1
|
Hrbáček V, Důbravová A, Muchová M, Humpolíček P, Kuřitka I, Vícha J, Münster L. Highly catalytically active composite of palladium nanoparticles covalently bound to chitosan nanofibers via dialdehyde cellulose. Int J Biol Macromol 2024:138801. [PMID: 39694370 DOI: 10.1016/j.ijbiomac.2024.138801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
This study introduces a novel, sustainable method for synthesizing sub-5 nm palladium nanoparticles (PdNPs) and covalently binding them to chitosan nanofibers (CHITs) using fully oxidized dialdehyde cellulose (DAC). Notably, the DAC acts not only as a reducing and stabilizing agent for PdNPs, but also as a linker for their rapid and spontaneous covalent attachment to CHITs via Schiff base chemistry. This unique approach yields PdNPs with a narrow size distribution (4.7 ± 0.4 nm) and enables the preparation of a stable nanofibrous composite with excellent catalytic efficiency for 4-nitrophenol reduction (TOFPdNPs = 75.2 min-1, kPdNPs = 1.34 min-1; TOFPdNPs-CHIT = 1.18 min-1). The composite's high reusability, attributed to strong covalent binding, marks a significant improvement over traditional PdNPs composites that rely on weak interactions. This is demonstrated on a model of a catalytic device, reflecting industrial applications.
Collapse
Affiliation(s)
- Vítek Hrbáček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Alžběta Důbravová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
2
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2024; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
3
|
Yao M, Li J, Li S, Liu J, Yin J, Wu T. Construction of a charge-reversal polyelectrolyte nanocarrier for targeted intestinal releasing of kidney tea saponin based on sodium alginate/ε-polylysine/alliin. Int J Biol Macromol 2024; 287:138424. [PMID: 39653209 DOI: 10.1016/j.ijbiomac.2024.138424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Herein, a pH-responsive delivery system based on sodium alginate (ALG), ε-polylysine (PLL) and alliin (ALL) has been designed. The innovative use of the charged nature of alliin to prepare carriers loaded with kidney tea saponins has rarely been reported in the literature before. The size and morphology of the complex was quantified by dynamic light scattering (DLS) analysis and scanning electron microscopy (SEM), exhibiting a size of 141 ± 1 nm. The carrier shows effective pH-responsiveness, stability in the gastric environment and dissociation in the intestinal environment. Kidney tea saponins can easily pass through the stomach directly into the intestine after encapsulation at pH = 1. Furthermore, in vitro simulated digestion was used to validate the efficacy of the delivery system. When kidney tea saponin was administered orally, it could reach the intestinal tract barely. However, when it was encapsulated in the carrier, approximately 60 % of the kidney tea saponin could be delivered to the intestinal tract. The strategy increases bioavailability of kidney tea saponins within the intestine successfully. The findings indicate that ALG-PLL-ALL may serve as a suitable delivery system for the intestinal targeted releasing of health factors that are susceptible to hydrolysis and unstable in the stomach.
Collapse
Affiliation(s)
- Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiayi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shenghong Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
5
|
Mesut B, Al-Mohaya M, Gholap AD, Yeşilkaya E, Das U, Akhtar MS, Sah R, Khan S, Moin A, Faiyazuddin M. Demystifying the potential of lipid-based nanocarriers in targeting brain malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9243-9279. [PMID: 38963550 DOI: 10.1007/s00210-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.
Collapse
Affiliation(s)
- Burcu Mesut
- Pharmaceutical Technology Department, Faculty of Pharmacy, Istanbul University, Istanbul, 34216, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Eda Yeşilkaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Ushasi Das
- Pharmaceutical Technology Department, Jadavpur University, Kolkata, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, 44600, Nepal.
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 2440, Hail, Saudi Arabia
| | - Md Faiyazuddin
- School of Pharmacy, Al - Karim University, Katihar, 854106, Bihar, India.
