1
|
Gerba CP, Boone S, Nims RW, Maillard JY, Sattar SA, Rubino JR, McKinney J, Ijaz MK. Mechanisms of action of microbicides commonly used in infection prevention and control. Microbiol Mol Biol Rev 2024; 88:e0020522. [PMID: 38958456 PMCID: PMC11426018 DOI: 10.1128/mmbr.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.
Collapse
Affiliation(s)
- Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Stephanie Boone
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Syed A Sattar
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| |
Collapse
|
2
|
Jacinto GS, Dias LFG, Tsukamoto J, Lisboa-Filho PN, Souza MT, de Moraes AP, Arns CW. Insight into the role of copper-based materials against the coronaviruses MHV-3, a model for SARS-CoV-2, during the COVID-19 pandemic. Biometals 2024; 37:923-941. [PMID: 38502284 DOI: 10.1007/s10534-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.
Collapse
Affiliation(s)
- Gislaine S Jacinto
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil.
| | - Leonardo F G Dias
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), 75005, Paris, France
| | - Junko Tsukamoto
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Paulo N Lisboa-Filho
- Department of Physics and Meteorology, School of Sciences, UNESP - São Paulo State University, Bauru, São Paulo, 17033-360, Brazil
| | - Marina T Souza
- CeRTEV - Center for Research, Technology and Education in Vitreous Materials, Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ana Paula de Moraes
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Clarice W Arns
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
3
|
He R, Chen L, Mu H, Ren H, Wu B. Correlations between China's socioeconomic status, disease burdens, and pharmaceuticals and personal care product levels in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132867. [PMID: 37918075 DOI: 10.1016/j.jhazmat.2023.132867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in domestic wastewater can potentially indicate socioeconomic status and disease burdens. However, current knowledge is limited to the correlation between specific pharmaceuticals and diseases. This study aims to explore the associations between socioeconomic status, disease burdens, and PPCP levels in domestic wastewater at a national level. Samples from 171 wastewater influents across China were used to measure PPCPs, and the per capita consumption of PPCPs was calculated. Results showed that the 31 targeted PPCPs were widely present in wastewater with varying occurrence characteristics. The mean consumption levels of different PPCPs varied greatly, ranging from 0.03 to 110723.15 µg/d/capita. While there were no significant regional differences in the overall pattern of PPCP consumption, 22 PPCPs showed regional variations between Northern China and Southern China. PPCPs with similar usage purposes exhibited similar distribution patterns. Disease burden (70.1%) was the main factor affecting most PPCP consumption compared to socioeconomic factors (26.4%). Through correlation analyses, specific types of PPCPs were identified that were highly associated with socioeconomic status and disease burdens, such as hypertension-bezafibrate, brucellosis-quinolones, sulfonamides, hepatitis-triclosan, triclocarban, socioeconomic development-fluoxetine, and people's living standards-gemfibrozil. Despite some uncertainties, this study provides valuable insights into the relationship between PPCPs in domestic wastewater and socioeconomic status and human health.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Tulsawani R, Verma K, Kohli E, Sharma P, Meena YS, Amitabh, Ponmariappan S, Kumar P, Maithani R. Anti-microbial efficacy of a scientifically developed and standardized herbal-alcohol sanitizer. Arch Microbiol 2024; 206:77. [PMID: 38270599 DOI: 10.1007/s00203-023-03805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Hands are the primary mode of transmission of microbe-based infections, as they harbor normal microbiota and pathogenic microbes. SARS-CoV-2 has endangered lives worldwide, and WHO has recommended good hygiene practices, especially hand hygiene. In addition, other infectious diseases like diphtheria, measles, tuberculosis, HIV, malaria, etc. are spreading in the shadow of the COVID-19 pandemic. The anti-microbial efficiency of two in-house developed herbal-alcohol based hand sanitizers containing Azadirachta indica, Citrus limon, Zingiber officinale, and Aloe vera (HS1) and Zingiber officinale replaced with Ocimum sanctum (HS2) was evaluated. HS1, with Zingiber officinale, and HS2, with Ocimum sanctum, herbal sanitizers showcased in-vitro anti-viral activity on MDCK cells using the reference strain of influenza A virus, A/PR/8/34 (H1N1), and reduced 99.99% of microbial load within 30 s of contact time, estimated by the Antimicrobial Susceptibility Testing Method. On volunteers, HS1 and HS2 were more effective than alcohol-based WHO sanitizers. Moreover, HS2 sanitizer is more effective against viruses and has better efficiency and hedonic qualities in volunteers than HS1. These sanitizers don't irritate or dry up the skin and have a longer shelf life. Overall, findings reveal that herbal-alcohol-based sanitizers are promising hand hygiene products with the capability of reducing microbial load.
Collapse
Affiliation(s)
- Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India.
| | - Kalyani Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Ekta Kohli
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Yogesh Singh Meena
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Amitabh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | | | - Prashant Kumar
- Amity Institute of Virology and Immunology (AIVI), Amity University, Sector-125, Noida, India
| | - Rekha Maithani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| |
Collapse
|
5
|
Sun Q, Liu B, Lan Q, Su Z, Fu Q, Wang L, Deng Y, Li C, Xue VW, Liu S, Chen X, Yang G, Lu D. Antimicrobial agent chloroxylenol targets β‑catenin‑mediated Wnt signaling and exerts anticancer activity in colorectal cancer. Int J Oncol 2023; 63:121. [PMID: 37681484 PMCID: PMC10546378 DOI: 10.3892/ijo.2023.5569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on β‑catenin‑mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/β‑catenin signaling pathway by decreasing the nuclear translocation of β‑catenin and disrupting β‑catenin/T‑cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine‑rich G protein‑coupled receptor‑5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient‑derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti‑tumor activities in colorectal cancer by targeting the Wnt/β‑catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.
Collapse
Affiliation(s)
- Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Boxin Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Quanxue Lan
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, Guangdong 518100, P.R. China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiuxia Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Lian Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Yingying Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Chuanli Li
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Xianxiong Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
6
|
Weber DJ, Rutala WA, Sickbert-Bennett E. Emerging infectious diseases, focus on infection prevention, environmental survival and germicide susceptibility: SARS-CoV-2, Mpox, and Candida auris. Am J Infect Control 2023; 51:A22-A34. [PMID: 37890950 DOI: 10.1016/j.ajic.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND New and emerging infectious diseases continue to represent a public health threat. Emerging infectious disease threats include pathogens increasing in range (eg, Mpox), zoonotic microbes jumping species lines to cause sustained infections in humans via person-to-person transmission (SARS-CoV-2) and multidrug-resistant pathogens (eg, Candida auris). MATERIALS AND METHODS We searched the published English literature and reviewed the selected articles on SARS-CoV-2, Mpox, and Candida auris with a focus on environmental survival, contamination of the patient's hospital environment, susceptibility of the pathogen to antiseptics and disinfectants and infection prevention recommendations. RESULTS All three pathogens (ie, SARS-CoV-2, Mpox, and Candida auris) can survive on surfaces for minutes to hours and for Mpox and C auris for days. Currently available antiseptics (eg, 70%-90% alcohol hand hygiene products) are active against SARS-CoV-2, Mpox and C auris. The U.S Environmental Protection Agency provides separate lists of surface disinfectants active against SARS-CoV-2, Mpox, and C auris. DISCUSSION The risk of environment-to-patient transmission of SARS-CoV-2, Mpox and Candida auris, is very low, low-moderate and high, respectively. In the absence of appropriate patient isolation and use of personal protection equipment, the risk of patient-to-health care provider transmission of SARS-CoV-2, Mpox, and C auris is high, moderate and low, respectively. CONCLUSIONS Appropriate patient isolation, use of personal protective equipment by health care personnel, hand hygiene, and surface disinfection can protect patients and health care personnel from acquiring SARS-CoV-2, Mpox, and C auris from infected patients.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Emily Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
7
|
Mahmudiono T, Ramaiah P, Maleki H, Doewes RI, Shalaby MN, Alsaikhan F, Mohammadi MJ. Evaluation of the impact of different disinfectants on new coronavirus and human health. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:451-460. [PMID: 35508445 DOI: 10.1515/reveh-2022-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
A new health threat was appeared in 2019 known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19). The new coronavirus distributed all over the world and caused millions of deaths. One way to incomplete the process of COVID-19 transfer from one person to another is using disinfectants. A narrative review study was done on manuscript published documents about the stability of the virus, different types of disinfectants and the effects of disinfectants on SARS-CoV2 and environment from 2005 to 2022 based on Searched databases included Google Scholar, Springer, PubMed, Web of Science and Science Direct (Scopus). All relevant studies published 2005 until 2022 gathered. According to the databases, 670 articles were retrieved. Thirty studies were screened after review and 30 full-text articles entered into the analysis process. Finally, 14 articles were selected in this study. New coronavirus could survive until 9 days in room temperature; the surviving time decreases if temperature increases. The virus can survive in various plastic, glass, and metal surfaces for hours to days. Disinfectants, such as alcohol, isopropanol, formaldehyde, glutaraldehyde, and ethanol, can kill 70-90% viruses in up to 30 s but should be noted that these disinfectants are recognized by Occupational Safety and Health Administration (OSHA) as a potential carcinogen. According to the different reports, increased duration and level of disinfectant exposure can have negative impacts on human and animal health including upper and lower respiratory tract irritation, inflammation, edema, ulceration, and allergic reactions.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Heydar Maleki
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Urmi UL, Attard S, Vijay AK, Willcox MDP, Kumar N, Islam S, Kuppusamy R. Antiviral Activity of Anthranilamide Peptidomimetics against Herpes Simplex Virus 1 and a Coronavirus. Antibiotics (Basel) 2023; 12:1436. [PMID: 37760732 PMCID: PMC10525570 DOI: 10.3390/antibiotics12091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The development of potent antiviral agents is of utmost importance to combat the global burden of viral infections. Traditional antiviral drug development involves targeting specific viral proteins, which may lead to the emergence of resistant strains. To explore alternative strategies, we investigated the antiviral potential of antimicrobial peptidomimetic compounds. In this study, we evaluated the antiviral potential of 17 short anthranilamide-based peptidomimetic compounds against two viruses: Murine hepatitis virus 1 (MHV-1) which is a surrogate of human coronaviruses and herpes simplex virus 1 (HSV-1). The half-maximal inhibitory concentration (IC50) values of these compounds were determined in vitro to assess their potency as antiviral agents. Compounds 11 and 14 displayed the most potent inhibitory effects with IC50 values of 2.38 μM, and 6.3 μM against MHV-1 while compounds 9 and 14 showed IC50 values of 14.8 μM and 13 μM against HSV-1. Multiple antiviral assessments and microscopic images obtained through transmission electron microscopy (TEM) collectively demonstrated that these compounds exert a direct influence on the viral envelope. Based on this outcome, it can be concluded that peptidomimetic compounds could offer a new approach for the development of potent antiviral agents.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Samuel Attard
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| |
Collapse
|
9
|
Jabłońska-Trypuć A. A review on triclosan in wastewater: Mechanism of action, resistance phenomenon, environmental risks, and sustainable removal techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10920. [PMID: 37610032 DOI: 10.1002/wer.10920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/24/2023]
Abstract
Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Białystok, Poland
| |
Collapse
|
10
|
Hamilton AN, Chandran S, Baker CA, Gibson KE. Surface Inactivation of a SARS-CoV-2 Surrogate with Hypochlorous Acid is Impacted by Surface Type, Contact Time, Inoculum Matrix, and Concentration. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:116-122. [PMID: 36680664 PMCID: PMC9862229 DOI: 10.1007/s12560-023-09549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 06/13/2023]
Abstract
Indirect contact with contaminated surfaces is a potential transmission route for COVID-19. Therefore, it is necessary to investigate convenient and inexpensive surface sanitization methods, such as HOCl, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 surrogate, Phi6 (~ 7 log PFU/mL), was prepared in artificial saliva and tripartite matrices, spot inoculated on coupons of either stainless steel or vinyl, and allowed to dry. The coupons were sprayed with either 500 ppm or 1000 ppm HOCl, and remained on the surface for 0 s (control), 5 s, 30 s, or 60 s. Samples were enumerated via the double agar overlay assay. Statistical analysis was completed in R using a generalized linear model with Quasipoisson error approximations. Time, concentration, surface type, and inoculum matrix were all significant contributors to log reduction at P = 0.05. Significant three-way interactions were observed for 1000 ppm, vinyl, and 60 s (P = 0.03) and 1000 ppm, tripartite, and 60 s (P = 0.0121). A significant two-way interaction between vinyl and 60 s was also observed (P = 0.0168). Overall, increased HOCl concentration and exposure time led to increased Phi6 reduction. Notably, the highest estimated mean log reduction was 3.31 (95% CI 3.14, 3.49) for stainless steel at 60 s and 1000 ppm HOCl in artificial saliva, indicating that this method of sanitization may not adequately reduce enveloped viruses to below infective thresholds.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Christopher A Baker
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD, 20740, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA.
| |
Collapse
|
11
|
Mohapatra S, Yutao L, Goh SG, Ng C, Luhua Y, Tran NH, Gin KYH. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130393. [PMID: 36455328 PMCID: PMC9663149 DOI: 10.1016/j.jhazmat.2022.130393] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 05/25/2023]
Abstract
Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
12
|
Ni Z, Chen L, Yun T, Xie R, Ye W, Hua J, Zhu Y, Zhang C. Inactivation Performance of Pseudorabies Virus as African Swine Fever Virus Surrogate by Four Commercialized Disinfectants. Vaccines (Basel) 2023; 11:vaccines11030579. [PMID: 36992163 DOI: 10.3390/vaccines11030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study was based on similar physicochemical characteristics of pseudorabies virus (PRV) and African swine fever virus (ASFV). A cellular model for evaluation of disinfectants was established with PRV as an alternative marker strain. In the present study, we evaluated the disinfection performance of commonly used commercialized disinfectants on PRV to provide a reference for the selection of good ASFV disinfectants. In addition, the disinfection (anti-virus) performances for four disinfectants were investigated based on the minimum effective concentration, onset time, action time, and operating temperature. Our results demonstrated that glutaraldehyde decamethylammonium bromide solution, peracetic acid solution, sodium dichloroisocyanurate, and povidone-iodine solution effectively inactivated PRV at concentrations 0.1, 0.5, 0.5, and 2.5 g/L on different time points 30, 5, 10, and 10 min, respectively. Specifically, peracetic acid exhibits optimized overall performance. Glutaraldehyde decamethylammonium bromide is cost effective but requires a long action time and the disinfectant activity is severely affected by low temperatures. Furthermore, povidone-iodine rapidly inactivates the virus and is not affected by environmental temperature, but its application is limited by a poor dilution ratio such as for local disinfection of the skin. This study provides a reference for the selection of disinfectants for ASFV.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control, Hangzhou 310018, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
13
|
Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers (Basel) 2023; 15:polym15051236. [PMID: 36904477 PMCID: PMC10007459 DOI: 10.3390/polym15051236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The present study deals with the synthesis and characterization of a polymer composite based on an unsaturated ester loaded with 5 wt.% triclosan, produced by co-mixing on an automated hardware system. The polymer composite's non-porous structure and chemical composition make it an ideal material for surface disinfection and antimicrobial protection. According to the findings, the polymer composite effectively inhibited (100%) the growth of Staphylococcus aureus 6538-P under exposure to physicochemical factors, including pH, UV, and sunlight, over a 2-month period. In addition, the polymer composite demonstrated potent antiviral activity against human influenza virus strain A and the avian coronavirus infectious bronchitis virus (IBV), with infectious activities of 99.99% and 90%, respectively. Thus, the resulting triclosan-loaded polymer composite is revealed to have a high potential as a surface-coating non-porous material with antimicrobial properties.
Collapse
|
14
|
Sakač N, Madunić-Čačić D, Marković D, Jozanović M. Study of Cationic Surfactants Raw Materials for COVID-19 Disinfecting Formulations by Potentiometric Surfactant Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:2126. [PMID: 36850724 PMCID: PMC9964672 DOI: 10.3390/s23042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.
Collapse
Affiliation(s)
- Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, 42000 Varaždin, Croatia
| | | | - Dean Marković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Marija Jozanović
- Department of Chemistry, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
15
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
16
|
Luo Z, Ni K, Zhou Y, Chang G, Yu J, Zhang C, Yin W, Chen D, Li S, Kuang S, Zhang P, Li K, Bai J, Wang X. Inactivation of two SARS-CoV-2 virus surrogates by electron beam irradiation on large yellow croaker slices and their packaging surfaces. Food Control 2023; 144:109340. [PMID: 36091572 PMCID: PMC9445444 DOI: 10.1016/j.foodcont.2022.109340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
The detection of infectious SARS-CoV-2 in food and food packaging associated with the cold chain has raised concerns about the possible transmission pathway of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in foods transported through cold-chain logistics and the need for novel decontamination strategies. In this study, the effect of electron beam (E-beam) irradiation on the inactivation of two SARS-CoV-2surrogate, viruses porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), in culture medium and food substrate, and on food substrate were investigated. The causes of virus inactivation were also investigated by transmission electron microscopy (TEM) and Quantitative Real-time PCR (QRT-PCR). Samples packed inside and outside, including virus-inoculated large yellow croaker and virus suspensions, were irradiated with E-beam irradiation (2, 4, 6, 8, 10 kGy) under refrigerated (0 °C)and frozen (-18 °C) conditions. The titers of both viruses in suspension and fish decreased significantly (P < 0.05) with increasing doses of E-beam irradiation. The maximum D10 value of both viruses in suspension and fish was 1.24 kGy. E-beam irradiation at doses below 10 kGy was found to destroy the spike proteins of both SARS-CoV-2 surrogate viruses by transmission electron microscopy (TEM) and negative staining of thin-sectioned specimens, rendering them uninfectious. E-beam irradiation at doses greater than 10 kGy was also found to degrade viral genomic RNA by qRT-PCR. There were no significant differences in color, pH, TVB-N, TBARS, and sensory properties of irradiated fish samples at doses below 10 kGy. These findings suggested that E-beam irradiation has the potential to be developed as an efficient non-thermal treatment to reduce SARS-CoV-2 contamination in foods transported through cold chain foods to reduce the risk of SARS-CoV-2 infection in humans through the cold chain.
Collapse
Affiliation(s)
- Zonghong Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Ni
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, 610041, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Peng Zhang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Kui Li
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Lee GH, Park SH, Song BM, Kim DM, Han HJ, Park JY, Jo YW, Hwang MY, Sim KT, Kang SM, Tark D. Comparative efficacy evaluation of disinfectants against severe acute respiratory syndrome coronavirus-2. J Hosp Infect 2023; 131:12-22. [PMID: 36183929 PMCID: PMC9639569 DOI: 10.1016/j.jhin.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Disinfection is one of the most effective ways to block the rapid transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the prolonged coronavirus disease 2019 (COVID-19) pandemic, disinfectants have become crucial to prevent person-to-person transmission and decontaminate hands, clothes, facilities and equipment. However, there is a lack of accurate information on the virucidal activity of commercial disinfectants. AIM To evaluate the virucidal efficacy of 72 commercially available disinfectants constituting 16 types of ingredients against SARS-CoV-2. METHODS SARS-CoV-2 was tested with various concentrations of disinfectants at indicated exposure time points as recommended by the manufacturers. The 50% tissue culture infectious dose assay was used to calculate virus titre, and trypan blue staining and CCK-8 were used to assess cell viability after 3-5 days of SARS-CoV-2 infection. FINDINGS This study found that disinfectants based on 83% ethanol, 60% propanol/ethanol, 0.00108-0.0011% sodium dichloroisocyanurate and 0.497% potassium peroxymonosulfate inactivated SARS-CoV-2 effectively and safely. Although disinfectants based on 0.05-0.4% benzalkonium chloride (BAC), 0.02-0.07% quaternary ammonium compound (QAC; 1:1), 0.4% BAC/didecyldimethylammonium chloride (DDAC), 0.28% benzethonium chloride concentrate/2-propanol, 0.0205-0.14% DDAC/polyhexamethylene biguanide hydrochloride (PHMB) and 0.5% hydrogen peroxide inactivated SARS-CoV-2 effectively, they exhibited cytotoxicity. Conversely, disinfectants based on 0.04-4% QAC (2:3), 0.00625% BAC/DDAC/PHMB, and 0.0205-0.14% and 0.0173% peracetic acid showed approximately 50% virucidal efficacy with no cytotoxicity. Citric acid (0.4%) did not inactivate SARS-CoV-2. CONCLUSION These results indicate that most commercially available disinfectants exert a disinfectant effect against SARS-CoV-2. However, re-evaluation of the effective concentration and exposure time of certain disinfectants is needed, especially citric acid and peracetic acid.
Collapse
Affiliation(s)
- G-H. Lee
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - S-H. Park
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - B-M. Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - D-M. Kim
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - H-J. Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - J-Y. Park
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Y-W. Jo
- Division of Chemical Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - M-Y. Hwang
- Division of Chemical Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - K-T. Sim
- Division of Chemical Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - S-M. Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea,Corresponding author. Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - D. Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea,Corresponding author. Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| |
Collapse
|
18
|
Hardison RL, Nelson SW, Barriga D, Ruiz NF, Ghere JM, Fenton GA, Lindstrom DJ, James RR, Stewart MJ, Lee SD, Calfee MW, Ryan SP, Howard MW. Evaluation of surface disinfection methods to inactivate the beta coronavirus Murine Hepatitis Virus. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:455-468. [PMID: 35687041 PMCID: PMC9547328 DOI: 10.1080/15459624.2022.2088768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The list of EPA-approved disinfectants for coronavirus features many products for use on hard, non-porous materials. There are significantly fewer products registered for use on porous materials. Further, many common, high-touch surfaces fall in between non-porous materials such as glass and porous materials such as soft fabrics. The objective of this study was to assess the efficacy of selected commercially available disinfectant products against coronaviruses on common, high-touch surfaces. Four disinfectants (Clorox Total 360, Bleach solution, Vital Oxide, and Peroxide Multi-Surface Cleaner) were evaluated against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV in cell culture medium was inoculated onto four materials: stainless steel, latex-painted drywall tape, Styrene Butadiene rubber (rubber), and bus seat fabric. Immediately (T0) or 2-hr (T2) post-inoculation, disinfectants were applied by trigger-pull or electrostatic sprayer and either held for recommended contact times (Spray only) or immediately wiped (Spray and Wipe). Recovered infectious MHV was quantified by median tissue culture infectious dose assay. Bleach solution, Clorox Total 360, and Vital Oxide were all effective (>3-log10 reduction or complete kill of infectious virus) with both the Spray Only and Spray and Wipe methods on stainless steel, rubber, and painted drywall tape when used at recommended contact times at both T0 and T2 hr. Multi-Surface Cleaner unexpectedly showed limited efficacy against MHV on stainless steel within the recommended contact time; however, it showed increased (2.3 times greater efficacy) when used in the Spray and Wipe method compared to Spray Only. The only products to achieve a 3-log10 reduction on fabric were Vital Oxide and Clorox Total 360; however, the efficacy of Vital Oxide against MHV on fabric was reduced to below 3-log10 when applied by an electrostatic sprayer compared to a trigger-pull sprayer. This study highlights the importance of considering the material, product, and application method when developing a disinfection strategy for coronaviruses on high-touch surfaces.
Collapse
Affiliation(s)
| | | | - D. Barriga
- Battelle Memorial Institute, Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sodhi KK, Singh CK. A systematic review on the occurrence, fate, and remediation of SARS-CoV-2 in wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:8073-8086. [PMID: 35755183 PMCID: PMC9207430 DOI: 10.1007/s13762-022-04326-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 06/12/2023]
Abstract
The COVID-19 has been declared a pandemic by the World Health Organization. Along with impairing the respiratory system, it also affects the gastrointestinal system. By reviewing experiments on the wastewater analysis for the detection of coronavirus, this study explores the fate, persistence, and various remediation strategies for the virus removal from the wastewater. The results indicated that the virus can be detected in the wastewater samples, feces, and sewage, even before the onset of symptoms. Coronavirus can be a potential panzootic disease, as several mammalian species get infected by the deadly virus. The disinfection strategies used earlier for the treatment of wastewater are not sufficient for the removal of viruses from the wastewater. Therefore, concerted efforts should be made to understand their fate, sources, and occurrence in the environmental matrices. To prevent the spread of the panzootic disease, revised guidelines should be issued for the remediation of the virus. Recent viral remediation methods such as membrane bioreactors and advanced oxidation methods can be used. Therefore, the present review puts a light on the current knowledge on the occurrence of coronaviruses in wastewater, the possible sources, fate, and removal strategies.
Collapse
Affiliation(s)
- K. K. Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - C. K. Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
20
|
Leong J, Shi D, Tan JPK, Yang C, Yang S, Wang Y, Ngow YS, Kng J, Balakrishnan N, Peng SQ, Yeow CS, Periaswamy B, Venkataraman S, Kwa AL, Liu X, Yao H, Yang YY. Potent Antiviral and Antimicrobial Polymers as Safe and Effective Disinfectants for the Prevention of Infections. Adv Healthc Mater 2022; 11:e2101898. [PMID: 34694749 DOI: 10.1002/adhm.202101898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chuan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yeen Shian Ngow
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Jessica Kng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Nithiyaa Balakrishnan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shu Qin Peng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chun Siang Yeow
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Andrea Lay‐Hoon Kwa
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119288 Singapore
| |
Collapse
|
21
|
Sloan A, Kasloff SB, Cutts T. Mechanical Wiping Increases the Efficacy of Liquid Disinfectants on SARS-CoV-2. Front Microbiol 2022; 13:847313. [PMID: 35391722 PMCID: PMC8981239 DOI: 10.3389/fmicb.2022.847313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
High-touch environmental surfaces are acknowledged as potential sources of pathogen transmission, particularly in health care settings where infectious agents may be readily abundant. Methods of disinfecting these surfaces often include direct application of a chemical disinfectant or simply wiping the surface with a disinfectant pre-soaked wipe (DPW). In this study, we examine the ability of four disinfectants, ethanol (EtOH), sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and potassium monopersulfate (KMPS), to inactivate SARS-CoV-2 on a hard, non-porous surface, assessing the effects of concentration and contact time. The efficacy of DPWs to decontaminate carriers spiked with SARS-CoV-2, as well as the transferability of the virus from used DPWs to clean surfaces, is also assessed. Stainless steel carriers inoculated with approximately 6 logs of SARS-CoV-2 prepared in a soil load were disinfected within 5 min through exposure to 66.5% EtOH, 0.5% NaOCl, and 1% KMPS. The addition of mechanical wiping using DPWs impregnated with these biocides rendered the virus inactive almost immediately, with no viral transfer from the used DPW to adjacent surfaces. Carriers treated with 100 ppm of ClO2 showed a significant amount of viable virus remaining after 10 min of biocide exposure, while the virus was only completely inactivated after 10 min of treatment with 500 ppm of ClO2. Wiping SARS-CoV-2-spiked carriers with DPWs containing either concentration of ClO2 for 5 s left significant amounts of viable virus on the carriers. Furthermore, higher titers of infectious virus retained on the ClO2-infused DPWs were transferred to uninoculated carriers immediately after wiping. Overall, 66.5% EtOH, 0.5% NaOCl, and 1% KMPS appear to be highly effective biocidal agents against SARS-CoV-2, while ClO2 formulations are much less efficacious.
Collapse
Affiliation(s)
| | | | - Todd Cutts
- National Microbiology Laboratory, Applied Biosafety Research Program, Safety and Environmental Services, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Delpuech O, Douthwaite JA, Hill T, Niranjan D, Malintan NT, Duvoisin H, Elliott J, Goodfellow I, Hosmillo M, Orton AL, Taylor MA, Brankin C, Pitt H, Ross-Thriepland D, Siek M, Cuthbert A, Richards I, Ferdinand JR, Barker C, Shaw R, Ariani C, Waddell I, Rees S, Green C, Clark R, Upadhyay A, Howes R. Heat inactivation of clinical COVID-19 samples on an industrial scale for low risk and efficient high-throughput qRT-PCR diagnostic testing. Sci Rep 2022; 12:2883. [PMID: 35190592 PMCID: PMC8861189 DOI: 10.1038/s41598-022-06888-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 266 million confirmed cases, over 5.26 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as 'direct to PCR' assays that do not involve RNA extraction or chemical neutralisation methods.
Collapse
Affiliation(s)
- Oona Delpuech
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Julie A Douthwaite
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
- In Vivo Expressed Biologics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Thomas Hill
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Dhevahi Niranjan
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Nancy T Malintan
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Hannah Duvoisin
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jane Elliott
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - Alexandra L Orton
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Molly A Taylor
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Christopher Brankin
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Haidee Pitt
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Animal Science and Technologies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Magdalena Siek
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Facilities Management, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Anna Cuthbert
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Clinical Operations, Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ian Richards
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - John R Ferdinand
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert Shaw
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Ian Waddell
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Steve Rees
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Clive Green
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Roger Clark
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | | | - Rob Howes
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
23
|
Fadilah NQ, Jittmittraphap A, Leaungwutiwong P, Pripdeevech P, Dhanushka D, Mahidol C, Ruchirawat S, Kittakoop P. Virucidal Activity of Essential Oils From Citrus x aurantium L. Against Influenza A Virus H1N1:Limonene as a Potential Household Disinfectant Against Virus. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211072713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work explored the compositions of a crude extract of peels of Citrus x aurantium using a gas chromatography-mass spectrometry (GC-MS) technique. The crude extract of peels of C. × aurantium was analyzed by GC-MS revealing the presence of limonene as the major compound, accounting for 93.7% of the total. Virucidal activity of the oil of C. x aurantium peels against influenza A virus H1N1 was evaluated by the ASTM E1053-20 method. Moreover, the virucidal activity was also investigated of D-limonene, the major terpene in essential oils of C. x aurantium, and its enantiomer L-limonene. The essential oil of the C. x aurantium peels produced a log reduction of 1.9 to 2.0, accounting for 99% reduction of the virus, while D- and L-limonene exhibited virucidal activity with a log reduction of 3.70 to 4.32 at concentrations of 125 and 250.0 µg/mL, thus reducing the virus by 99.99%. Previous work found that D-limonene exhibited antiviral activity against herpes simplex virus, but L-limonene, an enantiomer of D-limonene, has never been reported for antiviral activity. This work demonstrates the antiviral activity of L-limonene for the first time. Moreover, this work suggests that concentrations of 0.0125% to 0.025% of either D- or L-limonene can possibly be used as a disinfectant against viruses, probably in the form of essential oil sprays, which may be useful disinfectants against the airborne transmission of viruses, such as influenza and COVID-19.
Collapse
Affiliation(s)
- Nurul Q. Fadilah
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | | | - Darshana Dhanushka
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
24
|
Chen L, Lee WJ, Ma Y, Jang SS, Fong K, Wang S. The efficacy of different sanitizers against MS2 bacteriophage introduced onto plastic or stainless steel surfaces. Curr Res Food Sci 2022; 5:175-181. [PMID: 35072105 PMCID: PMC8761864 DOI: 10.1016/j.crfs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The virucidal activities of 11 prepared disinfectant solutions (active ingredients of household sanitizers) and 10 household sanitizers against bacteriophage MS2 on plastic and stainless steel surfaces were studied. Among the prepared sanitizers, 70-90% ethanol and ethanol-based disinfectants resulted in 1-2.5 log PFU/mL reductions on both surfaces. The 70% isopropanol and isopropanol-based formula reduced MS2 by 0.7-1.5 log PFU/mL on both surfaces. Other disinfectants, containing 0.1% benzalkonium chloride (BAC), 0.5% hydrogen peroxide, or 4% acetic acid, showed significant (P < 0.05) lower log reductions (-0.17-0.55 log PFU/mL) compared with other treatments. At room temperature, the virucidal activities of 70% ethanol on plastic (1.46-1.64 log PFU/mL reductions) and stainless steel (0.84-0.93 log PFU/mL reductions) surfaces were not significantly (P > 0.05) affected by the treatment time (30-600 s). However, 85% ethanol-treated groups showed significant (P < 0.05) higher log reductions in 60 and 600 s treated groups (1.69-2.24 log PFU/mL) compared with those in 30 s treated groups (0.92-1.32 log PFU/mL). Their virucidal activities were further examined at low temperatures (4 and 8 °C). We observed that the surface inactivation efficacies were not affected by the low temperatures. In addition, the virucidal activities of household sanitizers revealed that sanitizers with 1.84% (pH = 12.5, ∼17,500 ppm free-chlorine concentrations) or 3% (pH = 13.1, ∼38,100 ppm free-chlorine concentrations) sodium hypochlorite (NaClO) reduced 4.15-6.23 log PFU/mL MS2 on hard surfaces after 60 s contact time. Furthermore, an approximately 1.5 log PFU/mL reduction was observed in groups treated by sanitizer H (active ingredients: 58% ethanol + 0.1% quaternary ammonium compound). Household products with BAC or organic acid resulted in -0.28-0.33 log reductions on two surfaces after 30 or 60 s treatment. Therefore, the use of ethanol and NaClO-based products should be considered as a potential surface decontamination strategy in the food industry.
Collapse
Affiliation(s)
- Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Win-ju Lee
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Ma
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Sung Sik Jang
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Karen Fong
- Summerland Research & Development Centre, Agriculture & Agri-Food Canada, Summerland, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Shuipys T, Montazeri N. Optimized Protocols for the Propagation and Quantification of Infectious Murine Hepatitis Virus (MHV-A59) Using NCTC Clone 1469 and 929 Cells. Methods Protoc 2022; 5:5. [PMID: 35076547 PMCID: PMC8788426 DOI: 10.3390/mps5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.
Collapse
Affiliation(s)
| | - Naim Montazeri
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
26
|
Liu Q, Ding Z, Lan J, Wong G. Design of Replication-Competent VSV- and Ervebo-Vectored Vaccines Against SARS-CoV-2. Methods Mol Biol 2022; 2410:193-208. [PMID: 34914048 DOI: 10.1007/978-1-0716-1884-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health emergency. Several vaccine candidates have been developed in response to the COVID-19 pandemic. One approach is to construct live-recombinant viruses expressing the SARS-CoV-2 spike protein (S) as vaccine candidates. The vesicular stomatitis virus (VSV) vector is a mature vaccine platform which was successfully developed as a vaccine against Ebola virus (EBOV), leading to its licensure by the Food and Drug Administration (FDA) in December 2019. Based on this work, we developed two live, replication-competent VSV-vectored vaccines against SARS-CoV-2: (1) a VSV expressing the S protein of SARS-CoV-2 and (2) a bivalent VSV expressing the S protein of SARS-CoV-2 and the glycoprotein (GP) of EBOV. This protocol describes the methodologies for the design, cloning, rescue, and preparation of these recombinant VSV vaccines.
Collapse
Affiliation(s)
- Qixing Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhe Ding
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiaming Lan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
27
|
Soumya SV, Arun L, Altaf S, Shankar S, Murali K, Panwar V. A comparison on efficiency and aerosol generation between “modified and conventional technique of bracket bonding”. J Pharm Bioallied Sci 2022; 14:S698-S701. [PMID: 36110685 PMCID: PMC9469375 DOI: 10.4103/jpbs.jpbs_868_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: The novel COVID-19 which spread's primarily through oral and nasal passage poses a major threat of spread during dental treatments. It is important for dental practitioners to use minimal aerosol techniques. The aim of this study is to compare the time taken, efficiency and aerosol generated between modified and conventional technique (CT) of bracket bonding. Methods: This study includes 40 patients who required complete orthodontic treatment. In all 40 patients, one of the arches was bonded with modified technique (MT) and the opposing with CT. The time taken to prepare tooth in both the techniques were accessed. The efficiency of bond was seen over a period of 6 months. The amount of aerosol particulate matter generated during CT and MT was observed using a laser air quality monitor Conclusion: There is no significant difference in the bond failure and time taken between both the techniques. The aerosol generated in MT was minimal or almost negligible when compared to the use of CT.
Collapse
|
28
|
Astiti MA, Jittmittraphap A, Leaungwutiwong P, Chutiwitoonchai N, Pripdeevech P, Mahidol C, Ruchirawat S, Kittakoop P. LC-QTOF-MS/MS Based Molecular Networking Approach for the Isolation of α-Glucosidase Inhibitors and Virucidal Agents from Coccinia grandis (L.) Voigt. Foods 2021; 10:foods10123041. [PMID: 34945591 PMCID: PMC8701318 DOI: 10.3390/foods10123041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
Coccinia grandis or ivy gourd is an edible plant. Its leaves and fruits are used as vegetable in many countries. Many works on antidiabetic activity of a crude extract of C. grandis, i.e., in vitro, in vivo, and clinical trials studies, have been reported. Profiles of the antidiabetic compounds were previously proposed by using LC-MS or GC-MS. However, the compounds responsible for antidiabetic activity have rarely been isolated and characterized by analysis of 1D and 2D NMR data. In the present work, UHPLC-ESI-QTOF-MS/MS analysis and GNPS molecular networking were used to guide the isolation of α-glucosidase inhibitors from an extract of C. grandis leaves. Seven flavonoid glycosides including rutin (1), kaempferol 3-O-rutinoside (2) or nicotiflorin, kaempferol 3-O-robinobioside (3), quercetin 3-O-robinobioside (4), quercetin 3-O-β-D-apiofuranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (5) or CTN-986, kaempferol 3-O-β-D-api-furanosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (6), and kaempferol 3-O-β-D-apiofuranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-galactopyranoside (7) were isolated from C. grandis leaves. This is the first report of glycosides containing apiose sugar in the genus Coccinia. These glycosides exhibited remarkable α-glucosidase inhibitory activity, being 4.4–10.3 times more potent than acarbose. Moreover, they also displayed virucidal activity against influenza A virus H1N1, as revealed by the ASTM E1053-20 method.
Collapse
Affiliation(s)
- Maharani A. Astiti
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchadewee, Bangkok 10400, Thailand; (A.J.); (P.L.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchadewee, Bangkok 10400, Thailand; (A.J.); (P.L.)
| | - Nopporn Chutiwitoonchai
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand;
| | | | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
- Correspondence: ; Tel.: +66-869-755777
| |
Collapse
|
29
|
Sensitivity of SARS-CoV-2 towards Alcohols: Potential for Alcohol-Related Toxicity in Humans. Life (Basel) 2021; 11:life11121334. [PMID: 34947865 PMCID: PMC8708630 DOI: 10.3390/life11121334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism that is highly contagious and has been responsible for more than 240 million cases and 5 million deaths worldwide. Using masks, soap-based hand washing, and maintaining social distancing are some of the common methods to prevent the spread of the virus. In the absence of any preventive medications, from the outset of pandemic, alcohol-based hand sanitizers (ABHS) have been one of the first-line measures to control transmission of Coronavirus Disease 2019 (COVID-19). The purpose of this narrative review is to evaluate the sensitivity of SARS-CoV-2 towards ABHS and understand their potential adverse effects on humans. Ethanol and isopropanol have been the most commonly used alcohols in ABHS (e.g., gel, solution, spray, wipes, or foam) with alcohol in the range of 70–85% v/v in World Health Organization or Food and Drug Administration-approved ABHS. The denaturation of proteins around the envelope of SARS-CoV-2 positive sense single-stranded RNA virus is the major mechanism of action of ABHS. Due to frequent use of high-percentage alcohol-containing ABHS over an extended period of time, the oral, dermal, or pulmonary absorption is a possibility. In addition to the systemic toxicity, topical adverse effects such as contact dermatitis and atopic dermatitis are plausible and have been reported during COVID-19. ABHS appear to be effective in controlling the transmission of SARS-CoV-2 with the concern of oral, dermal, or pulmonary absorption.
Collapse
|
30
|
Re: Use of mouthwashes against COVID-19 in dentistry. Br J Oral Maxillofac Surg 2021; 60:368. [PMID: 35183369 PMCID: PMC8638215 DOI: 10.1016/j.bjoms.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022]
|
31
|
Wang Q, Wei Y, Li W, Luo X, Zhang X, Di J, Wang G, Yu J. Polarity-Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angew Chem Int Ed Engl 2021; 60:23756-23762. [PMID: 34448329 PMCID: PMC8652953 DOI: 10.1002/anie.202108951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/07/2022]
Abstract
The longevity and reusability of N95-grade filtering facepiece respirators (N95 FFRs) are limited by consecutive donning and disinfection treatments. Herein, we developed stable N97 nanofibrous respirators based on chemically modified surface to enable remarkable filtration characteristics via polarity driven interaction. This was achieved by a thin-film coated polyacrylonitrile nanofibrous membrane (TFPNM), giving an overall long-lasting filtration performance with high quality factor at 0.42 Pa-1 (filtration efficiency: over 97 %; pressure drop: around 10 Pa), which is higher than that of the commercial N95 FFRs (0.10-0.41 Pa-1 ) tested with a flow rate of 5 L min-1 and the 0.26 μm NaCl aerosol. A coxsackie B4 virus filtration test demonstrated that TFPNM also had strong virus capture capacity of 97.67 %. As compared with N95 FFRs, the TFPNM was more resistant to a wider variety of disinfection protocols, and the overall filtration characteristics remained N97 standard.
Collapse
Affiliation(s)
- Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wenbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xizi Luo
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Xinyue Zhang
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Guoqing Wang
- Department of PathogenbiologyChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchun130021P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- International Center of Future ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|
32
|
Wang Q, Wei Y, Li W, Luo X, Zhang X, Di J, Wang G, Yu J. Polarity‐Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wenbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xizi Luo
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Xinyue Zhang
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Guoqing Wang
- Department of Pathogenbiology Chinese Ministry of Education College of Basic Medicine Jilin University Changchun 130021 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University Changchun 130012 P. R. China
| |
Collapse
|
33
|
Yasir M, Kumar Vijay A, Willcox M. Antiviral effect of multipurpose contact lens disinfecting solutions against coronavirus. Cont Lens Anterior Eye 2021; 45:101513. [PMID: 34465537 PMCID: PMC8390374 DOI: 10.1016/j.clae.2021.101513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Purpose To evaluate the antiviral potential of five multipurpose disinfecting solutions against coronavirus (mouse hepatitis virus, a surrogate for SARS-CoV-2 human corona virus). Methods Test solutions (Biotrue, renu Advanced [Bausch and Lomb], ACUVUE RevitaLens [Johnson and Johnson Vision], cleadew [Ophtecs corp.] or AOSept Plus [Alcon]) were mixed with the coronavirus mouse hepatitis virus at 104 plaque forming units (PFU)/mL as the final concentration and incubated at room temperature for the specified disinfection time. Surviving virus from each sample was then quantified by standard plaque forming unit assay and the reduction of PFU for each disinfectant was compared to the phosphate buffer saline (PBS) treated negative control. A regimen test was also conducted using Biotrue. Results The three multipurpose disinfecting solutions Biotrue (containing PHMB and polyquaternium-1), renu Advanced (PHMB, polyquaternium-1 and alexidine) and ACUVUE RevitaLens (polyquaternium-1 and alexidine) did not kill the coronavirus at the manufacturers recommended disinfection time in the stand alone test. After treatment, the virus’s titer (3.8 ± 0.2 log10 for Biotrue, 3.7 ± 0.1 log10 for renu and 3.7 ± 0.2 log10 for RevitaLens) was similar to the negative control (3.7 ± 0.1 log10; p ≥ 0.996). AOSept Plus (hydrogen peroxide) and cleadew (povidone iodine) significantly (p < 0.001) reduced the numbers of coronaviruses to below the detection limit (i.e. killed 3.7 ± 0.1 log10 viruses compared to control). However, there was a significant reduction (p = 0.028) in numbers of coronaviruses attached to lenses when using the regimen test with Biotrue. Conclusions This study shows that oxidative contact lens disinfecting solutions (i.e. those containing povidone-iodine or hydrogen peroxide) provide superior antiviral activity against a coronavirus surrogate of SARS-CoV-2, unless the full regimen test (rub, rinse, disinfect) is used.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, NSW 2052, Australia
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
34
|
Pope ZC, Kottke TJ, Shah A, Vile RG, Rizza SA. Inactivation of Replication-Competent Vesicular Stomatitis Virus as SARS-CoV-2 Surrogate on Common Surfaces by Disinfectants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7714. [PMID: 34300163 PMCID: PMC8304672 DOI: 10.3390/ijerph18147714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/12/2023]
Abstract
Surface disinfection is part of a larger mitigation strategy to prevent the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus causing coronavirus disease-2019 (COVID-19). Research evaluating the time, nature, and extent of surface disinfection of replication-competent viruses is needed. We evaluated the efficacy of two disinfectants against a replication-competent SARS-CoV-2 surrogate on three common public surfaces. Vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP) was our replication-competent SARS-CoV-2 surrogate. Disinfection occurred using Super Sani-Cloth Germicidal Disposable Wipes and Oxivir Tb spray per manufacturer instructions to test the efficacy at reducing the presence, viability, and later replication of VSV-GFP on stainless steel, laminate wood, and porcelain surfaces using standardized methods after recovery and toxicity testing. During the main trials, we placed 100 µL spots of VSV-GFP at viral titers of 108, 107, and 106 PFU/mL on each surface prior to disinfection. Trials were completed in triplicate and post-disinfection measurements on each surface were compared to the measurements of non-disinfected surfaces. Disinfectants were considered efficacious when ≥3-log10 reduction in the number of infectious VSV-GFP virus units was observed on a given surface during all trials. Both disinfectants produced a ≥3.23-log10 reduction in infectious VSV-GFP virus unit numbers, with all trials showing no viable, replication-competent VSV-GFP present on any tested surface. The two disinfectants eliminated the presence, viability, and later replication of VSV-GFP, our SARS-CoV-2 surrogate, on all surfaces. This information suggests that, if following manufacturer instructions, overcleaning surfaces with multiple disinfectant solutions may be unnecessary.
Collapse
Affiliation(s)
- Zachary C. Pope
- Well Living Lab, Rochester, MN 55902, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy J. Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (T.J.K.); (R.G.V.)
| | - Aditya Shah
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (S.A.R.)
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (T.J.K.); (R.G.V.)
| | - Stacey A. Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (S.A.R.)
| |
Collapse
|
35
|
Thakur AK, Sathyamurthy R, Velraj R, Lynch I, Saidur R, Pandey AK, Sharshir SW, Kabeel AE, Hwang JY, GaneshKumar P. Secondary transmission of SARS-CoV-2 through wastewater: Concerns and tactics for treatment to effectively control the pandemic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112668. [PMID: 33895445 PMCID: PMC8055200 DOI: 10.1016/j.jenvman.2021.112668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.
Collapse
Affiliation(s)
- Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India.
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India.
| | - R Velraj
- Institute for Energy Studies, Anna University, Chennai-600025, Tamil Nadu, India
| | - I Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abd Elnaby Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Egypt; Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Jang-Yeon Hwang
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - P GaneshKumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| |
Collapse
|
36
|
Wiktorczyk-Kapischke N, Grudlewska-Buda K, Wałecka-Zacharska E, Kwiecińska-Piróg J, Radtke L, Gospodarek-Komkowska E, Skowron K. SARS-CoV-2 in the environment-Non-droplet spreading routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145260. [PMID: 33513500 PMCID: PMC7825822 DOI: 10.1016/j.scitotenv.2021.145260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 04/15/2023]
Abstract
The new coronavirus SARS-CoV-2, first identified in Wuhan (China) in December 2019, represents the same family as the Serve Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1). These viruses spread mainly via the droplet route. However, during the pandemic of COVID-19 other reservoirs, i.e., water (surface and ground), sewage, garbage, or soil, should be considered. As the infectious SARS-CoV-2 particles are also present in human excretions, such a non-droplet transmission is also possible. A significant problem is the presence of SARS-CoV-2 in the hospital environment, including patients' rooms, medical equipment, everyday objects and the air. Relevant is selecting the type of equipment in the COVID-19 hospital wards on which the virus particles persist the shortest or do not remain infectious. Elimination of plastic objects/equipment from the environment of the infected person seems to be of great importance. It is particularly relevant in water reservoirs contaminated with raw discharges. Wastewater may contain coronaviruses and therefore there is a need for expanding Water-Based Epidemiology (WBE) studies to use obtained values as tool in determination of the actual percentage of the SARS-CoV-2 infected population in an area. It is of great importance to evaluate the available disinfection methods to control the spread of SARS-CoV-2 in the environment. Exposure of SARS-CoV-2 to 65-70% ethanol, 0.5% hydrogen peroxide, or 0.1% sodium hypochlorite has effectively eliminated the virus from the surfaces. Since there are many unanswered questions about the transmission of SARS-CoV-2, the research on this topic is still ongoing. This review aims to summarize current knowledge on the SARS-CoV-2 transmission and elucidate the viral survival in the environment, with particular emphasis on the possibility of non-droplet transmission.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Laura Radtke
- Faculty of Civil and Environmental Engineering and Architecture, UTP University of Science and Technology in Bydgoszcz, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
37
|
Bedrosian N, Mitchell E, Rohm E, Rothe M, Kelly C, String G, Lantagne D. A Systematic Review of Surface Contamination, Stability, and Disinfection Data on SARS-CoV-2 (Through July 10, 2020). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4162-4173. [PMID: 33227206 DOI: 10.1021/acs.est.0c05651] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing included articles. Overall, 96 268 articles were screened and 78 articles met inclusion criteria with outcomes in surface contamination, stability, and disinfection. Surface contamination was assessed on 3343 surfaces using presence/absence methods. Laboratories had the highest percent positive surfaces (21%, n = 83), followed by patient-room healthcare facility surfaces (17%, n = 1170), non-COVID-patient-room healthcare facility surfaces (12%, n = 1429), and household surfaces (3%, n = 161). Surface stability was assessed using infectivity, SARS-CoV-2 survived on stainless steel, plastic, and nitrile for half-life 2.3-17.9 h. Half-life decreased with temperature and humidity increases, and was unvaried by surface type. Ten surface disinfection tests with SARS-CoV-2, and 15 tests with surrogates, indicated sunlight, ultraviolet light, ethanol, hydrogen peroxide, and hypochlorite attain 99.9% reduction. Overall there was (1) an inability to align SARS-CoV-2 contaminated surfaces with survivability data and effective surface disinfection methods for these surfaces; (2) a knowledge gap on fomite contribution to SARS-COV-2 transmission; (3) a need for testing method standardization to ensure data comparability; and (4) a need for research on hygiene interventions besides surfaces, particularly handwashing, to continue developing recommendations for interrupting SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Noah Bedrosian
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Elizabeth Mitchell
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Elsa Rohm
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Miguel Rothe
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Christine Kelly
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Gabrielle String
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| | - Daniele Lantagne
- Tufts University School of Engineering, Medford, Massachusetts, 02155, United States
| |
Collapse
|
38
|
Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS OMEGA 2021; 6:6509-6527. [PMID: 33748563 PMCID: PMC7944398 DOI: 10.1021/acsomega.0c06335] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seth C. Cordts
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Myra Kurosu Jalil
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin S. Zhang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Saisneha Koppaka
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alison D. Bick
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rajorshi Paul
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Ijaz MK, Nims RW, Zhou SS, Whitehead K, Srinivasan V, Kapes T, Fanuel S, Epstein JH, Daszak P, Rubino JR, McKinney J. Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Sci Rep 2021; 11:5626. [PMID: 33707476 PMCID: PMC7952405 DOI: 10.1038/s41598-021-84842-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.
Collapse
Affiliation(s)
- M Khalid Ijaz
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA.
- Medgar Evers College of the City University of New York (CUNY), 1650 Bedford Ave, Brooklyn, NY, 11225, USA.
| | - Raymond W Nims
- RMC Pharmaceutical Solutions, Inc, 1851 Lefthand Circle, Suite A, Longmont, CO, 80501, USA
| | - Sifang Steve Zhou
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Kelly Whitehead
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Vanita Srinivasan
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Tanya Kapes
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Semhar Fanuel
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Jonathan H Epstein
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY, 10018-6507, USA
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY, 10018-6507, USA
| | - Joseph R Rubino
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Julie McKinney
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| |
Collapse
|
40
|
Han S, Roy PK, Hossain MI, Byun KH, Choi C, Ha SD. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies. Trends Food Sci Technol 2021; 109:25-36. [PMID: 33456205 PMCID: PMC7794057 DOI: 10.1016/j.tifs.2021.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The COVID-19 pandemic that emerged in 2019 has imposed huge consequences, including economic losses and threats to human health, which are still affecting many aspects throughout the world. SCOPE AND APPROACH This review provides an overview of SARS-CoV-2 infection, the cause of COVID-19, and explores its impact on the food supply system and food safety. This review examines the potential risk of transmission through food and environmental surfaces before discussing an effective inactivation strategy to control the COVID-19 pandemic in the aspect of food safety. This article also suggests effective food safety management post-COVID-19. KEY FINDINGS AND CONCLUSIONS Respiratory viruses including SARS-CoV-2 are responsible for huge impacts on the global economy and human health. Although food and water are not currently considered priority transmission routes of SARS-CoV-2, infection through contaminated food and environmental surfaces where the virus can persist for several days cannot be ignored, particularly when the surrounding environment is unhygienic. This approach could help determine the exact transmission route of SARS-CoV-2 and prepare for the post-COVID-19 era in the food safety sector.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Pantu Kumar Roy
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Kye-Hwan Byun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| |
Collapse
|
41
|
MIYAOKA Y, KABIR MH, HASAN MA, YAMAGUCHI M, SHOHAM D, MURAKAMI H, TAKEHARA K. Establishment and utilization of an evaluation system for virucidal activity of disinfectants against a coronavirus with apparent applicability to SARS-CoV-2. J Vet Med Sci 2021; 83:48-52. [PMID: 33229794 PMCID: PMC7870412 DOI: 10.1292/jvms.20-0462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
Decontamination of pathogens on surfaces of substances is very important for controlling infectious diseases. In the present experiments, we tested various disinfectants in aqueous phase as well as on plastic surface carrying a viral inoculum, through dropping and wiping decontamination techniques, comparatively, so as to evaluate virucidal efficacies of those disinfectants toward an avian coronavirus (infectious bronchitis virus: IBV). We regard this evaluation system applicable to SARS-CoV-2. The disinfectants evaluated were 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, sodium hypochlorite at 500 or 1,000 ppm of total chlorine (NaClO-500 or NaClO-1,000, respectively), NaClO at 500 ppm of total chlorine in 0.17% FdCa(OH)2 (Mix-500) and quaternary ammonium compound (QAC) diluted 500-fold in water (QAC-500). In the suspension test, all solutions inactivated IBV inoculum that contained 5% fetal bovine serum (FBS) under detectable level within 30 sec. In the carrier test, all solutions, except NaClO-500, could inactivate IBV with 0.5% FBS on a carrier to undetectable level in the wiping-sheets and wiped-carriers. We thus conclude that suspension and carrier tests should be introduced to evaluate disinfectants for the field usage, and that this evaluation system is important and workable for resultful selection of the tested disinfectants against avian coronavirus and SARS-CoV-2 on surfaces, particularly on plastic fomite.
Collapse
Affiliation(s)
- Yu MIYAOKA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md. Humayun KABIR
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md. Amirul HASAN
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makiko YAMAGUCHI
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany SHOHAM
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Harumi MURAKAMI
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazuaki TAKEHARA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
42
|
Noorimotlagh Z, Mirzaee SA, Jaafarzadeh N, Maleki M, Kalvandi G, Karami C. A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: focus on disinfection methods, environmental survival, and control and prevention strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1-15. [PMID: 33009614 PMCID: PMC7531810 DOI: 10.1007/s11356-020-11060-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/29/2020] [Indexed: 04/12/2023]
Abstract
Recently, an outbreak of a novel human coronavirus which is referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19) by the World Health Organization (WHO) was identified in Wuhan, China. To help combat the pandemic, a systematic review (SR) was performed to collect all available studies concerning inactivation methods, environmental survival, and control and prevention strategies. A comprehensive literature survey yielded 42 eligible studies which included in the SR. The results confirmed that the WHO recommended two alcohol-based hand rub formulations (ethanol 70-95% and 2-propanol 70-100%) had an efficient virucidal activity in less than 60 s by more and equal 4 log10 (≥ 99.99) approximately and could be used for disinfection in public health and health-care facilities. The findings indicated that SARS-CoV-1 and SARS-CoV-2 can survive under different environmental conditions between 4 and 72 h approximately. The results also demonstrate that temperature and relative humidity are important factors in the survival of SARS-CoV-2. The main strategies recommended by the WHO to avoid contracting SARS-CoV-2 are hand washing several times in the day and maintaining social distancing with others. It is important to note that the more studies require addressing, the more possible airborne transmission due to the survival of SARS-CoV-2 in aerosols for 3 h approximately. We hope that the results of the present SR can help researchers, health decision-makers, policy-makers, and people for understanding and taking the proper behavior to control and prevent further spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Abbas Mirzaee
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Gholamreza Kalvandi
- Department of Pediatrics Gastroenterology, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| | - Chiman Karami
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardebil, Iran
| |
Collapse
|
43
|
Kataki S, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. RESOURCES, CONSERVATION, AND RECYCLING 2021; 164:105156. [PMID: 32921917 PMCID: PMC7473346 DOI: 10.1016/j.resconrec.2020.105156] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 05/20/2023]
Abstract
Along with outbreak of the pandemic COVID-19 caused by SARS-CoV-2, the problem of biomedical wastewater disposal has caused widespread public concern, as reportedly the presence is confirmed in wastewater. Keeping in mind (i) available evidence indicating need to better understand potential of wastewater mediated transmission and (ii) knowledge gaps in its occurrence, viability, persistence, and inactivation in wastewater, in this present work, we wanted to re-emphasize some strategies for management of SARS-CoV-2 contaminated wastewater to minimise any possible secondary transmission to human and environment. The immediate challenges to consider while considering wastewater management are uncertainty about this new biothreat, relying on prediction based treatments options, significant population being the latent asymptomatic carrier increased risk of passing out of the virus to sewage network, inadequacy of wastewater treatment facility particularly in populated developing countries and increased generation of wastewater due to increased cleanliness concern. In absence of regulated central treatment facility, installation of decentralized wastewater treatment units with single or multiple disinfection barriers in medical units, quarantine centre, isolation wards, testing facilities seems to be urgent for minimizing any potential risk of wastewater transmission. Employing some emerging disinfectants (peracetic acid, performic acid, sodium dichloro isocyanurate, chloramines, chlorine dioxide, benzalconium chloride) shows prospects in terms of virucidal properties. However, there is need of additional research on coronaviruses specific disinfection data generation, regular monitoring of performance considering all factors influencing virus survival, performance evaluation in actual water treatment, need of augmenting disinfection dosages, environmental considerations to select the most appropriate disinfection technology.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Assam, India
| |
Collapse
|
44
|
Meyers C, Kass R, Goldenberg D, Milici J, Alam S, Robison R. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces. J Hosp Infect 2021; 107:45-49. [PMID: 32991941 PMCID: PMC7521917 DOI: 10.1016/j.jhin.2020.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The coronavirus disease 2019 pandemic has greatly increased the frequency of disinfecting surfaces in public places, causing a strain on the ability to obtain disinfectant solutions. An alternative is to use plain alcohols (EtOH and IPA) or sodium hypochlorite (SH). AIM To determine the efficacy of various concentrations of EtOH, IPA and SH on a human coronavirus (HCoV) dried on to surfaces using short contact times. METHODS High concentrations of infectious HCoV were dried on to porcelain and ceramic tiles, then treated with various concentrations of the alcohols for contact times of 15 s, 30 s and 1 min. Three concentrations of SH were also tested. Reductions in titres were measured using the tissue culture infectious dose 50 assay. FINDINGS Concentrations of EtOH and IPA from 62% to 80% were very efficient at inactivating high concentrations of HCoV dried on to tile surfaces, even with a 15-s contact time. Concentrations of 95% dehydrated the virus, allowing infectious virus to survive. The dilutions of SH recommended by the Centers for Disease Control and Prevention (1/10 and 1/50) were efficient at inactivating high concentrations of HCoV dried on to tile surfaces, whereas a 1/100 dilution had substantially lower activity. CONCLUSIONS Multiple concentrations of EtOH, IPA and SH efficiently inactivated infectious HCoV on hard surfaces, typical of those found in public places. Often no remaining infectious HCoV could be detected.
Collapse
Affiliation(s)
- C Meyers
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA, USA.
| | - R Kass
- Department of Surgical Oncology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - D Goldenberg
- Department of Otolaryngology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - J Milici
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - S Alam
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - R Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
45
|
Lacombe A, Quintela I, Liao YT, Wu VCH. Food safety lessons learned from the COVID-19 pandemic. J Food Saf 2020; 41:e12878. [PMID: 33612893 PMCID: PMC7883256 DOI: 10.1111/jfs.12878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022]
Abstract
The COVID‐19 pandemic has ushered in a new era of food safety. To date, there is no evidence to suggest that consuming food is associated with COVID‐19. Nevertheless, COVID‐19's impact on food safety and security has been grave. The world is currently experiencing several supply chain issues as a direct result of extensive lockdowns and impacts on essential workers' safety. However, disruption in the food supply, while catastrophic in nature, has created opportunities for the advancement of medical science, data processing, security monitoring, foodborne pathogen detection, and food safety technology. This article will discuss the key components for food safety during the COVID‐19 pandemic. The discussion will draw from lessons learned early in the outbreak and will analyze the etiology of the disease through a food safety perspective. From there, we will discuss personal protective equipment, detection of SARS‐CoV‐2, useful surrogates to study SARS‐CoV‐2, and the expanding field of data science, from the food safety point of view. In the future, scientists can apply the knowledge to the containment of COVID‐19 and eventually to future pandemics.
Collapse
Affiliation(s)
- Alison Lacombe
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Irwin Quintela
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| |
Collapse
|
46
|
Rowell CER, Dobrovolny HM. Energy Requirements for Loss of Viral Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:281-294. [PMID: 32757142 PMCID: PMC7405386 DOI: 10.1007/s12560-020-09439-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Outside the host, viruses will eventually lose their ability to infect cells due to conformational changes that occur to proteins on the viral capsid. In order to undergo a conformational change, these proteins require energy to activate the chemical reaction that leads to the conformational change. In this study, data from the literature is used to calculate the energy required for viral inactivation for a variety of different viruses by means of the Arrhenius equation. We find that some viruses (rhinovirus, poliovirus, human immunodeficiency virus, Alkhumra hemorrhagic fever virus, and hepatitis A virus) have high inactivation energies, indicative of breaking of a chemical double bond. We also find that several viruses (respiratory syncytial virus, poliovirus, and norovirus) have nonlinear Arrhenius plots, suggesting that there is more than a single pathway for inactivation of these viruses.
Collapse
Affiliation(s)
- Caroline E R Rowell
- Department of Chemistry, Wingate University, Hendersonville, NC, USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
47
|
Yoshizawa N, Ishihara R, Omiya D, Ishitsuka M, Hirano S, Suzuki T. Application of a Photocatalyst as an Inactivator of Bovine Coronavirus. Viruses 2020; 12:E1372. [PMID: 33266175 PMCID: PMC7761435 DOI: 10.3390/v12121372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Bovine coronavirus (BCoV), a major causative pathogen of bovine enteric and respiratory diseases and a zoonotic pathogen transmissible between animals and humans, has led to severe economic losses in numerous countries. BCoV belongs to the genus Betacoronavirus, which is a model of a pathogen that is threatening human health and includes severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus. This study aimed to determine whether photocatalytic material effectively reduces CoVs in the environment. Using the film adhesion method of photocatalytic materials, we assessed its antiviral activity and the effect of visible light irradiation according to methods defined by the International Organization for Standardization. Consequently, photocatalytic material was found to have antiviral activity, reducing the viral loads by 2.7 log TCID50 (tissue culture infective dose 50)/0.1 mL (500 lux), 2.8 log TCID50/0.1 mL (1000 lux), and 2.4 log TCID50/0.1 mL (3000 lux). Hence, this photocatalytic material might be applicable not only to reducing CoVs in the cattle breeding environment but also perhaps in other indoor spaces, such as offices and hospital rooms. To our knowledge, this study is the first to evaluate the antiviral activity of a photocatalytic material against CoV.
Collapse
Affiliation(s)
- Nobuki Yoshizawa
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
- Ehime Prefectural Livestock Disease Diagnostic Center, Toon, Ehime 791-0212, Japan
| | - Ryoko Ishihara
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
| | - Daisuke Omiya
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Midori Ishitsuka
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Shouichirou Hirano
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Tohru Suzuki
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
| |
Collapse
|
48
|
Morales-Torres J, Aceves-Ávila FJ. Rheumatologists in the COVID-19 era: will there be a new role for the rheumatologist in the care of rheumatic patients? Clin Rheumatol 2020; 39:3177-3183. [PMID: 32889590 PMCID: PMC7474326 DOI: 10.1007/s10067-020-05380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Jorge Morales-Torres
- Hospital Aranda de la Parra, Hidalgo 329, 37000, Leon, GTO, Mexico.
- Morales Vargas, Centro de Investigación, Blvd. Adolfo López Mateos 218-D Poniente, 37000, Leon, GTO, Mexico.
| | | |
Collapse
|
49
|
Scarano A, Inchingolo F, Lorusso F. Environmental Disinfection of a Dental Clinic during the Covid-19 Pandemic: A Narrative Insight. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8896812. [PMID: 33145359 PMCID: PMC7596431 DOI: 10.1155/2020/8896812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The control of biological hazard risk in health care and dental clinic environments represents a critical point in relation to the Covid-19 infection outbreak and international public health emergency. The purpose of the present review was to evaluate the scientific literature on the no-touch disinfection procedures in dental clinics aiming to limit transmission via airborne particles or fomites using no-touch procedures for environmental decontamination of dental clinics. METHODS An electronic database literature search was performed to retrieve research papers about Covid-19 and no-touch disinfection topics including full-length articles, editorials, commentaries, and outbreak studies. A total of 86 papers were retrieved by the electronic research. RESULTS No clinical article about the decontamination of a dental clinic during the Covid-19 pandemic was detected. About the topic of hospital decontamination, we found different no-touch disinfection procedures used in hospital against highly resistant organisms, but no data were found in the search for such procedures with respect to SARS-CoV-2: (1) aerosolized hydrogen peroxide, (2) H2O2 vapor, (3) ultraviolet C light, (4) pulsed xenon, and (5) gaseous ozone. One paper was retrieved concerning SARS-CoV-2; 32 documents focused on SARS and MERS. The cleaning and disinfection protocol of health care and dental clinic environment surfaces are essential elements of infection prevention programs, especially during the SARS-CoV-2 pandemic. CONCLUSION The decontamination technique that best suits the needs of the dental clinic is peroxide and hypochlorous which can be sprayed via a device at high turbine speed with the ability of producing small aerosol particles, recommendable also for their low cost.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
50
|
Al-Sayah MH. Chemical disinfectants of COVID-19: an overview. JOURNAL OF WATER AND HEALTH 2020; 18:843-848. [PMID: 33095205 DOI: 10.2166/wh.2020.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The outbreak of coronavirus (COVID-19) has led to a broad use of chemical disinfectants in order to sterilize public spaces and prevent contamination. This paper surveys the chemicals that are effective in deactivating the virus and their mode of action. It presents the different chemical classes of disinfectants and identifies the chemical features of these compounds that pertain to their biocidal activity, relevant to surface/water disinfection.
Collapse
Affiliation(s)
- Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates E-mail:
| |
Collapse
|