1
|
Dou Y, Zhang M, Zhang H, Zhang C, Feng L, Hu J, Gao Y, Yuan XZ, Zhao Y, Zhao H, Chen ZJ. Lactating exposure to microplastics at the dose of infants ingested during artificial feeding induced reproductive toxicity in female mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174972. [PMID: 39053555 DOI: 10.1016/j.scitotenv.2024.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) pollution poses a global environmental challenge with significant concerns regarding its potential impact on human health. Toxicological investigations have revealed multi-system impairments caused by MPs in various organisms. However, the specific reproductive hazards in human contexts remain elusive, and understanding the transgenerational reproductive toxicity of MPs remains limited. This study delves into the reproductive toxicity resulting from lactational exposure to polystyrene MPs (PS-MPs) in female mice, extending the inquiry to assess the reproductive effects on their offspring bred by rigorous natural mating. The MPs dosage corresponds to the detected concentration in infant formula prepared using plastic bottles. By systematically evaluating the reproductive phenotypes of F0 female mice from birth to adulthood, we found that female mice exposed to PS-MPs exhibited delayed puberty, disturbed estrous cyclicity, diminished fertility, elevated testosterone, abnormal follicle development, disrupted ovarian steroidogenesis, and ovarian inflammation. Importantly, the observed inheritable reproductive toxicity manifested with gender specificity, showcasing more pronounced abnormalities in male offspring. Specifically, reproductive disorders did not manifest in female offspring; however, a significant decrease in sperm count and viability was observed in PS-MPs-exposed F1 males. Testicular transcriptomics analysis of F1 males significantly enriched pathways associated with reproductive system development and epigenetic modification, such as male germ cell proliferation, DNA methylation, and histone modification. In summary, real-life exposure to PS-MPs impaired the reproductive function of female mice and threateningly disrupted the spermatogenesis of their F1 male offspring, which raises serious concerns about inter- and trans-generational reproductive toxicities of MPs in mammals. These findings underscore the potential threats of MPs to human reproductive health, emphasizing the need for continued vigilance and research in this critical area.
Collapse
Affiliation(s)
- Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China; Suzhou Municipal Hospital, Suzhou, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Lijuan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bowman-Gibson S, Chandiramani C, Stone ML, Waker CA, Rackett TM, Maxwell RA, Dhanraj DN, Brown TL. Streamlined Analysis of Maternal Plasma Indicates Small Extracellular Vesicles are Significantly Elevated in Early-Onset Preeclampsia. Reprod Sci 2024; 31:2771-2782. [PMID: 38777947 PMCID: PMC11393201 DOI: 10.1007/s43032-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.
Collapse
Affiliation(s)
- Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Chandni Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Madison L Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Traci M Rackett
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Rose A Maxwell
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - David N Dhanraj
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA.
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
3
|
Roslan NS, Lee YY, Ibrahim YS, Tuan Anuar S, Yusof KMKK, Lai LA, Brentnall T. Detection of microplastics in human tissues and organs: A scoping review. J Glob Health 2024; 14:04179. [PMID: 39175335 PMCID: PMC11342020 DOI: 10.7189/jogh.14.04179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Background Research on microplastics has largely focused on the environment and marine organisms until recently. A growing body of evidence has detected microplastics in human organs and tissues, with their exact entry routes being unclear and their potential health effects remain unknown. This scoping review aimed to characterise microplastics in human tissues and organs, examine their entry routes and addressing gaps in research analytical techniques. Methods Eligibility criteria included English language full text articles, in-vivo human studies only, and searching the databases using pre-defined terms. We based our analysis and reporting on the PRISMA guideline and examined the quality of evidence using the risk of bias assessment tool. Results Of 3616 articles screened, 223 evaluated and 26 were eventually included in this review. Nine were high risk for bias, three were unclear risk and the rest low risk for bias. Microplastics were detected in 8/12 human organ systems including cardiovascular, digestive, endocrine, integumentary, lymphatic, respiratory, reproductive and urinary. Microplastics were also observed in other human biological samples such as breastmilk, meconium, semen, stool, sputum and urine. Microplastics can be characterised based on shape, colours, and polymer type. Potential entry routes into human included atmospheric inhalation and ingestion through food and water. The extraction techniques for analysis of microplastics in human tissues vary significantly, each offering distinct advantages and limitations. Conclusions Microplastics are commonly detected in human tissues and organs, with distinct characteristics and entry routes, and variable analytical techniques exist.
Collapse
Affiliation(s)
- Nur Sakinah Roslan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Lisa Ann Lai
- University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
4
|
Cherukuri R, Kammala AK, Thomas TJ, Saylor L, Richardson L, Kim S, Ferrer M, Acedo C, Song MJ, Gaharwar AK, Menon R, Han A. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41892-41906. [PMID: 39078878 DOI: 10.1021/acsami.4c08731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.
Collapse
Affiliation(s)
- Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Tilu Jain Thomas
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Leah Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland 20892, United States
| | - Cristina Acedo
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland 20892, United States
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland 20892, United States
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77840, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
5
|
Cortes DRE, Stapleton MC, Schwab KE, West D, Coulson NW, O’Donnell MG, Christodoulou AG, Powers RW, Wu YL. Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI. PLoS One 2024; 19:e0303957. [PMID: 38950083 PMCID: PMC11216620 DOI: 10.1371/journal.pone.0303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. OBJECTIVE Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. METHODOLOGY We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring. RESULTS We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5. DISCUSSION We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation. CONCLUSION Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.
Collapse
Affiliation(s)
- Devin Raine Everaldo Cortes
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Margaret C. Stapleton
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kristina E. Schwab
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dalton West
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Noah W. Coulson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | - Anthony G. Christodoulou
- Department of Radiological Sciences and Engineering, University of California, Los Angeles, California, United States of America
| | - Robert W. Powers
- Magee-Womens Research Institute, Pittsburgh, PA, United States of America
| | - Yijen L. Wu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Murugesan S, Addis DR, Hussey H, Powell MF, Saravanakumar L, Sturdivant AB, Sinkey RG, Tubinis MD, Massey ZR, Mobley JA, Tita AN, Jilling T, Berkowitz DE. Decreased Extracellular Vesicle Vasorin in Severe Preeclampsia Plasma Mediates Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600441. [PMID: 38979275 PMCID: PMC11230191 DOI: 10.1101/2024.06.24.600441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Preeclampsia (PE) is a serious pregnancy complication affecting 5-8% of pregnancies globally. It is a leading cause of maternal and neonatal morbidity and mortality. Despite its prevalence, the underlying mechanisms of PE remain unclear. This study aimed to determine the potential role of vasorin (VASN) in PE pathogenesis by investigating its levels in extracellular vesicles (EV) and its effects on vascular function. Methods & Results We conducted unbiased proteomics on urine-derived EV from severe PE (sPE) and normotensive pregnant women (NTP), identifying differential protein abundances. Out of one hundred and twenty proteins with ≥ ±1.5-fold regulation at P<0.05 between sPE and NTP, we focused on Vasorin (VASN), which is downregulated in sPE in urinary EV, in plasma EV and in the placenta and is a known regulator of vascular function. We generated EV with high VASN content from both human and murine placenta explants (Plex EV), which recapitulated disease-state-dependent effects on vascular function observed when treating murine aorta rings (MAR) or human aortic endothelial cells (HAEC) with murine or human plasma-derived EV. In normal murine pregnancy, VASN increases with gestational age (GA), and VASN is decreased in plasma EV, in placenta tissue and in Plex EV after intravenous administration of adenovirus encoding short FMS-like tyrosine kinase 1 (sFLT-1), a murine model of PE (murine-PE). VASN is decreased in plasma EV, in placenta tissue and in EV isolated from conditioned media collected from placenta explants (Plex EV) in patients with sPE as compared to NTP. Human sPE and murine-PE plasma EV and Plex EV impair migration, tube formation, and induces apoptosis in human aortic endothelial cells (HAEC) and inhibit acetylcholine-induced vasorelaxation in murine vascular rings (MAR). VASN over-expression counteracts the effects of sPE EV treatment in HAEC and MAR. RNA sequencing revealed that over-expression or knock down of VASN in HAEC results in contrasting effects on transcript levels of hundreds of genes associated with vasculogenesis, endothelial cell proliferation, migration and apoptosis. Conclusions The data suggest that VASN, delivered to the endothelium via EV, regulates vascular function and that the loss of EV VASN may be one of the mechanistic drivers of PE. CLINICAL PERSPECTIVE What is NewVASN in circulating plasma EV in sPE is reduced compared with VASN content in plasma EV of gestational age-matched pregnant women.VASN is encapsulated and transported in EV and plays a pro-angiogenic role during pregnancy.VASN should be explored both for its pro-angiogenic mechanistic role and as a novel biomarker and potential predictive diagnostic marker for the onset and severity of PE.What Are the Clinical Implications?VASN plays a role in maintaining vascular health and the normal adaptive cardiovascular response in pregnancy. A decrease of VASN is observed in sPE patients contributing to cardiovascular maladaptation.Strategies to boost diminished VASN levels and/or to pharmacologically manipulate mechanisms downstream of VASN may be explored for potential therapeutic benefit in PE.The decrease in EV-associated VASN could potentially be used as a (predictive) biomarker for PE.
