2023; 9:2622-2631. [PMID: 37943251 DOI: 10.1021/acsinfecdis.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Primary amebic meningoencephalitis (PAM), a brain infection caused by a free-living ameba Naegleria fowleri, leads to an extensive inflammation of the brain and death within 1-18 (median 5) days after symptoms begin. Although natural products have played a significant role in the development of drugs for over a century, research focusing on identifying new natural product-based anti-N. fowleri agents is limited. We undertook a large-scale ATP bioluminescence-based screen of about 10,000 unique marine microbial metabolite mixtures against the trophozoites of N. fowleri. Our screen identified about 100 test materials with >90% inhibition at 50 μg/mL and a dose-response study found 20 of these active test materials exhibiting an EC50 ranging from 0.2 to 2 μg/mL. Examination of four of these potent metabolite mixtures, derived from our actinomycete strains CNT671, CNT756, and CNH301, resulted in the isolation of a pure metabolite identified as oligomycin D. Oligomycin D exhibited nanomolar potency on multiple genotypes of N. fowleri, and it was five- or 850-times more potent than the recommended drugs amphotericin B or miltefosine. Oligomycin D is fast-acting and reached its EC50 in 10 h, and it was also able to inhibit the invasiveness of N. fowleri significantly when tested on a matrigel invasion assay. Since oligomycin is known to manifest inhibitory activity against F1FO ATP synthase, we tested different F1FO ATP synthase inhibitors and identified a natural peptide leucinostatin as a fast-acting amebicidal compound with nanomolar potency on multiple strains.
Collapse
Affiliation(s)
- Alice Yuan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Hayley Fong
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jennifer V Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sophia Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Payton Norman
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A. Natural Terpenes Inhibit the Cytopathogenicity of Naegleria fowleri Causing Primary Amoebic Meningoencephalitis in the Human Cell Line Model. ACS Chem Neurosci 2023; 14:4105-4114. [PMID: 37983556 DOI: 10.1021/acschemneuro.3c00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Naegleria fowleri is one of the free-living amoebae and is a causative agent of a lethal and rare central nervous system infection called primary amoebic meningoencephalitis. Despite the advancement in antimicrobial chemotherapy, the fatality rate in the reported cases is more than 95%. Most of the treatment drugs used against N. fowleri infection are repurposed drugs. Therefore, a large number of compounds have been tested against N. fowleri in vitro, but most of the compounds showed high toxicity. To overcome this, we evaluated the effectiveness of naturally occurring terpene compounds against N. fowleri. In this study, we evaluated the antiamoebic potential of natural compounds including Thymol, Borneol, Andrographolide, and Forskolin againstN. fowleri. Thymol showed the highest amoebicidal activity with IC50/24 h at 153.601 ± 19.6 μM. Two combinations of compounds Forskolin + Thymol and Forskolin + Borneol showed a higher effect on the viability of trophozoites as compared to compounds alone and hence showed a synergistic effect. The IC50 reported for Forskolin + Thymol was 81.30 ± 6.86 μM. Borneol showed maximum cysticidal activity with IC50/24 h at 192.605 ± 3.01 μM. Importantly, lactate dehydrogenase release testing revealed that all compounds displayed minimal cytotoxicity to human HaCaT, HeLa, and SH-SY5Y cell lines. The cytopathogenicity assay showed that Thymol and Borneol also significantly reduced the host cell cytotoxicity of pretreated amoeba toward the human HaCaT cell line. So, these terpene compounds hold potential as therapeutic agents against infections caused by N. fowleri and are potentially a step forward in drug development against this deadly pathogen as these compounds have also been reported to cross the blood-brain barrier. Therefore, an in vivo study using animal models is necessary to assess the efficacy of these compounds and the need for further research into the intranasal route of delivery for the treatment of these life-threatening infections.
Collapse
Affiliation(s)
- Kavitha Rajendran
- School of American Education (SAE), Sunway University, Subang Jaya, Selangor 47500, Malaysia
| | - Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor 47500, Malaysia
| | - Alexia Chloe Meunier
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange New South Wales, 2800, Australia
| | - Ruqaiyyah Siddiqui
- Department of Microbiota Research Centre, Istinye University, Istanbul 34010, Turkey
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor 47500, Malaysia
| |
Collapse
|
20
|
Akbar N, Siddiqui R, El-Gamal MI, Zaraei SO, Alawfi BS, Khan NA. The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri. Parasitol Res 2023; 122:2539-2548. [PMID: 37665414 DOI: 10.1007/s00436-023-07953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 μM, while 1k inhibited 50% amoebae growth at 23.31 μM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
| | - Mohammed I El-Gamal
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Bader S Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
21
|
Nadeem A, Malik IA, Afridi EK, Shariq F. Naegleria fowleri outbreak in Pakistan: unveiling the crisis and path to recovery. Front Public Health 2023; 11:1266400. [PMID: 37927850 PMCID: PMC10620794 DOI: 10.3389/fpubh.2023.1266400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
The outbreak of Naegleria fowleri in Pakistan presents a significant public health concern due to its high fatality rate and limited treatment options. This review explores the impact of the outbreak on communities and the challenges faced in combating the disease. It evaluates available treatment options and highlights the need for early diagnosis and intervention. The study proposes recommendations to improve public health preparedness, including public awareness campaigns, enhanced healthcare infrastructure, and robust water surveillance systems. Collaboration between research institutions and public health organizations is emphasized to develop effective outbreak response strategies.
