1
|
Li J, Ahmed HH, Hussein AM, Kaur M, Jameel MK, Kaur H, Tillaeva U, Al-Hussainy AF, Sameer HN, Hameed HG, Idan AH, Alsaikhan F, Narmani A, Farhood B. Advances in polysaccharide-based materials for biomedical and pharmaceutical applications: A comprehensive review. Arch Pharm (Weinheim) 2025; 358:e2400854. [PMID: 39651831 DOI: 10.1002/ardp.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Polysaccharides, the most abundant biopolymers in nature, have attracted the attention of researchers and clinicians due to its practicality in biomedical and pharmaceutical sciences. These biomaterials have high bioavailability and play structural and functional roles in living organisms. Polysaccharides are classified into several groups based on their origin, including plant polysaccharides and marine polysaccharides (like chitosan, hyaluronic acid, dextran, alginates, etc.) with specific applications. These biopolymers possess unique physicochemical (such as surface functional groups, solubility, and stability), mechanical (like mechanical strength and tensile), and biomedical (such as antioxidant activity, biocompatibility, biodegradability, renewability, and non-immunogenicity) characteristics which have made them excellent platforms for a wide variety of biomedical and pharmaceutical applications. Ease of extraction and different preparation approaches are mentioned as other potential properties of polysaccharides that further improved their practicality in biomedical sciences. They have high drug/bioactive encapsulation capacity and sustained/controlled release manner in in vivo microenvironments. The anti-inflammatory and immunomodulation, stimuli-responsive drug/bioactive release, and passive and active drug/bioactive delivery are considered the potential features of these biopolymers in pharmaceutical sciences. Polysaccharides have indicated practical applications in biomedical sciences, including biosensors, tissue engineering, implantation, wound healing, vascular grafting, and vaccines. This review highlights the advances of polysaccharide-based materials in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Cognitive Neuroscience and Philosophy, University of Skovde, Skovde, Sweden
| | | | - Ali M Hussein
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mohammed Khaleel Jameel
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Zhang Z, Zeng J, Matsusaki M. Fabrication of Fully Positively Charged Layer-by-Layer Polyelectrolyte Nanofilms with pH-Dependent Swelling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018029 DOI: 10.1021/acs.langmuir.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nanofilms fabricated by layer-by-layer (LbL) assembly from polyelectrolytes (PEs) are important materials for various applications. However, PE films cannot retain the charges along the polymer chains during fabrication, resulting in a low charge density. In this study, the preparation of LbL nanofilms with preserved positive charges via a controllable and efficient approach was achieved. To fabricate fully positively charged (FPC) LbL nanofilms, a polycation, poly-l-lysine, was partially grafted with azide and alkyne groups. Through copper-catalyzed azide-alkyne cycloaddition and the LbL procedure, nanofilms were fabricated with all of the individual layers covalently bonded, improving the pH stability of the nanofilms. Because the resulting nanofilms had a high charge density with positive charges both inside and on the surface, they showed unique pH-dependent swelling properties and adsorption of negatively charged molecules compared with those of traditional polyelectrolyte LbL nanofilms. This kind of FPC nanofilm has great potential for use in sensors, diagnostics, and filter nanomaterials in the biomedical and environmental fields.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Bagnol R, Siverino C, Barnier V, O'Mahony L, Grijpma DW, Eglin D, Moriarty TF. Physicochemical Characterization and Immunomodulatory Activity of Polyelectrolyte Multilayer Coatings Incorporating an Exopolysaccharide from Bifidobacterium longum. Biomacromolecules 2023; 24:5589-5604. [PMID: 37983925 DOI: 10.1021/acs.biomac.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunoregulatory polysaccharides from probiotic bacteria have potential in biomedical engineering. Here, a negatively charged exopolysaccharide from Bifidobacterium longum with confirmed immunoregulatory activity (EPS624) was applied in multilayered polyelectrolyte coatings with positively charged chitosan. EPS624 and coatings (1, 5, and 10 layers and alginate-substituted) were characterized by the zeta potential, dynamic light scattering, size exclusion chromatography, scanning electron microscopy, and atomic force microscopy. Peripheral blood mononuclear cells (hPBMCs) and fibroblasts were exposed for 1, 3, 7, and 10 days with cytokine secretion, viability, and morphology as observations. The coatings showed an increased rugosity and exponential growth mode with an increasing number of layers. A dose/layer-dependent IL-10 response was observed in hPBMCs, which was greater than EPS624 in solution and was stable over 7 days. Fibroblast culture revealed no toxicity or metabolic change after exposure to EPS624. The EPS624 polyelectrolyte coatings are cytocompatible, have immunoregulatory properties, and may be suitable for applications in biomedical engineering.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Davos Platz 7270, Switzerland
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | | | - Vincent Barnier
- UMR 5307 LGF, CNRS, Mines Saint-Etienne, Centre SMS, Saint-Etienne F-42023, France
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork TH12 HW58, Ireland
| | - Dirk W Grijpma
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - David Eglin
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
- Univ Jean Monnet, INSERM, Mines Saint-Étienne, U1059 Sainbiose, Saint-Étienne F-42023, France
| | | |
Collapse
|
4
|
Park J, Jung N, Lee DJ, Oh S, Kim S, Cho SW, Kim JE, Moon HS, Park YB. Enhanced Bone Formation by Rapidly Formed Bony Wall over the Bone Defect Using Dual Growth Factors. Tissue Eng Regen Med 2023; 20:767-778. [PMID: 37079199 PMCID: PMC10352230 DOI: 10.1007/s13770-023-00534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND In guided bone regeneration (GBR), there are various problems that occur in the bone defect after the wound healing period. This study aimed to investigate the enhancement of the osteogenic ability of the dual scaffold complex and identify the appropriate concentration of growth factors (GF) for new bone formation based on the novel GBR concept that is applying rapid bone forming GFs to the membrane outside of the bone defect. METHODS Four bone defects with a diameter of 8 mm were formed in the calvaria of New Zealand white rabbits each to perform GBR. Collagen membrane and biphasic calcium phosphate (BCP) were applied to the bone defects with the four different concetration of BMP-2 or FGF-2. After 2, 4, and 8 weeks of healing, histological, histomorphometric, and immunohistochemical analyses were conducted. RESULTS In the histological analysis, continuous forms of new bones were observed in the upper part of bone defect in the experimental groups, whereas no continuous forms were observed in the control group. In the histomorphometry, The group to which BMP-2 0.5 mg/ml and FGF-2 1.0 mg/ml was applied showed statistically significantly higher new bone formation. Also, the new bone formation according to the healing period was statistically significantly higher at 8 weeks than at 2, 4 weeks. CONCLUSION The novel GBR method in which BMP-2, newly proposed in this study, is applied to the membrane is effective for bone regeneration. In addition, the dual scaffold complex is quantitatively and qualitatively advantageous for bone regeneration and bone maintenance over time.