Collapse
|
7
|
Wang B, Shen WB, Townsel C, Baracco L, Logue J, Reece EA, Frieman MB, Yang P. Placental SARS-CoV-2 Infection and Its Implications for Increased Risk of Adverse Pregnancy Outcomes. Am J Perinatol 2024. [PMID: 38729183 DOI: 10.1055/a-2323-0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Pregnant women are at increased risk of coronavirus disease 2019 (COVID-19). This could be explained through the prism of physiologic and immunologic changes in pregnancy. In addition, certain immunological reactions originate in the placenta in response to viral infections.This study aimed to investigate whether severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can infect the human placenta and discuss its implications in the pathogenesis of adverse pregnancy outcomes. STUDY DESIGN We conducted a retrospective cohort study in which we collected placental specimens from pregnant women who had a laboratory-confirmed SARS-CoV-2 infection. We performed RNA in situ hybridization assay on formalin-fixed paraffin-embedded tissues to establish the in vivo evidence for placental infectivity by this corona virus. In addition, we infected trophoblast isolated from uninfected term human placenta with SARS-CoV-2 variants to further provide in vitro evidence for such an infectivity. RESULTS There was a total of 21 cases enrolled, which included 5 cases of spontaneous preterm birth (SPTB) and 2 intrauterine fetal demises (IUFDs). Positive staining of positive-sense strand of SARS-CoV-2 virions was detected in 15 placentas including 4 SPTB and both IUFDs. In vitro infection assay demonstrated that SARS-CoV-2 virions were highly capable of infecting both cytotrophoblast and syncytiotrophoblast. CONCLUSION This study implies that placental SARS-CoV-2 infection may be associated with an increased risk of adverse obstetrical outcomes. KEY POINTS · SARS-CoV-2 can effectively infect human placenta.. · Such infectivity is confirmed by in vitro experiments.. · Placental SARS-CoV-2 corelates with adverse obstetrical outcomes..
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Courtney Townsel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lauren Baracco
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - James Logue
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Cristodoro M, Messa M, Tossetta G, Marzioni D, Dell’Avanzo M, Inversetti A, Di Simone N. First Trimester Placental Biomarkers for Pregnancy Outcomes. Int J Mol Sci 2024; 25:6136. [PMID: 38892323 PMCID: PMC11172712 DOI: 10.3390/ijms25116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The placenta plays a key role in several adverse obstetrical outcomes, such as preeclampsia, intrauterine growth restriction and gestational diabetes mellitus. The early identification of at-risk pregnancies could significantly improve the management, therapy and prognosis of these pregnancies, especially if these at-risk pregnancies are identified in the first trimester. The aim of this review was to summarize the possible biomarkers that can be used to diagnose early placental dysfunction and, consequently, at-risk pregnancies. We divided the biomarkers into proteins and non-proteins. Among the protein biomarkers, some are already used in clinical practice, such as the sFLT1/PLGF ratio or PAPP-A; others are not yet validated, such as HTRA1, Gal-3 and CD93. In the literature, many studies analyzed the role of several protein biomarkers, but their results are contrasting. On the other hand, some non-protein biomarkers, such as miR-125b, miR-518b and miR-628-3p, seem to be linked to an increased risk of complicated pregnancy. Thus, a first trimester heterogeneous biomarkers panel containing protein and non-protein biomarkers may be more appropriate to identify and discriminate several complications that can affect pregnancies.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Martina Messa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
9
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
10
|
Abdelmageed WA, Lapointe A, Brown R, Gorgos A, Luu TM, Beltempo M, Altit G, Dayan N. Association between maternal hypertension and infant neurodevelopment in extremely preterm infants. J Perinatol 2024; 44:539-547. [PMID: 38287138 DOI: 10.1038/s41372-024-01886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To examine the association between maternal hypertension during pregnancy and neurodevelopmental impairment (NDI) at 24 months post-menstrual age in extremely preterm infants. STUDY DESIGN Using data from two tertiary neonatal units (2011-2017) for infants born at 23 + 0 to 28 + 6 weeks, we investigated outcomes of NDI related to maternal hypertension and small-for-gestational-age (SGA) status. RESULTS Of 1019 pre-term infants, 647 had complete data and were included in the analysis. Ninety-six (15%) had maternal hypertension exposure; 25 (4%) were also SGA. Infants with maternal hypertension showed a higher odds of any NDI (aOR: 2.29, 95% CI = 1.36-3.87) and significant NDI (aOR: 2.01, 95% CI = 1.02-3.95). The combination of hypertension and SGA further elevated this risk (aOR for any NDI: 4.88, 95% CI = 1.80-13.22; significant NDI: 6.91, 95% CI = 2.50-19.12). CONCLUSION Maternal hypertension during pregnancy elevates the risk of NDI in extremely preterm infants, more so when combined with SGA.
Collapse
Affiliation(s)
- Wael A Abdelmageed
- Department of Medicine, Division of Experimental Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Anie Lapointe
- Division of Neonatology, Department of Paediatrics, Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Richard Brown
- Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Andreea Gorgos
- Neonatal Follow-Up, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Thuy Mai Luu
- Neonatal Follow-Up, Department of Paediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Marc Beltempo
- Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Center, Montreal, QC, Canada
| | - Gabriel Altit
- Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Center, Montreal, QC, Canada
| | - Natalie Dayan
- Research Institute, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
11
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Cortes DRE, Stapleton MC, Schwab KE, West D, Coulson NW, O'Donnell MG, Powers RW, Wu YL. Modeling Normal Mouse Uterine Contraction and Placental Perfusion with Non-invasive Longitudinal Dynamic Contrast Enhancement MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.577398. [PMID: 38352563 PMCID: PMC10862875 DOI: 10.1101/2024.01.31.577398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Non-invasive imaging that can longitudinally probe murine placental health in vivo are critical to understanding placental development throughout pregnancy. We developed advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. We developed a dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) pipeline combined with advanced image process methods to model uterine contraction and placental perfusion dynamics. Our novel imaging pipeline uses subcutaneous administration of gadolinium for steepest-slope based perfusion evaluation. This enables non-invasive longitudinal monitoring. Additionally, we advance the placental perfusion chamber paradigm with a novel physiologically-based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and continuing remodeling throughout gestation. Lastly, using optic flow to quantify placental motions arisen from uterine contractions in conjunction with time-frequency analysis, we demonstrated that the placenta exhibited asymmetric contractile motion.
Collapse
Affiliation(s)
- Devin Raine Everaldo Cortes
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
| | - Margaret C Stapleton
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
| | - Kristina E Schwab
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Dalton West
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | - Noah W Coulson
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Bao Y, Wu L, Liu Y, Fan C, Zhang J, Yang J. Role of CircCHD2 in the pathogenesis of gestational diabetes mellitus by regulating autophagy via miR-33b-3p/ULK1 axis. Placenta 2024; 145:27-37. [PMID: 38039841 DOI: 10.1016/j.placenta.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication with a high incidence in women; however, its pathophysiology remains unknown. Our previous study suggested that the circCHD2/miR-33b-3p/ULK1 axis may be involved in GDM pathogenesis. However, the mechanism through which circCHD2 regulates GDM development requires further investigation. We found that high-glucose (HG, 25 mmol/L) significantly induced the expression of circCHD2, increased autophagy and apoptosis, and decreased cell viability in human placental trophoblast HTR-8/SVneo cells. In contrast, the downregulation of circCHD2 significantly attenuated the effects of HG on HTR-8/SVneo cells. MiR-33b-3p downregulated in the placenta of GDM patients was reduced by HG and detected as a target of circCHD2 using bioinformatics analysis, a dual-luciferase reporter assay, and qRT-PCR assay. Further studies showed that the inhibition of miR-33b-3p significantly blocked the effects of circCHD2 downregulation on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. ULK1 is a target of miR-33b-3p, based on bioinformatics analysis, a dual-luciferase reporter assay, qRT-PCR assay, and Western blot analysis. Compared to miR-33b-3p, ULK1 is upregulated in the placenta of GDM patients. ULK1 overexpression notably blocked the effects of miR-33b-3p mimics on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. These findings suggested that circCHD2 acts as an autophagy promoter via the miR-33b-3p/ULK1 axis to induce apoptosis in HTR-8/SVneo cells, suggesting that circCHD2 is a potential diagnostic and therapeutic target for GDM.