Collapse
Affiliation(s)
- Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Inshal Arshad Malik
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Eesha Khan Afridi
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Fariha Shariq
- Department of Medicine, Karachi Medical and Dental College, Karachi, Sindh, Pakistan
| |
Collapse
|
22
|
Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, Naegleria fowleri. Front Microbiol 2023; 14:1264348. [PMID: 37808283 PMCID: PMC10558758 DOI: 10.3389/fmicb.2023.1264348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction As global temperatures rise to unprecedented historic levels, so too do the latitudes of habitable niches for the pathogenic free-living amoeba, Naegleria fowleri. This opportunistic parasite causes a rare, but >97% fatal, neurological infection called primary amoebic meningoencephalitis. Despite its lethality, this parasite remains one of the most neglected and understudied parasitic protozoans. Methods To better understand amoeboid intercellular communication, we elucidate the structure, proteome, and potential secretion mechanisms of amoeba-derived extracellular vesicles (EVs), which are membrane-bound communication apparatuses that relay messages and can be used as biomarkers for diagnostics in various diseases. Results and Discussion Herein we propose that N. fowleri secretes EVs in clusters from the plasma membrane, from multivesicular bodies, and via beading of thin filaments extruding from the membrane. Uptake assays demonstrate that EVs are taken up by other amoebae and mammalian cells, and we observed a real-time increase in metabolic activity for mammalian cells exposed to EVs from amoebae. Proteomic analysis revealed >2,000 proteins within the N. fowleri-secreted EVs, providing targets for the development of diagnostics or therapeutics. Our work expands the knowledge of intercellular interactions among these amoebae and subsequently deepens the understanding of the mechanistic basis of PAM.
Collapse
Affiliation(s)
- A. Cassiopeia Russell
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Peter Bush
- School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, Davis, CA, United States
| | - Dennis E. Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
23
|
Rojo JU, Rajendran R, Salazar JH. Laboratory Diagnosis of Primary Amoebic Meningoencephalitis. Lab Med 2023; 54:e124-e132. [PMID: 36638160 DOI: 10.1093/labmed/lmac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Primary amebic meningoencephalitis (PAM) is a fulminant fatal human disease caused by the free-living amoeba Naegleria fowleri. Infection occurs after inhalation of water containing the amoeba, typically after swimming in bodies of warm freshwater. N. fowleri migrates to the brain where it incites meningoencephalitis and cerebral edema leading to death of the patient 7 to 10 days postinfection. Although the disease is rare, it is almost always fatal and believed to be underreported. The incidence of PAM in countries other than the United States is unclear and possibly on track to being an emerging disease. Poor prognosis is caused by rapid progression, suboptimal treatment, and underdiagnosis. As diagnosis is often performed postmortem and testing is only performed by a few laboratories, more accessible testing is necessary. This article reviews the current methods used in the screening and confirmation of PAM and makes recommendations for improved diagnostic practices and awareness.
Collapse
Affiliation(s)
- Juan U Rojo
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| | - Rajkumar Rajendran
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| | - Jose H Salazar
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| |
Collapse
|
24
|
Lê HG, Kang JM, Võ TC, Yoo WG, Na BK. Naegleria fowleri Extracellular Vesicles Induce Proinflammatory Immune Responses in BV-2 Microglial Cells. Int J Mol Sci 2023; 24:13623. [PMID: 37686429 PMCID: PMC10487526 DOI: 10.3390/ijms241713623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) of protozoan parasites have diverse biological functions that are essential for parasite survival and host-parasite interactions. In this study, we characterized the functional properties of EVs from Naegleria fowleri, a pathogenic amoeba that causes a fatal brain infection called primary amoebic meningoencephalitis (PAM). N. fowleri EVs (NfEVs) have been shown to be internalized by host cells such as C6 glial cells and BV-2 microglial cells without causing direct cell death, indicating their potential roles in modulating host cell functions. NfEVs induced increased expression of proinflammatory cytokines and chemokines such as TNF-α, IL-1α, IL-1β, IL-6, IL-17, IFN-γ, MIP-1α, and MIP-2 in BV-2 microglial cells; these increases were initiated via MyD88-dependent TLR-2/TLR-4. The production levels of proinflammatory cytokines and chemokines in NfEVs-stimulated BV-2 microglial cells were effectively downregulated by inhibitors of MAPK, NF-κB, or JAK-STAT. Phosphorylation levels of JNK, p38, ERK, p65, JAK-1, and STAT3 were increased in NfEVs-stimulated BV-2 microglial cells but were effectively suppressed by each corresponding inhibitor. These results suggest that NfEVs could induce proinflammatory immune responses in BV-2 microglial cells via the NF-κB-dependent MAPK and JAK-STAT signaling pathways. Taken together, these findings suggest that NfEVs are pathogenic factors involved in the contact-independent pathogenic mechanisms of N. fowleri by inducing proinflammatory immune responses in BV-2 microglial cells, further contributing to deleterious inflammation in infected foci by activating subsequent inflammation cascades in other brain cells.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea (J.-M.K.); (T.C.V.); (W.G.Y.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea (J.-M.K.); (T.C.V.); (W.G.Y.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea (J.-M.K.); (T.C.V.); (W.G.Y.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea (J.-M.K.); (T.C.V.); (W.G.Y.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea (J.-M.K.); (T.C.V.); (W.G.Y.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
25
|
Velle KB, Garner RM, Beckford TK, Weeda M, Liu C, Kennard AS, Edwards M, Fritz-Laylin LK. A conserved pressure-driven mechanism for regulating cytosolic osmolarity. Curr Biol 2023; 33:3325-3337.e5. [PMID: 37478864 PMCID: PMC10529079 DOI: 10.1016/j.cub.2023.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tatihana K Beckford
