1
|
Siegler Lathrop T, Perego S, Bastiaanssen TFS, van Hemert S, Chronakis IS, Diaz Heijtz R. Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention. Brain Behav Immun 2024; 122:547-554. [PMID: 39197545 DOI: 10.1016/j.bbi.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
Collapse
Affiliation(s)
- Tatiana Siegler Lathrop
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | - Sarah Perego
- Department of Neuroscience, Karolinska Institutet, Stockholm Sweden
| | | | - Saskia van Hemert
- Wageningen Bioveterinary Research, Wageningen University & Research, the Netherlands
| | - Ioannis S Chronakis
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | | |
Collapse
|
2
|
Guedj E, Cionca A, Péron JA, Ayubcha C, Assal F, Horowitz T, Alavi A. Long Coronavirus Disease and the Brain: Molecular Neuroimaging Insights into Neurologic and Psychiatric Sequelae. PET Clin 2024:S1556-8598(24)00084-1. [PMID: 39482218 DOI: 10.1016/j.cpet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to a variety of health challenges, with "long COVID" emerging as a widespread and debilitating post-acute syndrome among a considerable number of infected patients. This PET review synthesizes current evidence of the neurologic and psychiatric sequelae of COVID. This review also explores the pathophysiological mechanisms of these results, including astrocyte dysfunction and glutamate dysregulation, as well as the multimodal comparison to MR imaging findings. The findings underscore the potential for long-term brain injury. Additionally, the authors discuss the role of advanced imaging multimodal techniques in diagnosing, monitoring, and guiding treatment strategies for long COVID.
Collapse
Affiliation(s)
- Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France.
| | - Alexandre Cionca
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julie A Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland; Neurology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frédéric Assal
- Neurology Division, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tatiana Horowitz
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Butler E, Clarke M, Spirtos M, Keeffe LMO, Dooley N. Pregnancy complications and childhood mental health: is the association modified by sex or adverse social circumstances? Findings from the 'growing up in Ireland' national infant cohort study. Soc Psychiatry Psychiatr Epidemiol 2024; 59:1697-1707. [PMID: 38684515 PMCID: PMC11464566 DOI: 10.1007/s00127-024-02678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Specific pregnancy complications, socioeconomic position and sex have all been independently associated with child mental health outcomes, but their combined effects remain unclear. We examined whether total number of complications experienced in the pregnancy associated with mental health at 5 and 9-years, and whether this varied by sex or adverse social circumstances. Pregnancy complications were self-reported at 9-months post-natally from a list of 16 complications. Parents completed the Strengths and Difficulties Questionnaire (SDQ) when their child was 5 and 9-years. The primary outcome was the SDQ-total and scoring in the clinical range (> 16) was a secondary outcome. We applied generalized linear mixed models to a large nationally representative Irish cohort (GUI; n = 11,134). Analyses were adjusted for sex, adverse social circumstances (at 9-months), and gestational smoking. We included an interaction term between pregnancy complications and each variable respectively in separate models to examine if associations varied by sex or adverse circumstances.After controlling for covariates, total complications associated with mental health at 5 and 9-years. Each additional pregnancy complication conferred a 10% higher total-SDQ score (exponentiated co-efficient 1.10 [95%CI 1.06-1.14], 1.20 [1.15-1.26], 1.20 [1.12-1.29] and 1.34 [1.21-1.48] for 1, 2, 3 and 4 + complications respectively). For the dichotomised outcome, generally increasing odds for clinical levels of mental health difficulties were observed (OR 1complication = 1.89, 95%CI [1.37-2.59]; OR 2complications = 2.31, 95%CI [1.53-3.50]; OR 3complications = 1.77, 95%CI [0.89-3.52]; OR 4 + complications = 6.88, 95%CI [3.29-14.40]). Females had significantly lower odds of exhibiting clinically significant mental health difficulties than males (OR = 0.43, 95%CI[0.32-0.57]).There was no evidence that the association between pregnancy complications and child's mental health varied by sex or social circumstances at 5 or 9-years. Males exposed to numerous pregnancy complications in the context of adverse social circumstances had the highest predicted probability of having mental health difficulties in middle childhood.