Collapse
Affiliation(s)
- Yindi Bao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lianzhi Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Xiaogan Central Hospital Affiliated of Wuhan University of Science and Technology, Xiaogan, 432003, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Lis-Kuberka J, Pupek M, Orczyk-Pawiłowicz M. The Mother-Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients 2023; 15:4059. [PMID: 37764842 PMCID: PMC10535905 DOI: 10.3390/nu15184059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
An important role in the network of interconnections between the mother and child is played by adipokines, which are adipose tissue hormones engaged in the regulation of metabolism. Alternations of maternal adipokines translate to the worsening of maternal insulin resistance as well as metabolic stress, altered placenta functions, and fetal development, which finally contribute to long-term metabolic unfavorable conditions. This paper is the first to summarize the current state of knowledge concerning the concentrations of individual adipokines in different biological fluids of maternal and cord plasma, newborn/infant plasma, milk, and the placenta, where it highlights the impact of adverse perinatal risk factors, including gestational diabetes mellitus, preeclampsia, intrauterine growth restriction, preterm delivery, and maternal obesity on the adipokine patterns in maternal-infant dyads. The importance of adipokine measurement and relationships in biological fluids during pregnancy and lactation is crucial for public health in the area of prevention of most diet-related metabolic diseases. The review highlights the huge knowledge gap in the field of hormones participating in the energy homeostasis and metabolic pathways during perinatal and postnatal periods in the mother-child dyad. An in-depth characterization is needed to confirm if the adverse outcomes of early developmental programming might be modulated via maternal lifestyle intervention.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | | | - Magdalena Orczyk-Pawiłowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
15
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
16
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
17
|
Abonyi EO, Idigo FU, Anakwue AMC, Agbo JA. Sensitivity of uterine artery Doppler pulsatility index in screening for adverse pregnancy outcome in first and second trimesters. J Ultrasound 2023; 26:517-523. [PMID: 36656494 PMCID: PMC10247651 DOI: 10.1007/s40477-022-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE In a poor resource country where screening for adverse pregnancy outcomes using maternal biomarkers seems unattainable, there is a need to search for credible alternatives. This study is, therefore, aimed at determining the sensitivity of uterine artery Doppler pulsatility index (UtAD-PI) in predicting pregnancy outcomes in the first and second trimesters and to establish any statistical difference in mean UtAD-PI in first and second trimesters screening of women with normal and abnormal pregnancy outcomes respectively. METHODS This clinical-based, longitudinal, and unpaired cohort study involved 500 pregnant women, who were screened for adverse outcomes using UtAD-PI and delivered in the hospital. These were divided into two groups, each having a training set and a test set. The training set was used to generate the receiver operator characteristic curve and cut-off point while the test set was used to test for sensitivity and specificity of the Ut-ADI in each trimester. RESULTS The sensitivity and specificity of UtAD-PI in first-trimester screening are 97% and 76.5% while second-trimester gave sensitivity and specificity of 57.5% and 63.3% respectively. The uterine artery Doppler pulsatility index shows statistically significant differences between normal pregnancy and pregnancy with adverse outcomes (p-value = 0.000). CONCLUSION The uterine artery Doppler pulsatility index is a good screening tool for adverse pregnancy outcomes. First-trimester screening of patients for adverse outcomes is more sensitive than the second-trimester screening using UtAD-PI. There is also a statistically significant difference between mean UtAD-PI between normal pregnancy and pregnancy with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Everistus O Abonyi
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Felicitas U Idigo
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angel-Mary C Anakwue
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Julius Amechi Agbo
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria.
| |
Collapse
|
18
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
19
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
El Abed N, Özogul F. The risks of marine micro/nano-plastics on seafood safety and human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:229-271. [PMID: 36863836 DOI: 10.1016/bs.afnr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A considerable mass of plastics has been released into the marine environment annually through different human activities, including industrial, agriculture, medical, pharmaceutical and daily care products. These materials are decomposed into smaller particles such as microplastic (MP) and nanoplastic (NP). Hence, these particles can be transported and distributed in coastal and aquatic areas and are ingested by the majority of marine biotas, including seafood products, thus causing the contamination of the different parts of aquatic ecosystems. In fact, seafood involves a wide diversity of edible marine organisms, such as fish, crustaceans, molluscs, and echinoderms, which can ingest the micro/nanoplastics particles, and then transmit them to humans through dietary consumption. Consequently, these pollutants can cause several toxic and adverse impacts on human health and the marine ecosystem. Therefore, this chapter provides information on the potential risks of marine micro/nanoplastics on seafood safety and human health.
Collapse
Affiliation(s)
- Nariman El Abed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia.
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
21
|
Villamor E, Borges-Luján M, González-Luis G. Association of patent ductus arteriosus with fetal factors and endotypes of prematurity. Semin Perinatol 2023; 47:151717. [PMID: 36914506 DOI: 10.1016/j.semperi.2023.151717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
During fetal life, the ductus arteriosus (DA) acquires the mechanisms for its postnatal closure following a thorough developmental program. This program can be interrupted by preterm birth and is also susceptible to alteration during fetal life by numerous physiological and pathological stimuli. In this review, we aim to summarize the evidence on how physiological and pathological factors affect DA development, eventually leading to patent DA (PDA). Specifically, we reviewed the associations of sex, race, and pathophysiological pathways leading to very preterm birth (endotypes) with PDA incidence and pharmacological closure. Summary of evidence suggests that there are no male-female differences in the incidence of PDA among very preterm infants. In contrast, risk of developing PDA appears to be higher in infants exposed to chorioamnionitis or who are small for gestational age. Finally, hypertensive disorders of pregnancy may be associated with a better response to pharmacological treatment of PDA. All of this evidence comes from observational studies and therefore associations do not imply causation. The current trend for many neonatologists is to wait for the natural evolution of preterm PDA. Continued research is needed to identify which fetal and perinatal factors modulate the eventual late closure of PDA in very and extremely preterm infants.
Collapse
Affiliation(s)
- Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), School for Oncology and Reproduction (GROW), University of Maastricht, P. Debyelaan 25. P.O. Box 5800, Maastricht, AZ 6202, the Netherlands.
| | - Moreyba Borges-Luján
- Department of Neonatology, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI) de Canarias, Las Palmas de Gran Canaria, Spain
| | - Gema González-Luis
- Department of Neonatology, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI) de Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Hundscheid TM, Huizing MJ, Villamor-Martinez E, Bartoš F, Villamor E. Association of Funisitis with Short-Term Outcomes of Prematurity: A Frequentist and Bayesian Meta-Analysis. Antioxidants (Basel) 2023; 12:534. [PMID: 36830092 PMCID: PMC9951960 DOI: 10.3390/antiox12020534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The fetal systemic inflammatory response associated with intra-amniotic inflammation may play a key role in the pathogenesis of complications of preterm birth. Funisitis is the histologic equivalent of the fetal inflammatory response, whereas chorioamnionitis represents a maternal inflammatory response. We conducted a frequentist and Bayesian model average (BMA) meta-analysis of studies investigating the effects of funisitis on short-term outcomes of prematurity. Thirty-three studies (12,237 infants with gestational age ≤ 34 weeks) were included. Frequentist meta-analysis showed that funisitis was associated with an increased risk of any bronchopulmonary dysplasia (BPD), moderate/severe BPD, retinopathy of prematurity (ROP), intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), any sepsis, early-onset sepsis (EOS), and mortality. However, Bayesian meta-analysis showed that the evidence in favor of the alternative hypothesis (i.e., funisitis is associated with an increased risk of developing the outcome) was strong for any IVH, moderate for severe IVH and EOS, and weak for the other outcomes. When the control group was restricted to infants having chorioamnionitis without funisitis, the only outcome associated with funisitis was any IVH. In conclusion, our data suggest that the presence of funisitis does not add an additional risk to preterm birth when compared to chorioamnionitis in the absence of fetal inflammatory response.