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Ge Y, Kwon MH, Kou F, Uthamapriya RA, Zhang P, Lee DJ, Yang R, Bao H, Palanisamy S, You S. Folic-acid-targeted drug delivery system implementing Angelica gigas polysaccharide: A potential strategy for colorectal cancer treatment. Int J Biol Macromol 2024; 283:137653. [PMID: 39561833 DOI: 10.1016/j.ijbiomac.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The study focuses on the development of folate-targeted conjugates utilizing Angelica gigas polysaccharide (F2) as a drug carrier for colorectal cancer therapy. We synthesized F2-C-5-FU conjugates by linking carboxymethyl-5-fluorouracil (C-5-FU) with folic acid (FA) through ester bonding. The drug release behavior of F2-C-5-FU-FA was pH-dependent, favoring release under alkaline conditions. After 96 h in phosphate buffer (pH 7.4), the conjugate exhibited a cumulative release of 54.7%, which was higher compared to other pH environments. In vitro, F2-C-5-FU-FA showed enhanced cytotoxicity and increased cellular uptake in folate receptor-positive HCT-116 cells compared to A549 cells. The conjugate also induced G2/M cell cycle arrest and modulated the BAX/BCL-2 mRNA expression ratio through the MAPK and NF-κB signaling pathways. In vivo, F2-C-5-FU-FA increased tumor fluorescence intensity, prolonged drug circulation, and reduced organ toxicity to non-target organs. The treatment promoted cancer cell apoptosis by inhibiting the expression of apoptosis-related proteins. Overall, F2-C-5-FU-FA conjugates demonstrate potential as an effective drug delivery system for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Peng Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Honghui Bao
- Hubei International Scientific and Technological cooperation base for research and development of traditional medicine and food homologus products, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China..
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
7
|
Yang Y, He S, Wang W, Lu Y, Ren B, Dan C, Ji Y, Yu R, Ju X, Qiao X, Xiao Y, Cai J, Hong X. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Macromol Rapid Commun 2024; 45:e2400528. [PMID: 39422630 DOI: 10.1002/marc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Hypoxic diabetic foot ulcers (HDFUs) pose a challenging chronic condition characterized by oxidative stress damage, bacterial infection, and persistent inflammation. This study introduces a novel therapeutic approach combining ergothioneine (EGT), luteolin (LUT), and quaternized chitosan oxidized dextran (QCOD) to address these challenges and facilitate wound healing in hypoxic DFUs. In vitro, assessments have validated the biosafety, antioxidant, and antimicrobial properties of the ergothioneine-luteolin-chitin (QCOD@EGT-LUT) hydrogel. Furthermore, near-infrared II (NIR-II) fluorescence image-guided the application of QCOD@EGT-LUT hydrogel in simulated HDFUs. Mechanistically, QCOD@EGT-LUT hydrogel modulates the diabetic wound microenvironment by reducing reactive oxygen species (ROS). In vivo studies demonstrated increased expression of angiogenic factors mannose receptor (CD206) and latelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), coupled with decreased inflammatory factors tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), thereby promoting diabetic wound healing through up-regulation of transforming growth factor β-1 (TGF-β1).
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Shengnan He
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Wumei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yiwen Lu
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bingtao Ren
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Ci Dan
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yang Ji
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Rui Yu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xinpeng Ju
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xue Qiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuling Xiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuechuan Hong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| |
Collapse
|
8
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
9
|
Wang Y, Chen P, Wen H, Gui Y, Yan D, Huang D, Wang D, Tang BZ, Tan H. Advanced Nanoplatform Mediated by CRISPR-Cas9 and Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics. ACS NANO 2024. [PMID: 39563182 DOI: 10.1021/acsnano.4c11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Immunotherapy combined with phototherapy is emerging as a promising strategy to treat omnipotent cancers. In this study, a clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system, aggregation-induced emission (AIE) photosensitizer (PS) and surface coating of polyethylene imine/hyaluronic acid were combined to construct a multifunctional nanoplatform, denoted as TCPH nanoparticles (NPs), for comprehensive cancer theranostics. TCPH NPs are featured by intrinsic functions including efficient reactive oxygen species (ROS) production, good photothermal conversion, programmed death-ligand 1 (PD-L1)-eliminating capability, and effective intracellular transport. The generated ROS and hyperthermia do not only achieve primary tumor elimination but also regulate the tumor immune microenvironment. Genomic disruption of PD-L1 conspicuously augments its therapeutic efficacy, especially in tumor metastasis and recurrence. Exceptional multimodal imaging navigation has also been developed. Excellent theranostics performance was substantiated in diverse tumor models, implying that this synergistic strategy of phototheranostics and immunotherapy provides a paradigm shift in emerging CRISPR-mediated nanomedicines.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518034, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Penghang Chen
- Institute of Lung Health and Immunity (LHI) and Comprehensive, Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Neuherberg 85764, Germany
- Light Innovation Technology Ltd., Shenzhen 518110, China
| | - Haifei Wen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Di Huang
- Light Innovation Technology Ltd., Shenzhen 518110, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518034, China
| |
Collapse
|
10
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
11
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B, Wu JH. Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics 2024; 14:7505-7533. [PMID: 39659570 PMCID: PMC11626940 DOI: 10.7150/thno.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Atherosclerosis remains a significant global health challenge, with its related conditions as the leading cause of death, underscoring the urgent need for enhanced diagnostic and therapeutic approaches. Recently, self-assembled nanoparticles (SANPs) have shown remarkable promise in treating atherosclerosis, attributed to their superior bioavailability, biodegradability, biocompatibility, and ease of functional modification. Numerous SANP variants, such as DNA origami, metal-organic frameworks (MOFs), nanozymes, peptide-based nanoparticles, and self-assembled prodrug nanoparticles, have been engineered, extending their utility in targeted drug delivery and imaging. Advances in fabrication technologies, including microfluidic techniques, allow for precise and scalable SANP production, while innovative nanoparticle designs-such as stimuli-responsive and carrier-free variants-enhance pharmacokinetic properties. The deployment of SANPs in atherosclerosis has introduced a range of diagnostic and therapeutic solutions, from non-invasive imaging and stimuli-responsive drug delivery to vaccination, theranostics, and biosensing. This review consolidates the recent progress in SANP applications for atherosclerosis, emphasizing their transformative potential in disease management.