Collapse
Affiliation(s)
- Jaehan Park
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Narae Jung
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
- Department of Clinical Dentistry, BK21 FOUR Project, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Hong Seok Moon
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Young-Bum Park
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Sousa CFV, Monteiro LPG, Rodrigues JMM, Borges J, Mano JF. Marine-origin polysaccharides-based free-standing multilayered membranes as sustainable nanoreservoirs for controlled drug delivery. J Mater Chem B 2023. [PMID: 37377032 DOI: 10.1039/d3tb00796k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The layer-by-layer (LbL) assembly technology has been widely used to functionalise surfaces and precisely engineer robust multilayered bioarchitectures with tunable structures, compositions, properties, and functions at the nanoscale by resorting to a myriad of building blocks exhibiting complementary interactions. Among them, marine-origin polysaccharides are a sustainable renewable resource for the fabrication of nanostructured biomaterials for biomedical applications owing to their wide bioavailability, biocompatibility, biodegradability, non-cytotoxicity, and non-immunogenic properties. Chitosan (CHT) and alginate (ALG) have been widely employed as LbL ingredients to shape a wide repertoire of size- and shape-tunable electrostatic-driven multilayered assemblies by exploring their opposite charge nature. However, the insolubility of CHT in physiological conditions intrinsically limits the range of bioapplications of the as-developed CHT-based LbL structures. Herein, we report the preparation of free-standing (FS) multilayered membranes made of water-soluble quaternised CHT and ALG biopolymers for controlled release of model drug molecules. The influence of the film structure in the drug release rate is studied by assembling two distinct set-ups of FS membranes, having the model hydrophilic drug fluorescein isothiocyanate-labelled bovine serum albumin (FITC-BSA) either as an intrinsic building block or added as an outer layer after the LbL assembly process. Both FS membranes are characterised for their thickness, morphology, in vitro cytocompatibility, and release profile, with those having FITC-BSA as an intrinsic LbL ingredient denoting a more sustained release rate. This work opens up new avenues for the design and development of a wide array of CHT-based devices for biomedical applications, overcoming the limitations associated with the insolubility of native CHT under physiological conditions.
Collapse
Affiliation(s)
- Cristiana F V Sousa
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luís P G Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João M M Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João Borges
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
7
|
Sacramento MMA, Borges J, Correia FJS, Calado R, Rodrigues JMM, Patrício SG, Mano JF. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front Bioeng Biotechnol 2022; 10:1041102. [PMID: 36568299 PMCID: PMC9773402 DOI: 10.3389/fbioe.2022.1041102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.
Collapse
Affiliation(s)
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fernando J. S. Correia
- Laboratory of Scientific Illustration, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia G. Patrício
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Amelotin Promotes Mineralization and Adhesion in Collagen-Based Systems. Cell Mol Bioeng 2022; 15:245-254. [PMID: 35611164 PMCID: PMC9124263 DOI: 10.1007/s12195-022-00722-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Periodontitis is characterized by the destruction of tooth-supporting tissues including the alveolar bone. Barrier membranes are used in dentistry for tissue regenerative therapy. Nevertheless, conventional membranes have issues related to membrane stability and direct induction of bone mineralization. Amelotin (AMTN), an enamel matrix protein, regulates hydroxyapatite crystal nucleation and growth. To apply an AMTN membrane in clinical practice, we investigated the mineralizing and adhesive effects of recombinant human (rh) AMTN in vitro using a collagen-based system. Methods Collagen hydrogel incorporated with rhAMTN (AMTN gel) and rhAMTN-coated dentin slices were prepared. AMTN gel was then applied on a commercial membrane (AMTN membrane). Samples were incubated for up to 24 h in mineralization buffer, and the structures were observed. The peak adhesive tensile strength between the dentin and AMTN membrane was measured. Using an enzyme-linked immunosorbent assay, the release kinetics of rhAMTN from the membrane were investigated. Results The AMTN gel resulted in the formation of hydroxyapatite deposits both onto and within the collagen matrix. Furthermore, coating the dentin surface with rhAMTN promoted the precipitation of mineral deposits on the surface. Interestingly, site-specific mineralization was observed in the AMTN membrane. Only 1% of rhAMTN was released from the membrane. Hence, the AMTN membrane adhered to the dentin surface with more than twofold greater tensile strength than that detected for a rhAMTN-free barrier membrane. Conclusions RhAMTN can accelerate mineralization and adhesion in collagen-based systems. Furthermore, the AMTN membrane could inform the optimal design of calcified tissue regenerative materials. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00722-2.