Collapse
Affiliation(s)
- Emma Butler
- Dept of Psychology, School of Population Health, Royal College of Surgeons Ireland, Dublin, Ireland.
| | - Mary Clarke
- Dept of Psychology, School of Population Health & Dept of Psychiatry, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Michelle Spirtos
- Dept of Occupational Therapy, Trinity College Dublin, Dublin, Ireland
| | - Linda M O' Keeffe
- School of Public Health, University College Cork, Cork, Ireland & MRC Integrative Epidemiology Unit & Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Niamh Dooley
- Centre for Rheumatic Diseases, School of Immunology & Microbial Sciences, Kings College London, UK & Dept of Psychiatry, Royal College of Surgeons Ireland, Dublin, Ireland
| |
Collapse
|
4
|
Nilsson IAK, Ozsvar J, Gissler M, Lavebratt C. Maternal Eating Disorders, Body Mass Index, and Offspring Psychiatric Diagnoses. JAMA Netw Open 2024; 7:e2440517. [PMID: 39436646 DOI: 10.1001/jamanetworkopen.2024.40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Importance Maternal nutrition is essential in fetal development; thus, disordered eating may influence this process and contribute to the development of offspring psychiatric disorders. Objective To investigate the association of maternal eating disorders and prepregnancy body mass index (BMI) with offspring psychiatric diagnoses. Design, Setting, and Participants This population-based cohort study used Finnish national registers to assess all live births from January 1, 2004, through December 31, 2014, with follow-up until December 31, 2021. The data analyses were conducted from September 1, 2023, to September 30, 2024. Exposures Maternal eating disorder and prepregnancy BMI. Main Outcomes and Measures Primary outcomes were 9 neurodevelopmental and psychiatric offspring diagnoses. Cox proportional hazards modeling adjusted for potential risk factors in the development of the outcome disorders was applied in 2 models. Secondary analyses were stratified for adverse birth outcomes (prematurity, small size for gestational age, and low Apgar score) or comorbid offspring eating disorders. Categories of BMI (calculated as weight in kilograms divided by height in meters squared) included underweight (BMI <18.5), normal weight (18.5-24.9), overweight (25.0-29.9), obesity (30.0-34.9), and severe obesity (≥35.0). Results The mean (SD) age of 392 098 included mothers was 30.15 (5.38) years, 42 590 mothers (10.86%) were born outside of Finland, 6273 mothers (1.60%) had a history of an eating disorder, 23 114 mothers (5.89%) had prepregnancy underweight, and 208 335 (53.13%) mothers had overweight or obesity. Among 649 956 included offspring, 332 359 (51.14%) were male, and 106 777 (16.43%) had received a neurodevelopmental or psychiatric diagnosis. Maternal eating disorders, prepregnancy underweight, and overweight or obesity were associated with most of the studied mental diagnoses in offspring, even after adjusting for potential covariates. The largest effect sizes were observed for maternal eating disorders not otherwise specified in association with offspring sleep disorders (hazard ratio [HR], 3.34 [95% CI, 2.39-4.67]) and social functioning and tic disorders (HR, 2.79 [95% CI, 2.21-3.52]), while for maternal severe prepregnancy obesity, offspring intellectual disabilities (HR, 2.04 [95% CI, 1.83-2.28]) had the largest effect size. Adverse birth outcomes further increased the risk of offspring having other feeding disturbances of childhood and infancy (eg, HR, 4.53 [95% CI, 2.97-6.89] for maternal eating disorders) and attention-deficit/hyperactivity disorder and conduct disorder (eg, HR, 2.27 [95% CI, 1.74-2.96] for maternal anorexia nervosa). Conclusions and Relevance In this population-based cohort study including 392 098 mothers and 649 956 offspring, offspring from mothers with an eating disorder history or prepregnancy BMI outside normal weight were at higher risk of psychiatric disorders. The results differed somewhat between the 2 exposures with regard to which offspring diagnoses had associations, and effect sizes were typically larger for maternal eating disorders vs BMI. These findings suggest a need to consider these 2 exposures clinically to help prevent offspring mental illness.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Judit Ozsvar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Restellini R, Golay P, Jenni R, Baumann PS, Alameda L, Allgäuer L, Steullet P, Abrahamyan Empson L, Mebdouhi N, Do KQ, Conus P, Dwir D, Klauser P. Winter birth: A factor of poor functional outcome in a Swiss early psychosis cohort. Schizophr Res 2024; 274:206-211. [PMID: 39341100 DOI: 10.1016/j.schres.