Collapse
Affiliation(s)
- Tamara Maria Hundscheid
- Department of Pediatrics, University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Maurice Jacob Huizing
- Department of Pediatrics, University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | | | - František Bartoš
- Department of Psychology, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
23
|
Su AL, Loch-Caruso R. Apoptotic responses stimulated by the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine depend on cell differentiation state in BeWo human trophoblast cells. Toxicol In Vitro 2023; 86:105514. [PMID: 36336211 PMCID: PMC9949904 DOI: 10.1016/j.tiv.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
During pregnancy, the placental villous cytotrophoblasts differentiate via cell fusion and multinucleation to create syncytiotrophoblasts, a cell type at the maternal-fetal interface. Apoptosis of syncytiotrophoblasts is associated with adverse pregnancy outcomes. The human trophoblast BeWo cell line has been used as an in vitro model for this differentiation process, also known as syncytialization. In the current study, we exposed unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells to S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of the industrial chemical trichloroethylene (TCE). DCVC exposure at 50 μM for 48 h decreased cell viability, increased cytotoxicity, increased caspase 3/7 activity, and increased nuclear condensation or fragmentation in BeWo cells regardless of their differentiation status. Investigating mechanisms of apoptosis, DCVC increased H2O2 abundance and decreased PRDX2 mRNA in all three BeWo cell models. DCVC decreased tumor necrosis factor-receptor 1 (TNF-R1) concentration in media and decreased NFKB1 and PRDX1 mRNA expression in syncytialized BeWo cells only. DCVC decreased BCL2 mRNA expression in syncytializing BeWo cells and in syncytialized BeWo cells only. Decreased LGALS3 mRNA was seen in unsyncytialized BeWo cells only. Together, these data suggest roles for oxidative stress and pro-inflammatory mechanisms underlying apoptosis in BeWo cells with differences depending on differentiation state.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
24
|
Salinas-Salmon CE, Murillo-Jauregui C, Gonzales-Isidro M, Espinoza-Pinto V, Mendoza SV, Ruiz R, Vargas R, Perez Y, Montaño J, Toledo L, Badner A, Jimenez J, Peñaranda J, Romero C, Aguilar M, Riveros-Gonzales L, Arana I, Villamor E. Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia. Antioxidants (Basel) 2023; 12:347. [PMID: 36829907 PMCID: PMC9952561 DOI: 10.3390/antiox12020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that fetal exposure to the oxidative stress induced by the combined challenge of preeclampsia (PE) and high altitude would induce a significant impairment in the development of pulmonary circulation. We conducted a prospective study in La Paz (Bolivia, mean altitude 3625 m) in which newborns from singleton pregnancies with and without PE were compared (PE group n = 69, control n = 70). We conducted an echocardiographic study in these infants at the median age of two days. The percentage of cesarean deliveries and small for gestational age (SGA) infants was significantly higher in the PE group. Heart rate, respiratory rate, and oxygen saturation did not vary significantly between groups. Estimated pulmonary arterial pressure and pulmonary vascular resistance were 30% higher in newborns exposed to PE and high altitude compared with those exposed only to high altitude. We also detected signs of right ventricular hypertrophy in infants subjected to both exposures. In conclusion, this study provides evidence that the combination of PE and pregnancy at high altitude induces subclinical alterations in the pulmonary circulation of the newborn. Follow-up of this cohort may provide us with valuable information on the potential increased susceptibility to developing pulmonary hypertension or other pulmonary and cardiovascular disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jesús Jimenez
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | | | - Catherine Romero
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - Martha Aguilar
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | | | | | - Eduardo Villamor
- Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), 6202AZ Maastricht, The Netherlands
| |
Collapse
|
25
|
Hypoxia-Induced GST1 Exerts Protective Effects on Trophoblasts via Inhibiting Reactive Oxygen Species (ROS) Accumulation. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/9391252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hypoxic conditions are a typical extrinsic factor for the modification of trophoblast biological functions, including cell proliferation, migration, and invasion. Hypoxia-induced reactive oxygen species (ROS) accumulation causes chronic trophoblast injury and contributes to preeclampsia (PE). Glutathione-S-transferase P (GSTP1) is a main regulator of ROS. However, it is still unknown whether GSTP1 is involved in ROS regulation under hypoxic conditions. Here, we investigated the expression level of GSTP1 in first-trimester villi placentas compared with full-term placentas and the effect of hypoxic conditions on GSTP1. GSTP1 expression in first-trimester villi placentas was much higher than that in full-term placentas. After hypoxia exposure, GSTP1 was significantly upregulated in JEG3 cells, a trophoblast-like cell line. Hypoxic-induced GSTP1 scavenged ROS accumulated by hypoxia exposure, potentially by promoting GST activity. The inhibitory effects of hypoxia exposure on cell proliferation, migration, and invasion induced by hypoxia exposure were obviously reversed by overexpression of GSTP1. Hypoxia-induced cell apoptosis was also reversed by GSTP1 overexpression, indicating the protective effects of GSTP1 against ROS-induced cell injury. Moreover, overexpressed GSTP1 markedly promoted the cell proliferation, migration, invasion, and colony formation abilities in JEG3 cells, demonstrating that GSP1 also exerts promoting effects under normoxic conditions. These data show that hypoxia-induced GSTP1 expression facilitates trophoblast cell proliferation, migration, and invasion and exerts protective effects under hypoxic conditions, which may play an important role during the increase in PE.
Collapse
|
26
|
Creisher PS, Seddu K, Mueller AL, Klein SL. Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination. Curr Top Microbiol Immunol 2023; 441:111-137. [PMID: 37695427 DOI: 10.1007/978-3-031-35139-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Kumba Seddu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Alice L Mueller
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States.
| |
Collapse
|
27
|
Abonyi OE, Idigo UF, Anakwue CAM, Agbo AJ, Ohagwu CC. Texture analysis of sonographic image of placenta in pregnancies with normal and adverse outcomes, a pilot study. Radiography (Lond) 2023; 29:14-18. [PMID: 36198242 DOI: 10.1016/j.radi.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Many maternal and fetal morbidity and mortality from complications of pregnancy have been attributed to placenta abnormality. Placenta assessment in developing countries is mainly through ultrasonography which is subjective and prone to error. Objective assessment of placental abnormalities through texture analysis has been frequently done using magnetic resonance images with little done on ultrasound generated images, thus, the need for this study. The study is aimed at using statistical texture analysis in characterizing placenta tissue into normal and abnormal placenta as well as testing the accuracy of different texture analysis algorithms in differentiating placenta into normal and abnormal placental tissues. METHODS This longitudinal study involved 500 ultrasound-generated placenta images from patients screened for adverse pregnancy outcomes in a private hospital in Enugu. These images were loaded onto an HP laptop for viewing. Two regions of interest were selected from the placenta tissue where texture features were extracted and were classified into normal and abnormal placentas using MaZda® software version 47 while the accuracy of the classification descriptors was assessed using WEKA classification algorithms. RESULTS Co-occurrence matrix, run length matrix and histogram parameters differentiated normal placenta tissue from abnormal placental tissues (p-value <0.05) while variance is the only absolute gradient parameter that can differentiate normal placenta tissue from abnormal placenta tissues. All feature descriptors show high classification accuracy using KNN and ANN algorithms. CONCLUSION Texture analysis can differentiate normal placenta tissues from abnormal placenta tissue which will reduce the errors associated with subjective assessment of the placenta echogenicity. IMPLICATIONS FOR PRACTICE Integrating these computer-aided algorithms into our ultrasound machines will lead to early detection of abnormal placenta tissues as early management results in better pregnancy outcomes.