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Makaela Weeda
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Chunzi Liu
- Department of Applied Mathematics, Harvard University, Cambridge, MA 02138, USA
| | - Andrew S Kennard
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Marc Edwards
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | | |
Collapse
|
26
|
Siddiqui R, Yee Ong TY, Maciver S, Khan NA. Can Amphotericin B-mediated effects be limited using intranasal versus intravenous route? Ther Deliv 2023; 14:485-490. [PMID: 37691579 DOI: 10.4155/tde-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Aim: CNS infections due to parasites often prove fatal. In part, this is due to inefficacy of drugs to cross the blood-brain barrier. Methods: Here, we tested intranasal and intravenous route and compared adverse effects of Amphotericin B administration, through blood biochemistry, liver, kidney and brain histopathological evidence of toxicities in vivo post-administration. Results: It was observed that intranasal route limits the adverse side effects of Amphotericin B, in contrast to intravenous route. Conclusion: As parasites such as Naegleria fowleri exhibit unequivocal affinity toward the olfactory bulb and frontal lobe in the central nervous system, intranasal administration would directly reach amoebae bypassing the blood-brain barrier selectivity and achieve the minimum inhibitory concentration at the target site.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, Sharjah - United Arab Emirates
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Timothy Yu Yee Ong
- Department of Biological Sciences, School of Science & Technology, Sunway University, Bandar Sunway, Malaysia
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| |
Collapse
|
27
|
Arberas-Jiménez I, Rodríguez-Expósito RL, San Nicolás-Hernández D, Chao-Pellicer J, Sifaoui I, Díaz-Marrero AR, Fernández JJ, Piñero JE, Lorenzo-Morales J. Marine Meroterpenoids Isolated from Gongolaria abies-marina Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals (Basel) 2023; 16:1010. [PMID: 37513922 PMCID: PMC10384572 DOI: 10.3390/ph16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Naegleria fowleri is the causative agent of a central nervous system affecting disease called primary amoebic meningoencephalitis. It is a fulminant disease with a rapid progression that affects mainly children and young adults who report previous water exposure. Current treatment options are not totally effective and involve several side effects. In this work, six meroterpenoids isolated from the brown algae Gongolaria abies-marina were evaluated against N. fowleri. Gongolarone B (1), 6Z-1'-methoxyamentadione (2), and 1'-methoxyamentadione (3) were the most active molecules against N. fowleri with IC50 values between 13.27 ± 0.96 µM and 21.92 ± 1.60 µM. However, cystomexicone B (6) was the molecule with the highest selectivity index (>8.5). Moreover, all these compounds induced different cellular events compatible with the apoptosis-like PCD process, such as chromatin condensation, damages at the mitochondrial level, cell membrane disruption, and production of reactive oxygen species (ROS). Therefore, G. abies-marina could be considered as a promising source of active molecules to treat the N. fowleri infections.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
28
|
Gajula SN, Nalla LV. Fighting with brain-eating amoeba: challenges and new insights to open a road for the treatment of Naegleria fowleri infection. Expert Rev Anti Infect Ther 2023; 21:1277-1279. [PMID: 37750324 DOI: 10.1080/14787210.2023.2263644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Siva Nageswararao Gajula
- Department of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
29
|
Arberas-Jiménez I, Cen-Pacheco F, Chao-Pellicer J, Sifaoui I, Rizo-Liendo A, Morales EQ, Daranas AH, Díaz-Marrero AR, Piñero JE, Fernández JJ, Lorenzo-Morales J. Identification and characterization of novel marine oxasqualenoid yucatecone against Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2023; 22:61-71. [PMID: 37270868 PMCID: PMC10258243 DOI: 10.1016/j.ijpddr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 μM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Facultad de Bioanálisis, Universidad Veracruzana (UV), Agustín de Iturbide s/n, Centro, Veracruz, 91700, Mexico
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Ezequiel Q Morales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Antonio H Daranas
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| |
Collapse
|
30
|
Che X, He Z, Tung TH, Xia H, Lu Z. Diagnosis of primary amoebic meningoencephalitis by metagenomic next-generation sequencing: A case report. Open Life Sci 2023; 18:20220579. [PMID: 37250842 PMCID: PMC10224627 DOI: 10.1515/biol-2022-0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 05/31/2023] Open
Abstract
Primary amoebic meningoencephalitis (PAM) caused by Naegleria fowleri is a fatal infection with a mortality rate of more than 95%, despite advances in antimicrobial chemotherapy and supportive care. Initial manifestations of PAM are indistinguishable from bacterial meningitis. Prompt diagnosis and antifungal treatment may help decline the overall mortality. Here we present a case of a 38-year-old man transferred to our hospital due to mild headache, which deteriorated quickly. Severe increased intracranial pressure was found. The cerebrospinal fluid (CSF) was yellowish with significantly increased leukocyte and protein. Smear and culture were negative. The patient was first diagnosed with pyogenic meningoencephalitis. However, the symptoms deteriorated. Metagenomic next-generation sequencing (mNGS) of CSF was applied and finally confirmed N. fowleri as the protist pathogen within 24 h. However, due to the time cost of sampling and transportation (2 days), the diagnosis came too late, and the patient passed away 1 day before. In summary, mNGS is a rapid and accurate diagnostic method for clinical practices, especially for rare central nervous system infections. It should be used as quickly as possible for acute infections, such as PAM. All aspects of patient interrogation and prompt identification should be paramount to ensure appropriate treatment and decline the overall mortality.