Collapse
Affiliation(s)
- Tuersun Aili
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia-bin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-xiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-liang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie-hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
13
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
14
|
Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, Khan AA, Rahmani AH. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024; 12:1353. [PMID: 38927560 PMCID: PMC11202028 DOI: 10.3390/biomedicines12061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin's potential in disease management by modulating various biological activities. In addition, this review also described apigenin's interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| |
Collapse
|
15
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
16
|
Yu Z, Shao H, Shao X, Yu L, Gao Y, Ren Y, Liu F, Meng C, Ling P, Chen Q. In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides. J Pharm Anal 2024; 14:100932. [PMID: 39021382 PMCID: PMC11253656 DOI: 10.1016/j.jpha.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 07/20/2024] Open
Abstract
Unlike chemosynthetic drugs designed for specific molecular and disease targets, active small-molecule natural products typically have a wide range of bioactivities and multiple targets, necessitating extensive screening and development. To address this issue, we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action. As a proof-of-concept, we investigated the behavior of mussel oligosaccharide (MOS-1) by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells. We recorded the entire dynamic process of the localization of fluorescein isothiocyanate (FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell. Remarkably, lysosomes containing FITC-MOS-1 actively recruited lipid droplets, leading to fusion events and increased cellular lipid consumption. These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases. Furthermore, in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E (ApoE) -/- mice, MOS-1 significantly promoted triglyceride degradation, reduced lipid droplet accumulation, lowered serum triglyceride levels, and mitigated liver damage and steatosis. Overall, our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase, as this methodology contributes to the rapid identification of drug indications. Collectively, this methodology is significant for the screening and development of selective small-molecule drugs, and is expected to expedite the identification of candidate molecules with medicinal effects.
Collapse
Affiliation(s)
- Zhenjie Yu
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huarong Shao
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Linyan Yu
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yanan Gao
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Youxiao Ren
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250101, China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Qixin Chen
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| |
Collapse
|
17
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
18
|
Arora K, Sherilraj PM, Abutwaibe KA, Dhruw B, Mudavath SL. Exploring glycans as vital biological macromolecules: A comprehensive review of advancements in biomedical frontiers. Int J Biol Macromol 2024; 268:131511. [PMID: 38615867 DOI: 10.1016/j.ijbiomac.2024.131511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.
Collapse
Affiliation(s)
- Kanika Arora
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - P M Sherilraj
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - K A Abutwaibe
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Bharti Dhruw
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India; Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad 500046, Telangana, India.
| |
Collapse
|
19
|
Shah HS, Zaib S, Usman F, Sarfraz M, Faiz R, Rehman SA, Khan AA, Alanazi AM, Khan R, Nasrullah U, Nazir I. Synthesis, characterization, pharmacological and computational evaluation of hyaluronic acid modified chebulinic acid encapsulated chitosan nanocomposite for cancer therapy. Int J Biol Macromol 2024; 263:130160. [PMID: 38367777 DOI: 10.1016/j.ijbiomac.2024.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 μM) than pure CLA (IC50 = 17.15 ± 5.11 μM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates.
| | - Rabia Faiz
- Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
| | - Saira Abdul Rehman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; M Islam College of Pharmacy, 52230 Gujranwala, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riffat Khan
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, 54000 Lahore, Pakistan.
| |
Collapse
|
20
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Lee MH, Kim HD, Jang YJ. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem 2024; 437:137910. [PMID: 37931451 DOI: 10.1016/j.foodchem.2023.137910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Lipophilic compounds, such as flavors, fat-soluble vitamins, and hydrophobic nutrients possess vital properties including antioxidant effects, functional attributes, and nutritional value that can improve human health. However, their susceptibility to environmental factors including heat, pH changes, and ionic strength encountered during food processing poses significant challenges. To address these issues, diverse bioactive delivery systems have been developed. This review explores delivery systems designed to optimize the stability and suitability of lipophilic bioactive compounds in food processing. Extensive literature analysis reveals that tailoring delivery systems with various biopolymers can protect bioactives through steric hindrance and formation of thick interfacial layers on the emulsion surfaces. Thus, the access of oxygen, prooxidants, and free radicals at the emulsion interface could be inhibited, resulting in enhanced processing suitability of bioactives as well as chemical stability under diverse environmental conditions. The insights presented in this review hold immense value for the food and beverage industries.
Collapse
Affiliation(s)
- Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| | - Hyeong Do Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Yun Jae Jang
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
22
|
Wang L, Yu Z, Zhang J, Guo J. Nanoformulations of chemotherapeutic activators of the cGAS-STING pathway in tumor chemoimmunotherapy. Drug Discov Today 2024; 29:103892. [PMID: 38272174 DOI: 10.1016/j.drudis.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapeutic drugs to activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway have been exploited for tumor chemoimmunotherapy. The clinical translation of chemotherapeutic cGAS-STING activators is hindered by the lack of safe, efficient, and specific delivery strategies. Nanodrug delivery systems (NDDS) designed for reducing toxic effects and improving transport effectiveness potentiate in vivo delivery of chemotherapeutic cGAS-STING activators. cGAS-STING monotherapy often encounters tumor resistance without providing satisfactory therapeutic benefit; therefore combination therapy is desirable. This review describes NDDS strategies for surmounting delivery obstacles of chemotherapeutic cGAS-STING activators and highlights combinatorial regimens, which utilize therapeutics that work by different mechanisms, for optimal therapy.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Yu Z, Huang L, Guo J. Anti-stromal nanotherapeutics for hepatocellular carcinoma. J Control Release 2024; 367:500-514. [PMID: 38278367 DOI: 10.1016/j.jconrel.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepatocellular carcinoma (HCC), the most commonly diagnosed primary liver cancer, has become a leading cause of cancer-related death worldwide. Accumulating evidence confirms that the stromal constituents within the tumor microenvironment (TME) exacerbate HCC malignancy and set the barriers to current anti-HCC treatments. Recent developments of nano drug delivery system (NDDS) have facilitated the application of stroma-targeting therapeutics, disrupting the stromal TME in HCC. This review discusses the stromal activities in HCC development and therapy resistance. In addition, it addresses the delivery challenges of NDDS for stroma-targeting therapeutics (termed anti-stromal nanotherapeutics in this review), and provides recent advances in anti-stromal nanotherapeutics for safe, effective, and specific HCC therapy.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
24
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
25
|
Arjunan N, Thiruvengadam V, Sushil SN. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol Biol Rep 2024; 51:355. [PMID: 38400844 DOI: 10.1007/s11033-023-09187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.
Collapse
Affiliation(s)
- Nareshkumar Arjunan
- Division of Molecular Entomology, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India.
| | - S N Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India
| |
Collapse
|
26
|
Sasaki I, Brégier F, Chemin G, Daniel J, Couvez J, Chkair R, Vaultier M, Sol V, Blanchard-Desce M. Hydrophilic Biocompatible Fluorescent Organic Nanoparticles as Nanocarriers for Biosourced Photosensitizers for Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:216. [PMID: 38276734 PMCID: PMC10819872 DOI: 10.3390/nano14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Most photosensitizers of interest for photodynamic therapy-especially porphyrinoids and chlorins-are hydrophobic. To circumvent this difficulty, the use of nanocarriers is an attractive strategy. In this perspective, we have developed highly water-soluble and biocompatible fluorescent organic nanoparticles (FONPs) made from citric acid and diethyltriamine which are then activated by ethlynene diamine as nanoplatforms for efficient photosensitizers (PSs). Purpurin 18 (Pp18) was selected as a biosourced chlorin photosensitizer combining the efficient single oxygen generation ability and suitable absorption in the biological spectral window. The simple reaction of activated FONPs with Pp18, which contains a reactive anhydride ring, yielded nanoparticles containing both Pp18 and Cp6 derivatives. These functionalized nanoparticles combine solubility in water, high singlet oxygen generation quantum yield in aqueous media (0.72) and absorption both in the near UV region (FONPS) and in the visible region (Soret band approximately 420 nm as well as Q bands at 500 nm, 560 nm, 660 nm and 710 nm). The functionalized nanoparticles retain the blue fluorescence of FONPs when excited in the near UV region but also show deep-red or NIR fluorescence when excited in the visible absorption bands of the PSs (typically at 520 nm, 660 nm or 710 nm). Moreover, these nanoparticles behave as efficient photosensitizers inducing colorectal cancer cell (HCT116 and HT-29 cell lines) death upon illumination at 650 nm. Half maximal inhibitory concentration (IC50) values down to, respectively, 0.04 and 0.13 nmol/mL were observed showing the potential of FONPs[Cp6] for the PDT treatment of cancer. In conclusion, we have shown that these novel biocompatible nanoparticles, which can be elaborated from biosourced components, both show deep-red emission upon excitation in the red region and are able to produce singlet oxygen with high efficiency in aqueous environments. Moreover, they show high PDT efficiency on colorectal cancer cells upon excitation in the deep red region. As such, these functional organic nanoparticles hold promise both for PDT treatment and theranostics.
Collapse
Affiliation(s)
- Isabelle Sasaki
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Frédérique Brégier
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Guillaume Chemin
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Jonathan Daniel
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Justine Couvez
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Rayan Chkair
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Michel Vaultier
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Vincent Sol
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| |
Collapse
|
27
|
Wang M, Ni SD, Yin YW, Ma YQ, Ding HM. Molecular Modeling of the Fluorination Effect on the Penetration of Nanoparticles across Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1295-1304. [PMID: 38173387 DOI: 10.1021/acs.langmuir.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The fluorinated decorations have recently been widely used in many biomedical applications. However, the potential mechanism of the fluorination effect on the cellular delivery of nanoparticles (NPs) still remains elusive. In this work, we systemically explore the penetration of a perfluoro-octanethiol-coated gold NP (PF-Au NP) and, for comparison, an octanethiol-coated gold NP (OT-Au NP) across lipid bilayers. We also investigated the effect of these two types of NPs on the properties of lipid bilayers. Our findings indicate that the lipid type and the surface tension of the lipid bilayer significantly impact the penetration capabilities of the fluorinated gold NP. By examining the distribution of ligands on the surface of the two types of NPs in water and during the penetration process, we unveil their distinct penetration characteristics. Specifically, the PF-Au NP exhibits amphiphobic behavior (both hydrophobic and lipophobic), while the OT-Au NP exhibits solely hydrophobic characteristics. Finally, we observe that the penetration capabilities can be increased by adjusting the degree of fluorination of the ligands on the NP surface. Overall, this study provides useful physical insights into the unique properties of the fluorinated decorations in NP permeation.
Collapse
Affiliation(s)
- Min Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Song-Di Ni
- Shanghai Marine Electronic Equipment Research Institute, Shanghai 201100, China
| | - Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
28
|
Kolipaka T, Pandey G, Abraham N, Srinivasarao DA, Raghuvanshi RS, Rajinikanth PS, Tickoo V, Srivastava S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr Polym 2024; 324:121537. [PMID: 37985111 DOI: 10.1016/j.carbpol.2023.121537] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing. Therefore, there is a paradigm shift in diabetic wound care management wherein abnormal pathological conditions of the wound microenvironment is used as a trigger for controlling the drug release or to improve properties of wound dressings. Hydrogels composed of natural polysaccharides showed tremendous potential as wound dressings as well as stimuli-responsive materials due to their unique properties such as biocompatibility, biodegradability, hydrophilicity, porosity, stimuli-responsiveness etc. Hence, polysaccharide-based hydrogels have emerged as advanced healthcare materials for diabetic wounds. In this review, we presented important aspects for the design of hydrogel-based wound dressings with an emphasis on biocompatibility, biodegradability, entrapment of therapeutic agents, moisturizing ability, swelling, and mechanical properties. Further, various crosslinking methods that enable desirable properties and stimuli responsiveness to the hydrogels have been mentioned. Subsequently, state-of-the-art developments in mono- and multi- stimuli-responsive hydrogels have been presented along with the case studies. Finally regulatory perspectives, challenges for the clinical translation and future prospects have been discussed.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vidya Tickoo
- Department of Endocrinology, Yashoda Hospitals, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
29
|
Důbravová A, Muchová M, Škoda D, Lovecká L, Šimoníková L, Kuřitka I, Vícha J, Münster L. Highly efficient affinity anchoring of gold nanoparticles on chitosan nanofibers via dialdehyde cellulose for reusable catalytic devices. Carbohydr Polym 2024; 323:121435. [PMID: 37940301 DOI: 10.1016/j.carbpol.2023.121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Polysaccharides are often utilized as reducing and stabilizing agents and as support in the synthesis of gold nanoparticles (AuNPs). However, using approaches like spin coating or dip coating, AuNPs are generally bound to the support only by weak interactions, which can lead to decreased stability of the composite. Here, a two-stage approach for the preparation of composites with covalently anchored AuNPs is proposed. First, 5 nm AuNPs with high catalytic activity for the reduction of 4-nitrophenol (TOF = 15.8 min-1) were synthesized and stabilized using fully oxidized and solubilized 2,3-dialdehyde cellulose (DAC). Next, the carbonyl groups in the shell of prepared nanoparticles were used to tether AuNPs to chitosan nanofibers with quantitative efficacy in a process that we termed "affinity anchoring". Schiff bases formed during this process were subsequently reduced to secondary amines by borohydride, which greatly improved the stability of the composite in the broad pH range from 3 to 9. The catalytic efficacy of the resulting composite is demonstrated using a model catalytic device, showing high stability, fast conversion rates, and direct reusability.