Collapse
|
9
|
Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb MR. Crystalline polysaccharides: A review. Carbohydr Polym 2022; 275:118624. [PMID: 34742405 DOI: 10.1016/j.carbpol.2021.118624] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been the subject of several review papers, the effects of crystallization kinetics and crystalline domains on the properties and application have not been comprehensively addressed. This review places focus on different aspects of crystallization of polysaccharides as well as applications of crystalline polysaccharides. Crystallization of cellulose, chitin, chitosan, and starch, as the main members of this family, were discussed. Then, application of the aforementioned crystalline polysaccharides and nano-polysaccharides as well as their physical and chemical interactions were overviewed. This review attempts to provide a complete picture of crystallization-property relationship in polysaccharides.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
10
|
Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater 2021; 128:222-235. [PMID: 33878475 DOI: 10.1016/j.actbio.2021.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The sublingual mucosa is an appealing route for drug administration. However, in the context of increased use of therapeutic proteins, development of protein delivery systems that will protect the protein bioactivity is needed. As proteins are fragile and complex molecules, current sublingual formulations of proteins are in liquid dosage. Yet, protein dilution and short residence time at the sublingual mucosa are the main barriers for the control of the dose that is delivered. In this work, a simple delivery scaffold based on the assembly of two polysaccharides, chitosan and hyaluronic acid, is presented. The natural polymers were assembled by the Layer-by-Layer methodology to produce a mucoadhesive and oro-dispersible freestanding membrane, shown to be innocuous for epithelial human cells. The functionalization of the membrane with proteins led to the production of a bioactive patch with efficient loading and release of proteins, and suitable mechanical properties for manipulation. Sublingual administration of the patch in mouse evidenced the absence of inflammation and an extended time of contact between the model protein ovalbumin and the mucosa compared to liquid formulation. The delivery of fluorescent ovalbumin in mouse sublingual mucosa demonstrated the penetration of the protein in the epithelium 10 min after the patch administration. Moreover, a migration assay with a chemokine incorporated into the patch showed no decrease in bioactivity of the loaded protein after enzymatic release. This study therefore provides a promising strategy to develop a sublingual protein delivery system. STATEMENT OF SIGNIFICANCE: Although the oral route is largely used for drug delivery, it has limitations for the delivery of proteins that can be degraded by pH or gastric enzymes. The sublingual route therefore appears as an interesting approach for protein administration. In this work, a simple delivery scaffold is presented based on the assembly of two polysaccharides by the Layer-by-Layer methodology to produce a mucoadhesive patch. The produced patch allowed efficient loading and release of proteins, as well as protection of their bioactivity. An extended time of contact between the protein and the mucosa compared to liquid formulation was highlighted in mouse model. This study provides a promising strategy to develop a sublingual protein delivery system.
Collapse
|
11
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
12
|
Tang Q, Lim T, Wei XJ, Wang QY, Xu JC, Shen LY, Zhu ZZ, Zhang CQ. A free-standing multilayer film as a novel delivery carrier of platelet lysates for potential wound-dressing applications. Biomaterials 2020; 255:120138. [DOI: 10.1016/j.biomaterials.2020.120138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
|
13
|
Campbell J, Vikulina AS. Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics. Polymers (Basel) 2020; 12:E1949. [PMID: 32872246 PMCID: PMC7564420 DOI: 10.3390/polym12091949] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand.
Collapse
Affiliation(s)
- Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Anna S. Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Veronesi F, Maglio M, Brogini S, Fini M. In vivo studies on osteoinduction: A systematic review on animal models, implant site, and type and postimplantation investigation. J Biomed Mater Res A 2020; 108:1834-1866. [PMID: 32297695 DOI: 10.1002/jbm.a.36949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/15/2020] [Accepted: 03/28/2020] [Indexed: 11/10/2022]
Abstract
Musculoskeletal diseases involving loss of tissue usually require management with bone grafts, among which autografts are still the gold standard. To overcome autograft disadvantages, the development of new scaffolds is constantly increasing, as well as the number of in vivo studies evaluating their osteoinductivity in ectopic sites. The aim of the present systematic review is to evaluate the last 10 years of osteoinduction in vivo studies. The review is focused on: (a) which type of animal model is most suitable for osteoinduction evaluation; (b) what are the most used types of scaffolds; (c) what kind of post-explant evaluation is most used. Through three websites (www.pubmed.com, www.webofknowledge.com and www.embase.com), 77 in vivo studies were included. Fifty-eight studies were conducted in small animal models (rodents) and 19 in animals of medium or large size (rabbits, dogs, goats, sheep, and minipigs). Despite the difficulty in establishing the most suitable animal model for osteoinductivity studies, small animals (in particular mice) are the most utilized. Intramuscular implantation is more frequent than subcutis, especially in large animals, and synthetic scaffolds (especially CaP ceramics) are preferred than natural ones, also in combination with cells and growth factors. Paraffin histology and histomorphometric evaluations are usually employed for postimplantation analyses.
Collapse
Affiliation(s)
- Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Melania Maglio
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
15
|
Zargarzadeh M, Amaral AJR, Custódio CA, Mano JF. Biomedical applications of laminarin. Carbohydr Polym 2019; 232:115774. [PMID: 31952585 DOI: 10.1016/j.carbpol.2019.115774] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
The ocean is par excellence a fertile territory of biodiversity on our planet. Marine-derived polysaccharides have been applied as functional materials in biomedicine due to their attractive bioactive properties, safety, high availability and low-cost production. Laminarin (or laminaran), a low molecular weight β-glucan storage polysaccharide present in brown algae, can be (bio-) chemically modified to enhance its biological activity and employed in cancer therapies, drug/gene delivery, tissue engineering, antioxidant and anti-inflammatory functions. This review provides a brief overview on laminarin characteristics, modification strategies and highlights its pivotal biomedical applications.