Collapse
Affiliation(s)
- Xiujuan Che
- Department of Neurology, Neurointensive Care Unit, The Maoming People’s Hospital, Maoming 525000, Guangdong Province, China
| | - Zhiyi He
- Department of Neurology, Neurointensive Care Unit, The Maoming People’s Hospital, Maoming 525000, Guangdong Province, China
| | - Tao-Hsin Tung
- Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd, Beijing, 100000, China
| | - Zhibao Lu
- Department of Neurology, Neurointensive Care Unit, The Maoming People’s Hospital, Maoming 525000, Guangdong Province, China
| |
Collapse
|
31
|
Chao-Pellicer J, Arberas-Jiménez I, Delgado-Hernández S, Sifaoui I, Tejedor D, García-Tellado F, Piñero JE, Lorenzo-Morales J. Cyanomethyl Vinyl Ethers Against Naegleria fowleri. ACS Chem Neurosci 2023. [PMID: 37167960 DOI: 10.1021/acschemneuro.3c00110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Naegleria fowleri is a pathogenic amoeba that causes a fulminant and rapidly progressive disease affecting the central nervous system called primary amoebic meningoencephalitis (PAM). Moreover, the disease is fatal in more than 97% of the reported cases, mostly affecting children and young people after practicing aquatic activities in nontreated fresh and warm water bodies contaminated with these amoebae. Currently, the treatment of primary amoebic meningoencephalitis is based on a combination of different antibiotics and antifungals, which are not entirely effective and lead to numerous side effects. In the recent years, research against PAM is focused on the search of novel, less toxic, and fully effective antiamoebic agents. Previous studies have reported the activity of cyano-substituted molecules in different protozoa. Therefore, the activity of 46 novel synthetic cyanomethyl vinyl ethers (QOET-51 to QOET-96) against two type strains of N. fowleri (ATCC 30808 and ATCC 30215) was determined. The data showed that QOET-51, QOET-59, QOET-64, QOET-67, QOET-72, QOET-77, and QOET-79 were the most active molecules. In fact, the selectivity index (CC50/IC50) was sixfold higher when compared to the activities of the drugs of reference. In addition, the mechanism of action of these compounds was studied, with the aim to demonstrate the induction of a programmed cell death process in N. fowleri.
Collapse
Affiliation(s)
- Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| |
Collapse
|
32
|
Siddiqui R, Boghossian A, Kawish M, Jabri T, Shah MR, Anuar TS, Al-Shareef Z, Khan NA. Nanocarrier Drug Conjugates Exhibit Potent Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Properties. Diseases 2023; 11:diseases11020058. [PMID: 37092440 PMCID: PMC10123729 DOI: 10.3390/diseases11020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023] Open
Abstract
Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, PuncakAlam Campus, Selangor 42300, Malaysia
| | - Zainab Al-Shareef
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
33
|
Rojas-Ortega DA, Rojas-Hernández S, Sánchez-Mendoza ME, Gómez-López M, Sánchez-Camacho JV, Rosales-Cruz E, Yépez MMC. Role of FcγRIII in the nasal cavity of BALB/c mice in the primary amebic meningoencephalitis protection model. Parasitol Res 2023; 122:1087-1105. [PMID: 36913025 PMCID: PMC10009362 DOI: 10.1007/s00436-023-07810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Different mechanisms of the host immune response against the primary amebic meningoencephalitis (PAM) in the mouse protection model have been described. It has been proposed that antibodies opsonize Naegleria fowleri trophozoites; subsequently, the polymorphonuclear cells (PMNs) surround the trophozoites to avoid the infection. FcγRs activate signaling pathways of adapter proteins such as Syk and Hck on PMNs to promote different effector cell functions which are induced by the Fc portion of the antibody-antigen complexes. In this work, we analyzed the activation of PMNs, epithelial cells, and nasal passage cells via the expression of Syk and Hck genes. Our results showed an increment of the FcγRIII and IgG subclasses in the nasal cavity from immunized mice as well as Syk and Hck expression was increased, whereas in the in vitro assay, we observed that when the trophozoites of N. fowleri were opsonized with IgG anti-N. fowleri and interacted with PMN, the expression of Syk and Hck was also increased. We suggest that PMNs are activated via their FcγRIII, which leads to the elimination of the trophozoites in vitro, while in the nasal cavity, the adhesion and consequently infection are avoided.