Collapse
Affiliation(s)
- Obinna Everistus Abonyi
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology. College of Medicine, University of Nigeria, Enugu Campus, Enugu State, Nigeria
| | - Ugochinyere Felicitas Idigo
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology. College of Medicine, University of Nigeria, Enugu Campus, Enugu State, Nigeria
| | - Chukwunyelu Angel-Mary Anakwue
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology. College of Medicine, University of Nigeria, Enugu Campus, Enugu State, Nigeria
| | - Amechi Julius Agbo
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology. College of Medicine, University of Nigeria, Enugu Campus, Enugu State, Nigeria.
| | - Chukwuemeka Christopher Ohagwu
- Department of Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra state, Nigeria
| |
Collapse
|
28
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
29
|
Interrelation between miRNAs Expression Associated with Redox State Fluctuations, Immune and Inflammatory Response Activation, and Neonatal Outcomes in Complicated Pregnancy, Accompanied by Placental Insufficiency. Antioxidants (Basel) 2022; 12:antiox12010006. [PMID: 36670868 PMCID: PMC9854567 DOI: 10.3390/antiox12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Redox disbalance in placental cells leads to the hyperproduction of reactive oxygen species (ROS), it mediates the dysregulation of the maternal immune tolerance to a semi-allogenic fetus, inducing pro-inflammatory reactions, and it plays a central role in perinatal complications and neonatal disease programming. Microvesicles, which provide transplacental communication between a mother and fetus, contain microRNAs (miRNAs) that are sensitive to oxidative stress (OS) mediators and can control the balance of ROS production and utilization in target cells. In the context of this paradigm, we evaluated the markers of redox balance—MDA and 4-HNE for OS and GPx, and SOD, CAT, and GSH for the antioxidant system in the cord blood plasma of newborns diagnosed with fetal growth restriction (FGR)—by using polarography, spectrophotometry, and Western blotting. The expression of miRNAs associated with OS, immune and inflammatory responses in the blood plasma of newborns with intrauterine pneumonia (IP), neonatal sepsis (NS) and respiratory distress syndrome (RDS) was evaluated by a quantitative RT-PCR. Significant differences in the MDA level and reduced GPx and CAT activity were co-found for early-onset FGR (i.e., <34 gestational age). Significant correlations were found with a low birth weight by Apgar scores with reduced levels of antioxidant enzymes. Indeed, the level of OS markers increased in early-onset FGR in newborns with an extremely low body weight and high echogenicity of the periventricular zones, and reduced in late-onset FGR in newborns with IP, hyperbilirubinemia, intraventricular hemorrhage (IVH) and cerebral cysts. A prognostic model (AUC = 1; cutoff—0.5) was developed to assess the risk of IVH in newborns diagnosed with FGR based on the assessment of the OS markers (i.e., MDA + 4 HNE + CAT + GSH). A significant increase in the miR-127-3p expression was found in the plasma of newborns with NS (<32 GA; p ≤ 0.03 and >32 GA; p ≤ 0.009), IP (>32 GA; p ≤ 0.0001), and RDS (>32 GA; p ≤ 0.03). At the same time, the expression of miR-25-3p (p ≤ 0.03) was increased only in newborns with NS (>32 GA; p ≤ 0.03). The risk of developing IVH for premature newborns with IP (AUC = 0.8; cutoff—0.6) and NS (AUC = 0.68; cutoff—0.49) was assessed based on the miR-25-3p and miR-127-3p expression. Several key transcription factors were identified as the targets of studied miRNA since they are involved in the regulation of OS (NRF2), signaling and activation of the immune response (PRDM1, CCL26) and, also, inflammatory responses (NFKB1). The study of these miRNAs showed that they are involved in the modulation of processes leading to perinatal complications. Moreover, miR-127-3p is related to pro-inflammatory reactions and the formation of the macrophage phenotype in newborns with IP, NS, and RDS, while miR-25-3p is associated with an inhibition of macrophage migration and activation of antioxidant enzymes, which may prevent the development of oxidative damage in newborns with NS.
Collapse
|
30
|
Kissas G, Hwuang E, Thompson EW, Schwartz N, Detre JA, Witschey WR, Perdikaris P. Feasibility of Vascular Parameter Estimation for Assessing Hypertensive Pregnancy Disorders. J Biomech Eng 2022; 144:121011. [PMID: 36128759 PMCID: PMC9836050 DOI: 10.1115/1.4055679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Indexed: 01/19/2023]
Abstract
Hypertensive pregnancy disorders (HPDs), such as pre-eclampsia, are leading sources of both maternal and fetal morbidity in pregnancy. Noninvasive imaging, such as ultrasound (US) and magnetic resonance imaging (MRI), is an important tool for predicting and monitoring these high risk pregnancies. While imaging can measure hemodynamic parameters, such as uterine artery pulsatility and resistivity indices (PI and RI), the interpretation of such metrics for disease assessment relies on ad hoc standards, which provide limited insight to the physical mechanisms underlying the emergence of hypertensive pregnancy disorders. To provide meaningful interpretation of measured hemodynamic data in patients, advances in computational fluid dynamics can be brought to bear. In this work, we develop a patient-specific computational framework that combines Bayesian inference with a reduced-order fluid dynamics model to infer parameters, such as vascular resistance, compliance, and vessel cross-sectional area, known to be related to the development of hypertension. The proposed framework enables the prediction of hemodynamic quantities of interest, such as pressure and velocity, directly from sparse and noisy MRI measurements. We illustrate the effectiveness of this approach in two systemic arterial network geometries: an aorta with branching carotid artery and a maternal pelvic arterial network. For both cases, the model can reconstruct the provided measurements and infer parameters of interest. In the case of the maternal pelvic arteries, the model can make a distinction between the pregnancies destined to develop hypertension and those that remain normotensive, expressed through the value range of the predicted absolute pressure.
Collapse
Affiliation(s)
- Georgios Kissas
- Department of Mechanical Engineering Applied Mechanics,
University of Pennsylvania, Philadelphia, PA
19104
| | - Eileen Hwuang
- Department of Bioengineering, University of
Pennsylvania, Philadelphia, PA 19104
| | | | - Nadav Schwartz
- Maternal Fetal Medicine, Department of Obstetrics and
Gynecology, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104
| | - John A. Detre
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
19104; Department of Neurology, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA
19104
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
19104
| | - Paris Perdikaris
- Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, PA
19104
| |
Collapse
|
31
|
Richardson LS, K Kammala A, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. LAB ON A CHIP 2022; 22:4574-4592. [PMID: 36322152 PMCID: PMC9682442 DOI: 10.1039/d2lc00691j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.
Collapse
Affiliation(s)
- Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Ananth K Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Fortunato
- Obstetrics and Gynecology, Maternal-Fetal Medicine, Ochsner Medical Center, New Orleans, LA, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| |
Collapse
|
32
|
Ji J, Zhao T, Li F. Remediation technology towards zero plastic pollution: Recent advance and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120166. [PMID: 36116565 DOI: 10.1016/j.envpol.2022.120166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of plastic wastes exceeds efforts to eliminate plastic pollution owing to the outbreak of COVID-19 in 2020 and then aggravates inherent environmental threats to the ecosystem. The paper provided a short introduction relating to the hazards of plastic wastes on environment and a detailed statement about plastic toxicity on human. The article stated on plastic how to enter the body and cause harm for us step by step. Given the toxicity and harm of plastic wastes on human, the degradation of plastic wastes via the physical, chemical and biotic methodologies is looked back. The advanced physical techniques are introduced briefly at firstly. Additionally, evaluate on chemical method for plastic decomposition and review on biotic degradation of plastic. The reactive oxygen species and the enzymes play a crucial role in chemical and biotic degradation processes, respectively. The reactive oxygen species are derived from the activated state of oxides, and the enzymes that aid the microorganism to ingest plastic through its metabolic mechanism are secreted by the microorganism. Subsequently, the potential possibility of upcycling plastic is analyzed from two aspects of the technology and application. The innovative technology utilizes sunlight as driver-power of plastic upcycling. And the carbon capture, utilization and sequestration and the growth substrate provided the novel guided directions for plastic recycle. Lastly, the three suggestions on plastic waste management are expected to establish an economy and efficient plastic sorting system, and two engineering solutions on plastic recycle are to make a contribution for sustainable upcycling of plastic.