Collapse
Affiliation(s)
- Mehrzad Zargarzadeh
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Catarina A Custódio
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Apte G, Repanas A, Willems C, Mujtaba A, Schmelzer CEH, Raichur A, Syrowatka F, Groth T. Effect of Different Crosslinking Strategies on Physical Properties and Biocompatibility of Freestanding Multilayer Films Made of Alginate and Chitosan. Macromol Biosci 2019; 19:e1900181. [PMID: 31531939 DOI: 10.1002/mabi.201900181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Indexed: 01/26/2023]
Abstract
Freestanding multilayer films prepared by layer-by-layer technique have attracted interest as promising materials for wound dressings. The goal is to fabricate freestanding films using chitosan (CHI) and alginate (ALG) including subsequent crosslinking to improve the mechanical properties of films while maintaining their biocompatibility. Three crosslinking strategies are investigated, namely use of calcium ions for crosslinking ALG, 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide combined with N-hydroxysuccinimide for crosslinking ALG with CHI, and Genipin for crosslinking chitosan inside the films. Different characteristics, such as surface morphology, wettability, swelling, roughness, and mechanical properties are investigated showing that films became thinner, exhibited rougher surfaces, had lower water uptake, and increased mechanical strength after crosslinking. Changes of wettability are moderate and dependent on the crosslinking method. In vitro cytotoxicity and cell attachment studies with human dermal fibroblasts show that freestanding CHI-ALG films represent a poorly adhesive substratum for fibroblasts, while studies using incubation of plastic-adherent fibroblast beneath floating films show no signs of cytotoxicity in a time frame of 7 days. Results from cell experiments combined with film characteristics after crosslinking, indicate that crosslinked freestanding films made of ALG and CHI may be interesting candidates for wound dressings.
Collapse
Affiliation(s)
- Gurunath Apte
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Alexandros Repanas
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Anas Mujtaba
- Fraunhofer Institute for Microstructure of Materials and Systems, Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems, Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - Ashok Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.,Nanotechnology and Water Sustainability Unit, University of South Africa, Florida, 1710, Johannesburg, South Africa
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany.,Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| |
Collapse
|
17
|
Vale AC, Pereira P, Barbosa AM, Torrado E, Mano JF, Alves NM. Antibacterial free-standing polysaccharide composite films inspired by the sea. Int J Biol Macromol 2019; 133:933-944. [DOI: 10.1016/j.ijbiomac.2019.04.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
|
18
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Caballé-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A, Fujioka-Kobayashi M, Hernández-Alfaro F, Miron R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch Oral Biol 2019; 100:57-68. [PMID: 30798032 DOI: 10.1016/j.archoralbio.2019.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Guided bone / tissue regeneration (GBR/GTR) procedures are necessary to improve conditions for implant placement. These techniques in turn can be enhanced by using growth factors (GFs) such as bone morphogenetic protein (BMP-2) and platelet-derived growth factor (PDGF) to accelerate regeneration. The aim of the present systematic review was to evaluate the GF loading and release kinetics of barrier membranes. STUDY DESIGN A total of 138 articles were screened in PubMed databases, and 31 meeting the inclusion criteria were included in the present systematic review. RESULTS All the articles evaluated bio-resorbable membranes, especially collagen or polymer-based membranes. In most studies, the retention and release kinetics of osteogenic GFs such as BMP-2 and PDGF were widely investigated. Growth factors were incorporated to the membranes by soaking and incubating the membranes in GF solution, followed by lyophilization, or mixing in the polymers before evaporation. Adsorption onto the membranes depended upon the membrane materials and additional reagents such as heparin, cross-linkers and GF concentration. Interestingly, most studies showed two phases of GF release from the membranes: a first phase comprising a burst release (about 1 day), followed by a second phase characterized by slower release. Furthermore, all the studies demonstrated the controlled release of sufficient concentrations of GFs from the membranes for bioactivities. CONCLUSIONS The adsorption and release kinetics varied among the different materials, forms and GFs. The combination of membrane materials, GFs and manufacturing methods should be considered for optimizing GBR/GTR procedures.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain; Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland; Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Switzerland.
| | - Yusra Abdeslam-Mohamed
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Antonio Munar-Frau
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | | | - Federico Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Richard Miron
- Department of Craniomaxillofacial Surgery, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0243-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Niepel MS, Ekambaram BK, Schmelzer CEH, Groth T. Polyelectrolyte multilayers of poly (l-lysine) and hyaluronic acid on nanostructured surfaces affect stem cell response. NANOSCALE 2019; 11:2878-2891. [PMID: 30688341 DOI: 10.1039/c8nr05529g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laser interference lithography (LIL) and the layer-by-layer (LbL) technique are combined here for the first time to design a system with variable nanotopographies and surface viscoelasticity to regulate cell behavior. LIL is used to generate hexagonally arranged nanostructures of gold with different periodicity. In contrast, LBL is used to assemble a multilayer system of poly-l-lysine and hyaluronic acid on top of the nanostructures. Moreover, the viscoelastic properties of that system are controlled by chemical cross-linking. We show that the topography designed with LIL is still present after multilayer deposition and that the formation of the multilayer system renders the surfaces hydrophilic, which is opposite to the hydrophobic nature of pristine nanostructures. The heterogenic system is applied to study the effect on adhesion and differentiation of human adipose-derived stem cells (hADSC). We show that hADSC spreading is increasing with cross-linking degree on flat multilayers, while it is decreasing on nanostructures modified with multilayers. In addition, early effects on signal transduction processes are seen. Finally, hADSC differentiation into chondrogenic and osteogenic lineages is superior to adipogenic lineages on nanostructures modified with multilayers. Hence, the presented system offers great potential to guide stem cell differentiation on surfaces of implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Marcus S Niepel
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Biomedical Materials Group, Interdisciplinary Centre of Materials Science, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|
22
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
23
|
An Q, Huang T, Shi F. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 2018; 47:5061-5098. [PMID: 29767189 DOI: 10.1039/c7cs00406k] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.