Collapse
Affiliation(s)
- Diego Alexander Rojas-Ortega
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - María Elena Sánchez-Mendoza
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Modesto Gómez-López
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Jennifer Viridiana Sánchez-Camacho
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Erika Rosales-Cruz
- Laboratorio de Investigación en Hematopatología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | | |
Collapse
|
34
|
Abdelnasir S, Mungroo MR, Chew J, Siddiqui R, Khan NA, Ahmad I, Shahabuddin S, Anwar A. Applications of Polyaniline-Based Molybdenum Disulfide Nanoparticles against Brain-Eating Amoebae. ACS OMEGA 2023; 8:8237-8247. [PMID: 36910978 PMCID: PMC9996588 DOI: 10.1021/acsomega.2c06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Primary amoebic meningoencephalitis and granulomatous amoebic encephalitis are distressing infections of the central nervous system caused by brain-eating amoebae, namely, Naegleria fowleri and Acanthamoeba spp., respectively, and present mortality rates of over 90%. No single drug has been approved for use against these infections, and current therapy is met with an array of obstacles including high toxicity and limited specificity. Thus, the development of alternative effective chemotherapeutic agents for the management of infections due to brain-eating amoebae is a crucial requirement to avert future mortalities. In this paper, we synthesized a conducting polymer-based nanocomposite entailing polyaniline (PANI) and molybdenum disulfide (MoS2) and explored its anti-trophozoite and anti-cyst potentials against Acanthamoeba castellanii and Naegleria fowleri. The intracellular generation of reactive oxygen species (ROS) and ultrastructural appearances of amoeba were also evaluated with treatment. Throughout, treatment with the 1:2 and 1:5 ratios of PANI/MoS2 at 100 μg/mL demonstrated significant anti-amoebic effects toward A. castellanii as well as N. fowleri, appraised to be ROS mediated and effectuate physical alterations to amoeba morphology. Further, cytocompatibility toward human keratinocyte skin cells (HaCaT) and primary human corneal epithelial cells (pHCEC) was noted. For the first time, polymer-based nanocomposites such as PANI/MoS2 are reported in this study as appealing options in the drug discovery for brain-eating amoebae infections.
Collapse
Affiliation(s)
- Sumayah Abdelnasir
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Mohammad Ridwane Mungroo
- Department
of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, Amsterdam 1105 AZ, The Netherlands
| | - Jactty Chew
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department
of Biology, Chemistry and Environmental Sciences, College of Arts
and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Faculty
of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Naveed Ahmed Khan
- Department
of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
- Department
of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi
Arabia
| | - Syed Shahabuddin
- Department
of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382426, India
- Faculty of
Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah, Shah Alam 40450, Malaysia
| | - Ayaz Anwar
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
35
|
Velle KB, Garner RM, Beckford TK, Weeda M, Liu C, Kennard AS, Edwards M, Fritz-Laylin LK. A conserved pressure-driven mechanism for regulating cytosolic osmolarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.529730. [PMID: 36909496 PMCID: PMC10002747 DOI: 10.1101/2023.03.01.529730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Rikki M. Garner
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | | | | | - Chunzi Liu
- Department of Applied Mathematics, Harvard University, Cambridge, MA
| | - Andrew S. Kennard
- Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Marc Edwards
- Department of Biology, Amherst College, Amherst, MA
| | | |
Collapse
|
36
|
Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop 2023; 239:106824. [PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Mehwish Manzoor
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sehrish Qureshi
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Muzna Mazhar
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Arj Fatima
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Mehwish Hamid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
37
|
Ahmad Zamzuri M‘AI, Abd Majid FN, Mihat M, Ibrahim SS, Ismail M, Abd Aziz S, Mohamed Z, Rejali L, Yahaya H, Abdullah Z, Hassan MR, Dapari R, Mohd Isa AM. Systematic Review of Brain-Eating Amoeba: A Decade Update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3021. [PMID: 36833715 PMCID: PMC9964342 DOI: 10.3390/ijerph20043021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Primary amoebic meningoencephalitis (PAM) is a rare but lethal infection of the brain caused by a eukaryote called Naegleria fowleri (N. fowleri). The aim of this review is to consolidate the recently published case reports of N. fowleri infection by describing its epidemiology and clinical features with the goal of ultimately disseminating this information to healthcare personnel. METHODS A comprehensive literature search was carried out using PubMed, Web of Science, Scopus, and OVID databases until 31 December 2022 by two independent reviewers. All studies from the year 2013 were extracted, and quality assessments were carried out meticulously prior to their inclusion in the final analysis. RESULTS A total of 21 studies were selected for qualitative analyses out of the 461 studies extracted. The cases were distributed globally, and 72.7% of the cases succumbed to mortality. The youngest case was an 11-day-old boy, while the eldest was a 75-year-old. Significant exposure to freshwater either from recreational activities or from a habit of irrigating the nostrils preceded onset. The symptoms at early presentation included fever, headache, and vomiting, while late sequalae showed neurological manifestation. An accurate diagnosis remains a challenge, as the symptoms mimic bacterial meningitis. Confirmatory tests include the direct visualisation of the amoeba or the use of the polymerase chain reaction method. CONCLUSIONS N. fowleri infection is rare but leads to PAM. Its occurrence is worldwide with a significant risk of fatality. The suggested probable case definition based on the findings is the acute onset of fever, headache, and vomiting with meningeal symptoms following exposure to freshwater within the previous 14 days. Continuous health promotion and health education activities for the public can help to improve knowledge and awareness prior to engagement in freshwater activities.