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Winter birth has consistently been identified as a risk factor for schizophrenia. This study aimed to determine whether individuals born during this season are also at higher risk for early psychosis and whether this is associated with distinct functional and clinical outcomes. METHODS We conducted a prospective study on 222 patients during their early phase of psychosis in Switzerland, nested in the Treatment and Early Intervention in Psychosis (TIPP) cohort. We compared the birth trimesters of these patients with those of the general Swiss population. Additionally, we evaluated the Global Assessment of Functioning scale (GAF) and the Positive and Negative Syndrome Scale (PANSS) scores among patients born in winter (January to March) versus those born during the rest of the year during a three-year follow-up period. RESULTS A significantly higher proportion of patients experiencing early psychosis were born in winter compared to the general Swiss population. Patients born in winter had significantly lower GAF scores at 6 months, 24 months, and 36 months of follow-up, compared to patients born during the rest of the year. They also manifested fewer positive symptoms, as indicated by the PANSS positive subscale. CONCLUSION Birth in winter appears to be associated with a lower functional outcome and potentially distinct symptomatology in the early phase of psychosis.
Collapse
Affiliation(s)
- Romeo Restellini
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Service of Emergency Medicine, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Golay
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; La Source School of Nursing, HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis Alameda
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK; Centro Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Departamento de Psiquiatria, Universidad de Sevilla, Sevilla, Spain
| | - Larissa Allgäuer
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lilith Abrahamyan Empson
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadir Mebdouhi
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Quang Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Service of Child and Adolescent Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Waddell J, Lin S, Carter K, Truong T, Hebert M, Ojeda N, Fan LW, Bhatt A, Pang Y. Early Postnatal Neuroinflammation Produces Key Features of Diffuse Brain White Matter Injury in Rats. Brain Sci 2024; 14:976. [PMID: 39451991 PMCID: PMC11505921 DOI: 10.3390/brainsci14100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Perinatal infection is a major risk factor for diffuse white matter injury (dWMI), which remains the most common form of neurological disability among very preterm infants. The disease primarily targets oligodendrocytes (OL) lineage cells in the white matter but also involves injury and/or dysmaturation of neurons of the gray matter. This study aimed to investigate whether neuroinflammation preferentially affects the cellular compositions of the white matter or gray matter. METHOD Neuroinflammation was initiated by intracerebral administration of lipopolysaccharide (LPS) to rat pups at postnatal (P) day 5, and neurobiological and behavioral outcomes were assessed between P6 and P21. RESULTS LPS challenge rapidly activates microglia and astrocytes, which is associated with the inhibition of OL and neuron differentiation leading to myelination deficits. Specifically, neuroinflammation reduces the immature OLs but not progenitors and causes acute axonal injury (β-amyloid precursor protein immunopositivity) and impaired dendritic maturation (reduced MAP2+ neural fiber density) in the cortical area at P7. Neuroinflammation also reduces the expression of doublecortin in the hippocampus, suggesting compromise in neurogenesis. Utilizing a battery of behavioral assessments, we found that LPS-exposed animals exhibited deficits in sensorimotor, neuromuscular, and cognitive domains. CONCLUSION Our overall results indicate that neuroinflammation alone in the early postnatal period can produce cardinal neuropathological features of dWMI.
Collapse
Affiliation(s)
- John Waddell
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Shuying Lin
- Department of Physical Therapy, School of Health-Related Professionals, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Kathleen Carter
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Tina Truong
- Undergraduate Summer Research Program, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.T.)
| | - May Hebert
- Undergraduate Summer Research Program, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.T.)