Collapse
Affiliation(s)
- Jianghao Ji
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
33
|
Hirsch A, Rotem R, Ternovsky N, Hirsh Raccah B. Pravastatin and placental insufficiency associated disorders: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1021548. [PMID: 36438820 PMCID: PMC9682185 DOI: 10.3389/fphar.2022.1021548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background: Uteroplacental insufficiency associated disorders, such as preeclampsia, fetal growth restriction and obstetrical antiphospholipid syndrome, share pathophysiology and risk factors with cardiovascular diseases treated with statins. Objective: To evaluate pregnancy outcomes among women with uteroplacental insufficiency disorders who were treated with statins. Search Strategy: Electronic databases were searched from inception to January 2022 Selection Criteria: Cohort studies and randomized controlled trials. Data collection and analysis: Pooled odds ratios were calculated using a random-effects model; meta-regression was utilized when applicable. Main Results: The analysis included ten studies describing 1,391 women with uteroplacental insufficiency disorders: 703 treated with pravastatin and 688 not treated with statins. Women treated with pravastatin demonstrated significant prolongation of pregnancy (mean difference 0.44 weeks, 95%CI:0.01-0.87, p = 0.04, I2 = 96%) and less neonatal intensive care unit admissions (OR = 0.42, 95%CI: 0.23-0.75, p = 0.004, I2 = 25%). In subgroup analysis, prolongation of pregnancy from study entry to delivery was statistically significant in cohort studies (mean difference 8.93 weeks, 95%CI:4.22-13.95, p = 0.00) but not in randomized control studies. Trends were observed toward a decrease in preeclampsia diagnoses (OR = 0.54, 95%CI:0.27-1.09, p = 0.09, I = 44%), perinatal death (OR = 0.32, 95%CI:0.09-1.13, p = 0.08, I2 = 54%) and an increase in birth weight (mean difference = 102 g, 95%CI: -14-212, p = 0.08, I2 = 96%). A meta-regression analysis demonstrated an association between earlier gestational age at initiation of treatment and a lower risk of preeclampsia development (R2 = 1). Conclusion: Pravastatin treatment prolonged pregnancy duration and improved associated obstetrical outcomes in pregnancies complicated with uteroplacental insufficiency disorders in cohort studies. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/ identifier CRD42020165804 17/2/2020.
Collapse
Affiliation(s)
- Ayala Hirsch
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | - Reut Rotem
- Department of Obstetrics & Gynecology, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | - Natali Ternovsky
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruria Hirsh Raccah
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiology, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
34
|
Wang B, Shen WB, Yang P, Turan S. SARS-CoV-2 infection induces activation of ferroptosis in human placenta. Front Cell Dev Biol 2022; 10:1022747. [PMID: 36425527 PMCID: PMC9679405 DOI: 10.3389/fcell.2022.1022747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Ferroptosis, a regulated non-apoptotic form of cell death, has been implicated in the response to varied types of infectious agents including virus. In this study, we sought to determine whether SARS-CoV-2 infection can induce activation of ferroptosis in the human placenta. We collected placentas from 23 pregnant females with laboratory-confirmed SARS-CoV-2 following delivery and then used RNA in situ hybridization assay for detection of viral positive-sense strand (PSS) to confirm that these placentas have been infected. We also used immunohistochemistry assay to assess expression levels of acyl-CoA synthetase long-chain family member 4 (ACSL4), an essential executioner of ferroptosis in the same specimens. Our results showed that ACSL4 expression was significantly increased in the group with positive positive-sense strand staining compared to their negative counterparts (p = 0.00022). Furthermore, we found that there was a positive trend for increased PSS staining along with increased ACSL4 expression. Our study supports that ferroptosis is activated in the response to SARS-CoV-2 infection in the human placenta, highlighting a molecular mechanism potentially linking this coronavirus infection and pathogenesis of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sifa Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Wilcox AJ, Skjaerven R. 'Cross-over' risks of pregnancy: Are cardiovascular disease risk factors an underlying cause? Paediatr Perinat Epidemiol 2022; 36:824-826. [PMID: 35770319 DOI: 10.1111/ppe.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Rolv Skjaerven
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Plastic and Placenta: Identification of Polyethylene Glycol (PEG) Compounds in the Human Placenta by HPLC-MS/MS System. Int J Mol Sci 2022; 23:ijms232112743. [PMID: 36361542 PMCID: PMC9656682 DOI: 10.3390/ijms232112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
The placenta is a crucial interface between the fetus and the maternal environment. It allows for nutrient absorption, thermal regulation, waste elimination, and gas exchange through the mother's blood supply. Furthermore, the placenta determines important adjustments and epigenetic modifications that can change the phenotypic expression of the individual even long after birth. Polyethylene glycol (PEG) is a polyether compound derived from petroleum with many applications, from medicine to industrial manufacturing. In this study, for the first time, an integration of ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) was used to detect suites of PEG compounds in human placenta samples, collected from 12 placentas, originating from physiological pregnancy. In 10 placentas, we identified fragments of PEG in both chorioamniotic membranes and placental cotyledons, for a total of 36 samples.
Collapse
|
37
|
Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. TOXICS 2022; 10:597. [PMID: 36287877 PMCID: PMC9611505 DOI: 10.3390/toxics10100597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources (micro-sized plastics manufactured on purpose) and secondary sources (breakdown of large plastic items through physical, chemical, and biological processes). Consequently, serious concerns are escalating because MPs can be easily disseminated and contaminate environments, including terrestrial, air, groundwater, marine, and freshwater systems. Furthermore, an exposure to even low doses of MPs during the early developmental stage may induce long-term health effects, even later in life. Accordingly, this study aims to gather the current evidence regarding the effects of MPs exposure on vital body systems, including the digestive, reproductive, central nervous, immune, and circulatory systems, during the early developmental stage. In addition, this study provides essential information about the possible emergence of various diseases later in life (i.e., adulthood).
Collapse
Affiliation(s)
- Nur Hanisah Amran
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Latifah Abd Manaf
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| |
Collapse
|
38
|
Freedman AN, Eaves LA, Rager JE, Gavino-Lopez N, Smeester L, Bangma J, Santos HP, Joseph RM, Kuban KC, O'Shea TM, Fry RC. The placenta epigenome-brain axis: placental epigenomic and transcriptomic responses that preprogram cognitive impairment. Epigenomics 2022; 14:897-911. [PMID: 36073148 PMCID: PMC9475498 DOI: 10.2217/epi-2022-0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The placenta-brain axis reflects a developmental linkage where disrupted placental function is associated with impaired neurodevelopment later in life. Placental gene expression and the expression of epigenetic modifiers such as miRNAs may be tied to these impairments and are understudied. Materials & methods: The expression levels of mRNAs (n = 37,268) and their targeting miRNAs (n = 2083) were assessed within placentas collected from the ELGAN study cohort (n = 386). The ELGAN adolescents were assessed for neurocognitive function at age 10 and the association with placental mRNA/miRNAs was determined. Results: Placental mRNAs related to inflammatory and apoptotic processes are under miRNA control and associated with cognitive impairment at age 10. Conclusion: Findings highlight key placenta epigenome-brain relationships that support the developmental origins of health and disease hypothesis.
Collapse
Affiliation(s)
- Anastasia N Freedman
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Noemi Gavino-Lopez
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA.,School of Nursing and Health Studies, University of Miami, Coral Gables, FL 33124, USA
| | - Robert M Joseph
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karl Ck Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, MA 02118, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Reddy R, Pillay V, Baijnath S, Singh SD, Ramdin S, Naicker T, Govender N. Mating success of timed pregnancies in Sprague Dawley rats: Considerations for execution. Reprod Biol 2022; 22:100682. [PMID: 35930886 DOI: 10.1016/j.repbio.2022.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
This study compares three different mating techniques in Sprague-Dawley rats, using the pregnancy rate as the main indicator of success. It provides recommendations for timed-pregnancy experiments to achieve an appropriate sample size for the study of human pregnancy disorders. The implementation of a preconditioning phase, determination of the estrous cycle, the use of two mating strategies (Lee-Boot and Whitten effect), female: male mating ratios, and cohabitation duration should be considered as they improve the mating success rate.
Collapse
Affiliation(s)
- Rebecca Reddy
- Dept of Basic Medical Science, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Virushka Pillay
- Dept of Basic Medical Science, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Sooraj Baijnath
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sanil D Singh
- Biomedical Resource Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Sapna Ramdin
- Dept of Basic Medical Science, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Nalini Govender
- Dept of Basic Medical Science, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
40
|
Chakraborty P, Chatterjee S, Chatterjee I, Mitra I, Kalapahar S, Sharma S, Chattopadhyay R, Haldar R, Chaudhury K, Chakravarty B. Attenuation of placental pyruvate kinase M2 promotes oxidative imbalance and enhances inflammatory- apoptosis cross talk in rats with hyperhomocysteinemia associated pregnancy loss.. [DOI: 10.21203/rs.3.rs-1997950/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
10-15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.10–15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.