Collapse
Affiliation(s)
- Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | | | | |
Collapse
|
24
|
Wessel AR, Crist BD, Stannard JP, Della Rocca GJ, Stoker AM, Bozynski CC, Cook CR, Kuroki K, Ahner CE, Cook JL. Assessment of Reamer Irrigator Aspirator System (RIA) filtrate for its osteoinductive potential in a validated animal model. Injury 2018; 49:1046-1051. [PMID: 29685704 DOI: 10.1016/j.injury.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 04/14/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Previous studies indicate that Reamer Irrigator Aspirator (RIA) filtrate contains proteins that have the potential to stimulate bone healing. This study aimed to determine the osteoinductive capabilities of RIA filtrate in a validated in vivo model. METHODS With Institutional Review Board approval, RIA filtrates from 9 patients were collected. The filtrate was processed to remove cells and inorganic particles. A portion of each sample was set aside for protein analysis while the remainder was lyophilized and prepared for implantation. With Animal Care and Use Committee approval, athymic mice (n = 16; 32 hind limbs) were randomly assigned to 1 of 4 groups (n = 8 limbs per group) for percutaneous gastrocnemius muscle injection of demineralized bone matrix (DBM) (10 mg), lyophilized RIA powder (10 mg), RIA liquid (10 mg of lyophilized RIA powder in 100ul phosphate buffered saline (PBS)), or DBM (10 mg) + RIA liquid (10 mg in 100ul PBS). Radiographs were obtained 2, 4, and 8 weeks after injection. At 8 weeks, mice were sacrificed and the entire gastrocnemius muscle from each hind limb was collected and processed for histologic examination. Histological sections and radiographs were assessed for ossification/calcification. Data were compared for statistically significant (p < 0.05) differences among groups and strong (R > 0.7) correlations between outcome measures. RESULTS The protein composition of RIA filtrates was consistent among patients and matched previous data. For all groups, radiographic scores were significantly (p < 0.014) higher (more calcification/ossification) at 8 weeks compared to 2 weeks. Radiographic scores for the DBM and DBM + RIA liquid groups were significantly higher than RIA liquid and RIA powder at 4 weeks and 8 weeks (p < 0.019 and p < 0.049, respectively). Histologic scores were significantly (p = 0.004) higher in the DBM + RIA liquid group compared to the RIA liquid group at 8 weeks. Histologic scores showed strong correlations (r > 0.77) to radiographic scores for all groups. CONCLUSION RIA filtrate liquid and powder were osteoinductive in vivo with new bone formation being most abundant using a combination of DBM and RIA filtrate in this validated animal model. RIA filtrate has potential for clinical use in augmenting bone healing treatments.
Collapse
Affiliation(s)
- Alex R Wessel
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA
| | - Brett D Crist
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | - James P Stannard
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | | | - Aaron M Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | - Chantelle C Bozynski
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | - Cristi R Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA
| | - Carin E Ahner
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA; Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, USA.
| |
Collapse
|
25
|
Gomes TD, Caridade SG, Sousa MP, Azevedo S, Kandur MY, Öner ET, Alves NM, Mano JF. Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater 2018; 69:183-195. [PMID: 29378324 DOI: 10.1016/j.actbio.2018.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
This work is the first reporting the use of layer-by-layer to produce adhesive free-standing (FS) films fully produced using natural-based macromolecules: chitosan (CHI), alginate (ALG) and sulfated levan (L-S). The deposition conditions of the natural polymers were studied through zeta potential measurements and quartz crystal microbalance with dissipation monitoring analysis. The properties of the FS films were evaluated and compared with the control ones composed of only CHI and ALG in order to assess the influence of levan polysaccharide introduced in the multilayers. Tensile tests, dynamic mechanical analysis and single lap shear strength tests were performed to evaluate the mechanical properties of the prepared FS films. The presence of L-S conferred both higher tensile strength and shear strength to the developed FS membranes. The results showed an adhesion strength 4 times higher than the control (CHI/ALG) FS films demonstrating the adhesive character of the FS films containing L-S. Morphological and topography studies were carried out revealing that the crosslinking reaction granted the L-S based FS film with a higher roughness and surface homogeneity. Preliminary biological assays were performed by cultivating myoblasts cells on the surface of the produced FS films. Both crosslinked and uncrosslinked FS films containing L-S were cytocompatible and myoconductive. STATEMENT OF SIGNIFICANCE Sutures remain as the "gold standard" for wound closure and bleeding control; however they still have limitations such as, high infection rate, inconvenience in handling, and concern over possible transmission of blood-borne disease through the use of needles. One of the challenges of tissue engineering consist on the design and development of biocompatible tissue adhesives and sealants with high adhesion properties to repair or attach devices to tissues. In this work, the introduction of sulfated levan (L-S) on multilayered free-standing membranes was proposed to confer adhesive properties. Moreover, the films were myoconductive even in the absence of crosslinking just by the presence of L-S. This study provides a promising strategy to develop biological adhesives and for cardiac tissue engineering applications.
Collapse
|
26
|
Esmaeilzadeh P, Köwitsch A, Liedmann A, Menzel M, Fuhrmann B, Schmidt G, Klehm J, Groth T. Stimuli-Responsive Multilayers Based on Thiolated Polysaccharides That Affect Fibroblast Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8507-8518. [PMID: 29470914 DOI: 10.1021/acsami.7b19022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Control of the biomaterial properties through stimuli-responsive polymeric platforms has become an essential technique in recent biomedical applications. A multilayer system of thiolated chitosan (t-Chi) and thiolated chondroitin sulfate (t-CS), consisting of five double layers ([t-Chi/t-CS]5), was fabricated here by applying a layer-by-layer coating strategy. To represent a novel class of chemically tunable nanostructures, the ability to cross-link pendant thiol groups was tested by a rise from pH 4 during layer formation to pH 9.3 and a more powerful chemical stimulus by using chloramine-T (ChT). Following both treatments, the resulting multilayers showed stimuli-dependent behavior, as demonstrated by their content of free thiols, wettability, surface charge, elastic modulus, roughness, topography, thickness, and binding of fibronectin. Studies with human dermal fibroblasts further demonstrated the favorable potential of the ChT-responsive multilayers as a cell-adhesive surface compared to pH-induced cross-linking. Because the [t-Chi/t-CS]5 multilayer system is responsive to stimuli such as the pH and redox environment, multilayer systems with disulfide bond formation may help to tailor their interaction with cells, film degradation, and controlled release of bioactive substances like growth factors in a stimuli-responsive manner useful in future wound healing and tissue engineering applications.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Andrea Liedmann
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems , Walter-Hülse-Strasse 1 , 06120 Halle (Saale) , Germany
| | - Bodo Fuhrmann
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Institute of Physics , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale) , Germany
| | - Georg Schmidt
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Institute of Physics , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale) , Germany