| | - Norma Ojeda
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Lir-Wan Fan
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Abhay Bhatt
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Yi Pang
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| |
Collapse
|
7
|
Wu YX, Li MJ, Liu Y, Guo M, Lan MN, Zheng HJ. ASPG and DAD1 are potential placental-derived biomarkers for ASD-like symptom severity levels in male/female offspring. Placenta 2024; 155:78-87. [PMID: 39154487 DOI: 10.1016/j.placenta.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION An early evaluating system for autism spectrum disorder (ASD) severity is crucial. Questionnaire survey is challenging for accurately assessing the severity levels for ASD in children. METHODS Offspring with ASD-like phenotypes were induced by treating pregnant mice with Poly (I:C) at GD12.5 and the placentae corresponding to the offspring were obtained by caesarean. The autism severity composite score (ASCS) for offspring was calculated through behavioral tests. HE staining and immunohistochemistry were used to observe the morphology of placenta. Candidate biomarkers were identified by weighted protein co-expression network analysis (WPCNA) combined with machine learning and further validated by ELISA. Sperman's was used to analyze the correlation between biomarkers and metabolome. RESULTS The placental weight and mean vascular area of male offspring with ASD-like phenotypes were significantly decreased compared with typical mice. According to the WPCNA, four modules were identified and significantly correlated with ASCS of offspring. Two biomarkers (ASPG and DAD1) with high correlation with ASCS in offspring were identified. DISCUSSION VEGF pathway may contribute to sexual dimorphism in placental morphology within mice with ASD-like phenotypes in term. The placental ASPG and DAD1 levels could reflect ASD-like symptom severity levels in male/female mice offspring.
Collapse
Affiliation(s)
- Yi-Xiao Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
de Souza RSX, Quintino-Moro A, Engelbrecht Zantut-Wittmann D, Fernandes A. Antithyroid Antibodies and Reproductive Parameters of Women with Hashimoto's Thyroiditis. Endocr Res 2024:1-8. [PMID: 39320966 DOI: 10.1080/07435800.2024.2405147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES/INTRODUCTION To evaluate the presence and concentration of antithyroid peroxidase (TPOAb) and antithyroglobulin (TGAb) antibodies at the onset of Hashimoto's Thyroiditis (HT) and their association with disease characteristics and reproductive parameters before and after diagnosis. METHODS This is a cross-sectional study with 65 women with HT followed in an outpatient clinic. The data was collected by interviews and review of medical records. The variables were characteristics of the disease; TPOAb and TGAb measurements; pregnancies; live children; premature births; pregnancy losses and infertility. We used the chi-square or Fisher's exact tests, the Mann-Whitney test and the Spearman correlation. The significance level was set at 5%. RESULTS The mean age at diagnosis was 38 (SD ± 11.1) years and the duration of the disease was 7.5 (SD ± 5.3) years; 46% of the women reported infertility periods. 59/65 (90.7%) women had TPOAb and 42 (64.6%) had TGAb antibodies. Comparison between the groups with and without TPOAb or TGAb showed no differences between all variables studied. We found positive correlations between TPOAb concentration and preterm births and thyroid volume; and TGAb concentration was positively correlated with age. CONCLUSION The presence of autoantibodies did not influence reproductive parameters; TPOAb concentration was correlated with premature births and thyroid volume.
Collapse
Affiliation(s)
- Rafaela Silveira Ximenes de Souza
- Gynaecology Division, Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandra Quintino-Moro
- Gynaecology Division, Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Arlete Fernandes
- Gynaecology Division, Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
DiPiero MA, Rodrigues PG, Justman M, Roche S, Bond E, Gonzalez JG, Davidson RJ, Planalp EM, Dean DC. Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. Brain Struct Funct 2024:10.1007/s00429-024-02853-w. [PMID: 39313671 DOI: 10.1007/s00429-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - McKaylie Justman
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Sophia Roche
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Elizabeth Bond
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jose Guerrero Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Christensen N, Linden M, Muschalla B. Neurodevelopmental Impairments in Adult Psychosomatic Patients. J Clin Med 2024; 13:5566. [PMID: 39337051 PMCID: PMC11432227 DOI: 10.3390/jcm13185566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Neuropsychological, neurodevelopmental, or minimal cerebral dysfunctions (MCD) can be found in many patients with mental disorders. They can be masked by other symptoms, impair the course of the illness, and impair work and social participation. Despite a long history of research, there is still a lack of data on the spectrum, prevalence, and consequences of these dysfunctions in patients with chronic illness. In this study, we compared patients with and without a history of neurocognitive problems in childhood for present neuropsychological dysfunctions. Methods: A convenience sample of 1453 psychosomatic inpatients completed the MCD scale, assessing neurodevelopmental issues in childhood and current neuropsychological dysfunctions. Additional assessments were the Attention Deficit Hyperactivity Self Rating Scale (ADHS-SB) and the Symptom Checklist 90 (SCL-90). Results: Significant early neurodevelopmental problems were reported by 8.87% of the patients. This group also reported a significantly higher rate of MCD symptoms and general psychosomatic symptoms (SCL-90) as compared with other patients. Conclusions: There is a notable prevalence of neuropsychological dysfunctions in psychosomatic patients in general, and especially in those with early neurodevelopmental problems. To adequately address specific potentially participation-relevant impairments, a broader diagnostic approach is necessary, including exploration of MCD history and present neuropsychological dysfunctions.
Collapse
Affiliation(s)
- Nils Christensen
- Department of Psychotherapy and Diagnostics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Michael Linden
- Department of Psychosomatic Medicine, Research Group Psychosomatic Rehabilitation, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Beate Muschalla
- Department of Psychotherapy and Diagnostics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Herbein M, Barbosa S, Collet O, Khalfallah O, Navarro M, Bailhache M, IV N, Aouizerate B, Sutter-Dallay AL, Koehl M, Capuron L, Ellul P, Peyre H, Van der Waerden J, Melchior M, Côté S, Heude B, Glaichenhaus N, Davidovic L, Galera C. Cord serum cytokines at birth and children's trajectories of mood dysregulation symptoms from 3 to 8 years: The EDEN birth cohort. Brain Behav Immun Health 2024; 38:100768. [PMID: 38586283 PMCID: PMC10990861 DOI: 10.1016/j.bbih.2024.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
There is growing evidence that in utero imbalance immune activity plays a role in the development of neurodevelopmental and psychiatric disorders in children. Mood dysregulation (MD) is a debilitating transnosographic syndrome whose underlying pathophysiological mechanisms could be revealed by studying its biomarkers using the Research Domain Criteria (RDoC) model. Our aim was to study the association between the network of cord serum cytokines, and mood dysregulation trajectories in offsprings between 3 and 8 years of age. We used the data of a study nested in the French birth cohort EDEN that took place from 2003 to 2014 and followed mother-child dyads from the second trimester of pregnancy until the children were 8 years of age. The 2002 mother-child dyads were recruited from the general population through their pregnancy follow-up in two French university hospitals. 871 of them were included in the nested cohort and cord serum cytokine levels were measured at birth. Children's mood dysregulation symptoms were assessed with the Strengths and Difficulties Questionnaire Dysregulation Profile at the ages 3, 5 and 8 years in order to model their mood dysregulation trajectories. Out of the 871 participating dyads, 53% of the children were male. 2.1% of the children presented a high mood dysregulation trajectory whereas the others were considered as physiological variations. We found a significant negative association between TNF-α cord serum levels and a high mood dysregulation trajectory when considering confounding factors such as maternal depression during pregnancy (adjusted Odds Ratio (aOR) = 0.35, 95% Confidence Interval (CI) [0.18-0.67]). Immune imbalance at birth could play a role in the onset of mood dysregulation symptoms. Our findings throw new light on putative immune mechanisms implicated in the development of mood dysregulation and should lead to future animal and epidemiological studies.
Collapse
Affiliation(s)
- Marie Herbein
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
- Centre Hospitalier Perrens, Bordeaux, France
| | - Susana Barbosa
- Université Côte d’Azur, Nice, France
- Centre National de Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Ophélie Collet
- University of Bordeaux, France
- Research Unit on Children's Psychosocial Maladjustment, Montreal, Canada
| | - Olfa Khalfallah
- Université Côte d’Azur, Nice, France
- Centre National de Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marie Navarro
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
| | - Marion Bailhache
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
- Centre Hospitalier Universitaire de Bordeaux, Département de Pédiatrie, France
| | - Nicolas IV
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
| | - Bruno Aouizerate
- University of Bordeaux, France
- Centre Hospitalier Perrens, Bordeaux, France
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Anne-Laure Sutter-Dallay
- INSERM, Bordeaux Population Health Center, UMR1219, France
- