1
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
2
|
Saavedra C, Pérez C, Oyarzún C, Torres-Arévalo Á. Overweight and obesity in domestic cats: epidemiological risk factors and associated pathologies. J Feline Med Surg 2024; 26:1098612X241285519. [PMID: 39560296 DOI: 10.1177/1098612x241285519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The domestic cat has evolved in various aspects in its journey from original domestication to the present day. Many domestic cats today lead a sedentary indoor lifestyle with low environmental stimulation. In addition, cats have changed their eating habits, transitioning from being carnivorous hunters to animals that eat commercial processed foods. Eating patterns have also changed since cats no longer need to hunt for food but instead have access to several portions throughout the day. All these variables, known as extrinsic epidemiological factors, added to animal-specific or intrinsic epidemiological factors (genetics, sex and breed, among others), predispose cats to the development of overweight and obesity (O&O). The prevalence of O&O has significantly increased in the global cat population, making them a growing clinical concern for companion animals. In turn, O&O contribute to the onset of other pathologies by either increasing susceptibility or creating conditions that allow existing or incipient pathologies to manifest or worsen. Some of these diseases correspond to changes in the musculoskeletal tissue, insulin resistance, type 2 diabetes, skin disorders, and kidney and urinary tract diseases, among others. Therefore, the aim of this review was to analyze the epidemiological variables and diseases associated with O&O in the domestic cat.
Collapse
Affiliation(s)
- Claudia Saavedra
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, sede Talca, Universidad Santo Tomás, Chile
| | - Consuelo Pérez
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, sede Talca, Universidad Santo Tomás, Chile
| | - Carlos Oyarzún
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Ángelo Torres-Arévalo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, sede Talca, Universidad Santo Tomás, Chile
| |
Collapse
|
3
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
4
|
Zhao Y, Mao W, Liu B, Wang YF, Zhang SY, Guo LL, Qian YH, Gong ZG, Zhao JM, Yang XL, Qu GG, Hasi SR, Bai YT, Cao JS. Preparation of ceftiofur-encapsulated hen-egg low-density lipoproteins and their antibacterial effects on intracellular Staphylococcus aureus. Int J Biol Macromol 2024; 278:134840. [PMID: 39217040 DOI: 10.1016/j.ijbiomac.2024.134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Hen egg low-density lipoprotein (heLDL), as alternative of serum-derived LDL, was used as drug delivery system of ceftiofur (CEF). The CEF-loaded hen egg low-density lipoprotein (CEF-heLDL) with complete apolipoprotein structure and high drug loading rate was synthesized, possesses suitable particle size. CEF-heLDL undergoes cellular uptake and colocalizes with lysosomes in vitro. An intracellular infection model of the bovine endometrial epithelial cells and a coeliac-induced inflammation model of mice by Staphylococcus aureus (S. aureus) were established, and significantly lower intracellular S. aureus levels of CEF-heLDL group than CEF-free group (P < 0.001) was observed. The antibacterial efficacy was sustained for 24 h. Up to 400 mg/kg of CEF-heLDL, 20 times the clinical practice, were intraperitoneally administrated, and no significant toxicity signs on mice were observed. HeLDLs is an effective, safe, and cheap drug carrier, and could also be used for transmembrane delivering other antibiotics.
Collapse
Affiliation(s)
- Yi Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Wei Mao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Yong-Fei Wang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Inner Mongolia Medical University, Hohhot 010030, China
| | - Shuang-Yi Zhang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Li-Li Guo
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Ying-Hong Qian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010010, China
| | - Zhi-Guo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Jia-Min Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Xiao-Lin Yang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Gang-Gang Qu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Su-Rong Hasi
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Yu-Ting Bai
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Jin-Shan Cao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| |
Collapse
|
5
|
Alqahtani MS, Syed R, Alqahtani AS, Almarfadi OM, Roni MA, Sadhu SS. Synthesis and bioactivity of a novel surfactin-based lipopeptide for mRNA delivery. NANOSCALE ADVANCES 2024:d4na00404c. [PMID: 39247856 PMCID: PMC11376094 DOI: 10.1039/d4na00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The effective delivery of messenger ribonucleic acid (mRNA) to specific cell types and target tissues poses a significant challenge in nonviral therapeutic strategies. Lipid-based nanoparticles (LNPs) have emerged as a leading carrier system for delivering mRNA, particularly for infectious diseases, such as COVID-19. This study aimed to describe the synthesis of a novel lipopeptide based on surfactin, a naturally occurring surfactant. Additionally, a series of novel LNPs were rationally designed, based on the modified surfactin, OleSurf, and were formulated and optimized. The physicochemical properties, morphologies, and stabilities of the particles were evaluated. All formulations containing OleSurf produced particles with a diameter <80 nm and an encapsulation efficiency >95%. OleSurf LNPs demonstrated excellent transfection efficiency and luciferase expression with no cytotoxicity, compared to lipofectamine 2000, a known transfection reagent, and were comparable to the DLin-MC3-DMA lipid. OleSurf-based LNPs behaved as efficient mRNA carriers and showed enhanced mRNA-binding capabilities, associated with facilitated intracellular release, endosomal escape, and protection from endonuclease degradation. In addition, OleSurf-LNPs showed a higher mRNA delivery efficiency, a more advantageous biodistribution pattern, and an improved safety profile in vivo. Overall, the novel OleSurf LNPs presented an optimal delivery platform for mRNA therapeutics.
Collapse
Affiliation(s)
- Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Monzurul A Roni
- Department of Health Sciences Education and Pathology, University of Illinois College of Medicine Peoria IL 61605 USA
| | - Satya S Sadhu
- Chemistry Department, Northern Michigan University 1401, Presque, Isle Marquette MI 49855 USA
| |
Collapse
|
6
|
Ma Y, Yang X, Ning K, Guo H. M1/M2 macrophage-targeted nanotechnology and PROTAC for the treatment of atherosclerosis. Life Sci 2024; 352:122811. [PMID: 38862062 DOI: 10.1016/j.lfs.2024.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Macrophages play key roles in atherosclerosis progression, and an imbalance in M1/M2 macrophages leads to unstable plaques; therefore, M1/M2 macrophage polarization-targeted treatments may serve as a new approach in the treatment of atherosclerosis. At present, there is little research on M1/M2 macrophage polarization-targeted nanotechnology. Proteolysis-targeting chimera (PROTAC) technology, a targeted protein degradation technology, mediates the degradation of target proteins and has been widely promoted in preclinical and clinical applications as a novel therapeutic modality. This review summarizes the recent studies on M1/M2 macrophage polarization-targeted nanotechnology, focusing on the mechanism and advantages of PROTACs in M1/M2 macrophage polarization as a new approach for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Haidong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Kapic A, Sabnis N, Dossou AS, Chavez J, Ceresa L, Gryczynski Z, Fudala R, Dickerman R, Bunnell BA, Lacko AG. Photophysical Characterization and In Vitro Evaluation of α-Mangostin-Loaded HDL Mimetic Nano-Complex in LN-229 Glioblastoma Spheroid Model. Int J Mol Sci 2024; 25:7378. [PMID: 39000485 PMCID: PMC11242846 DOI: 10.3390/ijms25137378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.
Collapse
Affiliation(s)
- Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Akpedje S Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jose Chavez
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Luca Ceresa
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Zygmunt Gryczynski
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rob Dickerman
- Department of Spine Surgery, Neurological and Spine Surgeon, 5575 Frisco Square Blvd, Frisco, TX 75093, USA
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Murali N, Rainu SK, Sharma A, Siddhanta S, Singh N, Betal S. Remotely Controlled Surface Charge Modulation of Magnetoelectric Nanogenerators for Swift and Efficient Drug Delivery. ACS OMEGA 2024; 9:28937-28950. [PMID: 38973906 PMCID: PMC11223158 DOI: 10.1021/acsomega.4c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect. The capability of directional magnetic field-assisted modulation of the surface electrical dipole of MENG provides a mechanism to create/break ionic bonds with DOX molecules, which facilitates efficient drug attachment and on-demand swift detachment of the drug at a targeted site. The magnetic field-assisted drug-loading mechanism was minutely analyzed using spectrophotometry and Raman spectroscopy. The detailed time-dependent analysis of controlled drug release by the MENG under unidirectional and rotating magnetic field excitation was conducted using field-emission scanning electron microscopy, energy-dispersive X-ray, and atomic force microscopic measurements. In vitro, experiments validate the cytocompatibility and magnetically assisted on-demand and swift DOX drug delivery by the MENG near MCF-7 breast cancer cells, which results in a significant enhancement of cancer cell killing efficiency. A state-of-the-art experiment was performed to visualize the nanoscale magnetoelectric effect of MENG using off-axis electron holography under Lorentz conditions.
Collapse
Affiliation(s)
- Nandan Murali
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simran Kaur Rainu
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Arti Sharma
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Soumik Siddhanta
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Neetu Singh
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Soutik Betal
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Sardarabadi H, Darvishi MH, Zohrab F, Javadi H. Nanophytomedicine: A promising practical approach in phytotherapy. Phytother Res 2024; 38:3607-3644. [PMID: 38725270 DOI: 10.1002/ptr.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
The long and rich history of herbal therapeutic nutrients is fascinating. It is incredible to think about how ancient civilizations used plants and herbs to treat various ailments and diseases. One group of bioactive phytochemicals that has gained significant attention recently is dietary polyphenols. These compounds are commonly found in a variety of fruits, vegetables, spices, nuts, drinks, legumes, and grains. Despite their incredible therapeutic properties, one challenge with polyphenols is their poor water solubility, stability, and bioavailability. This means that they are not easily absorbed by the body when consumed in essential diets. Because of structural complexity, polyphenols with high molecular weight cannot be absorbed in the small intestine and after arriving in the colon, they are metabolized by gut microbiota. However, researchers are constantly working on finding solutions to enhance the bioavailability and absorption of these compounds. This study aims to address this issue by applying nanotechnology approaches to overcome the challenges of the therapeutic application of dietary polyphenols. This combination of nanotechnology and phytochemicals could cause a completely new field called nanophytomedicine or herbal nanomedicine.
Collapse
Affiliation(s)
- Hadi Sardarabadi
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zohrab
- Department of Medical Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Hamidreza Javadi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
12
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
14
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
16
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Pendiuk Goncalves J, Cruz Villarreal J, Walker SA, Tan XNS, Borges C, Wolfram J. High-throughput analysis of glycan sorting into extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119641. [PMID: 37996057 DOI: 10.1016/j.bbamcr.2023.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are cell-released vesicles that mediate intercellular communication by transferring bioactive cargo. Protein and RNA sorting into EVs has been extensively assessed, while selective enrichment of glycans in EVs remains less explored. In this study, a mass spectrometry-based approach, glycan node analysis (GNA), was applied to broadly assess the sorting of glycan features into EVs. Two metastatic variants (lung and bone) generated in mouse modes from the MDA-MB-231 human breast cancer cell line were assessed, as these EVs are known to contain distinct organotropic biomolecules. EVs were isolated from conditioned cell culture medium by tangential flow filtration and authenticated by standard techniques. GNA analysis revealed selective enrichment of several glycan features in EVs compared to the originating cells, particularly those associated with binding to the extracellular matrix, which was also observed in EVs from the parental MDA-MB-231 cell line (human pleural metastases). The bone-tropic variant displayed enrichment of distinct EV glycan features compared to the lung-tropic one. Additionally, the metastatic variants generated in mouse models displayed reduced EV glycan sorting compared to the parental metastatic cell line. This study represents the first comprehensive assessment of differences in glycan features between EVs and originating cells and provides evidence that the diversity of EV glycan sorting is reduced upon generation of variant cell lines in mouse models. Future research is likely to uncover novel mechanisms of EV glycan sorting, shed light on glycan features for EV authentication or biomarker purposes, and assess functional roles of the EV glycocode in (patho)physiology.
Collapse
Affiliation(s)
- Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xuan Ning Sharon Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chad Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA.
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Fukuda R, Shima R, Shibukawa S, Murakami T. Comprehensive Analysis of Drug Loading into Engineered Lipoprotein Nanoparticles toward Their Eye Drop Application. ACS APPLIED BIO MATERIALS 2024; 7:99-103. [PMID: 38156817 DOI: 10.1021/acsabm.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The drug loading capacity of an engineered lipoprotein (eLP1) and the colloidal stability of drug-loaded eLP1s were assessed with 12 drugs with different charges/hydrophobicities. The capacity was largely correlated with their log P values, and the binding to the protein moiety was suggested for two drugs. The size of drug-loaded eLP1 formulations after freeze-drying followed by resolubilization hardly changed. The eLP1 formulation of travoprost, a clinically used drug in eye drop formulations, maintained its small size (19 nm) for 1 h at 37 °C in an artificial tear solution, whereas the liposome counterpart of 112 nm in diameter aggregated.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Biotechnology and Pharmaceutical Engineering Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Rumina Shima
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Biotechnology and Pharmaceutical Engineering Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Shiori Shibukawa
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Biotechnology and Pharmaceutical Engineering Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Tatsuya Murakami
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Biotechnology and Pharmaceutical Engineering Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Abstract
Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.
Collapse
Affiliation(s)
- Raluca E. Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
20
|
Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. NATURE NANOTECHNOLOGY 2024; 19:13-20. [PMID: 38110531 PMCID: PMC10872389 DOI: 10.1038/s41565-023-01522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
21
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev 2023; 203:115136. [PMID: 37944644 DOI: 10.1016/j.addr.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
24
|
Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical Translation of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2301010. [PMID: 37421185 DOI: 10.1002/adhm.202301010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Indexed: 07/10/2023]
Abstract
Extracellular vesicles (EVs) occur in a variety of bodily fluids and have gained recent attraction as natural materials due to their bioactive surfaces, internal cargo, and role in intercellular communication. EVs contain various biomolecules, including surface and cytoplasmic proteins; and nucleic acids that are often representative of the originating cells. EVs can transfer content to other cells, a process that is thought to be important for several biological processes, including immune responses, oncogenesis, and angiogenesis. An increased understanding of the underlying mechanisms of EV biogenesis, composition, and function has led to an exponential increase in preclinical and clinical assessment of EVs for biomedical applications, such as diagnostics and drug delivery. Bacterium-derived EV vaccines have been in clinical use for decades and a few EV-based diagnostic assays regulated under Clinical Laboratory Improvement Amendments have been approved for use in single laboratories. Though, EV-based products are yet to receive widespread clinical approval from national regulatory agencies such as the United States Food and Drug Administration (USFDA) and European Medicine Agency (EMA), many are in late-stage clinical trials. This perspective sheds light on the unique characteristics of EVs, highlighting current clinical trends, emerging applications, challenges and future perspectives of EVs in clinical use.
Collapse
Affiliation(s)
- Aayushi Ghodasara
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- The School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Research, Postgraduate and Further Education (DIPEC), Falcuty of Health Sciences, University of Alba, Santiago, 8320000, Chile
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
25
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
26
|
Amruta A, Iannotta D, Cheetham SW, Lammers T, Wolfram J. Vasculature organotropism in drug delivery. Adv Drug Deliv Rev 2023; 201:115054. [PMID: 37591370 PMCID: PMC10693934 DOI: 10.1016/j.addr.2023.115054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery. This article highlights organ-specific vasculature properties, nanodelivery strategies that exploit vasculature organotropism, and overlooked challenges and opportunities in targeting and simultaneously overcoming the endothelial barrier. Impediments in the clinical translation of vasculature organotropism in drug delivery are also discussed.
Collapse
Affiliation(s)
- A Amruta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO-ABCD), 52074 Aachen, Germany
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Cao Z, Zhang Q, Zhou Z, Xu S, Pan B, Zhang S, Zhang G, Zhi Z, Shi Y, Cui L, Liu P. Construction and application of artificial lipoproteins using adiposomes. J Lipid Res 2023; 64:100436. [PMID: 37648212 PMCID: PMC10518588 DOI: 10.1016/j.jlr.2023.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Lipoproteins are complex particles comprised of a neutral lipid core wrapped with a phospholipid monolayer membrane and apolipoproteins on the membrane, which is closely associated with metabolic diseases. To facilitate the elucidation of its formation and dynamics, as well as its applications, we developed an in vitro system in which adiposomes, consisting of a hydrophobic core encircled by a monolayer-phospholipid membrane, were engineered into artificial lipoproteins (ALPs) by recruiting one or more kinds of apolipoproteins, for example, apolipoprotein (Apo) A-I, ApoE, ApoA-IV, and ApoB. In vitro and in vivo studies demonstrated the stability and biological activity of ALPs derived from adiposomes, which resembles native lipoproteins. Of note, adiposomes bearing ApoE were internalized via clathrin-mediated endocytosis following LDLR binding and were delivered to lysosomes. On the other hand, adiposomes bearing ApoA-IV mimicked the existing form of endogenous ApoA-IV and exhibited significant improvement in glucose tolerance in mice. In addition, the construction process was simple, precise, reproducible, as well as easy to adjust for mass production. With this experimental system, different apolipoproteins can be recruited to build ALPs for some biological goals and potential applications in biomedicine.
Collapse
Affiliation(s)
- Zhen Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ziyun Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bin Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Infectious Diseases, Beijing, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Gaoxin Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zelun Zhi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yumeng Shi
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Wei Y, Zhao H, Kalionis B, Huai X, Hu X, Wu W, Jiang R, Gong S, Wang L, Liu J, Xia S, Yuan P, Zhao Q. The Impact of Abnormal Lipid Metabolism on the Occurrence Risk of Idiopathic Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:14280. [PMID: 37762581 PMCID: PMC10532109 DOI: 10.3390/ijms241814280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to determine whether lipid molecules can be used as potential biomarkers for idiopathic pulmonary arterial hypertension (IPAH), providing important reference value for early diagnosis and treatment. Liquid chromatography-mass spectrometry-based lipidomic assays allow for the simultaneous detection of a large number of lipids. In this study, lipid profiling was performed on plasma samples from 69 IPAH patients and 30 healthy controls to compare the levels of lipid molecules in the 2 groups of patients, and Cox regression analysis was used to identify meaningful metrics, along with receiver operator characteristic curves to assess the ability of the lipid molecules to predict the risk of disease in patients. Among the 14 lipid subclasses tested, 12 lipid levels were significantly higher in IPAH patients than in healthy controls. Free fatty acids (FFA) and monoacylglycerol (MAG) were significantly different between IPAH patients and healthy controls. Logistic regression analysis showed that FFA (OR: 1.239, 95%CI: 1.101, 1.394, p < 0.0001) and MAG (OR: 3.711, 95%CI: 2.214, 6.221, p < 0.001) were independent predictors of IPAH development. Among the lipid subclasses, FFA and MAG have potential as biomarkers for predicting the pathogenesis of IPAH, which may improve the early diagnosis of IPAH.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women’s Hospital, Parkville 3052, Australia;
| | - Xu Huai
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (Y.W.); (H.Z.); (X.H.); (X.H.); (W.W.); (R.J.); (S.G.); (L.W.); (J.L.)
| |
Collapse
|
29
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
30
|
Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm 2023; 185:165-176. [PMID: 36870399 DOI: 10.1016/j.ejpb.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Oral chemotherapy can improve the life quality of patients; however, the therapeutic effects are limited by low bioavailability and rapid in vivo elimination of anticancer drugs. Here, we developed a regorafenib (REG)-loaded self-assembled lipid-based nanocarrier (SALN) to improve oral absorption and anti-colorectal cancer efficacy of REG through lymphatic absorption. SALN was prepared with lipid-based excipients to utilize lipid transport in the enterocytes and enhance lymphatic absorption of the drug in the gastrointestinal tract. The particle size of SALN was 106 ± 10 nm. SALNs were internalized by the intestinal epithelium via the clathrin-mediated endocytosis, and then transported across the epithelium via the chylomicron secretion pathway, resulting in a 3.76-fold increase in drug epithelial permeability (Papp) compared to the solid dispersion (SD). After oral administration to rats, SALNs were transported by the endoplasmic reticulum, Golgi apparatus, and secretory vesicles of enterocytes and were found in the lamina propria of intestinal villi, abdominal mesenteric lymph, and plasma. The oral bioavailability of SALN was 65.9-fold and 1.70-fold greater than that of the coarse powder suspension and SD, respectively, and was highly dependent on the lymphatic route of absorption. Notably, SALN prolonged the elimination half-life of the drug (9.34 ± 2.51 h) compared to the solid dispersion (3.51 ± 0.46 h), increased the biodistribution of REG in the tumor and gastrointestinal (GI) tract, decreased biodistribution in the liver, and showed better therapeutic efficacy than the solid dispersion in colorectal tumor-bearing mice. These results demonstrated that SALN is promising for the treatment of colorectal cancer via lymphatic transport and has potential for clinical translation.
Collapse
Affiliation(s)
- Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Cunde Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
31
|
Wang R, Zhang X, Huang J, Feng K, Zhang Y, Wu J, Ma L, Zhu A, Di L. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence. J Control Release 2023; 354:572-587. [PMID: 36641119 DOI: 10.1016/j.jconrel.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with high mortality. Knowledge of the stemness concept has developed recently, giving rising to a novel hallmark with therapeutic potential that can help in management of GBM recurrence and prognosis. However, limited blood-brain barrier (BBB) penetration, non-discriminatory distribution, and deficiency of diagnosis remain three major obstacles need to be overcome for further facilitating therapeutic effects. Herein, D4F and α-Melittin (a-Mel) are co-assembled to construct bio-fabricated nanoplatforms, which endowed with inherent BBB permeability, precise tumor accumulation, deep penetration, and immune activation. After carrying arsenic trioxide (ATO) and manganese dichloride (MnCl2), these elaborated nanodrugs, Mel-LNPs/MnAs, gather in tumor foci by natural pathways and respond to microenvironment to synchronously release Mn2+ and As3+, achieving real-time navigating-diagnosis and tumor cell proliferation inhibition. Through down regulating CD44 and CD133 expression, the GBM stemness was suppressed to overcome its high recurrence, invasion, and chemoresistance. After being combined with temozolomide (TMZ), the survival rate of GBM-bearing mice is significantly enhanced, and the rate of recurrence is powerfully limited. Collectively, this tumor-specific actuating multi-modality nanotheranostics provide a promising candidate for clinical application with high security.
Collapse
Affiliation(s)
- Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China.
| | - Xinru Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jianyu Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Lei Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China.
| |
Collapse
|
32
|
Zhang N. Promoting the bench-to-bedside translation of nanomedicines. MEDICAL REVIEW (2021) 2023; 3:1-3. [PMID: 37724109 PMCID: PMC10471099 DOI: 10.1515/mr-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Affiliation(s)
- Ning Zhang
- Peking University Health Science Center, Beijing, China
| |
Collapse
|
33
|
Urzì O, Olofsson Bagge R, Crescitelli R. The dark side of foetal bovine serum in extracellular vesicle studies. J Extracell Vesicles 2022; 11:e12271. [PMID: 36214482 PMCID: PMC9549727 DOI: 10.1002/jev2.12271] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) have been shown to be involved in cell-cell communication and to take part in both physiological and pathological processes. Thanks to their exclusive cargo, which includes proteins, lipids, and nucleic acids from the originating cells, they are gaining interest as potential biomarkers of disease. In recent years, their appealing features have been fascinating researchers from all over the world, thus increasing the number of in vitro studies focused on EV release, content, and biological activities. Cultured cell lines are the most-used source of EVs; however, the EVs released in cell cultures are influenced by the cell culture conditions, such as the use of foetal bovine serum (FBS). FBS is the most common supplement for cell culture media, but it is also a source of contaminants, such as exogenous bovine EVs, RNA, and protein aggregates, that can contaminate the cell-derived EVs and influence their cargo composition. The presence of FBS contaminants in cell-derived EV samples is a well-known issue that limits the clinical applications of EVs, thus increasing the need for standardization. In this review, we will discuss the pros and cons of using FBS in cell cultures as a source of EVs, as well as the protocols used to remove contaminants from FBS.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of BiomedicineNeurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoPalermoItaly
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of SurgerySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
34
|
Kalot G, Godard A, Busser B, Bendellaa M, Dalonneau F, Paul C, Le Guével X, Josserand V, Coll JL, Denat F, Bodio E, Goze C, Gautier T, Sancey L. Lipoprotein interactions with water-soluble NIR-II emitting aza-BODIPYs boost the fluorescence signal and favor selective tumor targeting. Biomater Sci 2022; 10:6315-6325. [PMID: 36149672 DOI: 10.1039/d2bm01271e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following intravenous administration, the interaction of fluorescent exogenous molecules with circulating endogenous transporters can influence their photophysical properties as well as their fate and distribution, and possibly their recognition by different cell types. This type of interaction can be used to optimize the drug delivery but also the imaging properties of a compound of interest. In this study, we investigated the behavior of SWIR-WAZABY-01 fluorophore, a water-soluble aza-BODIPY dye emitting in the NIR-II region, both in vitro and in vivo. While the fluorescence emission of SWIR-WAZABY-01 was weak in aqueous solutions, it was intensely magnified in plasma (∼ ×30). Further analyses using lipoprotein gel electrophoresis and ultracentrifugation revealed interactions between SWIR-WAZABY-01 and plasma lipoproteins in vitro and ex vivo, in particular with LDL. The tumor uptake mechanism of SWIR-WAZABY-01 was investigated based on the presence of low-density lipoprotein (LDL) receptors and passive tumor uptake. Overall, we found that SWIR-WAZABY-01 interacts with lipoproteins enhancing their NIR-II fluorescence emission, and driving the tumor accumulation with regards to the expression of lipoprotein receptors (LDLR, SR-BI). Moreover, SWIR-WAZABY-01, by exploiting endogenous lipoproteins, arises as a new, potent and relevant tool to efficiently label LDL involved in pathologies.
Collapse
Affiliation(s)
- Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Benoit Busser
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France. .,Institut Universitaire de France (IUF), France.,Grenoble Alpes University Hospital (CHUGA), Grenoble, France
| | - Mohamed Bendellaa
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Fabien Dalonneau
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Université de Bourgogne, Dijon, France
| | - Xavier Le Guével
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Véronique Josserand
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France. .,OPTIMAL, Small animal Imaging Platform, 38000 Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Thomas Gautier
- INSERM UMR1231, UFR Sciences de santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| |
Collapse
|
35
|
Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs 2022; 36:701-715. [PMID: 36087245 PMCID: PMC9463673 DOI: 10.1007/s40259-022-00555-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory disease associated with high morbidity and mortality in the clinic. In the face of limited treatment options for ARDS, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have recently shown promise. They regulate levels of growth factors, cytokines, and other internal therapeutic molecules. The possible therapeutic mechanisms of MSC-EVs include anti-inflammatory, cell injury repair, alveolar fluid clearance, and microbe clearance. The potent therapeutic ability and biocompatibility of MSC-EVs have enabled them as an alternative option to ameliorate ARDS. In this review, recent advances, therapeutic mechanisms, advantages and limitations, as well as improvements of using MSC-EVs to treat ARDS are summarized. This review is expected to provide a brief view of the potential applications of MSC-EVs as novel biodrugs to treat ARDS.
Collapse
|
36
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Wang R, Wang X, Li J, Di L, Zhou J, Ding Y. Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma. Bioact Mater 2022; 13:286-299. [PMID: 35224309 PMCID: PMC8844848 DOI: 10.1016/j.bioactmat.2021.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioma is one of the most malignant primary tumors affecting the brain. The efficacy of therapeutics for glioma is seriously compromised by the restriction of blood-brain barrier (BBB), interstitial tumor pressure of resistance to chemotherapy/radiation, and the inevitable damage to normal brain tissues. Inspired by the natural structure and properties of high-density lipoprotein (HDL), a tumor-penetrating lipoprotein was prepared by the fusion tLyP-1 to apolipoprotein A-I-mimicking peptides (D4F), together with indocyanine green (ICG) incorporation and lipophilic small interfering RNA targeted HIF-1α (siHIF) surface anchor for site-specific photo-gene therapy. tLyP-1 peptide is fused to HDL-surface to facilitate BBB permeability, tumor-homing capacity and -site accumulation of photosensitizer and siRNA. Upon NIR light irradiation, ICG not only served as real-time targeted imaging agent, but also provided toxic reactive oxygen species and local hyperthermia for glioma phototherapy. The HIF‐1α siRNA in this nanoplatform downregulated the hypoxia‐induced HIF‐1α level in tumor microenvironment and enhanced the photodynamic therapy against glioma. These studies demonstrated that the nanoparticles could not only efficiently across BBB and carry the payloads to orthotopic glioma, but also modulate tumor microenvironment, thereby inhibiting tumor growth with biosafety. Overall, this study develops a new multifunctional drug delivery system for glioma theranostic, providing deeper insights into orthotopic brain tumor imaging and treatment. •A tumor-penetrating lipoprotein was designed to functionalize natural HDL into multifunctional nanoplatform for codelivery of ICG and siHIF in amplified fluorescence imaging-guided photo-gene therapy. •Ascribed to the natural structure of HDL and the distinct properties of tLyP-1, the established ptHDL/siHIF-ICG can achieve markable BBB crossing and deep tumor penetration for site-specific drug delivery. •Non-destructive monitoring and diagnosis of glioma in situ via the photosensitizer ICG. •Modulation of tumor microenvironment related to hypoxia by gene siHIF and enhanced PDT efficacy.
Collapse
Affiliation(s)
- Ruoning Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- College of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaohong Wang
- College of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junsong Li
- College of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- Corresponding author.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- Corresponding author.
| |
Collapse
|
38
|
Busatto S, Yang Y, Iannotta D, Davidovich I, Talmon Y, Wolfram J. Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays. J Extracell Vesicles 2022; 11:e12202. [PMID: 35362268 PMCID: PMC8971175 DOI: 10.1002/jev2.12202] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
With an exponential increase in extracellular vesicle (EV) studies in the past decade, focus has been placed on standardization of experimental design to ensure inter‐study comparisons and validity of conclusions. In the case of in vitro assays, the composition of cell culture media is important to consider for EV studies. In particular, levels of lipoproteins, which are critical components of the interstitial fluid, should be taken into consideration. Results from this study reveal that lipoprotein levels in cell culture medium impact the effects that EVs have on recipient cells. Additionally, evidence of EV binding and fusion to lipoprotein‐like structures in plasma is provided. However, it is unclear whether the impact of lipoproteins in cell culture is due to direct interactions with EVs, indirect effects, or a combination of both mechanisms. Taken together, cell culture studies performed in the absence of physiological levels of lipoproteins are unlikely to reflect interactions that occur between EVs and recipient cells in an in vivo environment.
Collapse
Affiliation(s)
- Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Yubo Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
40
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
41
|
Wang X, Pham A, Kang L, Walker SA, Davidovich I, Iannotta D, TerKonda SP, Shapiro S, Talmon Y, Pham S, Wolfram J. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics 2021; 14:16. [PMID: 35056912 PMCID: PMC8780819 DOI: 10.3390/pharmaceutics14010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages. In this study, the effects of miRNAs that are abundant in adipose tissue EVs and other biogenic nanoparticles (BiNPs) were assessed in terms of altering Toll-like receptor 4 (TLR4)-induced cytokines. TLR-4 signaling in macrophages is often triggered by pathogen or damage-induced inflammation and is associated with several diseases. This study demonstrates that miR-451a, which is abundant in adipose tissue BiNPs, suppresses pro-inflammatory cytokines and increases anti-inflammatory cytokines associated with the TLR4 pathway. Therefore, miR-451a may be partially responsible for immunomodulatory effects of adipose tissue-derived BiNPs.
Collapse
Affiliation(s)
- Xinghua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Lu Kang
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Sarvam P. TerKonda
- Department of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Shane Shapiro
- Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Si Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
42
|
Coppens E, Desmaële D, Naret T, Garcia-Argote S, Feuillastre S, Pieters G, Cailleau C, Paul JL, Prost B, Solgadi A, Michel JP, Noiray M, Couvreur P, Mura S. Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. Int J Pharm 2021; 609:121076. [PMID: 34481886 DOI: 10.1016/j.ijpharm.2021.121076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
A simple approach to achieve a lipoprotein (LP)-mediated drug delivery is to trigger the spontaneous drug insertion into endogenous lipoproteins in the bloodstream, by means of its chemical modification. Nanoparticles (NPs) made of the squalene-gemcitabine (SQGem) conjugate were found to have a high affinity for plasma lipoproteins while free gemcitabine did not, suggesting a key role of the lipid moiety in this event. Whether the drug conjugation to cholesterol, one of the major lipoprotein-transported lipids, could also promote an analogous interaction was a matter of question. NPs made of the cholesterol-gemcitabine conjugate (CholGem) have been herein thoroughly investigated for their blood distribution profile both in vitro and in vivo. Unexpectedly, contrarily to SQGem, no trace of the CholGem prodrug could be found in the lipoprotein fractions, nor was it interacting with albumin. The investigation of isolated NPs and NPs/LPs physical mixtures provided a further insight into the lack of interaction of CholGem NPs with LPs. Although essential for allowing the self-assembly of the prodrug into nanoparticles, the lipid moiety may not be sufficient to elicit interaction of the conjugated drug with plasma lipoproteins but the whole NP physicochemical features must be carefully considered.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Timothée Naret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Catherine Cailleau
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France; Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Bastien Prost
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Audrey Solgadi
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Philippe Michel
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Magali Noiray
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
43
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
45
|
Lammers T, Noels H. Lipids in disease pathology, diagnosis & therapy. Adv Drug Deliv Rev 2021; 159:1-3. [PMID: 33308647 DOI: 10.1016/j.addr.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
47
|
Raith M, Kauffman SJ, Asoudeh M, Buczek JA, Kang NG, Mays JW, Dalhaimer P. Elongated PEO-based nanoparticles bind the high-density lipoprotein (HDL) receptor scavenger receptor class B I (SR-BI). J Control Release 2021; 337:448-457. [PMID: 34352314 DOI: 10.1016/j.jconrel.2021.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Targeting cell-surface receptors with nanoparticles (NPs) is a crucial aspect of nanomedicine. Here, we show that soft, flexible, elongated NPs with poly-ethylene-oxide (PEO) exteriors and poly-butadiene (PBD) interiors - PEO-PBD filomicelles - interact directly with the major high-density lipoprotein (HDL) receptor and SARS-CoV-2 uptake factor, SR-BI. Filomicelles have a ~ 6-fold stronger interaction with reconstituted SR-BI than PEO-PBD spheres. HDL, and the lipid transport inhibitor, BLT-1, both block the uptake of filomicelles by macrophages and Idla7 cells, the latter are constitutively expressing SR-BI (Idla7-SR-BI). Co-injections of HDL and filomicelles into wild-type mice reduced filomicelle signal in the liver and increased filomicelle plasma levels. The same was true with SCARB1-/- mice. SR-BI binding is followed by phagocytosis for filomicelle macrophage entry, but only SR-BI is needed for entry into Idla7-SR-BI cells. PEO-PBD spheres did not interact strongly with SR-BI in the above experiments. The results show elongated PEO-based NPs can bind cells via cooperativity among SR-BI receptors on cell surfaces.
Collapse
Affiliation(s)
- Mitch Raith
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Sarah J Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Monireh Asoudeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jennifer A Buczek
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Nam-Goo Kang
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jimmy W Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States of America.
| |
Collapse
|
48
|
Iannotta D, Yang M, Celia C, Di Marzio L, Wolfram J. Extracellular vesicle therapeutics from plasma and adipose tissue. NANO TODAY 2021; 39:101159. [PMID: 33968157 PMCID: PMC8104307 DOI: 10.1016/j.nantod.2021.101159] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EVs) are cell-released lipid-bilayer nanoparticles that contain biologically active cargo involved in physiological and pathological intercellular communication. In recent years, the therapeutic potential of EVs has been explored in various disease models. In particular, mesenchymal stromal cell-derived EVs have been shown to exert anti-inflammatory, anti-oxidant, anti-apoptotic, and pro-angiogenic properties in cardiovascular, metabolic and orthopedic conditions. However, a major drawback of EV-based therapeutics is scale-up issues due to extensive cell culture requirements and inefficient isolation protocols. An emerging alternative approach to time-consuming and costly cell culture expansion is to obtain therapeutic EVs directly from the body, for example, from plasma and adipose tissue. This review discusses isolation methods and therapeutic applications of plasma and adipose tissue-derived EVs, highlighting advantages and disadvantages compared to cell culture-derived ones.
Collapse
Affiliation(s)
- Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Man Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Christian Celia
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston TX, USA
| |
Collapse
|
49
|
Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A Simple and Quick Method for Loading Proteins in Extracellular Vesicles. Pharmaceuticals (Basel) 2021; 14:356. [PMID: 33924377 PMCID: PMC8069621 DOI: 10.3390/ph14040356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk. The goal of this study was to develop a quick, versatile, and simple method for loading proteins in EVs post-isolation. Proteins, including CRISPR associated protein 9 (Cas9), were bound to cationic lipids that were further complexed with MDA-MB-231 cell-derived EVs through passive incubation. Size-exclusion chromatography was used to remove components that were not complexed with EVs. The ability of EVs to mediate intracellular delivery of proteins was compared to conventional methods, such as electroporation and commercial protein transfection reagents. The results indicate that EVs retain native features following protein-loading and obtain similar levels of intracellular protein delivery as conventional methods, but display less toxicity. This method opens up opportunities for rapid exploration of EVs for protein delivery.
Collapse
Affiliation(s)
- Sara Busatto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
50
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|