1
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell 2024:S1534-5807(24)00719-6. [PMID: 39674175 DOI: 10.1016/j.devcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila. From over 19,000 cross-links, we identified over 4,700 unique amino acid interactions among over 1,100 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the intraflagellar transport system, axonemal dynein arms, radial spokes, the 96-nm ruler, and microtubule inner proteins. Guided by this dataset, we used vertebrate multiciliated cells to reveal functional interactions among several poorly defined human ciliopathy proteins. This dataset provides a resource for studying the biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Balasubramaniam K, He T, Chen H, Lin Z, He CY. Cytoplasmic preassembly of the flagellar outer dynein arm complex in Trypanosoma brucei. Mol Biol Cell 2024; 35:br16. [PMID: 39024276 PMCID: PMC11449384 DOI: 10.1091/mbc.e24-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAβ), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.
Collapse
Affiliation(s)
- Karthika Balasubramaniam
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Tingting He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Helen Chen
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Zhewang Lin
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Cynthia Y. He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
3
|
Bonnefoy S, Alves AA, Bertiaux E, Bastin P. LRRC56 is an IFT cargo required for assembly of the distal dynein docking complex in Trypanosoma brucei. Mol Biol Cell 2024; 35:ar106. [PMID: 38865178 PMCID: PMC11321045 DOI: 10.1091/mbc.e23-11-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Outer dynein arms (ODAs) are responsible for ciliary beating in eukaryotes. They are assembled in the cytoplasm and shipped by intraflagellar transport (IFT) before attachment to microtubule doublets via the docking complex. The LRRC56 protein has been proposed to contribute to ODAs maturation. Mutations or deletion of the LRRC56 gene lead to reduced ciliary motility in all species investigated so far, but with variable impact on dynein arm presence. Here, we investigated the role of LRRC56 in the protist Trypanosoma brucei, where its absence results in distal loss of ODAs, mostly in growing flagella. We show that LRRC56 is a transient cargo of IFT trains during flagellum construction and surprisingly, is required for efficient attachment of a subset of docking complex proteins present in the distal portion of the organelle. This relation is interdependent since the knockdown of the distal docking complex prevents LRRC56's association with the flagellum. Intriguingly, lrrc56-/- cells display shorter flagella whose maturation is delayed. Inhibition of cell division compensates for the distal ODAs absence thanks to the redistribution of the proximal docking complex, restoring ODAs attachment but not the flagellum length phenotype. This work reveals an unexpected connection between LRRC56 and the docking complex.
Collapse
Affiliation(s)
- Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| | - Aline Araujo Alves
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
- Sorbonne Université, école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| |
Collapse
|
4
|
Xue H, Yu A, Chen L, Guo Q, Zhang L, Lin N, Chen X, Xu L, Huang H. Prenatal genetic diagnosis of fetuses with dextrocardia using whole exome sequencing in a tertiary center. Sci Rep 2024; 14:16266. [PMID: 39009665 PMCID: PMC11251054 DOI: 10.1038/s41598-024-67164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
To evaluate the genetic etiology of fetal dextrocardia, associated ultrasound anomalies, and perinatal outcomes, we investigated the utility of whole exome sequencing (WES) for prenatal diagnosis of dextrocardia. Fetuses with dextrocardia were prospectively collected between January 2016 and December 2022. Trio-WES was performed on fetuses with dextrocardia, following normal karyotyping and/or chromosomal microarray analysis (CMA) results. A total of 29 fetuses with dextrocardia were collected, including 27 (93.1%) diagnosed with situs inversus totalis and 2 (6.9%) with situs inversus partialis. Cardiac malformations were present in nine cases, extra-cardiac anomalies were found in seven cases, and both cardiac and extra-cardiac malformations were identified in one case. The fetal karyotypes and CMA results of 29 cases were normal. Of the 29 cases with dextrocardia, 15 underwent WES, and the other 14 cases refused. Of the 15 cases that underwent WES, clinically relevant variants were identified in 5/15 (33.3%) cases, including the diagnostic variants DNAH5, DNAH11, LRRC56, PEX10, and ZIC3, which were verified by Sanger sequencing. Of the 10 cases with non-diagnostic results via WES, eight (80%) chose to continue the pregnancies. Of the 29 fetuses with dextrocardia, 10 were terminated during pregnancy, and 19 were live born. Fetal dextrocardia is often accompanied by cardiac and extra-cardiac anomalies, and fetal dextrocardia accompanied by situs inversus is associated with a high risk of primary ciliary dyskinesia. Trio-WES is recommended following normal karyotyping and CMA results because it can improve the diagnostic utility of genetic variants of fetal dextrocardia, accurately predict fetal prognosis, and guide perinatal management and the reproductive decisions of affected families.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Lin Zhang
- Fujian Medical University, No. 88 Jiaotong Road, Cangshan District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
5
|
Werner S, Okenve-Ramos P, Hehlert P, Zitouni S, Priya P, Mendonça S, Sporbert A, Spalthoff C, Göpfert MC, Jana SC, Bettencourt-Dias M. IFT88 maintains sensory function by localising signalling proteins along Drosophila cilia. Life Sci Alliance 2024; 7:e202302289. [PMID: 38373798 PMCID: PMC10876440 DOI: 10.26508/lsa.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.