| | - Jessica Klehm
- Fraunhofer Institute for Microstructure of Materials and Systems , Walter-Hülse-Strasse 1 , 06120 Halle (Saale) , Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
27
|
Niepel MS, Almouhanna F, Ekambaram BK, Menzel M, Heilmann A, Groth T. Cross-linking multilayers of poly-l-lysine and hyaluronic acid: Effect on mesenchymal stem cell behavior. Int J Artif Organs 2018. [PMID: 29528795 DOI: 10.1177/0391398817752598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells possess a specialized machinery through which they can sense physical as well as chemical alterations in their surrounding microenvironment that affect their cellular behavior. AIM In this study, we aim to establish a polyelectrolyte multilayer system of 24 layers of poly-l-lysine and hyaluronic acid to control stem cell response after chemical cross-linking. METHODS AND RESULTS The multilayer build-up process is monitored using different methods, which show that the studied polyelectrolyte multilayer system grows exponentially following the islands and islets theory. Successful chemical cross-linking is monitored by an increased zeta potential toward negative magnitude and an extraordinary growth in thickness. Human adipose-derived stem cells are used here and a relationship between cross-linking degree and cell spreading is shown as cells seeded on higher cross-linked polyelectrolyte multilayer show enhanced spreading. Furthermore, cells that fail to establish focal adhesions on native and low cross-linked polyelectrolyte multilayer films do not proliferate to a high extent in comparison to cells seeded on highly cross-linked polyelectrolyte multilayer, which also show an increased metabolic activity. Moreover, this study shows the relation between cross-linking degree and human adipose-derived stem cell lineage commitment. Histological staining reveals that highly cross-linked polyelectrolyte multilayers support osteogenic differentiation, whereas less cross-linked and native polyelectrolyte multilayers support adipogenic differentiation in the absence of any specific inducers. CONCLUSION Owing to the precise control of polyelectrolyte multilayer properties such as potential, wettability, and viscoelasticity, the system presented here offers great potential for guided stem cell differentiation in regenerative medicine, especially in combination with materials exhibiting a defined surface topography.
Collapse
Affiliation(s)
- Marcus S Niepel
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fadi Almouhanna
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,3 Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Bhavya K Ekambaram
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Menzel
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andreas Heilmann
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Groth
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
28
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
29
|
Ribeiro S, Radvar E, Shi Y, Borges J, Pirraco RP, Leonor IB, Mano JF, Reis RL, Mata Á, Azevedo HS. Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion. NANOSCALE 2017; 9:13670-13682. [PMID: 28876352 DOI: 10.1039/c7nr03410e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soft interfacial materials, such as self-assembled polymer membranes, are gaining increasing interest as biomaterials since they can provide selective barriers and/or controlled affinity interactions important to regulate cellular processes. Herein, we report the design and fabrication of multiscale structured membranes integrating selective molecular functionalities for potential applications in bone regeneration. The membranes were obtained by interfacial self-assembly of miscible aqueous solutions of hyaluronan and multi-domain peptides (MDPs) incorporating distinct biochemical motifs, including mineralizing (EE), integrin-binding (RGDS) and osteogenic (YGFGG) peptide sequences. Circular dichroism and Fourier transform infrared spectroscopy analyses of the MDPs revealed a predominant β-sheet conformation, while transmission electron microscopy (TEM) showed the formation of fibre-like nanostructures with different lengths. Scanning electron microscopy (SEM) of the membranes showed an anisotropic structure and surfaces with different nanotopographies, reflecting the morphological differences observed under TEM. All the membranes were able to promote the deposition of a calcium-phosphate mineral on their surface when incubated in a mineralizing solution. The ability of the MDPs, coated on coverslips or presented within the membranes, to support cell adhesion was investigated using primary adult periosteum-derived cells (PDCs) under serum-free conditions. Cells on the membranes lacking RGDS remained round, while in the presence of RGDS they appear to be more elongated and anchored to the membrane. These observations were confirmed by SEM analysis that showed cells attached to the membrane and exhibiting an extended morphology with close interactions with the membrane surface. We anticipate that these molecularly designed interfacial membranes can both provide relevant biochemical signals and structural biomimetic components for stem cell growth and differentiation and ultimately promote bone regeneration.
Collapse
Affiliation(s)
- Sofia Ribeiro
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hatami J, Silva SG, Oliveira MB, Costa RR, Reis RL, Mano JF. Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates. Polymers (Basel) 2017; 9:polym9090440. [PMID: 30965744 PMCID: PMC6418967 DOI: 10.3390/polym9090440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG) were built using water-soluble modified mesyl and tosyl–CHT via layer-by-layer (LbL) self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm) and tosyl groups (2.39, 7.37 and 7.70 ppm) in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D) and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG) were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05). Adhesion analysis demonstrated that human adipose stem cells (hASCs) did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100–200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.
Collapse
Affiliation(s)
- Javad Hatami
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Sandra G Silva
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Mariana B Oliveira
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - João F Mano
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Sousa MP, Caridade SG, Mano JF. Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes. Adv Healthc Mater 2017; 6:10.1002/adhm.201601462. [PMID: 28371516 PMCID: PMC6398568 DOI: 10.1002/adhm.201601462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/11/2017] [Indexed: 01/08/2023]
Abstract
Inspired by native extracellular matrix (ECM) together with the multilevel architecture observed in nature, a material which topography recapitulates topographic features of the ECM and the internal architecture mimics the biological materials organization is engineered. The nanopatterned design along the XY plane is combined with a nanostructured organization along the Z axis on freestanding membranes prepared by layer-by-layer deposition of chitosan and chondroitin sulfate. Cellular behavior is monitored using two different mammalian cell lines, fibroblasts (L929) and myoblasts (C2C12), in order to perceive the response to topography. Viability, proliferation, and morphology of L929 are sensitively controlled by topography; also differentiation of C2C12 into myotubes is influenced by the presence of nanogrooves. This kind of nanopatterned structure has also been associated with strong cellular alignment. To the best of the knowledge, it is the first time that such a straightforward and inexpensive strategy is proposed to produce nanopatterned freestanding multilayer membranes. Controlling cellular alignment plays a critical role in many human tissues, such as muscles, nerves, or blood vessels, so these membranes can be potentially useful in specific tissue regeneration strategies.
