1
|
Tao L, Liu H, Adeola AC, Xie HB, Feng ST, Zhang YP. The effects of runs-of-homozygosity on pig domestication and breeding. BMC Genomics 2025; 26:6. [PMID: 39762732 PMCID: PMC11702194 DOI: 10.1186/s12864-024-11189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression. RESULTS Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits. Our study revealed differential ROH landscapes during domestication and artificial selection of Eurasian pigs. We observed associations between ROH burden and phenotypic traits such as body conformation and susceptibility to diseases like scrotal hernia. By examining associations of whole-genome and regional ROH burden with gene expression, we identified specific genes and pathways affected by inbreeding depression. Associations of regional ROH burden with gene expression also enabled the discovery of novel regulatory elements. Lastly, we inferred recessive lethal mutations by examining depletion of ROH in an inbred population with relatively small sample size, following by fine mapping with sequencing data. CONCLUSIONS These findings suggested that both phenotypic and genetic variations have been reshaped by inbreeding, and provided insights to the genetic mechanisms underlying inbreeding depression.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Adeniyi C Adeola
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hai-Bing Xie
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shu-Tang Feng
- Beijing Grand-Life Science and Technology Company, Beijing, 102206, China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Lala KN, Feldman MW. Genes, culture, and scientific racism. Proc Natl Acad Sci U S A 2024; 121:e2322874121. [PMID: 39556747 PMCID: PMC11621800 DOI: 10.1073/pnas.2322874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Quantitative studies of cultural evolution and gene-culture coevolution (henceforth "CE" and "GCC") emerged in the 1970s, in the aftermath of the "race and intelligence quotient (IQ)" and "human sociobiology" debates, as a counter to extreme hereditarian positions. These studies incorporated cultural transmission and its interaction with genetics in contributing to patterns of human variation. Neither CE nor GCC results were consistent with racist claims of ubiquitous genetic differences between socially defined races. We summarize how genetic data refute the notion of racial substructure for human populations and address naive interpretations of race across the biological sciences, including those related to ancestry, health, and intelligence, that help to perpetuate racist ideas. A GCC perspective can refute reductionist and determinist claims while providing a more inclusive multidisciplinary framework in which to interpret human variation.
Collapse
Affiliation(s)
- Kevin N. Lala
- School of Biology, Centre for Biological Diversity, University of St. Andrews, St. Andrews KY16 9TF, United Kingdom
| | | |
Collapse
|
3
|
Zheng HX, Yan S, Zhang M, Gu Z, Wang J, Jin L. Mitochondrial DNA Genomes Reveal Relaxed Purifying Selection During Human Population Expansion after the Last Glacial Maximum. Mol Biol Evol 2024; 41:msae175. [PMID: 39162340 PMCID: PMC11373649 DOI: 10.1093/molbev/msae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mitochondrial DNA genomes, which were further classified into expansion and nonexpansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the nonexpanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenglong Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
He J, Kou SH, Li J, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose after the latest human out-of-Africa migration. Front Genet 2024; 15:1408952. [PMID: 38948361 PMCID: PMC11211533 DOI: 10.3389/fgene.2024.1408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The DNA damage repair (DDR) system in human genome is pivotal in maintaining genomic integrity. Pathogenic variation (PV) in DDR genes impairs their function, leading to genome instability and increased susceptibility to diseases, especially cancer. Understanding the evolution origin and arising time of DDR PV is crucial for comprehending disease susceptibility in modern humans. Methods We used big data approach to identify the PVs in DDR genes in modern humans. We mined multiple genomic databases derived from 251,214 modern humans of African and non-Africans. We compared the DDR PVs between African and non-African. We also mined the DDR PVs in the genomic data derived from 5,031 ancient humans. We used the DDR PVs from ancient humans as the intermediate to further the DDR PVs between African and non-African. Results and discussion We identified 1,060 single-base DDR PVs across 77 DDR genes in modern humans of African and non-African. Direct comparison of the DDR PVs between African and non-African showed that 82.1% of the non-African PVs were not present in African. We further identified 397 single-base DDR PVs in 56 DDR genes in the 5,031 ancient humans dated between 45,045 and 100 years before present (BP) lived in Eurasian continent therefore the descendants of the latest out-of-Africa human migrants occurred 50,000-60,000 years ago. By referring to the ancient DDR PVs, we observed that 276 of the 397 (70.3%) ancient DDR PVs were exclusive in non-African, 106 (26.7%) were shared between non-African and African, and only 15 (3.8%) were exclusive in African. We further validated the distribution pattern by testing the PVs in BRCA and TP53, two of the important genes in genome stability maintenance, in African, non-African, and Ancient humans. Our study revealed that DDR PVs in modern humans mostly emerged after the latest out-of-Africa migration. The data provides a foundation to understand the evolutionary basis of disease susceptibility, in particular cancer, in modern humans.
Collapse
Affiliation(s)
| | | | | | | | - San Ming Wang
- Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, University of Macau, Taipa, China
| |
Collapse
|
5
|
Lucas-Sánchez M, Abdeli A, Bekada A, Calafell F, Benhassine T, Comas D. The Impact of Recent Demography on Functional Genetic Variation in North African Human Groups. Mol Biol Evol 2024; 41:msad283. [PMID: 38152862 PMCID: PMC10783648 DOI: 10.1093/molbev/msad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The strategic location of North Africa has made the region the core of a wide range of human demographic events, including migrations, bottlenecks, and admixture processes. This has led to a complex and heterogeneous genetic and cultural landscape, which remains poorly studied compared to other world regions. Whole-exome sequencing is particularly relevant to determine the effects of these demographic events on current-day North Africans' genomes, since it allows to focus on those parts of the genome that are more likely to have direct biomedical consequences. Whole-exome sequencing can also be used to assess the effect of recent demography in functional genetic variation and the efficacy of natural selection, a long-lasting debate. In the present work, we use newly generated whole-exome sequencing and genome-wide array genotypes to investigate the effect of demography in functional variation in 7 North African populations, considering both cultural and demographic differences and with a special focus on Amazigh (plur. Imazighen) groups. We detect genetic differences among populations related to their degree of isolation and the presence of bottlenecks in their recent history. We find differences in the functional part of the genome that suggest a relaxation of purifying selection in the more isolated groups, allowing for an increase of putatively damaging variation. Our results also show a shift in mutational load coinciding with major demographic events in the region and reveal differences within and between cultural and geographic groups.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
6
|
Kyriazis CC, Robinson JA, Lohmueller KE. Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations. Am Nat 2023; 202:737-752. [PMID: 38033186 PMCID: PMC10897732 DOI: 10.1086/726736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
| | - Jacqueline A. Robinson
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA, USA
| |
Collapse
|
7
|
Antinucci M, Comas D, Calafell F. Population history modulates the fitness effects of Copy Number Variation in the Roma. Hum Genet 2023; 142:1327-1343. [PMID: 37311904 PMCID: PMC10449987 DOI: 10.1007/s00439-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
We provide the first whole genome Copy Number Variant (CNV) study addressing Roma, along with reference populations from South Asia, the Middle East and Europe. Using CNV calling software for short-read sequence data, we identified 3171 deletions and 489 duplications. Taking into account the known population history of the Roma, as inferred from whole genome nucleotide variation, we could discern how this history has shaped CNV variation. As expected, patterns of deletion variation, but not duplication, in the Roma followed those obtained from single nucleotide polymorphisms (SNPs). Reduced effective population size resulting in slightly relaxed natural selection may explain our observation of an increase in intronic (but not exonic) deletions within Loss of Function (LoF)-intolerant genes. Over-representation analysis for LoF-intolerant gene sets hosting intronic deletions highlights a substantial accumulation of shared biological processes in Roma, intriguingly related to signaling, nervous system and development features, which may be related to the known profile of private disease in the population. Finally, we show the link between deletions and known trait-related SNPs reported in the genome-wide association study (GWAS) catalog, which exhibited even frequency distributions among the studied populations. This suggests that, in general human populations, the strong association between deletions and SNPs associated to biomedical conditions and traits could be widespread across continental populations, reflecting a common background of potentially disease/trait-related CNVs.