Collapse
Affiliation(s)
| | | | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Sihem Zitouni
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institut de Génétique Humaine (IGH), UMR, 9002 CNRS, Montpellier, France
| | - Pranjali Priya
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Berlin, Germany
| | - Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | | |
Collapse
|
6
|
Zhang T, Cui S, Xiong X, Liu Y, Cao Q, Xia XG, Zhou H. PIH1D3-knockout rats exhibit full ciliopathy features and dysfunctional pre-assembly and loading of dynein arms in motile cilia. Front Cell Dev Biol 2023; 11:1282787. [PMID: 37900281 PMCID: PMC10601634 DOI: 10.3389/fcell.2023.1282787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Recessive mutation of the X-linked gene, PIH1 domain-containing protein 3 (PIH1D3), causes familial ciliopathy. PIH1D3 deficiency is associated with the defects of dynein arms in cilia, but how PIH1D3 specifically affects the structure and function of dynein arms is not understood yet. To gain insights into the underlying mechanisms of the disease, it is crucial to create a reliable animal model. In humans, rats, and mice, one copy of the PIH1D3 gene is located on the X chromosome. Interestingly, mice have an additional, intronless copy of the Pih1d3 gene on chromosome 1. To develop an accurate disease model, it is best to manipulate the X-linked PIH1D3 gene, which contains essential regulatory sequences within the introns for precise gene expression. This study aimed to develop a tailored rat model for PIH1D3-associated ciliopathy with the ultimate goal of uncovering the intricate molecular mechanisms responsible for ciliary defects in the disease. Methods: Novel Pih1d3-knockout (KO) rats were created by using TALEN-mediated non-homologous DNA recombination within fertilized rat eggs and, subsequently, underwent a comprehensive characterization through a battery of behavioral and pathological assays. A series of biochemical and histological analyses were conducted to elucidate the identity of protein partners that interact with PIH1D3, thus shedding light on the intricate molecular mechanisms involved in this context. Results: PIH1D3-KO rats reproduced the cardinal features of ciliopathy including situs inversus, defects in spermatocyte survival and mucociliary clearance, and perinatal hydrocephalus. We revealed the novel function of PIH1D3 in cerebrospinal fluid circulation and elucidated the mechanism by which PIH1D3 deficiency caused communicating hydrocephalus. PIH1D3 interacted with the proteins required for the pre-assembly and uploading of outer (ODA) and inner dynein arms (IDA), regulating the integrity of dynein arm structure and function in cilia. Conclusion: PIH1D3-KO rats faithfully reproduced the cardinal features of ciliopathy associated with PIH1D3 deficiency. PIH1D3 interacted with the proteins responsible for the pre-assembly and uploading of dynein arms in cilia, and its deficiency led to dysfunctional cilia and, thus, to ciliopathy by affecting the pre-assembly and uploading of dynein arms. The resultant rat model is a valuable tool for the mechanistic study of PIH1D3-caused diseases.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| |
Collapse
|
7
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548259. [PMID: 37781579 PMCID: PMC10541116 DOI: 10.1101/2023.07.09.548259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences McGill University, Québec, Canada
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
8
|
Bellchambers HM, Phatak AR, Nenni MJ, Padua MB, Gao H, Liu Y, Ware SM. Single cell RNA analysis of the left-right organizer transcriptome reveals potential novel heterotaxy genes. Sci Rep 2023; 13:10688. [PMID: 37393374 PMCID: PMC10314903 DOI: 10.1038/s41598-023-36862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO. Specifically, we used single cell RNA sequencing of 0-1 somite embryos to identify LRO enriched genes which were compared to bulk RNA sequencing of LRO cells isolated by fluorescent activated cell sorting. Gene ontology analysis indicated an enrichment of genes associated with cilia and laterality terms. Furthermore, comparison to previously identified LRO genes identified 127 novel LRO genes, including Ttll3, Syne1 and Sparcl1, for which the expression patterns were validated using whole mount in situ hybridization. This list of novel LRO genes will be a useful resource for further studies on LRO morphogenesis, the establishment of laterality and the genetic causes of heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Amruta R Phatak
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maria B Padua
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Lindberg FA, Nordenankar K, Forsberg EC, Fredriksson R. SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females: A Preliminary Characterization Study of SLC38A10−/− Mice. Genes (Basel) 2023; 14:genes14040835. [PMID: 37107593 PMCID: PMC10138244 DOI: 10.3390/genes14040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10−/− might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