Collapse
Affiliation(s)
| | - Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata- 700006
| | | | - Imon Mitra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | | | | | | - Rajen Haldar
- Department of Physiology, UCSTA, University of Calcutta
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | |
Collapse
|
41
|
Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. MARINE POLLUTION BULLETIN 2022; 181:113832. [PMID: 35716489 DOI: 10.1016/j.marpolbul.2022.113832] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand.
| | - Orasai Faikhaw
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Pornpun Sakunkoo
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Muang District, Khon Kaen 40002, Thailand.
| | - Chumlong Arunlertaree
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science and Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| |
Collapse
|
42
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
43
|
Enquobahrie DA, MacDonald J, Hussey M, Bammler TK, Loftus CT, Paquette AG, Byington N, Marsit CJ, Szpiro A, Kaufman JD, LeWinn KZ, Bush NR, Tylavsky F, Karr CJ, Sathyanarayana S. Prenatal exposure to particulate matter and placental gene expression. ENVIRONMENT INTERNATIONAL 2022; 165:107310. [PMID: 35653832 PMCID: PMC9235522 DOI: 10.1016/j.envint.2022.107310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND While strong evidence supports adverse maternal and offspring consequences of air pollution, mechanisms that involve the placenta, a key part of the intrauterine environment, are largely unknown. Previous studies of air pollution and placental gene expression were small candidate gene studies that rarely considered prenatal windows of exposure or the potential role of offspring sex. We examined overall and sex-specific associations of prenatal exposure to fine particulate matter (PM2.5) with genome-wide placental gene expression. METHODS Participants with placenta samples, collected at birth, and childhood health outcomes from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle, WA) (n = 205) cohorts of the ECHO-PATHWAYS Consortium were included in this study. PM2.5 exposures during trimesters 1, 2, 3, and the first and last months of pregnancy, were estimated using a spatiotemporal model. Cohort-specific linear adjusted models were fit for each exposure window and expression of >11,000 protein coding genes from paired end RNA sequencing data. Models with interaction terms were used to examine PM2.5-offspring sex interactions. False discovery rate (FDR < 0.10) was used to correct for multiple testing. RESULTS Mean PM2.5 estimate was 10.5-10.7 μg/m3 for CANDLE and 6.0-6.3 μg/m3 for GAPPS participants. In CANDLE, expression of 13 (11 upregulated and 2 downregulated), 20 (11 upregulated and 9 downregulated) and 3 (2 upregulated and 1 downregulated) genes was associated with PM2.5 in the first trimester, second trimester, and first month, respectively. While we did not find any statistically significant association, overall, between PM2.5 and gene expression in GAPPS, we found offspring sex and first month PM2.5 interaction for DDHD1 expression (positive association among males and inverse association among females). We did not observe PM2.5 and offspring sex interactions in CANDLE. CONCLUSION In CANDLE, but not GAPPS, we found that prenatal PM2.5 exposure during the first half of pregnancy is associated with placental gene expression.
Collapse
Affiliation(s)
- Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, WA, United States.
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Michael Hussey
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Alison G Paquette
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Nora Byington
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Adam Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, United States
| | - Joel D Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, United States; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Catherine J Karr
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
44
|
Rat P, Leproux P, Fouyet S, Olivier E. Forskolin Induces Endocrine Disturbance in Human JEG-3 Placental Cells. TOXICS 2022; 10:toxics10070355. [PMID: 35878261 PMCID: PMC9317975 DOI: 10.3390/toxics10070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Forskolin, used in folk medicine since ancient times, is now available as a dietary supplement, with an indication as a fat burner and appetite suppressant. However, the safety of forskolin is poorly documented especially for pregnant women. The question that we raised is what about the safety of forskolin in pregnant women? As the placenta, an endocrine organ, is the key organ of pregnancy, we evaluated the in vitro placental toxicity of forskolin. We focused first on the activation of a P2X7 degenerative receptor as a key biomarker for placental toxicity, and second on steroid and peptide hormonal secretion. We observed that forskolin activated P2X7 receptors and disturbed estradiol, progesterone, hPL and hyperglycosylated hCG secretion in human placental JEG-Tox cells. To the best of our knowledge, we highlighted, for the first time, that forskolin induced endocrine disturbance in placental cells. Forskolin does not appear to be a safe product for pregnant women and restrictions should be taken.
Collapse
Affiliation(s)
- Patrice Rat
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Pascale Leproux
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Sophie Fouyet
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Léa Nature, 17180 Périgny, France
| | - Elodie Olivier
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Correspondence:
| |
Collapse
|
45
|
Lu Y, Tang Q, Yang S, Cheng Y, Li M, Guo D, Fu Z, Jiang H, Wu W. Downregulation of lncRNA USP2‑AS1 in the placentas of pregnant women with non‑diabetic fetal macrosomia promotes trophoblast cell proliferation. Mol Med Rep 2022; 26:250. [PMID: 35674181 PMCID: PMC9218729 DOI: 10.3892/mmr.2022.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Macrosomia is a common perinatal complication, with a series of adverse effects on newborns and pregnant women. However, the effects of long non-coding RNAs (lncRNAs) on non-diabetic fetal macrosomia (NDFMS) remain unclear. The aim of the present study was to investigate whether aberrant lncRNA expression in the placenta is involved in the pathogenesis of NDFMS and to elucidate its biological mechanisms. The expression profile of lncRNAs in the placentas of pregnant women with NDFMS was investigated using an Agilent Human LncRNA Microarray. Differentially expressed lncRNAs were selected for validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, the function of lncRNA ubiquitin-specific peptidase 2 antisense RNA 1 (USP2-AS1) was investigated using a trophoblast cell line. The results revealed that 763 lncRNAs were upregulated and 129 lncRNAs were downregulated in the placentas of women in the NDFMS group (|FC| ≥2.0). A total of 10 lncRNAs (|FC| ≥4.0, signal value ≥50) were selected for validation using two-stage RT-qPCR, indicating that the expression trends of the 10 differentially expressed lncRNAs in the NDFMS group (n=8 vs. 8 and 48 vs. 48) were consistent with the microarray data. In addition, a significant downregulation in the levels of lncRNA USP2-AS1 was observed in both the microarray data and second-stage verification. The overexpression of lncRNA USP2-AS1 induced G1 phase cell cycle arrest and the number of cells entering S phase was reduced. In addition, the viability of HTR-8/SVneo cells was significantly inhibited when lncRNA USP2-AS1 was overexpressed. Therefore, these findings demonstrated that lncRNAs were significantly differentially expressed in the placentas of pregnant women with NDFMS and that the downregulation of lncRNA USP2-AS1 may be involved in the pathogenesis of NDFMS, by promoting trophoblast cell viability.
Collapse
Affiliation(s)
- Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Qiuqin Tang
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Shanshan Yang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Dan Guo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ziqiang Fu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hua Jiang
- Department of Gynecology and Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
46
|
Pascual F. Trophoblast Organoids: A New Tool for Studying Placental Development. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:54003. [PMID: 35638568 PMCID: PMC9153080 DOI: 10.1289/ehp11351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
|
47
|
Xu C, Ma H, Gao F, Zhang C, Hu W, Jia Y, Xu J, Hu J. Screening of Organophosphate Flame Retardants with Placentation-Disrupting Effects in Human Trophoblast Organoid Model and Characterization of Adverse Pregnancy Outcomes in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57002. [PMID: 35503735 PMCID: PMC9064024 DOI: 10.1289/ehp10273] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Abnormal placental development may result in adverse pregnancy outcomes and metabolic diseases in adulthood; however, it remains unknown whether and how xenobiotics affect human placentation. OBJECTIVES This study aimed to screen and identify placentation-disrupting chemicals in commonly used organophosphate flame retardants (OPFRs) and, if identified, to investigate potential adverse effects on placentation in relation to adverse pregnancy outcomes and metabolic disorder in offspring in mice. METHODS We devised a high-throughput immunofluorescence screening assay based on human trophoblast organoids and used it to screen OPFRs that inhibit the proliferation of organoids. One identified chemical was assessed for its effects on placentation by evaluating villous cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts using immunofluorescence and a mitochondrial stress test after 2 d of exposure. A 10-d exposure study was further performed to observe the dynamic effect of the OPFR on the structure of the organoids. RNA-sequencing and western blotting experiments were performed to explore the associated pathways, and a potential binding protein was identified by immunoprecipitation and in vitro kinase activity assays. Animal studies were performed to determine whether the findings in organoids could be replicated in mice and to observe adverse pregnancy outcomes. RESULTS The proliferation of organoids exposed to three aryl-OPFRs was significantly lower than the proliferation of control organoids. Further analysis demonstrated that one such chemical, 2-ethylhexyl-diphenyl phosphate (EHDPP), disrupted placentation in organoids. Mechanistically, EHDPP interfered with insulin-like growth factor 1 receptor (IGF1R) to inhibit aerobic respiration. Mice exposed to EHDPP at a physiological human concentrations exhibited immature and mature placental disorders, which correlated with fetal growth restriction, implantation failure, stillbirth, and impaired glucose tolerance. CONCLUSIONS The human trophoblast organoid model showed that the commonly used OPFRs disrupted placentation via IGF1R, indicating that its use may contribute to adverse pregnancy outcomes and metabolic disorders in offspring. https://doi.org/10.1289/EHP10273.