Collapse
Affiliation(s)
- Marco Antinucci
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Sun S, Wang B, Li C, Xu G, Yang J, Hufford MB, Ross-Ibarra J, Wang H, Wang L. Unraveling Prevalence and Effects of Deleterious Mutations in Maize Elite Lines across Decades of Modern Breeding. Mol Biol Evol 2023; 40:msad170. [PMID: 37494285 PMCID: PMC10414807 DOI: 10.1093/molbev/msad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.
Collapse
Affiliation(s)
- Shichao Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| |
Collapse
|
9
|
Qin Z, Huang T, Guo M, Wang SM. Distinct landscapes of deleterious variants in DNA damage repair system in ethnic human populations. Life Sci Alliance 2022; 5:5/9/e202101319. [PMID: 35595529 PMCID: PMC9122833 DOI: 10.26508/lsa.202101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Deleterious variants in the DNA damage repair system can cause genome instability and increase cancer risk. The highly ethnic-specific DDR deleterious variation from this study suggests its potential relationship with different disease susceptibility in ethnic human populations. Deleterious variants in DNA damage repair (DDR) system can cause genome instability and increase cancer risk. In this study, we analyzed the deleterious variants in DDR system in 16 ethnic human populations. From the genetic variants in 169 DDR genes involved in nine DDR pathways collected from 158,612 individuals of different ethnic background, we identified 1,781 deleterious variants in 81 DDR genes in eight DDR pathways (https://genemutation.fhs.um.edu.mo/dbddr-global/). Our analysis showed although the quantity of deleterious variants was loaded at a similar level, the landscape of the variants differed substantially among different populations that two-third of the variants were present in single ethnic populations, and the rest was mostly shared between the populations with closer geographic and genetic relationship. The highly ethnic-specific DDR deleterious variation suggests its potential relationship with different disease susceptibility in ethnic human populations.
Collapse
Affiliation(s)
- Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - Maoni Guo
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
10
|
Pan Y, Zhang C, Lu Y, Ning Z, Lu D, Gao Y, Zhao X, Yang Y, Guan Y, Mamatyusupu D, Xu S. Genomic diversity and post-admixture adaptation in the Uyghurs. Natl Sci Rev 2022; 9:nwab124. [PMID: 35350227 PMCID: PMC8953455 DOI: 10.1093/nsr/nwab124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Population admixture results in genome-wide combinations of genetic variants derived from different ancestral populations of distinct ancestry, thus providing a unique opportunity for understanding the genetic determinants of phenotypic variation in humans. Here, we used whole-genome sequencing of 92 individuals with high coverage (30–60×) to systematically investigate genomic diversity in the Uyghurs living in Xinjiang, China (XJU), an admixed population of both European-like and East-Asian-like ancestry. The XJU population shows greater genetic diversity, especially a higher proportion of rare variants, compared with their ancestral source populations, corresponding to greater phenotypic diversity of XJU. Admixture-induced functional variants in EDAR were associated with the diversity of facial morphology in XJU. Interestingly, the interaction of functional variants between SLC24A5 and OCA2 likely influences the diversity of skin pigmentation. Notably, selection has seemingly been relaxed or canceled in several genes with significantly biased ancestry, such as HERC2–OCA2. Moreover, signatures of post-admixture adaptation in XJU were identified, including genes related to metabolism (e.g. CYP2D6), digestion (e.g. COL11A1), olfactory perception (e.g. ANO2) and immunity (e.g. HLA). Our results demonstrated population admixture as a driving force, locally or globally, in shaping human genetic and phenotypic diversity as well as in adaptive evolution.
Collapse
Affiliation(s)
- Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai 200438, China
| | - Zhilin Ning
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yang Gao
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Xiaohan Zhao
- Human Phenome Institute, Fudan University , Shanghai 201203, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai 200438, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University , Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University , Urumqi 830046, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031, China
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai 200438, China
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
- Human Phenome Institute, Fudan University , Shanghai 201203, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming 650223, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450052, China
| |
Collapse
|
11
|
Chen Q, Yang H, Feng X, Chen Q, Shi S, Wu CI, He Z. Two decades of suspect evidence for adaptive molecular evolution – Negative selection confounding positive selection signals. Natl Sci Rev 2021; 9:nwab217. [PMID: 35663241 PMCID: PMC9154339 DOI: 10.1093/nsr/nwab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
There has been a large literature in the last two decades affirming adaptive DNA sequence evolution between species. The main lines of evidence are from (i) the McDonald-Kreitman (MK) test, which compares divergence and polymorphism data, and (ii) the phylogenetic analysis by maximum likelihood (PAML) test, which analyzes multispecies divergence data. Here, we apply these two tests concurrently to genomic data of Drosophila and Arabidopsis. To our surprise, the >100 genes identified by the two tests do not overlap beyond random expectation. Because the non-concordance could be due to low powers leading to high false negatives, we merge every 20–30 genes into a ‘supergene’. At the supergene level, the power of detection is large but the calls still do not overlap. We rule out methodological reasons for the non-concordance. In particular, extensive simulations fail to find scenarios whereby positive selection can only be detected by either MK or PAML, but not both. Since molecular evolution is governed by positive and negative selection concurrently, a fundamental assumption for estimating one of these (say, positive selection) is that the other is constant. However, in a broad survey of primates, birds, Drosophila and Arabidopsis, we found that negative selection rarely stays constant for long in evolution. As a consequence, the variation in negative selection is often misconstrued as a signal of positive selection. In conclusion, MK, PAML and any method that examines genomic sequence evolution has to explicitly address the variation in negative selection before estimating positive selection. In a companion study, we propose a possible path forward in two stages—first, by mapping out the changes in negative selection and then using this map to estimate positive selection. For now, the large literature on positive selection between species has to await reassessment.
Collapse
Affiliation(s)
- Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Li SH, Liu Y, Yeh CF, Fu Y, Yeung CKL, Lee CC, Chiu CC, Kuo TH, Chan FT, Chen YC, Ko WY, Yao CT. Not out of the woods yet: Signatures of the prolonged negative genetic consequences of a population bottleneck in a rapidly re-expanding wader, the black-faced spoonbill Platalea minor. Mol Ecol 2021; 31:529-545. [PMID: 34726290 DOI: 10.1111/mec.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
The long-term persistence of a population which has suffered a bottleneck partly depends on how historical demographic dynamics impacted its genetic diversity and the accumulation of deleterious mutations. Here we provide genomic evidence for the genetic effect of a recent population bottleneck in the endangered black-faced spoonbill (Platalea minor) after its rapid population recovery. Our data suggest that the bird's effective population size, Ne , had been relatively stable (7500-9000) since 22,000 years ago; however, a recent brief yet severe bottleneck (Ne = 20) which we here estimated to occur around the 1940s wiped out >99% of its historical Ne in roughly three generations. Despite a >15-fold population recovery since 1988, we found that black-faced spoonbill population has higher levels of inbreeding (7.4 times more runs of homozygosity) than its sister species, the royal spoonbill (P. regia), which is not thought to have undergone a marked population contraction. Although the two spoonbills have similar levels of genome-wide genetic diversity, our results suggest that selection on more genes was relaxed in the black-faced spoonbill; moreover individual black-faced spoonbills carry more putatively deleterious mutations (Grantham's score > 50), and may therefore express more deleterious phenotypic effects than royal spoonbills. Here we demonstrate the value of using genomic indices to monitor levels of genetic erosion, inbreeding and mutation load in species with conservation concerns. To mitigate the prolonged negative genetic effect of a population bottleneck, we recommend that all possible measures should be employed to maintain population growth of a threatened species.
