1
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024:S0016-5085(24)04931-X. [PMID: 38768690 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Chen Y, Hao L, Cong J, Ji J, Dai Y, Xu L, Gong B. Transcriptomic analysis reveals the crosstalk between type 2 diabetes and chronic pancreatitis. Health Sci Rep 2024; 7:e2079. [PMID: 38690006 PMCID: PMC11058262 DOI: 10.1002/hsr2.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Mounting evidence highlights a strong association between chronic pancreatitis (CP) and type 2 diabetes (T2D), although the exact mechanism of interaction remains unclear. This study aimed to investigate the crosstalk genes and pathogenesis between CP and T2D. Methods Transcriptomic gene expression profiles of CP and T2D were extracted from Gene Expression Omnibus, respectively, and the common differentially expressed genes (DEGs) were subsequently identified. Further analysis, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction, transcription factors (TFs), microRNA (miRNAs), and candidate chemicals identification, was performed to explore the possible common signatures between the two diseases. Results In total, we acquired 281 common DEGs by interacting CP and T2D datasets, and identified 10 hub genes using CytoHubba. GO and KEGG analyses revealed that endoplasmic reticulum stress and mitochondrial dysfunction were closely related to these common DEGs. Among the shared genes, EEF2, DLD, RAB5A, and SLC30A9 showed promising diagnostic value for both diseases based on receiver operating characteristic curve and precision-recall curves. Additionally, we identified 16 key TFs and 16 miRNAs that were strongly correlated with the hub genes, which may serve as new molecular targets for CP and T2D. Finally, candidate chemicals that might become potential drugs for treating CP and T2D were screened out. Conclusion This study provides evidence that there are shared genes and pathological signatures between CP and T2D. The genes EEF2, DLD, RAB5A, and SLC30A9 have been identified as having the highest diagnostic efficiency and could be served as biomarkers for these diseases, providing new insights into precise diagnosis and treatment for CP and T2D.
Collapse
Affiliation(s)
- Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun Cong
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Xu
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biao Gong
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
4
|
Jiang JL, Zhou YY, Zhong WW, Luo LY, Liu SY, Xie XY, Mu MY, Jiang ZG, Xue Y, Zhang J, He YH. Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury. World J Gastroenterol 2024; 30:1189-1212. [PMID: 38577195 PMCID: PMC10989491 DOI: 10.3748/wjg.v30.i9.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances. However, its contribution to the progression of liver damage remains unclear. AIM To determine the role and mechanism of UGT1A1 in liver damage progression. METHODS We investigated the relationship between UGT1A1 expression and liver injury through clinical research. Additionally, the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study. RESULTS Patients with UGT1A1 gene mutations showed varying degrees of liver damage, while patients with acute-on-chronic liver failure (ACLF) exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis. This suggests that low UGT1A1 levels may be associated with the progression of liver damage. In mouse models of liver injury induced by carbon tetrachloride (CCl4) and concanavalin A (ConA), the hepatic levels of UGT1A1 protein were found to be increased. In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression, the hepatic protein levels of UGT1A1 were decreased, which is consistent with the observations in patients with ACLF. UGT1A1 knockout exacerbated CCl4- and ConA-induced liver injury, hepatocyte apoptosis and necroptosis in mice, intensified hepatocyte endoplasmic reticulum (ER) stress and oxidative stress, and disrupted lipid metabolism. CONCLUSION UGT1A1 is upregulated as a compensatory response during liver injury, and interference with this upregulation process may worsen liver injury. UGT1A1 reduces ER stress, oxidative stress, and lipid metabolism disorder, thereby mitigating hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yi-Yang Zhou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen 448000, Hubei Province, China
| | - Lin-Yan Luo
- Department of Respiratory Medicine, Anshun People’s Hospital, Anshun 561099, Guizhou Province, China
| | - Si-Ying Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao-Yu Xie
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Intervention Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yuan Xue
- Department of Liver Diseases, Third People’s Hospital of Changzhou, Changzhou 213000, Jiangsu Province, China
| | - Jian Zhang
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
5
|
Hung CS, Lee KL, Huang WJ, Su FH, Liang YC. Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16467. [PMID: 38003657 PMCID: PMC10671009 DOI: 10.3390/ijms242216467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-He Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Zhaohui C, Cifei T, Di H, Weijia Z, Cairui H, Zecong L, Xiaobo H. ROS-mediated PERK-CHOP pathway plays an important role in cadmium-induced HepG2 cells apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2271-2280. [PMID: 37300854 DOI: 10.1002/tox.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a common heavy metal that is highly toxic to the liver, however, the exact mechanism underlying this damage accompanied by apoptosis has not been thoroughly demonstrated. In this study, we found that Cd exposure significantly reduced cell viability, including the increased populations of apoptotic cells and caspase-3/-7/-12 activation in HepG2 cells. Mechanistically, Cd initiated oxidative stress via elevating reactive oxygen species (ROS) levels, leading to oxidative damage in HepG2 cells. Simultaneously, Cd exposure induced endoplasmic reticulum (ER) stress via activating the protein kinase RNA-like ER kinase (PERK)-C/EBP homologous protein (CHOP) axis in HepG2 cells, and subsequently disturbed ER function as increased Ca2+ releasing from ER lumen. Intriguingly, further study revealed that oxidative stress is closely related with ER stress, as pretreatment with ROS scavenger, N-acetyl-l-cysteine (NAC) markedly reduced ER stress as well as protected ER function in Cd treated HepG2 cell. Collectively, these findings first revealed Cd exposure induced HepG2 cells death via a ROS-mediated PERK-CHOP-related apoptotic signaling pathway, which provides a novel insight into the mechanisms of Cd-induced hepatotoxicity. Furthermore, inhibitors for oxidative stress and ER stress might be considered as a new strategy to prevent or treat this disorder.
Collapse
Affiliation(s)
- Cao Zhaohui
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Tang Cifei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Huang Di
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Zeng Weijia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Han Cairui
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zecong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Xiaobo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| |
Collapse
|
7
|
Chen W, E Q, Sun B, Zhang P, Li N, Fei S, Wang Y, Liu S, Liu X, Zhang X. PARP1-catalyzed PARylation of YY1 mediates endoplasmic reticulum stress in granulosa cells to determine primordial follicle activation. Cell Death Dis 2023; 14:524. [PMID: 37582914 PMCID: PMC10427711 DOI: 10.1038/s41419-023-05984-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Although only a small number of primordial follicles are known to be selectively activated during female reproductive cycles, the mechanisms that trigger this recruitment remain largely uncharacterized. Misregulated activation of primordial follicles may lead to the exhaustion of the non-renewable pool of primordial follicles, resulting in premature ovarian insufficiency. Here, we found that poly(ADP-ribose) polymerase 1 (PARP1) enzymatic activity in the surrounding granulosa cells (GCs) in follicles determines the subpopulation of the dormant primordial follicles to be awakened. Conversely, specifically inhibiting PARP1 in oocytes in an in vitro mouse follicle reconstitution model does not affect primordial follicle activation. Further analysis revealed that PARP1-catalyzed transcription factor YY1 PARylation at Y185 residue facilitates YY1 occupancy at Grp78 promoter, a key molecular chaperone of endoplasmic reticulum stress (ERS), and promotes Grp78 transcription in GCs, which is required for GCs maintaining proper ERS during primordial follicle activation. Inhibiting PARP1 prevents the loss of primordial follicle pool by attenuating the excessive ERS in GCs under fetal bisphenol A exposure. Together, we demonstrate that PARP1 in GCs acts as a pivotal modulator to determine the fate of the primordial follicles and may represent a novel therapeutic target for the retention of primordial follicle pool in females.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiukai E
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of Obstetrics and Gynecology, the Affiliated Jiangning Hospital of Nanjing Medical University, 211166, Nanjing, China
| | - Pengxue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shujia Fei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yingnan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuting Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqiu Liu
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Xuesen Zhang
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
- Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, 211166, China.
| |
Collapse
|
8
|
Cobo I, Paliwal S, Bodas C, Felipe I, Melià-Alomà J, Torres A, Martínez-Villarreal J, Malumbres M, García F, Millán I, Del Pozo N, Park JC, MacDonald RJ, Muñoz J, Méndez R, Real FX. NFIC regulates ribosomal biology and ER stress in pancreatic acinar cells and restrains PDAC initiation. Nat Commun 2023; 14:3761. [PMID: 37353485 PMCID: PMC10290102 DOI: 10.1038/s41467-023-39291-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Pancreatic acinar cells rely on PTF1 and other transcription factors to deploy their transcriptional program. We identify NFIC as a NR5A2 interactor and regulator of acinar differentiation. NFIC binding sites are enriched in NR5A2 ChIP-Sequencing peaks. Nfic knockout mice have a smaller, histologically normal, pancreas with reduced acinar gene expression. NFIC binds and regulates the promoters of acinar genes and those involved in RNA/protein metabolism, and Nfic knockout pancreata show defective ribosomal RNA maturation. NFIC dampens the endoplasmic reticulum stress program through binding to gene promoters and is required for resolution of Tunicamycin-mediated stress. NFIC is down-regulated during caerulein pancreatitis and is required for recovery after damage. Normal human pancreata with low levels of NFIC transcripts display reduced expression of genes down-regulated in Nfic knockout mice. NFIC expression is down-regulated in mouse and human pancreatic ductal adenocarcinoma. Consistently, Nfic knockout mice develop a higher number of mutant Kras-driven pre-neoplastic lesions.
Collapse
Affiliation(s)
- Isidoro Cobo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Sumit Paliwal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Cristina Bodas
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Júlia Melià-Alomà
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ariadna Torres
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Marina Malumbres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre-CNIO, ProteoRed-Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Millán
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ray J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre-CNIO, ProteoRed-Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
10
|
Li H, Zhao L, Wang Y, Zhang MC, Qiao C. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis. Front Immunol 2022; 13:974821. [PMID: 36032164 PMCID: PMC9414080 DOI: 10.3389/fimmu.2022.974821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced in large quantities at the site of inflammation, and they locally capture and eliminate various pathogens. Thus, NETs quickly control the infection of pathogens in the body and play vital roles in immunity and antibacterial effects. However, evidence is accumulating that NET formation can exacerbate pancreatic tissue damage during acute pancreatitis (AP). In this review, we describe the research progress on NETs in AP and discuss the possibility of NETs as potential therapeutic targets. In addition, since the current detection and visualization methods of NET formation are not uniform and the selection of markers is still controversial, a synopsis of these issues is provided in this review.
Collapse
Affiliation(s)
- Hongxuan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng-Chun Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Nagel F, Palm GJ, Geist N, McDonnell TCR, Susemihl A, Girbardt B, Mayerle J, Lerch MM, Lammers M, Delcea M. Structural and Biophysical Insights into SPINK1 Bound to Human Cationic Trypsin. Int J Mol Sci 2022; 23:ijms23073468. [PMID: 35408828 PMCID: PMC8998336 DOI: 10.3390/ijms23073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.
Collapse
Affiliation(s)
- Felix Nagel
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Gottfried J. Palm
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Thomas C. R. McDonnell
- Biochemical Engineering Department, University College London, Bernard Katz, London WC1E 6BT, UK;
| | - Anne Susemihl
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany
| | - Britta Girbardt
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Julia Mayerle
- Department of Medicine II, University Hospital Munich, Ludwig-Maximillian University Munich, 81377 Munich, Germany;
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Michael Lammers
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Correspondence:
| |
Collapse
|
13
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
14
|
On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021; 10:cells10113216. [PMID: 34831438 PMCID: PMC8621243 DOI: 10.3390/cells10113216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis.
Collapse
|
15
|
Huang MY, Wan DW, Deng J, Guo WJ, Huang Y, Chen H, Xu DL, Jiang ZG, Xue Y, He YH. Downregulation of RIP3 Improves the Protective Effect of ATF6 in an Acute Liver Injury Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8717565. [PMID: 34778458 PMCID: PMC8589516 DOI: 10.1155/2021/8717565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) and receptor-interacting protein 3 (RIP3) are important signaling proteins in endoplasmic reticulum (ER) stress and necroptosis, respectively. However, their regulatory relationship and clinical significance are unknown. We investigate the impact of ATF6 on RIP3 expression, and its role in hepatocyte necroptosis in an acute liver injury model. METHODS In vivo and in vitro experiments were carried out. LO2 cells were treated with thapsigargin (TG). In vivo, male BALB/c mice were treated with carbon tetrachloride (CCl4, 1 mL/kg) or tunicamycin (TM, 2 mg/kg). Then, the impact of ATF6 or RIP3 silencing on liver injury, hepatocyte necroptosis, and ER stress-related protein expression was examined. RESULTS TG induced ER stress and necroptosis and ATF6 and RIP3 expression in LO2 cells. The knockdown of ATF6 significantly decreased RIP3 expression (p < 0.05) and increased ER stress and necroptosis. The downregulation of RIP3 significantly reduced necroptosis and ER stress (p < 0.05). Similar results were observed in CCl4 or the TM-induced mouse model. The knockdown of ATF6 significantly decreased CCl4-induced RIP3 expression and increased liver injury, necroptosis, and ER stress in mice livers (p < 0.05). In contrast, the downregulation of RIP3 significantly reduced liver injury, hepatocyte necroptosis, and ER stress. CONCLUSIONS Hepatocyte ATF6 has multiple roles in acute liver injury. It reduces hepatocyte necroptosis via negative feedback regulation of ER stress. In addition, ATF6 can upregulate the expression of RIP3, which is not helpful to the recovery process. However, downregulating RIP3 reduces hepatocyte necroptosis by promoting the alleviation of ER stress. The findings suggest that RIP3 could be a plausible target for the treatment of liver injury.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Dian-Wei Wan
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Jie Deng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Wen-Jie Guo
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yue Huang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - De-Lin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Yuan Xue
- Department of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, 213000 Jiangsu Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| |
Collapse
|
16
|
Bektur Aykanat NE, Şahin E, Kaçar S, Bağcı R, Karakaya Ş, Burukoğlu Dönmez D, Şahintürk V. Cardiac hypertrophy caused by hyperthyroidism in rats: the role of ATF-6 and TRPC1 channels. Can J Physiol Pharmacol 2021; 99:1226-1233. [PMID: 34283935 DOI: 10.1139/cjpp-2021-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism influences the development of cardiac hypertrophy. Transient receptor potential canonical channels (TRPCs) and endoplasmic reticulum (ER) stress are regarded as critical pathways in cardiac hypertrophy. Hence, we aimed to identify the TRPCs associated with ER stress in hyperthyroidism-induced cardiac hypertrophy. Twenty adult Wistar albino male rats were used in the study. The control group was fed with standard food and tap water. The group with hyperthyroidism was also fed with standard rat food, along with tap water that contained 12 mg/L of thyroxine (T4) for 4 weeks. At the end of the fourth week, the serum-free triiodothyronine (T3), T4, and thyroid-stimulating hormone (TSH) levels of the groups were measured. The left ventricle of each rat was used for histochemistry, immunohistochemistry, Western blot, total antioxidant capacity (TAC), and total oxidant status (TOS) analysis. As per our results, activating transcription factor 6 (ATF-6), inositol-requiring kinase 1 (IRE-1), and TRPC1, which play a significant role in cardiac hypertrophy caused by hyperthyroidism, showed increased activation. Moreover, TOS and serum-free T3 levels increased, while TAC and TSH levels decreased. With the help of the literature review in our study, we could, for the first time, indicate that the increased activation of ATF-6, IRE-1, and TRPC1-induced deterioration of the Ca2+ ion balance leads to hypertrophy in hyperthyroidism due to heart failure.
Collapse
Affiliation(s)
| | - Erhan Şahin
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Sedat Kaçar
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Rıdvan Bağcı
- Adana City Training and Research Hospital, Adana, Turkey
| | - Şerife Karakaya
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
17
|
Mareninova OA, Dillon DL, Wightman CJM, Yakubov I, Takahashi T, Gaisano HY, Munson K, Ohmuraya M, Dawson D, Gukovsky I, Gukovskaya AS. Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cell Mol Gastroenterol Hepatol 2021; 13:599-622. [PMID: 34610499 PMCID: PMC8715155 DOI: 10.1016/j.jcmgh.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.
Collapse
Affiliation(s)
- Olga A Mareninova
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Dustin L Dillon
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Carli J M Wightman
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith Munson
- Department of Physiology, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - David Dawson
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Anna S Gukovskaya
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
18
|
Hu X, Duan T, Wu Z, Tang C, Cao Z. Puerarin Inhibits the PERK-eIF2[Formula: see text]-ATF4-CHOP Pathway through Inactivating JAK2/STAT3 Signal in Pancreatic beta-Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1723-1738. [PMID: 34488550 DOI: 10.1142/s0192415x21500816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune and inflammatory disease with excessive loss of pancreatic islet [Formula: see text]-cells. Accumulating evidence indicated that endoplasmic reticulum (ER) stress played a critical role in [Formula: see text]-cells loss, leading to T1D. Therefore, promoting the survival of pancreatic [Formula: see text]cells would be beneficial for patients with T1D. Puerarin is a natural isoflavone that has been demonstrated to be able to decrease blood glucose in patients with T1D. However, it remains unknown whether puerarin improves ER stress to prevent [Formula: see text]-cells from apoptosis. Here, we sought to investigate the role of puerarin in ER stress-associated apoptosis and explore its underlying mechanism in the mouse insulinoma cell line (MIN6). Flow cytometry and cell counting kit-8 (CCK8) experiments showed that puerarin caused a significant increase in the viability of MIN6 cells injured by H2O2. Furthermore, the protein kinase R-like ER kinase (PERK) signal pathway, a critical branch of ER stress response, was found to be involved in this process. Puerarin inhibited the phosphorylation of PERK, subsequently suppressed the phosphorylation of eukaryotic initiation factor 2[Formula: see text] (eIF2[Formula: see text], then decreased the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, ultimately attenuating ER stress to prevent MIN6 cells from apoptosis. In addition, puerarin inhibited the activation of Janus kinase 2 (JAK2)/signal transducer and activators of transcription 3 (STAT3), which suppressed the PERK signal cascade with decreased ATF4 and CHOP levels. Taken together, our results firstly demonstrated that puerarin could prevent MIN6 cells from apoptosis at least in part by inhibiting the PERK-eIF2[Formula: see text]-ATF4-CHOP axis under ER stress conditions, which might be mediated by inactivation of the JAK2/STAT3 signal pathway. Therefore, investigating the mechanism underlying the effects of puerarin might highlight the potential roles of puerarin developing into an antidiabetic drug.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Tingting Duan
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Zhuan Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Cifei Tang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Zhaohui Cao
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P. R. China.,The Key Laboratory of Ecological Environment and Critical Human Diseases, Prevention of Hunan Province Department of Education, University of South China, Hengyang 421001, Hunan, P. R. China
| |
Collapse
|
19
|
de Freitas Chama LL, Ebstein F, Wiesrecker B, Wagh PR, Hammer E, Weiss FU, Junker H, Studencka-Turski M, Lerch MM, Krüger E, Sendler M. Immunoproteasome impairment via β5i/LMP7-deletion leads to sustained pancreatic injury from experimental pancreatitis. J Cell Mol Med 2021; 25:6786-6799. [PMID: 34132031 PMCID: PMC8278072 DOI: 10.1111/jcmm.16682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uncovering potential new targets involved in pancreatitis may permit the development of new therapies and improvement of patient's outcome. Acute pancreatitis is a primarily sterile disease characterized by a severe systemic inflammatory response associated with extensive necrosis and a mortality rate of up to 24%. Considering that one of the reported disease mechanisms comprises the endoplasmic reticulum (ER) stress response and that the immunoproteasome is a key regulator to prevent proteotoxic stress in an inflammatory context, we investigated its role in acute pancreatitis. In this study, we demonstrate that immunoproteasome deficiency by deletion of the β5i/LMP7-subunit leads to persistent pancreatic damage. Interestingly, immunoproteasome-deficient mice unveil increased activity of pancreatic enzymes in the acute disease phase as well as higher secretion of Interleukin-6 and transcript expression of the Interleukin IL-1β, IFN-β cytokines and the CXCL-10 chemokine. Cell death was increased in immunoproteasome-deficient mice, which appears to be due to the increased accumulation of ubiquitin-protein conjugates and prolonged unfolded protein response. Accordingly, our findings suggest that the immunoproteasome plays a protective role in acute pancreatitis via its role in the clearance of damaged proteins and the balance of ER stress responses in pancreatic acini and in macrophages cytokine production.
Collapse
Affiliation(s)
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Birthe Wiesrecker
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Preshit R Wagh
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Williams JA, Groblewski GE, Gorelick FS, Mayerle J, Apte M, Gukovskaya A. American Pancreatic Association Frank Brooks Symposium: Fifty Years of Pancreatic Cell Biology. Pancreas 2021; 49:604-611. [PMID: 32433396 PMCID: PMC7249997 DOI: 10.1097/mpa.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- John A. Williams
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine (Gastroenterology), University of Michigan, Ann Arbor, MI
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Fred S. Gorelick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Julia Mayerle
- Department of Medicine II, Liver Centre Munich, University Hospital, LMU Munich, Germany
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Anna Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, and, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| |
Collapse
|
21
|
Gong Y, Yang J, Wei S, Yang R, Gao L, Shao S, Zhao J. Lipotoxicity suppresses the synthesis of growth hormone in pituitary somatotrophs via endoplasmic reticulum stress. J Cell Mol Med 2021; 25:5250-5259. [PMID: 33943005 PMCID: PMC8178284 DOI: 10.1111/jcmm.16532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity has been shown to cause dysfunction of many organs and tissues. However, it is unclear whether lipotoxicity is harmful to the somatotrophs, a kind of cell that synthesize growth hormone (GH) in the pituitary. In this study, we performed an epidemiological study, serum levels of triglyceride (TG) and GH showed a negative correlation, even after adjustment for potential confounders. In an animal study, male Sprague‐Dawley rats were fed a high‐fat diet (HFD) or a control diet for 28 weeks. HFD rats showed impaired GH synthesis, resulting in a decrease in circulating GH levels. The expression of pituitary Pit‐1, a key transcription factor of GH, was inhibited. We found that the inositol‐requiring enzyme 1α (IRE1α) pathway of endoplasmic reticulum (ER) stress was triggered in HFD rat pituitary glands and palmitic acid‐treated GH3 cells, respectively. On the contrary, applying 4‐phenyl butyric acid (4‐PBA) to alleviate ER stress or 4µ8c to specifically block the IRE1α pathway attenuated the impairment of both Pit‐1 and GH expression. In conclusion, we demonstrated that lipotoxicity directly inhibits the synthesis of GH, probably by reducing Pit‐1 expression. The IRE1α signaling pathway of ER stress may play an important role in this process.
Collapse
Affiliation(s)
- Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, China
| | - Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuoshuo Wei
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, China
| | - Rui Yang
- Experimental Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Hu X, Hu C, Liu J, Wu Z, Duan T, Cao Z. 1,25-(OH)2D3 protects pancreatic beta cells against H2O2-induced apoptosis through inhibiting the PERK-ATF4-CHOP pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:46-53. [PMID: 33242093 DOI: 10.1093/abbs/gmaa138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a critical role in pancreatic β cell destruction which leads to the pathogenesis of type 1 diabetes mellitus (T1DM). Vitamin D (VD) has been reported to reduce the risk of T1DM; however, it remains unknown whether VD affects ER stress in pancreatic β cells. In this study, we investigated the role of the active form of VD, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], in ER stress-induced β cell apoptosis and explored its potential mechanism in mouse insulinoma cell line mouse insulinoma 6 (MIN6). The results of cell counting kit-8 (CCK8) and flow cytometric analyses showed that 1,25-(OH)2D3 caused a significant increase in the viability of MIN6 cells injured by H2O2. The protein kinase like ER kinase (PERK) signal pathway, one of the most conserved branches of ER stress, was found to be involved in this process. H2O2 activated the phosphorylation of PERK, upregulated the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, and subsequently initiated cell apoptosis, which were significantly reversed by 1,25-(OH)2D3 pretreatment. In addition, GSK2606414, a specific inhibitor of PERK, suppressed PERK phosphorylation and reduced the expressions of ATF4 and CHOP, leading to a significant decrease in β cell apoptosis induced by H2O2. Taken together, the present findings firstly demonstrated that 1,25-(OH)2D3 could prevent MIN6 cells against ER stress-associated apoptosis by inhibiting the PERK-ATF4-CHOP pathway. Therefore, our results suggested that 1,25-(OH)2D3 might serve as a potential therapeutic target for preventing pancreatic β cell destruction in T1DM.
Collapse
Affiliation(s)
- Xiaobo Hu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Cong Hu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Jun Liu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhuan Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Tingting Duan
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| | - Zhaohui Cao
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Glaubitz J, Wilden A, van den Brandt C, Weiss FU, Bröker BM, Mayerle J, Lerch MM, Sendler M. Experimental pancreatitis is characterized by rapid T cell activation, Th2 differentiation that parallels disease severity, and improvement after CD4 + T cell depletion. Pancreatology 2020; 20:1637-1647. [PMID: 33097430 DOI: 10.1016/j.pan.2020.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Germany.
| |
Collapse
|
24
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:E5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
25
|
Xiang XY, Liu T, Wu Y, Jiang XS, He JL, Chen XM, Du XG. Berberine alleviates palmitic acid‑induced podocyte apoptosis by reducing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2020; 23:3. [PMID: 33179098 PMCID: PMC7673344 DOI: 10.3892/mmr.2020.11641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid accumulation in podocytes can lead to the destruction of cellular morphology, in addition to cell dysfunction and apoptosis, which is a key factor in the progression of chronic kidney disease (CKD). Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Coptis chinensis, which has been reported to have a lipid-lowering effect and prevent CKD progression. Therefore, the present study aimed to investigate the effect of BBR on palmitic acid (PA)-induced podocyte apoptosis and its specific mechanism using an in vitro model. Cell death was measured using the Cell Counting Kit-8 colorimetric assay. Cell apoptotic rate was assessed by flow cytometry. The expression of endoplasmic reticulum (ER) stress- and apoptosis-related proteins was detected by western blotting or immunofluorescence. Reactive oxygen species (ROS) were evaluated by 2′,7′-dichlorofluorescein diacetate fluorescence staining. The results of the present study revealed that BBR treatment decreased PA-induced podocyte apoptosis. In addition, 4-phenylbutyric acid significantly reduced PA-induced cell apoptosis and the expression of ER stress-related proteins, which indicated that ER stress was involved in PA-induced podocyte apoptosis. In addition, N-acetylcysteine inhibited PA-induced excessive ROS production, ER stress and cell apoptosis of podocytes. BBR also significantly reduced PA-induced ROS production and ER stress in podocytes. These results suggested that PA mediated podocyte apoptosis through enhancing ER stress and the production of ROS. In conclusion, BBR may protect against PA-induced podocyte apoptosis, and suppression of ROS-dependent ER stress may be the key mechanism underlying the protective effects of BBR.
Collapse
Affiliation(s)
- Xing-Yang Xiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yue Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Jun-Ling He
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Xue-Mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xiao-Gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
26
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Qi ZC, Zeng JL, Li SJ, Luo M, Hu GD, Jin J, Zhang GW. EMC6 regulates acinar apoptosis via APAF1 in acute and chronic pancreatitis. Cell Death Dis 2020; 11:966. [PMID: 33177505 PMCID: PMC7658364 DOI: 10.1038/s41419-020-03177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zhao-Chang Qi
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, Xu C, Chen H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother 2020; 132:110770. [PMID: 33011613 DOI: 10.1016/j.biopha.2020.110770] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute pancreatitis (SAP), a serious inflammatory disease of the pancreas, can easily lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS). Acute lung injury (ALI) is one of the most serious complications of SAP. However, the specific pathogenesis of SAP-associated ALI is not fully understood. Crosstalk and multi-mechanisms involving pancreatic necrosis, bacteremia, intestinal barrier failure, activation of inflammatory cascades and diffuse alveolar damage is the main reason for the unclear pathological mechanism of SAP-associated ALI. According to previous research on SAP-associated ALI in our laboratory and theories put forward by other scholars, we propose that the complex pattern of SAP-associated ALI is based on the "pancreas-intestine-inflammation/endotoxin-lung (P-I-I/E-L) pathway". In this review, we mainly concentrated on the specific details of the "P-I-I/E-L pathway" and the potential treatments or preventive measures for SAP-associated ALI.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Chukwuemeka Samuel Okoye
- Orthopedic Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, PR China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
28
|
Sans MD, Crozier SJ, Vogel NL, D'Alecy LG, Williams JA. Dietary Protein and Amino Acid Deficiency Inhibit Pancreatic Digestive Enzyme mRNA Translation by Multiple Mechanisms. Cell Mol Gastroenterol Hepatol 2020; 11:99-115. [PMID: 32735995 PMCID: PMC7596297 DOI: 10.1016/j.jcmgh.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Chronic amino acid (AA) deficiency, as in kwashiorkor, reduces the size of the pancreas through an effect on mammalian target of rapamycin complex 1 (mTORC1). Because of the physiological importance of AAs and their role as a substrate, a stimulant of mTORC1, and protein synthesis, we studied the effect of acute protein and AA deficiency on the response to feeding. METHODS ICR/CD-1 mice were fasted overnight and refed for 2 hours with 4 different isocaloric diets: control (20% Prot); Protein-free (0% Prot); control (AA-based diet), and a leucine-free (No Leu). Protein synthesis, polysomal profiling, and the activation of several protein translation factors were analyzed in pancreas samples. RESULTS All diets stimulated the Protein Kinase-B (Akt)/mTORC1 pathway, increasing the phosphorylation of the kinase Akt, the ribosomal protein S6 (S6) and the formation of the eukaryotic initiation factor 4F (eIF4F) complex. Total protein synthesis and polysome formation were inhibited in the 0% Prot and No Leu groups to a similar extent, compared with the 20% Prot group. The 0% Prot diet partially reduced the Akt/mTORC1 pathway and the activity of the guanine nucleotide exchange factor eIF2B, without affecting eIF2α phosphorylation. The No Leu diet increased the phosphorylation of eIF2α and general control nonderepressible 2, and also inhibited eIF2B activity, without affecting mTORC1. Essential and nonessential AA levels in plasma and pancreas indicated a complex regulation of their cellular transport mechanisms and their specific effect on the synthesis of digestive enzymes. CONCLUSIONS These studies show that dietary AAs are important regulators of postprandial digestive enzyme synthesis, and their deficiency could induce pancreatic insufficiency and malnutrition.
Collapse
Affiliation(s)
- Maria Dolors Sans
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Stephen J Crozier
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nancy L Vogel
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - John A Williams
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
29
|
Xiong Y, Wang Y, Xiong Y, Gao W, Teng L. Salidroside alleviated hypoxia-induced liver injury by inhibiting endoplasmic reticulum stress-mediated apoptosis via IRE1α/JNK pathway. Biochem Biophys Res Commun 2020; 529:335-340. [PMID: 32703432 DOI: 10.1016/j.bbrc.2020.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Endoplasmic reticulum (ER) stress and subsequent apoptosis played vital role in liver injury and dysfunction. The aim of this study was to investigate the protective effect and mechanism of salidroside on hypoxia induced liver injury both in vivo and in vitro. Male SD rats were exposed to hypobaric chamber to simulate high altitude hypoxia model. High altitude hypoxia led to significant liver injury and apoptosis, increased the expression levels of p-JNK, BAX and ER stress markers. Salidroside treatment significantly inhibited hypoxia induced ER stress by decreasing the protein expression of glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP) and phosphorylated inositol-requiring enzyme 1α (p-IRE1α). In addition, salidroside treatment also restrained the ER stress-mediated apoptotic pathway, as indicated by decreased pro-apoptotic proteins p-JNK, TRAF2, BAX, and cleaved caspase 9 and caspase 12, as well as upregulation of Bcl-2. Furthermore, in vitro study found that blocking IRE1α pathway using specific inhibitor STF-083010 subsequently reversed the protective effect of salidroside on liver apoptosis. Taken together, our findings revealed that salidroside exerts protective effects against hypoxia induced liver injury through inhibiting ER stress mediated apoptosis via IRE1α/JNK pathway.
Collapse
Affiliation(s)
- Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College(PUMC), China
| | - Yueming Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Wei Gao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
31
|
Tang YJ, Chen H, Yi Y, Chen GM, Yang FW, Li Y, Tian RD, Huang WG, Cheng QJ, He YH. Inhibition of eIF2 α Dephosphorylation Protects Hepatocytes from Apoptosis by Alleviating ER Stress in Acute Liver Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2626090. [PMID: 32566674 PMCID: PMC7293739 DOI: 10.1155/2020/2626090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α) is an important factor along the main pathways for endoplasmic reticulum (ER) stress-mediated apoptosis. In this study, we investigated the effects of eIF2α phosphorylation on hepatocyte apoptosis and the ER stress mechanisms in acute liver injury. METHODS eIF2α phosphorylation and apoptosis under ER stress were monitored and measured in male BALB/c mice with acute liver injury and human hepatocyte line LO2 cells. RESULTS Carbon tetrachloride (CCl4) administration triggered ER stress and hepatocyte apoptosis, as well as eIF2α phosphorylation in mice. Inhibition of eIF2α dephosphorylation, as the pretreatment with 4-phenylbutyric acid (chemical chaperone, ER stress inhibitor), mitigated CCl4-induced intrahepatic ER stress, apoptosis, and liver injury. In an ER stress model of LO2 cells induced by thapsigargin (disrupting ER calcium balance), inhibition of eIF2α dephosphorylation reduced ER stress and apoptosis, while PERK knockdown reduced eIF2α phosphorylation and exacerbated ER stress and apoptosis. CONCLUSIONS eIF2α phosphorylation is one of the mechanisms employed by ER stress for restoring cellular homeostasis. Inhibition of eIF2α dephosphorylation mitigates hepatocyte apoptosis by alleviating ER stress in acute liver injuries.
Collapse
Affiliation(s)
- Yong-Jing Tang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yu Yi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Gui-Mei Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Ying Li
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Ren-Dong Tian
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Wen-Ge Huang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Qi-Jiao Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| |
Collapse
|
32
|
Oikonomou C, Hendershot LM. Disposing of misfolded ER proteins: A troubled substrate's way out of the ER. Mol Cell Endocrinol 2020; 500:110630. [PMID: 31669350 PMCID: PMC6911830 DOI: 10.1016/j.mce.2019.110630] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
Secreted, plasma membrane, and resident proteins of the secretory pathway are synthesized in the endoplasmic reticulum (ER) where they undergo post-translational modifications, oxidative folding, and subunit assembly in tightly monitored processes. An ER quality control (ERQC) system oversees protein maturation and ensures that only those reaching their native state will continue trafficking into the secretory pathway to reach their final destinations. Those that fail must be recognized and eliminated to maintain ER homeostasis. Two cellular mechanisms have been identified to rid the ER of terminally unfolded, misfolded, and aggregated proteins. ER-associated degradation (ERAD) was discovered nearly 30 years ago and entails the identification of improperly matured secretory pathway proteins and their retrotranslocation to the cytosol for degradation by the ubiquitin-proteasome system. ER-phagy has been more recently described and caters to larger, more complex proteins and protein aggregates that are not readily handled by ERAD. This pathway has unique upstream components and relies on the same downstream effectors of autophagy used in other cellular processes to deliver clients to lysosomes for degradation. In this review, we describe the main elements of ERQC, ERAD, and ER-phagy and focus on recent advances in these fields.