Collapse
Affiliation(s)
| | - Farah Nabila Abd Majid
- Department of Psychiatry, Hospital Canselor Tuanku Muhriz, Faculty of Medicine, National University of Malaysia Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Massitah Mihat
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Siti Salwa Ibrahim
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Muhammad Ismail
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Suriyati Abd Aziz
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Zuraida Mohamed
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Lokman Rejali
- Negeri Sembilan State Health Department, Jalan Rasah, Seremban 70300, Malaysia
| | - Hazlina Yahaya
- Public Health Division, Ministry of Health Malaysia, Putrajaya 62000, Malaysia
| | - Zulhizzam Abdullah
- Public Health Division, Ministry of Health Malaysia, Putrajaya 62000, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, National University of Malaysia Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmat Dapari
- Department of Community Health, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abd Majid Mohd Isa
- Faculty of Education and Liberal Arts, INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| |
Collapse
|
38
|
Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA. Modular nanotheranostic agents for protistan parasitic diseases: Magic bullets with tracers. Mol Biochem Parasitol 2023; 253:111541. [PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
Collapse
Affiliation(s)
- Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
39
|
Dereeper A, Allouch N, Guerlais V, Garnier M, Ma L, De Jonckheere JF, Joseph SJ, Ali IKM, Talarmin A, Marcelino I. Naegleria genus pangenome reveals new structural and functional insights into the versatility of these free-living amoebae. Front Microbiol 2023; 13:1056418. [PMID: 36817109 PMCID: PMC9928731 DOI: 10.3389/fmicb.2022.1056418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Laurence Ma
- Institut Pasteur de Paris, Biomics, Paris, France
| | | | - Sandeep J. Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Ibne Karim M. Ali
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France,*Correspondence: Isabel Marcelino,
| |
Collapse
|
40
|
Espinosa-García V, Fernandez JJ, Nicolás-Hernández DS, Arberas-Jiménez I, Rodríguez-Expósito RL, Souto ML, Piñero JE, Mendoza G, Lorenzo-Morales J, Trigos Á. Antiparasitic Activity of Compounds Isolated from Ganoderma tuberculosum (Agaricomycetes) from Mexico. Int J Med Mushrooms 2023; 25:63-72. [PMID: 37824406 DOI: 10.1615/intjmedmushrooms.2023049446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The genus Ganoderma has a long history of use in traditional Asiatic medicine due to its different nutritional and medicinal properties. In Mexico, the species G. tuberculosum is used in indigenous communities, for example, the Wixaritari and mestizos of Villa Guerrero Jalisco for the treatment of diseases that may be related to parasitic infections; however, few chemical studies corroborate its traditional medicinal potential. Thereby, the objective of this study was to isolate and identify anti-parasitic activity compounds from a strain of G. tuberculosum native to Mexico. From the fruiting bodies of G. tuberculosum (GVL-21) a hexane extract was obtained which was subjected to guided fractioning to isolate pure compounds. The in vitro anti-parasitic activity of the pure compound (IC50) was assayed against Leishmania amazonensis, Trypanosoma cruzi, Acanthamoeba castellanii Neff, and Naegleria fowleri. Furthermore, the cytotoxicity (CC50) of the isolated compounds was determined against murine macrophages. The guided fractioning produced 5 compounds: ergosterol (1), ergosta-4,6,8(14),22-tetraen-3-one (2), ergosta-7,22-dien-3β-ol (3), 3,5-dihydroxy-ergosta-7,22-dien-6-one (4), and ganoderic acid DM (5). Compounds 2 and 5 showed the best anti-parasitic activity in an IC50 range of 54.34 ± 8.02 to 12.38 ± 2.72 µM against all the parasites assayed and low cytotoxicity against murine macrophages. The present study showed for the first time the in vitro anti-parasitic activity of compounds 1-5 against L. amazonensis, T. cruzi, A. castellanii Neff, and N. fowleri, corroborating the medicinal potential of Ganoderma and its traditional applications.
Collapse
Affiliation(s)
- Victoria Espinosa-García
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, 91090 Xalapa, Veracruz, México
| | - Jose J Fernandez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - María L Souto
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Guillermo Mendoza
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Ángel Trigos
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
41
|
Mrva M, Borovičková T, Garajová M. First isolation of Leptomyxa (Amoebozoa, Leptomyxida) from endozoic conditions: an interaction between two common soil organisms. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- M. Mrva
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - T. Borovičková
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - M. Garajová
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
42
|
Siddiqui R, El-Gamal MI, Boghossian A, Saeed BQ, Oh CH, Abdel-Maksoud MS, Alharbi AM, Alfahemi H, Khan NA. Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:1515. [PMID: 36358170 PMCID: PMC9686523 DOI: 10.3390/antibiotics11111515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri's viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri's viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Mohammed I. El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Balsam Qubais Saeed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seongbuk-gu, Seoul 02792, Korea
- Department of Biomolecular Sciences, University of Science & Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Mohammed S. Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
43
|
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR, Castillo-Ramírez DA, Rosales-Cruz É, Rojas-Hernández S. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res 2022; 121:3287-3303. [PMID: 36125528 PMCID: PMC9485797 DOI: 10.1007/s00436-022-07660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Estado de México, Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Tlalnepantla de Baz, México
| | - Ismael Vásquez-Moctezuma
- Laboratorio de Bioquímica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Gema Ramírez- Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Diego Arturo Castillo-Ramírez
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - Érika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México.
| |
Collapse
|
44
|
Leal dos Santos D, Chaúque BJM, Virginio VG, Cossa VC, Pettan-Brewer C, Schrekker HS, Rott MB. Occurrence of Naegleria fowleri and their implication for health - a look under the One Health approaches. Int J Hyg Environ Health 2022; 246:114053. [DOI: 10.1016/j.ijheh.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
45
|
Arberas-Jiménez I, Rizo-Liendo A, Sifaoui I, Chao-Pellicer J, Piñero JE, Lorenzo-Morales J. A Fluorometric Assay for the In Vitro Evaluation of Activity against Naegleria fowleri Cysts. Microbiol Spectr 2022; 10:e0051522. [PMID: 35862997 PMCID: PMC9430148 DOI: 10.1128/spectrum.00515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM) is a lethal and rapid infection that affects the central nervous system and is caused by the free-living amoeba Naegleria fowleri. The life cycle of this protozoa consists of three different stages: The trophozoite, flagellate and cyst stages. Currently, no fully effective molecules have been found to treat PAM. In the search of new antiamoebic molecules, most of the efforts have focused on the trophozoidal activity of the compounds. However, there are no reports on the effect of the compounds on the N. fowleri cyst viability. In the present study, the cysticidal activity of four different molecules was evaluated using an alamarBlue based fluorometric assay. All the tested compounds were active against the cyst stage of N. fowleri. In fact, all the molecules except the amphotericin B, showed highest activity toward the cyst stage than the trophozoite stage. This work could be an effective protocol to select molecules with cysticidal and trophozoidal activity that can be considered a future PAM treatment. IMPORTANCE In the search of new anti-Naegleria fowleri compounds, most of the works focus on the activity of different molecules against the trophozoite stage; however, none of them include the effect of those compounds on the cyst viability. This manuscript presents a solid and reliable assay to evaluate the activity of compounds against the cyst stage of N. fowleri.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Akbar N, Kaman WE, Sarink M, Nazmi K, Bikker FJ, Khan NA, Siddiqui R. Novel Antiamoebic Tyrocidine-Derived Peptide against Brain-Eating Amoebae. ACS OMEGA 2022; 7:28797-28805. [PMID: 36033708 PMCID: PMC9404165 DOI: 10.1021/acsomega.2c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Acanthamoeba castellanii (A. castellanii) can cause Acanthamoeba keratitis, a sight-threatening infection, as well as a fatal brain infection termed granulomatous amoebic encephalitis, mostly in immunocompromised individuals. In contrast, Naegleria fowleri (N. fowleri) causes a deadly infection involving the central nervous system, recognized as primary amoebic encephalitis, mainly in individuals partaking in recreational water activities or those with nasal exposure to contaminated water. Worryingly, mortality rates due to these infections are more than 90%, suggesting the need to find alternative therapies. In this study, antiamoebic activity of a peptide based on the structure of the antibiotic tyrocidine was evaluated against A. castellanii and N. fowleri. The tyrocidine-derived peptide displayed significant amoebicidal efficacy against A. castellanii and N. fowleri. At 250 μg/mL, the peptide drastically reduced amoebae viability up to 13% and 21% after 2 h of incubation against N. fowleri and A. castellanii., whereas, after 24 h of incubation, the peptide showed 86% and 94% amoebicidal activity against A. castellanii and N. fowleri. Furthermore, amoebae pretreated with 100 μg/mL peptide inhibited 35% and 53% A. castellanii and N. fowleri, while, at 250 μg/mL, 84% and 94% A. castellanii and N. fowleri failed to adhere to human cells. Amoeba-mediated cell cytopathogenicity assays revealed 31% and 42% inhibition at 100 μg/mL, while at 250 μg/mL 75% and 86% A. castellanii and N. fowleri were inhibited. Assays revealed inhibition of encystation in both A. castellanii (58% and 93%) and N. fowleri (73% and 97%) at concentrations of 100 and 250 μg/mL respectively. Importantly, tyrocidine-derived peptide depicted minimal cytotoxicity to human cells and, thus, may be a potential candidate in the rational development of a treatment regimen against free-living amoebae infections. Future studies are necessary to elucidate the in vivo effects of tyrocidine-derived peptide against these and other pathogenic amoebae of importance.
Collapse
Affiliation(s)
- Noor Akbar
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| | - Wendy E. Kaman
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Maarten Sarink
- Erasmus MC, University Medical Center
Rotterdam, Department
of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015
CE Rotterdam, The Netherlands
| | - Kamran Nazmi
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J. Bikker
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Naveed Ahmed Khan
- Department
of Clinical Sciences, College of Medicine, University of Sharjah, University
City, Sharjah 27272, Unites Arab Emirates
| | - Ruqaiyyah Siddiqui
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
47
|
Lê HG, Kang JM, Võ TC, Na BK. Naegleria fowleri Cathepsin B Induces a Pro-Inflammatory Immune Response in BV-2 Microglial Cells via NF-κB and AP-1 Dependent-MAPK Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158388. [PMID: 35955520 PMCID: PMC9369353 DOI: 10.3390/ijms23158388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Naegleria fowleri is a ubiquitous protozoa parasite that can cause primary amoebic meningoencephalitis (PAM), a fatal brain infection in humans. Cathepsin Bs of N. fowleri (NfCBs) are multifamily enzymes. Although their pathogenic mechanism in PAM is not clearly understood yet, NfCBs have been proposed as pathogenic factors involved in the pathogenicity of amoeba. In this study, the immune response of BV-2 microglial cells induced by NfCB was analyzed. Recombinant NfCB (rNfCB) evoked enhanced expressions of TLR-2, TLR-4, and MyD88 in BV-2 microglial cells. This enzyme also induced an elevated production of several pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1β, and IL-6 and iNOS in cells. The inhibition of mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK, effectively reduced the production of these pro-inflammatory cytokines. The rNfCB-induced production of pro-inflammatory cytokines in BV-2 microglial cells was suppressed by inhibiting NF-kB and AP-1. Phosphorylation and nuclear translocation of p65 in cells were also enhanced by rNfCB. These results suggest that NfCB can induce a pro-inflammatory immune response in BV-2 microglial cells via the NF-κB- and AP-1-dependent MAPK signaling pathways. Such a NfCB-induced pro-inflammatory immune response in BV-2 microglial cells might contribute to the pathogenesis of PAM caused by amoeba, by exacerbating deleterious immune responses and tissue damages in N. fowleri-infected foci of the brain.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Correspondence:
| |
Collapse
|
48
|
Aykur M, Dirim Erdogan D, Selvi Gunel N, Guler A, Biray Avci C, Celebisoy N, Gunduz C, Dagci H. Genotyping and Molecular Identification of Acanthamoeba Genotype T4 and Naegleria fowleri from Cerebrospinal Fluid Samples of Patients in Turkey: Is it the Pathogens of Unknown Causes of Death? Acta Parasitol 2022; 67:1372-1383. [PMID: 35864411 DOI: 10.1007/s11686-022-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE This study was aimed to investigate the presence of pathogenic free-living amoebae (FLA) in suspected cases of meningoencephalitis with unknown causes of death in Turkey. METHOD A total of 92 patients, who were diagnosed as meningoencephalitis, were enrolled. All cerebrospinal fluid (CSF) samples were directly microscopically examined and cultured. Acanthamoeba, N. fowleri and B. mandrillaris were further investigated using molecular diagnostic tools including real-time PCR, sequencing, and phylogenetic analyses. RESULTS The examined CSF samples were not found positive for the presence of FLA by microscopic examination and culture method. However, two CSF samples were detected positive by real-time PCR assay. Of the positive CSF samples, one was identified as Acanthamoeba genotype T4 and the second positive sample was identified as N. fowleri belonging to genotype II. Furthermore, the pathogens diagnoses was verified through Sanger sequencing. CONCLUSION This study was significant to report the presence of Acanthamoeba genotype T4 and N. fowleri genotype II in CSF samples by real-time PCR assay. The present study shows the significance of primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) as one of the differential diagnoses to be considered by clinicians during the evaluation of suspected meningoencephalitis or cases of unknown cause in Turkey. Using real-time PCR, this has made the rapid detection, in a short time-frame, of Acanthamoeba and N. fowleri in CSF samples from patients. The problems with qPCR is that it is not available in every laboratory, reagents are expensive, and it requires skilled and expert personnel to set up these assays.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey. .,Department of Parasitology, Faculty of Medicine, Tokat Gaziosmanpaşa University, PO Box 60030, Tokat, Turkey.
| | - Derya Dirim Erdogan
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Ayse Guler
- Department of Neurology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Nese Celebisoy
- Department of Neurology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Hande Dagci
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| |
Collapse
|
49
|
Bosch DE, Jeck WR, Siderovski DP. Self-activating G protein α subunits engage seven-transmembrane Regulator of G protein Signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. J Biol Chem 2022; 298:102167. [PMID: 35738399 PMCID: PMC9283941 DOI: 10.1016/j.jbc.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein-centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein-coupled receptors (GPCRs), heterotrimeric G protein subunits, Regulator of G protein Signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e. "self-activating" behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop (P-loop) also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in Naegleria fowleri.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - William R Jeck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
50
|
Real-Time PCR Confirmation of a Fatal Case of Primary Amoebic Meningoencephalitis in Turkey Caused by Naegleria fowleri or Brain-Eating Amoeba. Acta Parasitol 2022; 67:697-704. [PMID: 35020127 DOI: 10.1007/s11686-021-00514-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM), is a free-living amoeba. It is a water-borne infection usually detected in children and young people with healthy immune system who swim, dive and perform activities in fresh and hot springs. PURPOSE In this study, it was aimed to raise awareness in the differential diagnosis of meningitis etiopathogenesis by showing that N. fowleri may also be the causative agent, albeit very rarely, in meningitis cases in Turkey. METHODS Our case was an 18-year-old male patient whose relatives stated that he has gone to the hot spring; his headache complaint started after 2 to 3 days after return from the hot spring. Cerebrospinal fluid (CSF) sample taken from the patient was investigated by direct microscopic examination, real-time PCR method and sequence analysis. RESULTS The CSF sample collected was taken into distilled water considering the possibility of transformation of trophozoites to intermediate form and incubated at 37 °C for 1 to 2 h, and pear-shaped non-permanent flagellated forms were observed in the direct microscopic examination, and molecular typing was performed to confirm the diagnosis. This study was a comprehensive case of N. fowleri whose etiological agent was isolated and confirmed by real-time PCR in Turkey. CONCLUSION Clinician awareness would be the key factor in correctly diagnosing PAM. It is also recommended to investigate all likely environmental water sources in Turkey for more detailed information on the distribution and molecular identification of Naegleria species, ultimately to evaluate the potential pathogenic threat to human health and to develop strategies to combat such threats.
Collapse
|