Collapse
|
10
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
11
|
Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, Tan YQ, Nie H, Zhang Q, Lu G, Lin G, Li H, Zhang H, Tu C. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet 2023; 40:41-51. [PMID: 36515799 PMCID: PMC9840726 DOI: 10.1007/s10815-022-02681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The aim of this study is to identify the genetic cause of primary ciliary dyskinesia (PCD) and male infertility in two unrelated Han Chinese families. METHODS We performed whole-exome sequencing in two unrelated male Han Chinese patients suffering from infertility and PCD to identify the pathogenic variants. Ultrastructural and immunostaining analyses of patient's spermatozoa were performed to characterize the effect of the variants. The pathogenicity of the variants was validated using patient's spermatozoa by western blotting and immunostaining analysis. Intracytoplasmic sperm injection (ICSI) was conducted in the affected families. RESULTS Three variants in leucine-rich repeat containing 6 (LRRC6) [patient 1(compound heterozygote): NM_012472: c.538C > T, (p.R180*) and c.64dupT, (p.S22Ffs*19); patient 2 (homozygote): c.863C > A, (p.P288H)] were identified in two unrelated patients with PCD and male infertility. These variants were predicated deleterious and were absent or rare in human population genome data. LRRC6-mutant spermatozoa showed a highly aberrant morphology and ultrastructure with lacked inner and outer dynein arms. The LRRC6 protein was present along the normal sperm flagella, and was significantly decreased in the mutated spermatozoa. Interestingly, both patients were able to conceive through ICSI and birthed a healthy baby. CONCLUSION Our results extend the LRRC6 variant spectrum and provide reproductive guidance to families suffering from PCD-linked infertility caused by LRRC6 variants.
Collapse
Affiliation(s)
- Yunhao Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yue-Qiu Tan
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Huanzhu Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| |
Collapse
|
12
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
13
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
14
|
Alasmari BG, Saeed M, Alomari MA, Alsumaili M, Tahir AM. Primary Ciliary Dyskinesia: Phenotype Resulting From a Novel Variant of LRRC56 Gene. Cureus 2022; 14:e28472. [PMID: 36176820 PMCID: PMC9512311 DOI: 10.7759/cureus.28472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/06/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) involves cilia impairment, with resultant symptoms of repeated respiratory infections, sinusitis, and infertility. We report a seven-year-old boy of Arab ethnicity, with consanguineous parents, who was identified to have situs inversus totalis in neonatal life. There was a significant family history of ciliopathy as situs inversus totalis, infertility, and recurrent respiratory infections were noted in his two paternal uncles. From five months of age, the child started to have recurrent hospital visits due to respiratory infections. Infancy was marked by failure to thrive along with delay in achieving developmental milestones. Next-generation sequencing of known or potential ciliopathy genes revealed him homozygous for a novel mutation c.494T>C of the LRRC56 gene, thus defining PCD as a potential cause of his features.
Collapse
|
15
|
Imoto Y, Nakamura T, Escolar EG, Yoshiwaki M, Kojima Y, Yabuta Y, Katou Y, Yamamoto T, Hiraoka Y, Saitou M. Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Sci Alliance 2022; 5:e202201591. [PMID: 35944930 PMCID: PMC9363502 DOI: 10.26508/lsa.202201591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell-level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data.
Collapse
Affiliation(s)
- Yusuke Imoto
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Emerson G Escolar
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | | | - Yoji Kojima
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuaki Hiraoka
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
- Center for Advanced Study, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
17
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
18
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
19
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22158272. [PMID: 34361034 PMCID: PMC8348038 DOI: 10.3390/ijms22158272] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.
Collapse
Affiliation(s)
- Steven K Brennan
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
- Correspondence:
| | - Thomas W Ferkol
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
| | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC 27514, USA;
| |
Collapse
|
21
|
Progress in Diagnosing Primary Ciliary Dyskinesia: The North American Perspective. Diagnostics (Basel) 2021; 11:diagnostics11071278. [PMID: 34359360 PMCID: PMC8304305 DOI: 10.3390/diagnostics11071278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.
Collapse
|
22
|
Yiallouros PK, Kouis P, Kyriacou K, Evriviadou A, Anagnostopoulou P, Matthaiou A, Tsiolakis I, Pirpa P, Michailidou K, Potamiti L, Loizidou MA, Hadjisavvas A. Implementation of multigene panel NGS diagnosis in the national primary ciliary dyskinesia cohort of Cyprus: An island with a high disease prevalence. Hum Mutat 2021; 42:e62-e77. [PMID: 33715250 DOI: 10.1002/humu.24196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
We aimed to determine a genetic diagnosis in the national primary ciliary dyskinesia (PCD) cohort of Cyprus, an island with a high disease prevalence. We used targeted next-generation sequencing (NGS) of 39 PCD genes in 48 patients of Greek-Cypriot and other ancestries. We achieved a molecular diagnosis in 74% of the unrelated families tested. We identified 24 different mutations in 11 genes, 12 of which are novel. Homozygosity was more common in Greek-Cypriot than non-Greek-Cypriot patients (88% vs. 46.2%, p = .016). Four mutations (DNAH11:c.5095-2A>G, CFAP300:c.95_103delGCCGGCTCC, TTC25:c.716G>A, RSPH9:c.670+2T>C) were found in 74% of the diagnosed Greek-Cypriot families. Patients with RSPH9 mutations demonstrated higher nasal nitric oxide (57 vs. 15 nl/min, p <.001), higher forced expiratory volume in 1 s (-0.89 vs. -2.37, p = .018) and forced vital capacity (-1.00 vs. -2.16, p = .029) z scores than the rest of the cohort. Targeted multigene-panel NGS is an efficient tool for early diagnosis of PCD, providing insight into genetic disease epidemiology and improved patient stratification.
Collapse
Affiliation(s)
- Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Aigli Evriviadou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Pinelopi Anagnostopoulou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Andreas Matthaiou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Tsiolakis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Pirpa
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
23
|
Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci Rep 2021; 40:225129. [PMID: 32490514 PMCID: PMC7298131 DOI: 10.1042/bsr20192510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Kartagener syndrome (KS), a subtype of primary ciliary dyskinesia (PCD), is characterized by bronchiectasis, chronic sinusitis, male infertility and situs inversus. KS is a genetically heterogeneous disease that is inherited in an autosomal recessive form; however, X-linked inheritance has also been reported. As of this writing [late 2020], at least 34 loci, most of which have known genes, have been reported in the literature as associating with KS. In the present study, we identified a frame shift mutation, c.167delG (p.G56Dfs*26), in the coiled-coil domain containing 151 gene (CCDC151) responsible for KS in a Han-Chinese family. To our knowledge, this is the first report of a CCDC151 c.167delG mutation in the KS patient. These findings may expand the CCDC151 mutation spectrum of KS, and contribute to future genetic counseling and gene-targeted therapy for this disease.
Collapse
|
24
|
Ing A, Wlodaver A, Kirschmann D, Toledo E, McCabe C, Kadri S, McIntyre MK, Salazar J, Firestein K, Charrow J, Sanders V, Laguna T, Yap KL. Transcript analysis for variant classification resolution in a child with primary ciliary dyskinesia. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a005363. [PMID: 33608380 PMCID: PMC7903884 DOI: 10.1101/mcs.a005363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Transcriptional analysis can be utilized to reconcile variants of uncertain significance, particularly those predicted to impact splicing. Laboratory analysis of the predicted mRNA transcript may allow inference of the in vivo impact of the variant and aid prediction of its clinical significance. We present a patient with classical features of primary ciliary dyskinesia (PCD) who was identified to have compound heterozygous variants in the DNAH11 gene (c.10691 + 2T > C, c.13523_13543dup21) via trio whole-exome sequencing in 2013. These variants were originally classified as Mutation and Likely Mutation. However, these variants were downgraded to variants of uncertain significance (VUSs) during reanalysis in 2016 because of uncertainty that they caused a loss of function of the gene. c.10691 + 2T > C is predicted to abrogate the canonical splice site and lead to the skipping of exon 65, but the adjoining of exon 64 and exon 66 in the DNAH11 transcript preserves the reading frame of the resultant protein. c.13523_13543dup21 is located in the last exon of the DNAH11 coding sequence, upstream of the canonical stop codon, which suggests a reduced likelihood to trigger nonsense-mediated decay (NMD). Transcriptional analysis was performed to characterize the impact of the variants, resulting in reclassification of c.10691 + 2T > C to Likely Pathogenic by providing evidence that it results in a deleterious effect and subsequent downstream reclassification of c.13523_13543dup21 to Likely Pathogenic as well. Our case illustrates the potential impact of transcriptional analysis on variant resolution, supporting its usage on variants that exert an unpredictable effect on splicing.
Collapse
Affiliation(s)
- Alexander Ing
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Alissa Wlodaver
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Dawn Kirschmann
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Erica Toledo
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Christopher McCabe
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Sabah Kadri
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mary Kate McIntyre
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Joanne Salazar
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Kristina Firestein
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Joel Charrow
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Victoria Sanders
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
| | - Theresa Laguna
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kai Lee Yap
- Center for Genomics, Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
25
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
26
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
27
|
Abstract
Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left-right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.
Collapse
|
28
|
Chen X, Deng S, Xia H, Yuan L, Xu H, Tang S, Deng H. Identification of a CCDC114 variant in a Han-Chinese patient with situs inversus. Exp Ther Med 2020; 20:3336-3342. [PMID: 32855706 DOI: 10.3892/etm.2020.9059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The function and position of the internal organs within the human body are based on left-right (LR) asymmetry. Human LR asymmetry disorders are characterized by abnormal LR asymmetric arrangement of the internal organs resulting from defective embryonic nodal cilia and nodal signaling pathway. The coiled-coil domain containing 114 gene (CCDC114) is related to the biogenesis of cilia and attachment of the outer dynein arms (ODAs) to the axoneme of cilia. Mutations in the CCDC114 gene are reported to cause a subtype of primary ciliary dyskinesia (PCD) named ciliary dyskinesia, primary, 20 (CILD20). Patients with CCDC114 mutations present with a type of ciliopathy with high clinical heterogeneity. In the present study, a Han-Chinese patient with situs inversus was recruited. Exome sequencing was performed on this patient combined with variant validation by Sanger sequencing. A homozygous variant c.584T>C (p.L195P) in the CCDC114 gene was identified as the likely genetic cause for situs inversus in this patient. The findings of our study extend the mutational spectrum of the CCDC114 gene, and contribute to clarifying the pathogenesis of human ciliopathies and benefit genetic counseling.
Collapse
Affiliation(s)
- Xiangyu Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiyu Tang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
29
|
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77:2029-2048. [PMID: 31781811 PMCID: PMC7256033 DOI: 10.1007/s00018-019-03389-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023]
Abstract
The core axoneme structure of both the motile cilium and sperm tail has the same ultrastructural 9 + 2 microtubular arrangement. Thus, it can be expected that genetic defects in motile cilia also have an effect on sperm tail formation. However, recent studies in human patients, animal models and model organisms have indicated that there are differences in components of specific structures within the cilia and sperm tail axonemes. Primary ciliary dyskinesia (PCD) is a genetic disease with symptoms caused by malfunction of motile cilia such as chronic nasal discharge, ear, nose and chest infections and pulmonary disease (bronchiectasis). Half of the patients also have situs inversus and in many cases male infertility has been reported. PCD genes have a role in motile cilia biogenesis, structure and function. To date mutations in over 40 genes have been identified cause PCD, but the exact effect of these mutations on spermatogenesis is poorly understood. Furthermore, mutations in several additional axonemal genes have recently been identified to cause a sperm-specific phenotype, termed multiple morphological abnormalities of the sperm flagella (MMAF). In this review, we discuss the association of PCD genes and other axonemal genes with male infertility, drawing particular attention to possible differences between their functions in motile cilia and sperm tails.
Collapse
Affiliation(s)
- Anu Sironen
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Amelia Shoemark
- Department of Paediatrics, Royal Brompton Hospital, London, UK
- School of Medicine, University of Dundee, Dundee, UK
| | - Mitali Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
30
|
Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2020; 61:440-449. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous hereditary disease from a class of ciliopathies. In spite of the recent progress, the genetic basis of PCD in one-third of patients remains unknown. In search for new genes and/or mutations, whole-exome sequencing was performed in 120 unrelated Polish patients with PCD, in whom no genetic cause of PCD was earlier identified. Among a number of pathogenic variants in PCD genes, mutations in CFAP300 (alias C11orf70) were detected. Extended screening in the whole Polish PCD cohort revealed the relatively high frequency (3.6%) of otherwise rare c.[198_200 del_insCC] variant, indicating that it should be included in population-specific genetic tests for PCD in Slavic populations. Immunofluorescence analysis of the respiratory epithelial cells from patients with CFAP300 mutations revealed the absence or aberrant localization of outer and inner dynein arm markers, consistent with transmission electron microscope images indicating the lack of both dynein arms. Interestingly, the disparate localization of DNAH5 and DNALI1 proteins in patients with CFAP300 mutations suggested differential mechanisms for the trafficking of preassembled outer and inner dynein arms to the axoneme. The profile of CFAP300 expression during ciliogenesis in suspension culture was consistent with its role in cilia assembly. Gene silencing experiments, performed in a model organism, Schmidtea mediterranea (flatworm), pointed to the conserved role of CFAP300 in ciliary function.
Collapse
Affiliation(s)
- Ewa Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Wojda
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Voelkel
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Rutkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Pogorzelski
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland; and
| | - Margarida Rasteiro
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School-Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
31
|
Wang Y, Tu C, Nie H, Meng L, Li D, Wang W, Zhang H, Lu G, Lin G, Tan YQ, Du J. Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia. J Assist Reprod Genet 2020; 37:811-820. [PMID: 32170493 DOI: 10.1007/s10815-020-01735-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify the genetic cause of patients with primary ciliary dyskinesia (PCD) and male infertility from two unrelated Han Chinese families. METHODS We conducted whole-exome sequencing of three individuals with PCD and male infertility from two unrelated Chinese families, and performed a targeted look-up for DNAAF6 variants in our previously reported cohort of 442 individuals (219 with isolated oligoasthenospermia and 223 fertile controls). Ultrastructural and immunostaining analyses of patients' spermatozoa were performed. The pathogenicity of the variants was validated using patient's spermatozoa and HEK293T cells. Intracytoplasmic sperm injection (ICSI) treatment was conducted in two patients. RESULTS We identified one novel hemizygous frameshift variant (NM_173494, c.319_329del: p.R107fs) of DNAAF6 gene (previously named PIH1D3) in family 1 and one novel hemizygous missense variant (c.290G>T: p.G97V) in family 2. No hemizygous deleterious variants in DNAAF6 were detected in the control cohort of 442 individuals. Ultrastructural and immunostaining analyses of patients' spermatozoa showed the absence of outer and inner dynein arms in sperm flagella. Both variants were proven to lead to DNAAF6 protein degradation in HEK293T cells. Both patients carrying DNAAF6 variants underwent one ICSI cycle and delivered one healthy child each. CONCLUSION We identified novel DNAAF6 variants causing male infertility and PCD in Han Chinese patients. This finding extended the spectrum of variants in DNAAF6 and revealed new light on the impact of DNAAF6 variants in sperm flagella.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lanlan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Huan Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| | - Juan Du
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
32
|
Boycott KM, Campeau PM, Howley HE, Pavlidis P, Rogic S, Oriel C, Berman JN, Hamilton RM, Hicks GG, Lipshitz HD, Masson JY, Shoubridge EA, Junker A, Leroux MR, McMaster CR, Michaud JL, Turvey SE, Dyment D, Innes AM, van Karnebeek CD, Lehman A, Cohn RD, MacDonald IM, Rachubinski RA, Frosk P, Vandersteen A, Wozniak RW, Pena IA, Wen XY, Lacaze-Masmonteil T, Rankin C, Hieter P. The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. Am J Hum Genet 2020; 106:143-152. [PMID: 32032513 DOI: 10.1016/j.ajhg.2020.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.
Collapse
Affiliation(s)
- Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| | - Philippe M Campeau
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Heather E Howley
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sanja Rogic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christine Oriel
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada
| | - Jason N Berman
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Robert M Hamilton
- Labatt Family Heart Centre and Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geoffrey G Hicks
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anne Junker
- Department of Pediatrics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Jaques L Michaud
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Stuart E Turvey
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - David Dyment
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, AB T2N 4N1, Canada
| | - Clara D van Karnebeek
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pediatrics, Amsterdam University Medical Centres, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Ronald D Cohn
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Richard A Rachubinski
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Patrick Frosk
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Anthony Vandersteen
- Department of Pediatrics, Maritime Medical Genetics Service, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Richard W Wozniak
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Izabella A Pena
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8
| | - Thierry Lacaze-Masmonteil
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Catharine Rankin
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
33
|
Bertiaux E, Bastin P. Dealing with several flagella in the same cell. Cell Microbiol 2020; 22:e13162. [DOI: 10.1111/cmi.13162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
- École Doctorale Complexité du Vivant Sorbonne Université Paris France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
| |
Collapse
|
34
|
Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, Rogers AV, Ollosson S, Jackson C, Goggin P, Hirst RA, Rutman A, Thompson J, Jenkins L, Aurora P, Moya E, Chetcuti P, O'Callaghan C, Morris-Rosendahl DJ, Watson CM, Wilson R, Carr S, Walker W, Pitno A, Lopes S, Morsy H, Shoman W, Pereira L, Constant C, Loebinger MR, Chung EMK, Kenia P, Rumman N, Fasseeh N, Lucas JS, Hogg C, Mitchison HM. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet 2019; 57:322-330. [PMID: 31879361 DOI: 10.1136/jmedgenet-2019-106501] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests. METHODS The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries. RESULTS Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results. CONCLUSIONS This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mitali P Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Cullup
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Jane Hayward
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Mellisa Dixon
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew V Rogers
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Sarah Ollosson
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Claire Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lucy Jenkins
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eduardo Moya
- Children's Services (Paediatrics), Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Philip Chetcuti
- Department of Respiratory Paediatrics, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chris O'Callaghan
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Robert Wilson
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Siobhan Carr
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Woolf Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andreia Pitno
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Laboratório de Histologia e Patologia Comparada, Instituto de Medicina Molecular, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Susana Lopes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Walaa Shoman
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Luisa Pereira
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Carolina Constant
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | | | - Eddie M K Chung
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Priti Kenia
- Department of Respiratory Paediatrics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Nisreen Rumman
- Pediatrics Department, Makassed Hospital, East Jerusalem, Israel
| | - Nader Fasseeh
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire Hogg
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
35
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
36
|
Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. THE LANCET RESPIRATORY MEDICINE 2019; 8:202-216. [PMID: 31624012 DOI: 10.1016/s2213-2600(19)30374-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Primary ciliary dyskinesia is a genetically and clinically heterogeneous syndrome. Impaired function of motile cilia causes failure of mucociliary clearance. Patients typically present with neonatal respiratory distress of unknown cause and then continue to have a daily wet cough, recurrent chest infections, perennial rhinosinusitis, otitis media with effusion, and bronchiectasis. Approximately 50% of patients have situs inversus, and infertility is common. While understanding of the underlying genetics and disease mechanisms have substantially advanced in recent years, there remains a paucity of evidence for treatment. Next-generation sequencing has increased gene discovery, and mutations in more than 40 genes have been reported to cause primary ciliary dyskinesia, with many other genes likely to be discovered. Increased knowledge of cilia genes is challenging perceptions of the clinical phenotype, as some genes reported in the last 5 years are associated with mild respiratory disease. Developments in genomics and molecular medicine are rapidly improving diagnosis, and a genetic cause can be identified in approximately 70% of patients known to have primary ciliary dyskinesia. Groups are now investigating novel and personalised treatments, although gene therapies are unlikely to be available in the near future.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK.
| | - Stephanie D Davis
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK; Department of Paediatrics, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
37
|
Kempeneers C, Seaton C, Garcia Espinosa B, Chilvers MA. Ciliary functional analysis: Beating a path towards standardization. Pediatr Pulmonol 2019; 54:1627-1638. [PMID: 31313529 DOI: 10.1002/ppul.24439] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Primary ciliary dyskinesia is an inherited disorder in which respiratory cilia are stationary, or beat in a slow or dyskinetic manner, leading to impaired mucociliary clearance and significant sinopulmonary disease. One diagnostic test is ciliary functional analysis using digital high-speed video microscopy (DHSV), which allows real-time analysis of complete ciliary function, comprising ciliary beat frequency (CBF) and ciliary beat pattern (CBP). However, DHSV lacks standardization. In this paper, the current knowledge of DHSV ciliary functional analysis is presented, and recommendations given for a standardized protocol for ciliary sample collection and processing. A proposal is presented for a quantitative and qualitative CBP evaluation system, to be used to develop international consensus agreement, and future DHSV research areas are identified.
Collapse
Affiliation(s)
- Céline Kempeneers
- Division of Respirology, Department of Pediatrics, University Hospital Liège, Liège, Belgium
| | - Claire Seaton
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Bernardo Garcia Espinosa
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Mark A Chilvers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
NME5 frameshift variant in Alaskan Malamutes with primary ciliary dyskinesia. PLoS Genet 2019; 15:e1008378. [PMID: 31479451 PMCID: PMC6743793 DOI: 10.1371/journal.pgen.1008378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases. Motile cilia are required for clearing mucous, infectious agents and inhaled dust from the airways. Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia. Clinical findings may include recurrent airway infections, fertility problems, and sometimes hydrocephalus. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by an autosomal recessive form of PCD. Whole genome sequencing of an affected dog identified a one base pair deletion in the NME5 gene, c.43delA, leading to an early frame-shift and premature stop codon. Later in the study, we became aware of a previously published Alaskan Malamute with PCD involving respiratory infections and hydrocephalus. We observed perfect concordance of the NME5 genotypes with the PCD phenotype in all three affected Alaskan Malamutes and more than 1000 controls. The fact that the third case, which had no documented close relationship to the initial two cases, was homozygous for the same rare mutant NME5 allele, strongly supports our hypothesis that NME5:c.43delA causes the PCD phenotype. We confirmed absence of NME5 protein expression in nasal epithelium of an affected dog. Our results enable genetic testing in dogs and identify NME5 as novel candidate gene for unsolved human PCD cases.