Collapse
|
32
|
Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomater 2017; 57:313-323. [PMID: 28438703 DOI: 10.1016/j.actbio.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022]
Abstract
Membranes have been explored as patches in tissue repair and regeneration, most of them presenting a flat geometry or a patterned texture at the nano/micrometer scale. Herein, a new concept of a flexible membrane featuring well arrays forming pore-like environments to accommodate cell culture is proposed. The processing of such membranes using polysaccharides is based on the production of multilayers using the layer-by-layer methodology over a patterned PDMS substrate. The detached multilayered membrane exhibits a layer of open pores at one side and a total thickness of 38±2.2µm. The photolithography technology used to produce the molds allows obtaining wells on the final membranes with a tuned shape and micro-scale precision. The influence of post-processing procedures over chitosan/alginate films with 100 double layers, including crosslinking with genipin or fibronectin immobilization, on the adhesion and proliferation of human osteoblast-like cells is also investigated. The results suggest that the presence of patterned wells affects positively cell adhesion, morphology and proliferation. In particular, it is seen that cells colonized preferentially the well regions. The geometrical features with micro to sub-millimeter patterned wells, together with the nano-scale organization of the polymeric components along the thickness of the film will allow to engineer highly versatile multilayered membranes exhibiting a pore-like microstructure in just one of the sides, that could be adaptable in the regeneration of multiple tissues. STATEMENT OF SIGNIFICANCE Flexible multilayered membranes containing multiple micro-reservoirs are found as potential regenerative patches. Layer-by-layer (LbL) methodology over a featured PDMS substrate is used to produce patterned membranes, composed only by natural-based polymers, that can be easily detached from the PDMS substrate. The combination of nano-scale control of the polymeric organization along the thickness of the chitosan/alginate (CHT/ALG) membranes, provided by LbL, together with the geometrical micro-scale features of the patterned membranes offers a uniqueness system that allows cells to colonize 3-dimensionally. This study provides a promising strategy to control cellular spatial organization that can face the region of the tissue to regenerate.
Collapse
|
33
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
34
|
Tan H, Wang H, Chai Y, Yu Y, Hong H, Yang F, Qu X, Liu C. Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Adv 2017. [DOI: 10.1039/c6ra27308d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(1) HApNPs are conferred with negative charges by surface modification with heparin. (2) Heparinized HApNPs and polycation CS are assembled to form a hybrid coating. (3) RhBMP-2 is introduced into the coating via the intermolecular binding with heparin.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yanjun Chai
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Fei Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
35
|
Silva M, Caridade SG, Vale AC, Cunha E, Sousa MP, Mano JF, Paiva MC, Alves NM. Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Adv 2017. [DOI: 10.1039/c7ra04173j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel nanostructured free-standing films based on chitosan, alginate and functionalized flake and ribbon-shaped graphene were developed using the layer-by-layer process.
Collapse
Affiliation(s)
- Magda Silva
- 3B's Research Group
- Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Sofia G. Caridade
- 3B's Research Group
- Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Ana C. Vale
- ICVS/3B's
- Associate PT Government Laboratory
- Braga/Guimarães
- Portugal
- Institute for Polymers and Composites/I3N
| | - Eunice Cunha
- Institute for Polymers and Composites/I3N
- Department of Polymer Engineering
- University of Minho
- 4800-058 Guimarães
- Portugal
| | - Maria P. Sousa
- 3B's Research Group
- Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - João F. Mano
- 3B's Research Group
- Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Maria C. Paiva
- Institute for Polymers and Composites/I3N
- Department of Polymer Engineering
- University of Minho
- 4800-058 Guimarães
- Portugal
| | - Natália M. Alves
- 3B's Research Group
- Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
36
|
ERTAN AB, KENAR H, BEYZADEOĞLU T, KÖK FN, TORUN KÖSE G. An in vitro human skeletal muscle model: coculture of myotubes,neuron-like cells, and the capillary network. Turk J Biol 2017. [DOI: 10.3906/biy-1611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
37
|
Romero R, Travers JK, Asbury E, Pennybaker A, Chubb L, Rose R, Ehrhart NP, Kipper MJ. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. J Biomed Mater Res A 2016; 105:900-911. [PMID: 27874253 DOI: 10.1002/jbm.a.35965] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
Abstract
Critical-sized long bone defects suffer from complications including impaired healing and non-union due to substandard healing and integration of devitalized bone allograft. Removal of the periosteum contributes to the limited healing of bone allografts. Restoring a periosteum on bone allografts may provide improved allograft healing and integration. This article reports a polysaccharide-based tissue engineered periosteum that delivers basic fibroblast growth factor (FGF-2), transforming growth factor-β1 (TGF-β1), and adipose-derived mesenchymal stem cells (ASCs) to a critical-sized mouse femur defect. The tissue engineered periosteum was evaluated for improving bone allograft healing and incorporation by locally delivering FGF-2, TGF-β1, and supporting ASCs transplantation. ASCs were successfully delivered and longitudinally tracked at the defect site for at least 7 days post operation with delivered FGF-2 and TGF-β1 showing a mitogenic effect on the ASCs. At 6 weeks post implantation, data showed a non-significant increase in normalized bone callus volume. However, union ratio analysis showed a significant inhibition in allograft incorporation, confirmed by histological analysis, due to loosening of the nanofiber coating from the allograft surface. Ultimately, this investigation shows our tissue engineered periosteum can deliver FGF-2, TGF-β1, and ASCs to a mouse critical-sized femur defect and further optimization may yield improved bone allograft healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 900-911, 2017.
Collapse
Affiliation(s)
- Raimundo Romero
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - John K Travers
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Emilie Asbury
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Attie Pennybaker
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Laura Chubb
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Ruth Rose
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Nicole P Ehrhart
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523.,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| |
Collapse
|
38
|
Silva JM, Custódio CA, Reis RL, Mano JF. Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomater Sci Eng 2016; 2:2304-2314. [PMID: 33465879 DOI: 10.1021/acsbiomaterials.6b00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The available therapies for cardiovascular pathologies often require the replacement of diseased vascular grafts. However, the current blood vessel substitutes are unsuitable for small-diameter blood vessel replacements. Herein, we propose the creation of multilayered hollow tubes as blood vessel substitutes. Hollow tubes were obtained by building-up multilayers of marine-derived polysaccharides (i.e., chitosan and alginate) on sacrificial tubular templates using layer-by-layer technology and template leaching. A cross-linking degree of ≈59% was achieved using genipin, which is reflected in an increase of the mechanical properties and a decrease of the water uptake. To further improve the cell adhesive properties of the multilayers, fibronectin (FN) was immobilized on the surface of the hollow tubes. The in vitro biological performance of human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) was assessed. In addition, to perform the culture of HUVECs on the inner side and the HASMCs on the outer side of the tubes, an in-house developed apparatus was created that allowed us to feed cells with their respective culture medium. The developed hollow tubes were shown to be a suitable structure to promote cell adhesion, spreading, and proliferation. It is our belief that the creation of these functional structures will open a new research field in order to develop innovative multilayered tubular structures for cardiovascular TE applications.
Collapse
Affiliation(s)
- Joana M Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-243 Braga/Guimarães, Portugal
| | - Catarina A Custódio
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-243 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-243 Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-243 Braga/Guimarães, Portugal
| |
Collapse
|
39
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
41
|
Rodrigues MN, Oliveira MB, Costa RR, Mano JF. Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules 2016; 17:2178-88. [DOI: 10.1021/acs.biomac.6b00399] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mariana N. Rodrigues
- 3B’s
Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence of Tissue Engineering and Regenerative
Medicine, Avepark − Parque de
Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s,
PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Mariana B. Oliveira
- 3B’s
Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence of Tissue Engineering and Regenerative
Medicine, Avepark − Parque de
Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s,
PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui R. Costa
- 3B’s
Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence of Tissue Engineering and Regenerative
Medicine, Avepark − Parque de
Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s,
PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence of Tissue Engineering and Regenerative
Medicine, Avepark − Parque de
Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s,
PT Government Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
42
|
Oliveira MB, Hatami J, Mano JF. Coating Strategies Using Layer-by-layer Deposition for Cell Encapsulation. Chem Asian J 2016; 11:1753-64. [PMID: 27213990 DOI: 10.1002/asia.201600145] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/19/2022]
Abstract
The layer-by-layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell-laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.
Collapse
Affiliation(s)
- Mariana B Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Javad Hatami
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
43
|
Ghiorghita CA, Bucatariu F, Dragan ES. Sorption/release of diclofenac sodium in/from free-standing poly(acrylic acid)/poly(ethyleneimine) multilayer films. J Appl Polym Sci 2016. [DOI: 10.1002/app.43752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry; Aleea Grigore Ghica Voda 41A Iasi 700487 Romania
| | - Ecaterina Stela Dragan
- “Petru Poni” Institute of Macromolecular Chemistry; Aleea Grigore Ghica Voda 41A Iasi 700487 Romania
| |
Collapse
|
44
|
Silva JM, Caridade SG, Reis RL, Mano JF. Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. SOFT MATTER 2016; 12:1200-1209. [PMID: 26617221 DOI: 10.1039/c5sm02458g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)-alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Joana M Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia G Caridade
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
45
|
Moura D, Caridade SG, Sousa MP, Cunha E, Rocha HC, Mano JF, Paiva MC, Alves NM. High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. J Mater Chem B 2016; 4:7718-7730. [DOI: 10.1039/c6tb02344d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, novel free-standing (FS) films based on chitosan, alginate and graphene oxide (GO) were developed through layer-by-layer assembly.
Collapse
Affiliation(s)
- D. Moura
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - S. G. Caridade
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - M. P. Sousa
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - E. Cunha
- Institute for Polymers and Composites/I3N
- Department of Polymer Engineering
- University of Minho
- 4800-058 Guimarães
- Portugal
| | - H. C. Rocha
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - M. C. Paiva
- Institute for Polymers and Composites/I3N
- Department of Polymer Engineering
- University of Minho
- 4800-058 Guimarães
- Portugal
| | - N. M. Alves
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
46
|
Cao Z, Wang D, Lyu L, Gong Y, Li Y. Fabrication and characterization of PCL/CaCO3 electrospun composite membrane for bone repair. RSC Adv 2016. [DOI: 10.1039/c5ra22548e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CaCO3/casein microspheres were entrapped in PCL membranes using electrospinning to mimic the hierarchical structure of ECM in bone. The composite membranes showed enhanced biomineralization property, proliferation and osteogenic differentiation potential of HMSCs.
Collapse
Affiliation(s)
- Zhinan Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Dandan Wang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Lingwei Lyu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yihong Gong
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yan Li
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| |
Collapse
|
47
|
Qu X, He F, Tan H, Yu Y, Axrap A, Wang M, Dai K, Zhang Z, Yang F, Wang S, Kohn J, Liu C. Self-assembly of dual drug-delivery coating for synergistic bone regeneration. J Mater Chem B 2016; 4:4901-4912. [DOI: 10.1039/c6tb01262k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone regeneration for the treatment of bone diseases represents a major clinical need.
Collapse
|
48
|
Gil S, Silva JM, Mano JF. Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications. ACS Biomater Sci Eng 2015; 1:1016-1025. [DOI: 10.1021/acsbiomaterials.5b00292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sara Gil
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência e
Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana M. Silva
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência e
Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência e
Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
49
|
Oliveira SM, Reis RL, Mano JF. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnol Adv 2015; 33:842-55. [PMID: 26025038 DOI: 10.1016/j.biotechadv.2015.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Abstract
The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review.
Collapse
Affiliation(s)
- Sara M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal.
| |
Collapse
|