Collapse
Affiliation(s)
- Chenke Xu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Chenhao Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
48
|
Elkin ER, Su AL, Kilburn BA, Bakulski KM, Armant DR, Loch-Caruso R. Toxicity assessments of selected trichloroethylene and perchloroethylene metabolites in three in vitro human placental models. Reprod Toxicol 2022; 109:109-120. [PMID: 35304307 PMCID: PMC9107309 DOI: 10.1016/j.reprotox.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023]
Abstract
Residential and occupational exposures to the industrial solvents perchloroethylene (PERC) and trichloroethylene (TCE) present public health concerns. In humans, maternal PERC and TCE exposures can be associated with adverse birth outcomes. Because PERC and TCE are biotransformed to toxic metabolites and placental dysfunction can contribute to adverse birth outcomes, the present study compared the toxicity of key PERC and TCE metabolites in three in vitro human placenta models. We measured cell viability and caspase 3 + 7 activity in the HTR-8/SVneo and BeWo cell lines, and caspase 3 + 7 activity in first trimester villous explant cultures. Cultures were exposed for 24 h to 5-100 µM S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), or 5-200 µM trichloroacetate (TCA) and dichloroacetate (DCA). DCVC significantly reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells at a lower concentration (20 µM) compared with concentrations toxic to BeWo cells and villous explants. Similarly, TCVC reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells but not in BeWo cells. TCA and DCA had only negligible effects on HTR-8/SVneo or BeWo cells. This study advances understanding of potential risks of PERC and TCE exposure during pregnancy by identifying metabolites toxic in placental cells and tissues.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian A Kilburn
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - D Randall Armant
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Loverro MT, Di Naro E, Nicolardi V, Resta L, Mastrolia SA, Schettini F, Capozza M, Loverro M, Loverro G, Laforgia N. Pregnancy Complications, Correlation With Placental Pathology and Neonatal Outcomes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 2:807192. [PMID: 36994339 PMCID: PMC10012052 DOI: 10.3389/fcdhc.2021.807192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022]
Abstract
PurposeWe aimed to clarify and contribute to a better comprehension of associations and correlations between placental histological findings, pregnancy evolution, and neonatal outcomes.Study DesignThis is a longitudinal and prospective observational study, performed between May 2015 and May 2019, on 506 pregnant women. Clinical data related to pregnancy outcome, neonatal health status, and placental histology were primarily collected. Twin pregnancies or malformed newborns were excluded and therefore the study was conducted on 439 cases. These cases have been then subdivided into the following study groups: (a) 282 placentas from pathological pregnancies; and, (b) a control group of 157 pregnancies over 33 weeks of gestational age, defined as physiological or normal pregnancies due to the absence of maternal, fetal, and early neonatal pathologies, most of which had undergone elective cesarean section for maternal or fetal indication.ResultsA normal placenta was present in 57.5% of normal pregnancies and in 42.5% of pathological pregnancies. In contrast, placental pathology was present in 26.2% of normal pregnancies and 73.8% of pathological pregnancies. Comparison of the neonatal health status with the pregnancy outcome showed that, among the 191 newborns classified as normal, 98 (51.3%) were born from a normal pregnancy, while 93 (48.7%) were born from mothers with a pathological pregnancy. Among the 248 pathological infants, 59 (23.8%) were born from a mother with a normal pregnancy, while 189 (76.2%) were born from pregnancies defined as pathological.ConclusionPlacental histology must be better understood in the context of natural history of disease. Retrospective awareness of placental damage is useful in prevention in successive pregnancy, but their early identification in the evolving pregnancy could help in association with biological markers or more sophisticated instruments for early diagnosis.
Collapse
Affiliation(s)
- Maria Teresa Loverro
- Department of Biomedical Science and Human Oncology, Section of Neonatology and Neonatal Intensive Care, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Edoardo Di Naro
- Department Interdisciplinary Medicine, Unit of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Vittorio Nicolardi
- Department of Economics and Finance University of Bari “Aldo Moro”, Bari, Italy
| | - Leonardo Resta
- Department Emergency and Organ Transplantation, Institute of Pathology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ospedale dei Bambini “Vittore Buzzi”, University of Milan, Milan, Italy
- *Correspondence: Salvatore Andrea Mastrolia,
| | - Federico Schettini
- Department of Biomedical Science and Human Oncology, Section of Neonatology and Neonatal Intensive Care, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Manuela Capozza
- Department of Biomedical Science and Human Oncology, Section of Neonatology and Neonatal Intensive Care, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Matteo Loverro
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giuseppe Loverro
- Department Interdisciplinary Medicine, Unit of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Nicola Laforgia
- Department of Biomedical Science and Human Oncology, Section of Neonatology and Neonatal Intensive Care, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
50
|
Turan OM, Babischkin JS, Aberdeen GW, Turan S, Harman CR, Pepe GJ, Albrecht ED. B-flow/spatiotemporal image correlation M-mode: novel ultrasound method that detects decrease in spiral artery luminal diameter in first trimester in primate model of impaired spiral artery remodeling. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:358-364. [PMID: 34358371 PMCID: PMC9301675 DOI: 10.1002/uog.23753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine if B-flow/spatiotemporal image correlation (STIC) M-mode ultrasonography detects a decrease in spiral artery luminal diameter and volume flow during the first trimester in a non-human primate model of impaired spiral artery remodeling (SAR). METHODS Pregnant baboons were treated daily with estradiol benzoate on days 25-59 of the first trimester (term, 184 days), or remained untreated. On day 60 of gestation, spiral artery luminal diameter (in seven untreated and 12 estradiol-treated baboons) and volume flow (in four untreated and eight estradiol-treated baboons) were quantified by B-flow/STIC M-mode ultrasonography. In addition, in 15 untreated and 18 estradiol-treated baboons, the percent of spiral arteries remodeled by extravillous trophoblasts was quantified ex vivo by immunohistochemical image analysis on placental basal plate tissue collected via Cesarean section on day 60. Findings were compared between treated and untreated animals. The correlation between spiral artery luminal diameter and percent of SAR was assessed in three untreated and six estradiol-treated baboons which underwent both B-flow/STIC M-mode ultrasound and quantification of SAR. RESULTS The proportion of spiral arteries greater than 50 µm in diameter remodeled by extravillous trophoblasts was 70% lower in estradiol-treated baboons than in untreated animals (P = 0.000001). Spiral artery luminal diameter in systole and diastole, as quantified by B-flow/STIC M-mode in the first trimester of pregnancy, was 31% (P = 0.014) and 50% (P = 0.005) lower, respectively, and volume flow was 85% lower (P = 0.014), in SAR-suppressed baboons compared with untreated animals. There was a significant correlation between spiral artery luminal diameter as quantified by B-flow/STIC M-mode ultrasonography and the percent of SAR (P < 0.05). CONCLUSION B-flow/STIC M-mode ultrasonography provides a novel real-time non-invasive method to detect a decrease in uterine spiral artery luminal diameter and volume flow during the cardiac cycle, reflecting decreased distensibility of the vessel wall, in the first trimester in a non-human primate model of defective SAR. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- O. M. Turan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - J. S. Babischkin
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - G. W. Aberdeen
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - S. Turan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - C. R. Harman
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - G. J. Pepe
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVAUSA
| | - E. D. Albrecht
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|