Collapse
|
39
|
Hug P, Anderegg L, Kehl A, Jagannathan V, Leeb T. AKNA Frameshift Variant in Three Dogs with Recurrent Inflammatory Pulmonary Disease. Genes (Basel) 2019; 10:E567. [PMID: 31357536 PMCID: PMC6723478 DOI: 10.3390/genes10080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
We investigated three related Rough Collies with recurrent inflammatory pulmonary disease. The clinical symptoms were similar to primary ciliary dyskinesia (PCD). However, the affected dogs did not carry any known pathogenic PCD variants. Pedigree analysis suggested a recessive mode of inheritance. Combined linkage and homozygosity mapping in three cases and seven non-affected family members delineated 19 critical intervals on 10 chromosomes comprising a total of 99 Mb. The genome of one affected dog was sequenced and compared to 601 control genomes. We detected only a single private homozygous protein-changing variant in the critical intervals. The detected variant was a 4 bp deletion, c.2717_2720delACAG, in the AKNA gene encoding the AT-hook transcription factor. It causes a frame-shift introducing a premature stop codon and truncates 37% of the open reading frame, p.(Asp906Alafs*173). We genotyped 88 Rough Collies consisting of family members and unrelated individuals. All three available cases were homozygous for the mutant allele and all 85 non-affected dogs were either homozygous wildtype (n = 67) or heterozygous (n = 18). AKNA modulates inflammatory immune responses. Akna-/- knockout mice die shortly after birth due to systemic autoimmune inflammatory processes including lung inflammation that is accompanied by enhanced leukocyte infiltration and alveolar destruction. The perfect genotype-phenotype association and the comparative functional data strongly suggest that the detected AKNA:c.2717_2720delACAG variant caused the observed severe airway inflammation in the investigated dogs. Our findings enable genetic testing, which can be used to avoid the unintentional breeding of affected puppies.
Collapse
Affiliation(s)
- Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Linda Anderegg
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
40
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Sempou E, Khokha MK. Genes and mechanisms of heterotaxy: patients drive the search. Curr Opin Genet Dev 2019; 56:34-40. [PMID: 31234044 DOI: 10.1016/j.gde.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Abstract
Heterotaxy, a disorder in which visceral organs, including the heart, are mispatterned along the left-right body axis, contributes to particularly severe forms of congenital heart disease that are difficult to mitigate even despite surgical advances. A higher incidence of heterotaxy among individuals with blood kinship and the existence of rare monogenic disease forms suggest the existence of a genetic component, but the genetic and phenotypic heterogeneity of the disease have rendered gene discovery challenging. Next generation genomics in patients with syndromic, but also non-syndromic and sporadic heterotaxy, have recently helped to uncover new candidate disease genes, expanding the pool of genes already identified via traditional animal studies. Further characterization of these new genes in animal models has uncovered fascinating mechanisms of left-right axis development. In this review, we will discuss recent findings on the functions of heterotaxy genes with identified patient alleles.
Collapse
Affiliation(s)
- Emily Sempou
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, United States.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, United States
| |
Collapse
|
42
|
Guo Z, Chen W, Huang J, Wang L, Qian L. Clinical and genetic analysis of patients with primary ciliary dyskinesia caused by novel DNAAF3 mutations. J Hum Genet 2019; 64:711-719. [PMID: 31186518 DOI: 10.1038/s10038-019-0609-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare phenotypically and genetically heterogeneous disorder resulting from abnormal cilia ultrastructure and function. Few studies have reported the phenotype and genetic characteristics of PCD caused by mutations in DNAAF3. In this study, four PCD patients with DNAAF3 mutations underwent extensive clinical assessments, cilia ultrastructural and motion evaluations. All patients presented with situs inversus totalis, neonatal respiratory distress, and sinusitis; however, they did not have recurrent infections of the lower airways. The nasal nitric oxide level of these patients was markedly reduced. The respiratory cilia were found to be uniformly immotile, with their dynein arms defects. A total of 7 (5 novel) variants in DNAAF3 were identified and cosegregated in their families by Trio-based whole-exome sequencing. As the first report on DNAAF3 mutations in PCD patients in China, our study not only contributes to a deeper appreciation of the phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis of and counseling for PCD.
Collapse
Affiliation(s)
- Zhuoyao Guo
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Weicheng Chen
- Cardiothoracic Surgery Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Jianfeng Huang
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China
| | - Libo Wang
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China.
| | - Liling Qian
- Respirology Department, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, PR China.
| |
Collapse
|
43
|
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019; 104:229-245. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Collapse
|
44
|
Bertiaux E, Mallet A, Fort C, Blisnick T, Bonnefoy S, Jung J, Lemos M, Marco S, Vaughan S, Trépout S, Tinevez JY, Bastin P. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J Cell Biol 2018; 217:4284-4297. [PMID: 30275108 PMCID: PMC6279389 DOI: 10.1083/jcb.201805030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is the movement of large protein complexes responsible for the construction of cilia and flagella. Using a combination of three-dimensional electron microscopy and high-resolution live imaging, Bertiaux et al. show that IFT takes place on only four microtubule doublets out of the nine available in the trypanosome flagellum. Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3–4 and 7–8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3–4 s while remaining on the same side of the axoneme.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), Institut Pasteur, Paris, France
| | - Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Jamin Jung
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Moara Lemos
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Jean-Yves Tinevez
- UtechS Photonic Bioimaging (Imagopole), Institut Pasteur, Paris, France.,Image Analysis Hub, Institut Pasteur, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|