Collapse
Affiliation(s)
- Christina Oikonomou
- St. Jude Children's Research Hospital, Memphis, TN, 38104, USA; The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Linda M Hendershot
- St. Jude Children's Research Hospital, Memphis, TN, 38104, USA; The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
33
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
34
|
Lv J, Cao T, Ji C, Cong M, Zhao J, Wu H. Digital gene expression analysis in the gills of Ruditapes philippinarum after nitrite exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109661. [PMID: 31520948 DOI: 10.1016/j.ecoenv.2019.109661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Due to the overload of pollutants from highly intensive anthropic activities, nitrite accumulates in offshore seawater and has been a long-lasting pollutant to the healthy aquaculture of the mollusk. In the present study, Ruditapes philippinarum was used as the target bivalve to receive nitrite exposure at environmental concentration for 1 and 7 days. Differentially expressed genes (DEGs) were detected and analyzed by a digital gene expression (DGE) approach to describe the toxicity of nitrite on the bivalve at the gene level. In the N1 group, 185 DEGs were generated and enriched in six Gene Ontology (GO) terms, including oxidoreductase activity, heme binding, tetrapyrrole binding, iron ion binding, metal binding and cation binding. The DEGs in the N1 group were also enriched in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, e.g., arachidonic acid metabolism and ovarian steroidogenesis. In the N7 group, 81 DEGs were generated without any GO enrichment but were enriched in five KEGG pathways, including protein processing in the endoplasmic reticulum, protein export, prion diseases, thyroid hormone synthesis and arachidonic acid metabolism. This suggested that nitrite exposure might cause adverse effects to the clams in several aspects, including oxidative damage, depressed immunity, and disorders in cell proliferation, hormone metabolism and tissue regeneration. Evaluation of oxidative stress indicated that nitrite exposure actually induced redox state imbalance by enhancing the contents of thiobarbituric acid reactive substances (TBARSs) and glutathione (GSH), and the activity of glutathione peroxidase (GSH-PX) but not superoxide dismutase (SOD). These results will provide valuable gene references for further study on the toxicology mechanism of bivalves under environmental nitrite stress.
Collapse
Affiliation(s)
- Jiasen Lv
- Biology School of Yantai University, Yantai, 264005, PR China
| | - Tengfei Cao
- Biology School of Yantai University, Yantai, 264005, PR China
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Ming Cong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
35
|
Lee KI, Lin JW, Su CC, Fang KM, Yang CY, Kuo CY, Wu CC, Wu CT, Chen YW. Silica nanoparticles induce caspase-dependent apoptosis through reactive oxygen species-activated endoplasmic reticulum stress pathway in neuronal cells. Toxicol In Vitro 2019; 63:104739. [PMID: 31756540 DOI: 10.1016/j.tiv.2019.104739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 01/10/2023]
Abstract
Human exposure to silica nanoparticles (SiNPs) has been widely applied as vehicles for drug delivery and cellular manipulations in nanoneuromedicine. SiNPs may cause adverse effects in the brain, but potential mechanisms underlying SiNPs-induced neurotoxicity are remained unclear. Here, we examined cytotoxic effects and the cellular mechanisms of SiNPs-induced neuronal cell death. In this study, the results showed that SiNPs significantly decreased cell viability and induced apoptosis in Neuro-2a cells as evidenced by the increase caspase-3 activity and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). In addition, endoplasmic reticulum (ER) stress was triggered as indicated by several key molecules including glucose-regulated protein (GRP)78 and 94, C/EBP homologous protein (CHOP), activation transcription factor (ATF)-4, and caspase-12. Pretreatment of Neuro-2a cells with specific pharmacological inhibitor of ER stress (4-phenylbutyric acid (4-PBA)) effectively alleviated the SiNPs-induced ER stress and apoptotic related signals. Furthermore, 2',7'-Dichlorofluorescein fluorescence as an indicator of reactive oxygen species (ROS) formation after exposure of Neuro-2a cells to SiNPs significantly increased ROS levels. Antioxidant N-acetylcyseine (NAC) effectively reversed SiNPs-induced cellular responses. Taken together, these results suggest that SiNPs exposure exerts its neurotoxicity in cultured neuronal cells by inducing apoptosis via a ROS generation-activated downstream ER stress signaling pathway.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology, Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung 404, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
36
|
Gao LP, Chen HC, Ma ZL, Chen AD, Du HL, Yin J, Jing YH. Fibrillation of human islet amyloid polypeptide and its toxicity to pancreatic β-cells under lipid environment. Biochim Biophys Acta Gen Subj 2019; 1864:129422. [PMID: 31491457 DOI: 10.1016/j.bbagen.2019.129422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Previous studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in β-cells, resulting in β-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in β-cell damage are unclear. METHODS Synthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the β-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated. RESULTS The five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate. CONCLUSION Free fatty acids and anionic phospholipid can promote β-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused β-cell death in high lipid environment. GENERAL SIGNIFICANCE Our study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet β-cells.
Collapse
Affiliation(s)
- Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Ze-Lin Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - An-Di Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Hong-Li Du
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China.
| |
Collapse
|