Collapse
Affiliation(s)
- Alžběta Důbravová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - David Škoda
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lenka Lovecká
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lucie Šimoníková
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
30
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
31
|
Chen J. Advancements and Perspectives in Polysaccharide-Based Nanoparticles for Theranostic Nanomedicine. Pharmaceuticals (Basel) 2023; 17:36. [PMID: 38256870 PMCID: PMC10820064 DOI: 10.3390/ph17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
It is with great enthusiasm [...].
Collapse
Affiliation(s)
- Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
32
|
Lai J, Liang J, Zhang Y, Zhang B, Wei J, Fan J, Chen L, Chen Z, Li Q, Guo D, Lin J, Chen Q. A drug-delivery depot for epigenetic modulation and enhanced cancer immunotherapy. Biomed Pharmacother 2023; 168:115687. [PMID: 37837882 DOI: 10.1016/j.biopha.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) have found widespread application in the management of cancer. Zebularine (Zeb), functioning as a demethylating agent, has exhibited notable advantages and enhanced therapeutic efficacy in the realm of tumour immunotherapy. Nevertheless, due to its lack of targeted functionality, standalone Zeb therapy necessitates the administration of a substantially higher dosage. In this investigation, we have devised an innovative nanodrug formulation, comprising the DNA methyltransferase inhibitor Zeb and pH-responsive chitosan (CS), hereinafter referred to as CS-Zeb nanoparticles (NPs). Our findings have unveiled that CS-Zeb NPs manifest heightened drug release within an acidic milieu (pH 5.5) in comparison to a neutral environment (pH 7.4). Furthermore, in vivo studies have conclusively affirmed that, in contrast to equivalent quantities of Zeb in isolation, the nanocomplex significantly curtailed tumour burden and protracted the survival duration of the B16F10 tumour-bearing murine model. Additionally, CS-Zeb NPs elicited an augmentation of CD8+ T cells within the peripheral circulation of mice and tumour-infiltrating lymphocytes (TILs). Notably, the dosage of CS-Zeb NPs was reduced by a remarkable 70-fold when juxtaposed with Zeb administered in isolation. To summarise, our study underscores the potential of CS-Zeb NPs as an alternative chemotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Bingchen Zhang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, PR China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China.
| |
Collapse
|
33
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
34
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
35
|
Sun Y, Tan Y, Yan D, Gui Y, Luo W, Zhu D, Wang D, Tang BZ. Recent advances of AIE-active materials for orthotopic tumor phototheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1906. [PMID: 37264521 DOI: 10.1002/wnan.1906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/03/2023]
Abstract
Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yan Sun
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yonghong Tan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yixiong Gui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Wenshuai Luo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dongxia Zhu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dong Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
36
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
37
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
38
|
Anwer AH, Ahtesham A, Shoeb M, Mashkoor F, Ansari MZ, Zhu S, Jeong C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv Colloid Interface Sci 2023; 318:102955. [PMID: 37467558 DOI: 10.1016/j.cis.2023.102955] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
The modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them. There are several types of fillers that can be added to polymers to enhance their quality, such as cellulose-based fillers, clay nanomaterials, carbon black, talc, carbon quantum dots, and many others. Biopolymer-based nanocomposites are considered a superior alternative to traditional materials as they reduce reliance on fossil fuels and promote the use of renewable resources. This review covers the current state-of-the-art in nanocomposite and bio-nanocomposite materials, focusing on ways to improve their features and the various applications they can be used for. The review article also investigates the utilization of diverse nanocomposites as a viable approach for developing bio-nanocomposites. It delves into the underlying principles that govern the synthesis of these materials and explores their prospective applications in the biomedical field, food packaging, sensing (Immunosensors), and energy storage devices. Lastly, the review discusses the future outlook and current challenges of these materials, with a focus on sustainability.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Afreen Ahtesham
- School of Chemical Sciences University Sains Malaysia, Penang, Malaysia
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shushuai Zhu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
39
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
40
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
41
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
42
|
Koeppe H, Horn D, Scholz J, Quaas E, Schötz S, Reisbeck F, Achazi K, Mohammadifar E, Dernedde J, Haag R. Shell-Sheddable Dendritic Polyglycerol Sulfates Loaded with Sunitinib for Inhibition of Tumor Angiogenesis. Int J Pharm 2023:123158. [PMID: 37336299 DOI: 10.1016/j.ijpharm.2023.123158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Induced angiogenesis, a specific hallmark of cancer, plays a vital role in tumor progression and can be targeted by inhibitors like sunitinib. Sunitinib is a small hydrophobic molecule suffering from low bioavailability and a short half-life in the bloodstream. To overcome these drawbacks, suitable drug delivery systems need to be developed. In this work dendritic polyglycerol (dPG), a well-known polymer, was functionalized with a sheddable shell. Therefore, aliphatic chains of different lengths (C5, C9, C11) were coupled to dPG through a cleavable ester bond. To restore water solubility and improve tumor targeting, the surface was decorated with sulfate groups. The resulting shell-sheddable dPG sulfates were characterized and evaluated regarding their loading capacity and biocompatibility in cell culture. The nine-carbon chain derivative (dPG-TNS) was selected as the best candidate for further experiments due to its high drug loading capacity (20wt%), and a sustained release in vitro. The cellular biocompatibility of the blank carrier up to 1mg/mL was confirmed after 24h incubation on HeLa cells. Furthermore, the shell-cleavability of dPG-TNS under different physiological conditions was shown in a degradation study over four weeks. The activity of sunitinib-loaded dPG-TNS was demonstrated in a tube formation assay on Human umbilical vein endothelial cells (HUVECs). Our results suggest that the drug-loaded nanocarrier is a promising candidate to be further investigated in tumor treatments, as it shows similar efficacy to free sunitinib while overcoming its limitations.
Collapse
Affiliation(s)
- Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Daniel Horn
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johanna Scholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Schötz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Felix Reisbeck
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Jens Dernedde
- Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
43
|
Sankaranarayanan A, Ramprasad A, Shree Ganesh S, Ganesh H, Ramanathan B, Shanmugavadivu A, Selvamurugan N. Nanogels for bone tissue engineering - from synthesis to application. NANOSCALE 2023. [PMID: 37305943 DOI: 10.1039/d3nr01246h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanogels are cross-linked hydrogel nanoparticles with a three-dimensional, tunable porous structure that merges the best features of hydrogels and nanoparticles, including the ability to retain their hydrated nature and to swell and shrink in response to environmental changes. Nanogels have attracted increasing attention for use in bone tissue engineering as scaffolds for growth factor transport and cell adhesion. Their three-dimensional structures allow the encapsulation of a wide range of hydrophobic and hydrophilic drugs, enhance their half-life, and impede their enzymatic breakdown in vivo. Nanogel-based scaffolds are a viable treatment modality for enhanced bone regeneration. They act as carriers for cells and active ingredients capable of controlled release, enhanced mechanical support, and osteogenesis for enhanced bone tissue regeneration. However, the development of such nanogel constructs might involve combinations of several biomaterials to fabricate active ingredients that can control release, enhance mechanical support, and facilitate osteogenesis for more effective bone tissue regeneration. Hence, this review aims to highlight the potential of nanogel-based scaffolds to address the needs of bone tissue engineering.
Collapse
Affiliation(s)
- Aravind Sankaranarayanan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Anushikaa Ramprasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Harini Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Bharathi Ramanathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| |
Collapse
|
44
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
45
|
Cai M, Yao Y, Yin D, Zhu R, Fu T, Kong J, Wang K, Liu J, Yao A, Ruan Y, Shi W, Zhu Q, Ni J, Yin X. Enhanced lysosomal escape of cell penetrating peptide-functionalized metal-organic frameworks for co-delivery of survivin siRNA and oridonin. J Colloid Interface Sci 2023; 646:370-380. [PMID: 37207419 DOI: 10.1016/j.jcis.2023.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
In recent years, small interfering RNA (siRNA) has been widely used in the treatment of human diseases, especially tumors, and has shown great appeal. However, the clinical application of siRNA faces several challenges. Insufficient efficacy, poor bioavailability, poor stability, and lack of responsiveness to a single therapy are the main problems affecting tumor therapy. Here, we designed a cell-penetrating peptide (CPP)-modified metal organic framework nanoplatform (named PEG-CPP33@ORI@survivin siRNA@ZIF-90, PEG-CPP33@NPs) for targeted co-delivery of oridonin (ORI), a natural anti-tumor active ingredient) and survivin siRNA in vivo. This can improve the stability and bioavailability of siRNA and the efficacy of siRNA monotherapy. The high drug-loading capacity and pH-sensitive properties of zeolite imidazolides endowed the PEG-CPP33@NPs with lysosomal escape abilities. The Polyethylene glycol (PEG)-conjugated CPP (PEG-CPP33) coating significantly improved the uptake in the PEG-CPP33@NPs in vitro and in vivo. The results showed that the co-delivery of ORI and survivin siRNA greatly enhanced the anti-tumor effect of PEG-CPP33@NPs, demonstrating the synergistic effect between ORI and survivin siRNA. In summary, the novel targeted nanobiological platform loaded with ORI and survivin siRNA presented herein showed great advantages in cancer therapy, and provides an attractive strategy for the synergistic application of chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Aina Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yidan Ruan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qian Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
46
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
47
|
Kotha R, Kara DD, Roychowdhury R, Tanvi K, Rathnanand M. Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imaging. Adv Pharm Bull 2023; 13:218-232. [PMID: 37342386 PMCID: PMC10278216 DOI: 10.34172/apb.2023.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 01/07/2022] [Indexed: 10/29/2023] Open
Abstract
Drug delivery systems made based on nanotechnology represent a novel drug carrier system that can change the face of therapeutics and diagnosis. Among all the available nanoforms polymersomes have wider applications due to their unique characteristic features like drug loading carriers for both hydrophilic and hydrophobic drugs, excellent biocompatibility, biodegradability, longer shelf life in the bloodstream and ease of surface modification by ligands. Polymersomes are defined as the artificial vesicles which are enclosed in a central aqueous cavity which are composed of self-assembly with a block of amphiphilic copolymer. Various techniques like film rehydration, direct hydration, nanoprecipitation, double emulsion technique and microfluidic technique are mostly used in formulating polymersomes employing different polymers like PEO-b-PLA, poly (fumaric/sebacic acid), poly(N-isopropylacrylamide) (PNIPAM), poly (dimethylsiloxane) (PDMS), and poly(butadiene) (PBD), PTMC-b-PGA (poly (dimethyl aminoethyl methacrylate)-b-poly(l-glutamic acid)) etc. Polymersomes have been extensively considered for the conveyance of therapeutic agents for diagnosis, targeting, treatment of cancer, diabetes etc. This review focuses on a comprehensive description of polymersomes with suitable case studies under the following headings: chemical structure, polymers used in the formulation, formulation methods, characterization methods and their application in the therapeutic, and medicinal filed.
Collapse
Affiliation(s)
- Rohini Kotha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Rajeshwari Roychowdhury
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal-576104, India
| |
Collapse
|
48
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
49
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
50
|
Guo Y, Cheng N, Sun H, Hou J, Zhang Y, Wang D, Zhang W, Chen Z. Advances in the development and optimization strategies of the hemostatic biomaterials. Front Bioeng Biotechnol 2023; 10:1062676. [PMID: 36714615 PMCID: PMC9873964 DOI: 10.3389/fbioe.2022.1062676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Most injuries are accompanied by acute bleeding. Hemostasis is necessary to relieve pain and reduce mortality in these accidents. In recent years, the traditional hemostatic materials, including inorganic, protein-based, polysaccharide-based and synthetic materials have been widely used in the clinic. The most prominent of these are biodegradable collagen sponges (Helistat®, United States), gelatin sponges (Ethicon®, SURGIFOAM®, United States), chitosan (AllaQuixTM, ChitoSAMTM, United States), cellulose (Tabotamp®, SURGICEL®, United States), and the newly investigated extracellular matrix gels, etc. Although these materials have excellent hemostatic properties, they also have their advantages and disadvantages. In this review, the performance characteristics, hemostatic effects, applications and hemostatic mechanisms of various biomaterials mentioned above are presented, followed by several strategies to improve hemostasis, including modification of single materials, blending of multiple materials, design of self-assembled peptides and their hybrid materials. Finally, the exploration of more novel hemostatic biomaterials and relative coagulation mechanisms will be essential for future research on hemostatic methods.
Collapse
Affiliation(s)
- Yayuan Guo
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Nanqiong Cheng
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Hongxiao Sun
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Jianing Hou
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Yuchen Zhang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Du Wang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Wei Zhang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China,School of Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Zhuoyue Chen
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China,School of Medicine, Northwest University, Xi’an, Shaanxi Province, China,*Correspondence: Zhuoyue Chen,
| |
Collapse
|