Collapse
Affiliation(s)
- Shou-Hsien Li
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, China
| | - Chia-Fen Yeh
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yuchen Fu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chun-Cheng Lee
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Cheng Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Fang-Tse Chan
- Division of Zoology, Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - Yu-Chia Chen
- Department of Life Sciences, National Yanming Medical University, Taipei, Taiwan
| | - Wen-Ya Ko
- Department of Life Sciences, National Yanming Medical University, Taipei, Taiwan
| | - Cheng-Te Yao
- High Altitude Research Station, Taiwan Endemic Species Research Institute, Nantou, Taiwan
| |
Collapse
|
13
|
Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation. Sci Rep 2021; 11:21125. [PMID: 34702931 PMCID: PMC8548440 DOI: 10.1038/s41598-021-00576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Human populations are genetically affected by their demographic history, which shapes the distribution of their functional genomic variation. However, the genetic impact of recent demography is debated. This issue has been studied in different populations, but never in North Africans, despite their relevant cultural and demographic diversity. In this study we address the question by analyzing new whole-exome sequences from two culturally different Tunisian populations, an isolated Amazigh population and a close non-isolated Arab-speaking population, focusing on the distribution of functional variation. Both populations present clear differences in their variant frequency distribution, in general and for putatively damaging variation. This suggests a relevant effect in the Amazigh population of genetic isolation, drift, and inbreeding, pointing to relaxed purifying selection. We also discover the enrichment in Imazighen of variation associated to specific diseases or phenotypic traits, but the scarce genetic and biomedical data in the region limits further interpretation. Our results show the genomic impact of recent demography and reveal a clear genetic differentiation probably related to culture. These findings highlight the importance of considering cultural and demographic heterogeneity within North Africa when defining population groups, and the need for more data to improve knowledge on the region's health and disease landscape.
Collapse
|
14
|
Mathur S, DeWoody JA. Genetic load has potential in large populations but is realized in small inbred populations. Evol Appl 2021; 14:1540-1557. [PMID: 34178103 PMCID: PMC8210801 DOI: 10.1111/eva.13216] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Present address:
Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - J. Andrew DeWoody
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
15
|
de Pedro M, Riba M, González-Martínez SC, Seoane P, Bautista R, Claros MG, Mayol M. Demography, genetic diversity and expansion load in the colonizing species Leontodon longirostris (Asteraceae) throughout its native range. Mol Ecol 2021; 30:1190-1205. [PMID: 33452714 DOI: 10.1111/mec.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Unravelling the evolutionary processes underlying range expansions is fundamental to understand the distribution of organisms, as well as to predict their future responses to environmental change. Predictions for range expansions include a loss of genetic diversity and an accumulation of deleterious alleles along the expansion axis, which can decrease fitness at the range-front (expansion load). In plants, empirical studies supporting expansion load are scarce, and its effects remain to be tested outside a few model species. Leontodon longirostris is a colonizing Asteraceae with a widespread distribution in the Western Mediterranean, providing a particularly interesting system to gain insight into the factors that can enhance or mitigate expansion load. In this study, we produced a first genome draft for the species, covering 418 Mbp (~53% of the genome). Although incomplete, this draft was suitable to design a targeted sequencing of ~1.5 Mbp in 238 L. longirostris plants from 21 populations distributed along putative colonization routes in the Iberian Peninsula. Inferred demographic history supports a range expansion from southern Iberia around 40,000 years ago, reaching northern Iberia around 25,000 years ago. The expansion was accompanied by a loss of genetic diversity and a significant increase in the proportion of putatively deleterious mutations. However, levels of expansion load in L. longirostris were smaller than those found in other plant species, which can be explained, at least partially, by its high dispersal ability, the self-incompatible mating system, and the fact that the expansion occurred along a strong environmental cline.
Collapse
Affiliation(s)
| | - Miquel Riba
- CREAF, Cerdanyola del Vallès, Spain.,Univ. Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| | - Rocío Bautista
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain.,Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | | |
Collapse
|
16
|
Vy HMT, Jordan DM, Balick DJ, Do R. Probing the aggregated effects of purifying selection per individual on 1,380 medical phenotypes in the UK Biobank. PLoS Genet 2021; 17:e1009337. [PMID: 33493176 PMCID: PMC7861521 DOI: 10.1371/journal.pgen.1009337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/04/2021] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
Understanding the relationship between natural selection and phenotypic variation has been a long-standing challenge in human population genetics. With the emergence of biobank-scale datasets, along with new statistical metrics to approximate strength of purifying selection at the variant level, it is now possible to correlate a proxy of individual relative fitness with a range of medical phenotypes. We calculated a per-individual deleterious load score by summing the total number of derived alleles per individual after incorporating a weight that approximates strength of purifying selection. We assessed four methods for the weight, including GERP, phyloP, CADD, and fitcons. By quantitatively tracking each of these scores with the site frequency spectrum, we identified phyloP as the most appropriate weight. The phyloP-weighted load score was then calculated across 15,129,142 variants in 335,161 individuals from the UK Biobank and tested for association on 1,380 medical phenotypes. After accounting for multiple test correction, we observed a strong association of the load score amongst coding sites only on 27 traits including body mass, adiposity and metabolic rate. We further observed that the association signals were driven by common variants (derived allele frequency > 5%) with high phyloP score (phyloP > 2). Finally, through permutation analyses, we showed that the load score amongst coding sites had an excess of nominally significant associations on many medical phenotypes. These results suggest a broad impact of deleterious load on medical phenotypes and highlight the deleterious load score as a tool to disentangle the complex relationship between natural selection and medical phenotypes.
Collapse
Affiliation(s)
- Ha My T. Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel M. Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel J. Balick
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
17
|
Ulaganathan VK. TraPS-VarI: Identifying genetic variants altering phosphotyrosine based signalling motifs. Sci Rep 2020; 10:8453. [PMID: 32439998 PMCID: PMC7242328 DOI: 10.1038/s41598-020-65146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/26/2020] [Indexed: 12/17/2022] Open
Abstract
Patient stratification and individualized therapeutic strategies rely on the established knowledge of genotype-specific molecular and cellular alterations of biological and therapeutic significance. Whilst almost all approved drugs have been developed based on the Reference Sequence protein database (RefSeq), the latest genome sequencing studies establish the substantial prevalence of non-synonymous genetic mutations in the general population, including stop-insertion and frame shift mutations within the coding regions of membrane proteins. While the availability of individual genotypes are becoming increasingly common, the biological and clinical interpretations of mutations among individual genomes is largely lagging behind. Lately, transmembrane proteins of haematopoietic (myeloid and lymphoid) derived immune cells have attracted much attention as important targets for cancer immunotherapies. As such, the signalling properties of haematological transmembrane receptors rely on the membrane-proximal phosphotyrosine based sequence motifs (TBSMs) such as ITAM (immunoreceptor tyrosine-based activation motif), ITIM (immunoreceptor tyrosine-based inhibition motif) and signal transducer and activator of transcription 3 (STAT3)-recruiting YxxQ motifs. However, mutations that alter the coding regions of transmembrane proteins, resulting in either insertion or deletion of crucial signal modulating TBSMs, remains unknown. To conveniently identify individual cell line-specific or patient-specific membrane protein altering mutations, we present the Transmembrane Protein Sequence Variant Identifier (TraPS-VarI). TraPS-VarI is an annotation tool for accurate mapping of the effect of an individual's mutation in the transmembrane protein sequence, and to identify the prevalence of TBSMs. TraPS-VarI is a biologist and clinician-friendly algorithm with a web interface and an associated database browser (https://www.traps-vari.org/).
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
- Department of Neuroimmunology, Universitätsmedizin Göttingen, Von-Siebold-Str. 3A, Göttingen, 37075, Germany.
| |
Collapse
|
18
|
Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat Commun 2020; 11:1001. [PMID: 32081890 PMCID: PMC7035315 DOI: 10.1038/s41467-020-14803-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human activity has caused dramatic population declines in many wild species. The resulting bottlenecks have a profound impact on the genetic makeup of a species with unknown consequences for health. A key genetic factor for species survival is the evolution of deleterious mutation load, but how bottleneck strength and mutation load interact lacks empirical evidence. We analyze 60 complete genomes of six ibex species and the domestic goat. We show that historic bottlenecks rather than the current conservation status predict levels of genome-wide variation. By analyzing the exceptionally well-characterized population bottlenecks of the once nearly extinct Alpine ibex, we find genomic evidence of concurrent purging of highly deleterious mutations but accumulation of mildly deleterious mutations. This suggests that recolonization bottlenecks induced both relaxed selection and purging, thus reshaping the landscape of deleterious mutation load. Our findings highlight that even populations of ~1000 individuals can accumulate mildly deleterious mutations. Conservation efforts should focus on preventing population declines below such levels to ensure long-term survival of species. Although there is extensive theory predicting the effects of population bottlenecks on mutation load, there is little empirical evidence from recent bottlenecks. Here, Grossen et al. compare the consequences of population bottlenecks in six ibex species for genome-wide variation and mutation load.
Collapse
|
19
|
Zou J, Mao L, Qiu J, Wang M, Jia L, Wu D, He Z, Chen M, Shen Y, Shen E, Huang Y, Li R, Hu D, Shi L, Wang K, Zhu Q, Ye C, Bancroft I, King GJ, Meng J, Fan L. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1998-2010. [PMID: 30947395 PMCID: PMC6737024 DOI: 10.1111/pbi.13115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/16/2019] [Accepted: 03/13/2019] [Indexed: 05/19/2023]
Abstract
Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lingfeng Mao
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Jie Qiu
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Meng Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lei Jia
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Dongya Wu
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Zhesi He
- Department of BiologyYork UniversityHeslingtonUK
| | - Meihong Chen
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Yifei Shen
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Enhui Shen
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Yongji Huang
- Center for Genomics and BiotechnologyHaixia Institute of Science and Technology (HIST)Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Ruiyuan Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kai Wang
- Center for Genomics and BiotechnologyHaixia Institute of Science and Technology (HIST)Fujian Agriculture and Forestry UniversityFuzhouChina
| | | | - Chuyu Ye
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| | - Ian Bancroft
- Department of BiologyYork UniversityHeslingtonUK
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of BioinformaticsZhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Li X, Jin Y, Yin Y. Allele frequency of pathogenic variants related to adult-onset Mendelian diseases. Clin Genet 2019; 96:226-235. [PMID: 31119731 DOI: 10.1111/cge.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
An increasing number of variants related to Mendelian diseases have been discovered through analyses of next-generation sequencing data, but the results related to adult-onset Mendelian diseases are insufficient. One possible explanation is that the methods commonly used to evaluate pathogenic variants in patients with congenital Mendelian diseases may not be appropriate for adult-onset diseases due to differences in selection pressure, particularly when assessing the frequency of variants in the general population. We established a well-processed and filtered database of pathogenic variants with both phenotype and frequency information based on the ClinVar and GnomAD public database to better explore the genetic features of adult-onset diseases under real-world conditions. Compared with the control group, pathogenic variants related to adult-onset dominant diseases had a higher allele frequency pattern. Further, the allele frequency patterns of both dominant and recessive variants were higher in patients with neurodegenerative diseases than those in patients with intellectual disabilities. Based on the mutation-selection balance model, the above observation of allele frequency described the lower selection pressure on pathogenic variants related to adult-onset Mendelian diseases and suggests a lower effectiveness of population and loss-of-function evidence in investigations of adult-onset Mendelian diseases.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Deleterious Mutation Burden and Its Association with Complex Traits in Sorghum ( Sorghum bicolor). Genetics 2019; 211:1075-1087. [PMID: 30622134 PMCID: PMC6404259 DOI: 10.1534/genetics.118.301742] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/22/2018] [Indexed: 11/18/2022] Open
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a major staple food cereal for millions of people worldwide. Valluru et al. identify putative deleterious mutations among ∼5.5M segregating variants of 229 diverse sorghum... Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favorable loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact phenotypes, we identified putative deleterious mutations among ∼5.5 M segregating variants of 229 diverse biomass sorghum lines. We provide the whole-genome estimate of the deleterious burden in sorghum, showing that ∼33% of nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However, there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage. Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional breeding that focuses on the selection of progeny with fewer deleterious alleles.
Collapse
|
22
|
Bosse M, Megens H, Derks MFL, de Cara ÁMR, Groenen MAM. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol Appl 2019; 12:6-17. [PMID: 30622631 PMCID: PMC6304688 DOI: 10.1111/eva.12691] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Each individual has a certain number of harmful mutations in its genome. These mutations can lower the fitness of the individual carrying them, dependent on their dominance and selection coefficient. Effective population size, selection, and admixture are known to affect the occurrence of such mutations in a population. The relative roles of demography and selection are a key in understanding the process of adaptation. These are factors that are potentially influenced and confounded in domestic animals. Here, we hypothesize that the series of events of bottlenecks, introgression, and strong artificial selection associated with domestication increased mutational load in domestic species. Yet, mutational load is hard to quantify, so there are very few studies available revealing the relevance of evolutionary processes. The precise role of artificial selection, bottlenecks, and introgression in further increasing the load of deleterious variants in animals in breeding and conservation programmes remains unclear. In this paper, we review the effects of domestication and selection on mutational load in domestic species. Moreover, we test some hypotheses on higher mutational load due to domestication and selective sweeps using sequence data from commercial pig and chicken lines. Overall, we argue that domestication by itself is not a prerequisite for genetic erosion, indicating that fitness potential does not need to decline. Rather, mutational load in domestic species can be influenced by many factors, but consistent or strong trends are not yet clear. However, methods emerging from molecular genetics allow discrimination of hypotheses about the determinants of mutational load, such as effective population size, inbreeding, and selection, in domestic systems. These findings make us rethink the effect of our current breeding schemes on fitness of populations.
Collapse
Affiliation(s)
- Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Martijn F. L. Derks
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Ángeles M. R. de Cara
- Centre d’Ecologie Fonctionnelle et EvolutiveCNRSUniversité de MontpellierUniversité Paul Valéry Montpellier 3EPHE, IRDMontpellierFrance
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
23
|
Mooney JA, Huber CD, Service S, Sul JH, Marsden CD, Zhang Z, Sabatti C, Ruiz-Linares A, Bedoya G, Freimer N, Lohmueller KE. Understanding the Hidden Complexity of Latin American Population Isolates. Am J Hum Genet 2018; 103:707-726. [PMID: 30401458 PMCID: PMC6218714 DOI: 10.1016/j.ajhg.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Most population isolates examined to date were founded from a single ancestral population. Consequently, there is limited knowledge about the demographic history of admixed population isolates. Here we investigate genomic diversity of recently admixed population isolates from Costa Rica and Colombia and compare their diversity to a benchmark population isolate, the Finnish. These Latin American isolates originated during the 16th century from admixture between a few hundred European males and Amerindian females, with a limited contribution from African founders. We examine whole-genome sequence data from 449 individuals, ascertained as families to build mutigenerational pedigrees, with a mean sequencing depth of coverage of approximately 36×. We find that Latin American isolates have increased genetic diversity relative to the Finnish. However, there is an increase in the amount of identity by descent (IBD) segments in the Latin American isolates relative to the Finnish. The increase in IBD segments is likely a consequence of a very recent and severe population bottleneck during the founding of the admixed population isolates. Furthermore, the proportion of the genome that falls within a long run of homozygosity (ROH) in Costa Rican and Colombian individuals is significantly greater than that in the Finnish, suggesting more recent consanguinity in the Latin American isolates relative to that seen in the Finnish. Lastly, we find that recent consanguinity increased the number of deleterious variants found in the homozygous state, which is relevant if deleterious variants are recessive. Our study suggests that there is no single genetic signature of a population isolate.
Collapse
Affiliation(s)
- Jazlyn A Mooney
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christian D Huber
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, Semel Center for Informatics and Personalized Genomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Clare D Marsden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China; Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquia, Medellín, Colombia
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Kim BY, Huber CD, Lohmueller KE. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet 2018; 14:e1007741. [PMID: 30346959 PMCID: PMC6233928 DOI: 10.1371/journal.pgen.1007741] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/13/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
While it is appreciated that population size changes can impact patterns of deleterious variation in natural populations, less attention has been paid to how gene flow affects and is affected by the dynamics of deleterious variation. Here we use population genetic simulations to examine how gene flow impacts deleterious variation under a variety of demographic scenarios, mating systems, dominance coefficients, and recombination rates. Our results show that admixture between populations can temporarily reduce the genetic load of smaller populations and cause increases in the frequency of introgressed ancestry, especially if deleterious mutations are recessive. Additionally, when fitness effects of new mutations are recessive, between-population differences in the sites at which deleterious variants exist creates heterosis in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry, particularly when recombination rates are low. Under certain scenarios, introgressed ancestry can increase from an initial frequency of 5% to 30–75% and fix at many loci, even in the absence of beneficial mutations. Further, deleterious variation and admixture can generate correlations between the frequency of introgressed ancestry and recombination rate or exon density, even in the absence of other types of selection. The direction of these correlations is determined by the specific demography and whether mutations are additive or recessive. Therefore, it is essential that null models of admixture include both demography and deleterious variation before invoking other mechanisms to explain unusual patterns of genetic variation. Individuals from distinct populations sometimes will produce fertile offspring and will exchange genetic material in a process called hybridization. Genomes of hybrid individuals often show non-random patterns of hybrid ancestry across the genome, where some regions have a high frequency of ancestry from the second population and other regions have less. Typically, this pattern has been attributed to adaptive introgression, where beneficial genetic variants are passed from one population to the other, or to genomic incompatibilities between these distinct species. However, other mechanisms could lead to these heterogeneous patterns of ancestry in hybrids. Here we use simulations to investigate whether deleterious mutations affect the patterns of introgressed ancestry across genomes. We show that when ancestry from a larger population is added to a smaller population, the ancestry from the larger population dramatically increases in frequency because it carries fewer deleterious mutations. This occurs even in the absence of beneficial mutations in either population. Additionally, we show that differences in sex chromosome evolution relative to autosomes, or differences in mating system, can affect patterns of introgression in similar ways. Our study argues that deleterious mutations should be included in population genetic models used to identify unusual regions of the genome that appear to be under selection in hybrids.
Collapse
Affiliation(s)
- Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Christian D. Huber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wang XJ, Hu QJ, Guo XY, Wang K, Ru DF, German DA, Weretilnyk EA, Abbott RJ, Lascoux M, Liu JQ. Demographic expansion and genetic load of the halophyte model plantEutrema salsugineum. Mol Ecol 2018; 27:2943-2955. [DOI: 10.1111/mec.14738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao-Juan Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Quan-Jun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Xin-Yi Guo
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Kun Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Da-Fu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Dmitry A. German
- Department of Biodiversity and Plant Systematics; Centre for Organismal Studies (COS Heidelberg); Heidelberg University; Heidelberg Germany
- South-Siberian Botanical Garden; Altai State University; Barnaul Russia
| | | | | | - Martin Lascoux
- Department of Ecology and Genetics; Evolutionary Biology Center and Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Jian-quan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
- State Key Laboratory of Grassland Agro-Ecosystem; College of Life Science; Lanzhou University; Lanzhou China
| |
Collapse
|
26
|
Hall CL, Sutanto H, Dalageorgou C, McKenna WJ, Syrris P, Futema M. Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. Eur J Hum Genet 2018; 26:1312-1318. [PMID: 29802319 PMCID: PMC6117313 DOI: 10.1038/s41431-018-0169-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart-muscle disorder, which is the most common cause of life-threatening arrhythmias and sudden cardiac death (SCD) in young adults and athletes. Early and accurate diagnosis can be crucial in effective ARVC management and prevention of SCD.The genome Aggregation Database (gnomAD) population of 138,632 unrelated individuals was searched for previously identified ARVC variants, classified as pathogenic or unknown on the disease genetic variant database ( http://www.arvcdatabase.info/ ), in five most-commonly mutated genes: PKP2, DSP, DSG2, DSC2 and JUP, where variants account for 40-50% of all the ARVC cases. Minor allele frequency (MAF) of 0.001 was used to define variants as rare or common.The gnomAD data contained 117/364 (32%) of the previously reported pathogenic and 152/266 (57%) of the unknown ARVC variants. The cross-ethnic analysis of MAF revealed that 11 previously classified pathogenic and 57 unknown variants were common (MAF ≥ 0.001) in at least one ethnic gnomAD population and therefore unlikely to be ARVC causing.After applying our MAF analysis the overall frequency of pathogenic ARVC variants in gnomAD was one in 257 individuals, but a more stringent cut-off (MAF ≥ 0.0001) gave a frequency of one in 845, closer to the estimated phenotypic frequency of the disease.Our study demonstrates that the analysis of large cross-ethnic population sequencing data can significantly improve disease variant interpretation. Higher than expected frequency of ARVC variants suggests that a proportion of ARVC-causing variants may be inaccurately classified, implying reduced penetrance of some variants, and/or a polygenic aetiology of ARVC.
Collapse
Affiliation(s)
- Charlotte L Hall
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Henry Sutanto
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Chrysoula Dalageorgou
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - William John McKenna
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Petros Syrris
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK.
| |
Collapse
|
27
|
|
28
|
Naidoo T, Sjödin P, Schlebusch C, Jakobsson M. Patterns of variation in cis-regulatory regions: examining evidence of purifying selection. BMC Genomics 2018; 19:95. [PMID: 29373957 PMCID: PMC5787233 DOI: 10.1186/s12864-017-4422-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With only 2 % of the human genome consisting of protein coding genes, functionality across the rest of the genome has been the subject of much debate. This has gained further impetus in recent years due to a rapidly growing catalogue of genomic elements, based primarily on biochemical signatures (e.g. the ENCODE project). While the assessment of functionality is a complex task, the presence of selection acting on a genomic region is a strong indicator of importance. In this study, we apply population genetic methods to investigate signals overlaying several classes of regulatory elements. RESULTS We disentangle signals of purifying selection acting directly on regulatory elements from the confounding factors of demography and purifying selection linked to e.g. nearby protein coding regions. We confirm the importance of regulatory regions proximal to coding sequence, while also finding differential levels of selection at distal regions. We note differences in purifying selection among transcription factor families. Signals of constraint at some genomic classes were also strongly dependent on their physical location relative to coding sequence. In addition, levels of selection efficacy across genomic classes differed between African and non-African populations. CONCLUSIONS In order to assign a valid signal of selection to a particular class of genomic sequence, we show that it is crucial to isolate the signal by accounting for the effects of demography and linked-purifying selection. Our study highlights the intricate interplay of factors affecting signals of selection on functional elements.
Collapse
Affiliation(s)
- Thijessen Naidoo
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Per Sjödin
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Carina Schlebusch
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Science for Life Lab, Uppsala, Sweden.
| |
Collapse
|
29
|
Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT. Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants. Genome Biol Evol 2018; 10:276-290. [PMID: 29325102 PMCID: PMC5786255 DOI: 10.1093/gbe/evy004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
A fraction of genetic variants segregating in any population are deleterious, which negatively impacts individual fitness. The domestication of animals and plants is associated with population bottlenecks and artificial selection, which are predicted to increase the proportion of deleterious variants. However, the extent to which this is a general feature of domestic species is unclear. Here, we examine the effects of domestication on the prevalence of deleterious variation using pooled whole-genome resequencing data from five domestic animal species (dog, pig, rabbit, chicken, and silkworm) and two domestic plant species (rice and soybean) compared with their wild ancestors. We find significantly reduced genetic variation and increased proportion of nonsynonymous amino acid changes in all but one of the domestic species. These differences are observable across a range of allele frequencies, both common and rare. We find proportionally more single nucleotide polymorphisms in highly conserved elements in domestic species and a tendency for domestic species to harbor a higher proportion of changes classified as damaging. Our findings most likely reflect an increased incidence of deleterious variants in domestic species, which is most likely attributable to population bottlenecks that lead to a reduction in the efficacy of selection. An exception to this pattern is displayed by European domestic pigs, which do not show traces of a strong population bottleneck and probably continued to exchange genes with wild boar populations after domestication. The results presented here indicate that an elevated proportion of deleterious variants is a common, but not ubiquitous, feature of domestic species.
Collapse
Affiliation(s)
- Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Erik Axelsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
30
|
Popadin K, Peischl S, Garieri M, Sailani MR, Letourneau A, Santoni F, Lukowski SW, Bazykin GA, Nikolaev S, Meyer D, Excoffier L, Reymond A, Antonarakis SE. Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Res 2017; 28:1-10. [PMID: 29237728 PMCID: PMC5749173 DOI: 10.1101/gr.228411.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
The majority of aneuploid fetuses are spontaneously miscarried. Nevertheless, some aneuploid individuals survive despite the strong genetic insult. Here, we investigate if the survival probability of aneuploid fetuses is affected by the genome-wide burden of slightly deleterious variants. We analyzed two cohorts of live-born Down syndrome individuals (388 genotyped samples and 16 fibroblast transcriptomes) and observed a deficit of slightly deleterious variants on Chromosome 21 and decreased transcriptome-wide variation in the expression level of highly constrained genes. We interpret these results as signatures of embryonic selection, and propose a genetic handicap model whereby an individual bearing an extremely severe deleterious variant (such as aneuploidy) could escape embryonic lethality if the genome-wide burden of slightly deleterious variants is sufficiently low. This approach can be used to study the composition and effect of the numerous slightly deleterious variants in humans and model organisms.
Collapse
Affiliation(s)
- Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.,Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.,Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, 3012 Bern, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - M Reza Sailani
- Stanford School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, 127051, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Sergey Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, 05508-090, Sao Paulo, Brazil
| | - Laurent Excoffier
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Institute for Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| |
Collapse
|
31
|
Relaxed Selection During a Recent Human Expansion. Genetics 2017; 208:763-777. [PMID: 29187508 DOI: 10.1534/genetics.117.300551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Humans have colonized the planet through a series of range expansions, which deeply impacted genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians who colonized Quebec in the 17th century. We used historical information and records from ∼4000 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity reveals that: (i) both new and low-frequency variants are significantly more deleterious in front than in core individuals, (ii) equally deleterious mutations are at higher frequencies in front individuals, and (iii) front individuals are two times more likely to be homozygous for rare very deleterious mutations present in Europeans. These differences have emerged in the past six to nine generations and cannot be explained by differential inbreeding, but are consistent with relaxed selection mainly due to higher rates of genetic drift on the wave front. Demographic inference and modeling of the evolution of rare variants suggest lower effective size on the front, and lead to an estimation of selection coefficients that increase with conservation scores. Even though range expansions have had a relatively limited impact on the overall fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in recently settled regions of Quebec.
Collapse
|
32
|
Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol 2017; 18:215. [PMID: 29132403 PMCID: PMC5683586 DOI: 10.1186/s13059-017-1346-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The history of maize has been characterized by major demographic events, including population size changes associated with domestication and range expansion, and gene flow with wild relatives. The interplay between demographic history and selection has shaped diversity across maize populations and genomes. RESULTS We investigate these processes using high-depth resequencing data from 31 maize landraces spanning the pre-Columbian distribution of maize, and four wild teosinte individuals (Zea mays ssp. parviglumis). Genome-wide demographic analyses reveal that maize experienced pronounced declines in effective population size due to both a protracted domestication bottleneck and serial founder effects during post-domestication spread, while parviglumis in the Balsas River Valley experienced population growth. The domestication bottleneck and subsequent spread led to an increase in deleterious alleles in the domesticate compared to the wild progenitor. This cost is particularly pronounced in Andean maize, which has experienced a more dramatic founder event compared to other maize populations. Additionally, we detect introgression from the wild teosinte Zea mays ssp. mexicana into maize in the highlands of Mexico, Guatemala, and the southwestern USA, which reduces the prevalence of deleterious alleles likely due to the higher long-term effective population size of teosinte. CONCLUSIONS These findings underscore the strong interaction between historical demography and the efficiency of selection and illustrate how domesticated species are particularly useful for understanding these processes. The landscape of deleterious alleles and therefore evolutionary potential is clearly influenced by recent demography, a factor that could bear importantly on many species that have experienced recent demographic shifts.
Collapse
Affiliation(s)
- Li Wang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA
- Genome Informatics Facility, Iowa State University, Ames, USA
| | - Timothy M. Beissinger
- Department of Plant Sciences, University of California, Davis, USA
- USDA-ARS Plant Genetics Research Unit, Columbia, USA
- Divisions of Plant and Biological Sciences, University of Missouri, Columbia, USA
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, USA
| | | | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, USA
- Genome Center and Center for Population Biology, University of California, Davis, USA
| | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA
| |
Collapse
|
33
|
Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol 2017. [PMID: 29132403 DOI: 10.1101/114579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND The history of maize has been characterized by major demographic events, including population size changes associated with domestication and range expansion, and gene flow with wild relatives. The interplay between demographic history and selection has shaped diversity across maize populations and genomes. RESULTS We investigate these processes using high-depth resequencing data from 31 maize landraces spanning the pre-Columbian distribution of maize, and four wild teosinte individuals (Zea mays ssp. parviglumis). Genome-wide demographic analyses reveal that maize experienced pronounced declines in effective population size due to both a protracted domestication bottleneck and serial founder effects during post-domestication spread, while parviglumis in the Balsas River Valley experienced population growth. The domestication bottleneck and subsequent spread led to an increase in deleterious alleles in the domesticate compared to the wild progenitor. This cost is particularly pronounced in Andean maize, which has experienced a more dramatic founder event compared to other maize populations. Additionally, we detect introgression from the wild teosinte Zea mays ssp. mexicana into maize in the highlands of Mexico, Guatemala, and the southwestern USA, which reduces the prevalence of deleterious alleles likely due to the higher long-term effective population size of teosinte. CONCLUSIONS These findings underscore the strong interaction between historical demography and the efficiency of selection and illustrate how domesticated species are particularly useful for understanding these processes. The landscape of deleterious alleles and therefore evolutionary potential is clearly influenced by recent demography, a factor that could bear importantly on many species that have experienced recent demographic shifts.
Collapse
Affiliation(s)
- Li Wang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA
- Genome Informatics Facility, Iowa State University, Ames, USA
| | - Timothy M Beissinger
- Department of Plant Sciences, University of California, Davis, USA
- USDA-ARS Plant Genetics Research Unit, Columbia, USA
- Divisions of Plant and Biological Sciences, University of Missouri, Columbia, USA
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, USA
| | | | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, USA.
- Genome Center and Center for Population Biology, University of California, Davis, USA.
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA.
| |
Collapse
|
34
|
Accumulation of Deleterious Mutations During Bacterial Range Expansions. Genetics 2017; 207:669-684. [PMID: 28821588 PMCID: PMC5629331 DOI: 10.1534/genetics.117.300144] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Recent theory predicts that the fitness of pioneer populations can decline when species expand their range, due to high rates of genetic drift on wave fronts making selection less efficient at purging deleterious variants. To test these predictions, we studied the fate of mutator bacteria expanding their range for 1650 generations on agar plates. In agreement with theory, we find that growth abilities of strains with a high mutation rate (HMR lines) decreased significantly over time, unlike strains with a lower mutation rate (LMR lines) that present three to four times fewer mutations. Estimation of the distribution of fitness effect under a spatially explicit model reveals a mean negative effect for new mutations (-0.38%), but it suggests that both advantageous and deleterious mutations have accumulated during the experiment. Furthermore, the fitness of HMR lines measured in different environments has decreased relative to the ancestor strain, whereas that of LMR lines remained unchanged. Contrastingly, strains with a HMR evolving in a well-mixed environment accumulated less mutations than agar-evolved strains and showed an increased fitness relative to the ancestor. Our results suggest that spatially expanding species are affected by deleterious mutations, leading to a drastic impairment of their evolutionary potential.
Collapse
|
35
|
MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population. Hum Genet 2017; 136:1353-1362. [DOI: 10.1007/s00439-017-1829-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
36
|
Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Curr Biol 2017; 27:2544-2551.e4. [DOI: 10.1016/j.cub.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/22/2017] [Accepted: 07/04/2017] [Indexed: 01/04/2023]
|
37
|
Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN, O'Dushlaine C, Van Hout CV, Staples J, Gonzaga-Jauregui C, Metpally R, Pendergrass SA, Giovanni MA, Kirchner HL, Balasubramanian S, Abul-Husn NS, Hartzel DN, Lavage DR, Kost KA, Packer JS, Lopez AE, Penn J, Mukherjee S, Gosalia N, Kanagaraj M, Li AH, Mitnaul LJ, Adams LJ, Person TN, Praveen K, Marcketta A, Lebo MS, Austin-Tse CA, Mason-Suares HM, Bruse S, Mellis S, Phillips R, Stahl N, Murphy A, Economides A, Skelding KA, Still CD, Elmore JR, Borecki IB, Yancopoulos GD, Davis FD, Faucett WA, Gottesman O, Ritchie MD, Shuldiner AR, Reid JG, Ledbetter DH, Baras A, Carey DJ. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 2017; 354:354/6319/aaf6814. [PMID: 28008009 DOI: 10.1126/science.aaf6814] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/16/2016] [Indexed: 11/02/2022]
Abstract
The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Korey A Kost
- Geisinger Health System, Danville, PA 17822, USA
| | | | | | - John Penn
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | | | - Matthew S Lebo
- Laboratory for Molecular Medicine, Cambridge, MA 02139, USA
| | | | | | | | - Scott Mellis
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Neil Stahl
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | |
Collapse
|
38
|
Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny EE. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet 2017. [PMID: 28366442 DOI: 10.1016/j.ajhg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The vast majority of genome-wide association studies (GWASs) are performed in Europeans, and their transferability to other populations is dependent on many factors (e.g., linkage disequilibrium, allele frequencies, genetic architecture). As medical genomics studies become increasingly large and diverse, gaining insights into population history and consequently the transferability of disease risk measurement is critical. Here, we disentangle recent population history in the widely used 1000 Genomes Project reference panel, with an emphasis on populations underrepresented in medical studies. To examine the transferability of single-ancestry GWASs, we used published summary statistics to calculate polygenic risk scores for eight well-studied phenotypes. We identify directional inconsistencies in all scores; for example, height is predicted to decrease with genetic distance from Europeans, despite robust anthropological evidence that West Africans are as tall as Europeans on average. To gain deeper quantitative insights into GWAS transferability, we developed a complex trait coalescent-based simulation framework considering effects of polygenicity, causal allele frequency divergence, and heritability. As expected, correlations between true and inferred risk are typically highest in the population from which summary statistics were derived. We demonstrate that scores inferred from European GWASs are biased by genetic drift in other populations even when choosing the same causal variants and that biases in any direction are possible and unpredictable. This work cautions that summarizing findings from large-scale GWASs may have limited portability to other populations using standard approaches and highlights the need for generalized risk prediction methods and the inclusion of more diverse individuals in medical genomics.
Collapse
Affiliation(s)
- Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center of Statistical Genetics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
39
|
Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet 2017; 100:635-649. [PMID: 28366442 DOI: 10.1016/j.ajhg.2017.03.004] [Citation(s) in RCA: 857] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/10/2017] [Indexed: 01/10/2023] Open
Abstract
The vast majority of genome-wide association studies (GWASs) are performed in Europeans, and their transferability to other populations is dependent on many factors (e.g., linkage disequilibrium, allele frequencies, genetic architecture). As medical genomics studies become increasingly large and diverse, gaining insights into population history and consequently the transferability of disease risk measurement is critical. Here, we disentangle recent population history in the widely used 1000 Genomes Project reference panel, with an emphasis on populations underrepresented in medical studies. To examine the transferability of single-ancestry GWASs, we used published summary statistics to calculate polygenic risk scores for eight well-studied phenotypes. We identify directional inconsistencies in all scores; for example, height is predicted to decrease with genetic distance from Europeans, despite robust anthropological evidence that West Africans are as tall as Europeans on average. To gain deeper quantitative insights into GWAS transferability, we developed a complex trait coalescent-based simulation framework considering effects of polygenicity, causal allele frequency divergence, and heritability. As expected, correlations between true and inferred risk are typically highest in the population from which summary statistics were derived. We demonstrate that scores inferred from European GWASs are biased by genetic drift in other populations even when choosing the same causal variants and that biases in any direction are possible and unpredictable. This work cautions that summarizing findings from large-scale GWASs may have limited portability to other populations using standard approaches and highlights the need for generalized risk prediction methods and the inclusion of more diverse individuals in medical genomics.
Collapse
|
40
|
Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat Genet 2017; 49:806-810. [PMID: 28369035 PMCID: PMC5618255 DOI: 10.1038/ng.3831] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
The dispensability of individual genes for viability has interested generations of geneticists. For some genes it is essential to maintain two functional chromosomal copies, while others may tolerate the loss of one or both copies. Exome sequence data from 60,706 individuals provide sufficient observations of rare protein truncating variants (PTVs) to make genome-wide estimates of selection against heterozygous loss of gene function. The cumulative frequency of rare deleterious PTVs is primarily determined by the balance between incoming mutations and purifying selection rather than genetic drift. This enables the estimation of the genome-wide distribution of selection coefficients for heterozygous PTVs and corresponding Bayesian estimates for individual genes. The strength of selection can discriminate the severity, age of onset, and mode of inheritance in Mendelian exome sequencing cases. We find that genes under the strongest selection are enriched in embryonic lethal mouse knockouts, putatively cell-essential genes, Mendelian disease genes, and regulators of transcription. Screening by essentiality, we find a large set of genes under strong selection that likely have critical function but have not yet been extensively annotated in published literature.
Collapse
|
41
|
Quach H, Quintana-Murci L. Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. J Exp Med 2017; 214:877-894. [PMID: 28351985 PMCID: PMC5379985 DOI: 10.1084/jem.20161942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
More than a decade after the sequencing of the human genome, a deluge of genome-wide population data are generating a portrait of human genetic diversity at an unprecedented level of resolution. Genomic studies have provided new insight into the demographic and adaptive history of our species, Homo sapiens, including its interbreeding with other hominins, such as Neanderthals, and the ways in which natural selection, in its various guises, has shaped genome diversity. These studies, combined with functional genomic approaches, such as the mapping of expression quantitative trait loci, have helped to identify genes, functions, and mechanisms of prime importance for host survival and involved in phenotypic variation and differences in disease risk. This review summarizes new findings in this rapidly developing field, focusing on the human immune response. We discuss the importance of defining the genetic and evolutionary determinants driving immune response variation, and highlight the added value of population genomic approaches in settings relevant to immunity and infection.
Collapse
Affiliation(s)
- Hélène Quach
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| |
Collapse
|
42
|
A Temporal Perspective on the Interplay of Demography and Selection on Deleterious Variation in Humans. G3-GENES GENOMES GENETICS 2017; 7:1027-1037. [PMID: 28159863 PMCID: PMC5345704 DOI: 10.1534/g3.117.039651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When mutations have small effects on fitness, population size plays an important role in determining the amount and nature of deleterious genetic variation. The extent to which recent population size changes have impacted deleterious variation in humans has been a question of considerable interest and debate. An emerging consensus is that the Out-of-Africa bottleneck and subsequent growth events have been too short to cause meaningful differences in genetic load between populations; though changes in the number and average frequencies of deleterious variants have taken place. To provide more support for this view and to offer additional insight into the divergent evolution of deleterious variation across populations, we numerically solve time-inhomogeneous diffusion equations and study the temporal dynamics of the frequency spectra in models of population size change for modern humans. We observe how the response to demographic change differs by the strength of selection, and we then assess whether similar patterns are observed in exome sequence data from 33,370 and 5203 individuals of non-Finnish European and West African ancestry, respectively. Our theoretical results highlight how even simple summaries of the frequency spectrum can have complex responses to demographic change. These results support the finding that some apparent discrepancies between previous results have been driven by the behaviors of the precise summaries of deleterious variation. Further, our empirical results make clear the difficulty of inferring slight differences in frequency spectra using recent next-generation sequence data.
Collapse
|
43
|
McCoy RC, Wakefield J, Akey JM. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression. Cell 2017; 168:916-927.e12. [PMID: 28235201 PMCID: PMC6219754 DOI: 10.1016/j.cell.2017.01.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jon Wakefield
- Department of Statistics, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Fu W, Ligabue A, Rogers KJ, Akey JM, Monnat RJ. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases. Hum Mutat 2016; 38:193-203. [PMID: 27859906 DOI: 10.1002/humu.23148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.
Collapse
Affiliation(s)
- Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Alessio Ligabue
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kai J Rogers
- Department of Microbiology, University of Washington, Seattle, Washington.,University of Iowa College of Medicine, Iowa City, Iowa
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Genetic surfing in human populations: from genes to genomes. Curr Opin Genet Dev 2016; 41:53-61. [DOI: 10.1016/j.gde.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
46
|
Gao F, Keinan A. Explosive genetic evidence for explosive human population growth. Curr Opin Genet Dev 2016; 41:130-139. [PMID: 27710906 PMCID: PMC5161661 DOI: 10.1016/j.gde.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Accepted: 09/11/2016] [Indexed: 11/19/2022]
Abstract
The advent of next-generation sequencing technology has allowed the collection of vast amounts of genetic variation data. A recurring discovery from studying larger and larger samples of individuals had been the extreme, previously unexpected, excess of very rare genetic variants, which has been shown to be mostly due to the recent explosive growth of human populations. Here, we review recent literature that inferred recent changes in population size in different human populations and with different methodologies, with many pointing to recent explosive growth, especially in European populations for which more data has been available. We also review the state-of-the-art methods and software for the inference of historical population size changes that lead to these discoveries. Finally, we discuss the implications of recent population growth on personalized genomics, on purifying selection in the non-equilibrium state it entails and, as a consequence, on the genetic architecture underlying complex disease and the performance of mapping methods in discovering rare variants that contribute to complex disease risk.
Collapse
Affiliation(s)
- Feng Gao
- Department of Biological Statistics and Computational Biology, Ithaca, NY 14850, United States
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Ithaca, NY 14850, United States.
| |
Collapse
|
47
|
The Effect of an Extreme and Prolonged Population Bottleneck on Patterns of Deleterious Variation: Insights from the Greenlandic Inuit. Genetics 2016; 205:787-801. [PMID: 27903613 DOI: 10.1534/genetics.116.193821] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
The genetic consequences of population bottlenecks on patterns of deleterious genetic variation in human populations are of tremendous interest. Based on exome sequencing of 18 Greenlandic Inuit we show that the Inuit have undergone a severe ∼20,000-year-long bottleneck. This has led to a markedly more extreme distribution of allele frequencies than seen for any other human population tested to date, making the Inuit the perfect population for investigating the effect of a bottleneck on patterns of deleterious variation. When comparing proxies for genetic load that assume an additive effect of deleterious alleles, the Inuit show, at most, a slight increase in load compared to European, East Asian, and African populations. Specifically, we observe <4% increase in the number of derived deleterious alleles in the Inuit. In contrast, proxies for genetic load under a recessive model suggest that the Inuit have a significantly higher load (20% increase or more) compared to other less bottlenecked human populations. Forward simulations under realistic models of demography support our empirical findings, showing up to a 6% increase in the genetic load for the Inuit population across all models of dominance. Further, the Inuit population carries fewer deleterious variants than other human populations, but those that are present tend to be at higher frequency than in other populations. Overall, our results show how recent demographic history has affected patterns of deleterious variants in human populations.
Collapse
|
48
|
Abstract
The wealth of available genetic information is allowing the reconstruction of human demographic and adaptive history. Demography and purifying selection affect the purge of rare, deleterious mutations from the human population, whereas positive and balancing selection can increase the frequency of advantageous variants, improving survival and reproduction in specific environmental conditions. In this review, I discuss how theoretical and empirical population genetics studies, using both modern and ancient DNA data, are a powerful tool for obtaining new insight into the genetic basis of severe disorders and complex disease phenotypes, rare and common, focusing particularly on infectious disease risk.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur, Paris, 75015, France.
- Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
49
|
Freedman AH, Lohmueller KE, Wayne RK. Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dog is our oldest domesticate and has experienced a wide variety of demographic histories, including a bottleneck associated with domestication and individual bottlenecks associated with the formation of modern breeds. Admixture with gray wolves, and among dog breeds and populations, has also occurred throughout its history. Likewise, the intensity and focus of selection have varied, from an initial focus on traits enhancing cohabitation with humans, to more directed selection on specific phenotypic characteristics and behaviors. In this review, we summarize and synthesize genetic findings from genome-wide and complete genome studies that document the genomic consequences of demography and selection, including the effects on adaptive and deleterious variation. Consistent with the evolutionary history of the dog, signals of natural and artificial selection are evident in the dog genome. However, conclusions from studies of positive selection are fraught with the problem of false positives given that demographic history is often not taken into account.
Collapse
Affiliation(s)
- Adam H. Freedman
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
50
|
Simons YB, Sella G. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr Opin Genet Dev 2016; 41:150-158. [PMID: 27744216 DOI: 10.1016/j.gde.2016.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/22/2023]
Abstract
Over the past decade, there has been both great interest and confusion about whether recent demographic events-notably the Out-of-Africa-bottleneck and recent population growth-have led to differences in mutation load among human populations. The confusion can be traced to the use of different summary statistics to measure load, which lead to apparently conflicting results. We argue, however, that when statistics more directly related to load are used, the results of different studies and data sets consistently reveal little or no difference in the load of non-synonymous mutations among human populations. Theory helps to understand why no such differences are seen, as well as to predict in what settings they are to be expected. In particular, as predicted by modeling, there is evidence for changes in the load of recessive loss of function mutations in founder and inbred human populations. Also as predicted, eastern subspecies of gorilla, Neanderthals and Denisovans, who are thought to have undergone reductions in population sizes that exceed the human Out-of-Africa bottleneck in duration and severity, show evidence for increased load of non-synonymous mutations (relative to western subspecies of gorillas and modern humans, respectively). A coherent picture is thus starting to emerge about the effects of demographic history on the mutation load in populations of humans and close evolutionary relatives.
Collapse
Affiliation(s)
- Yuval B Simons
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|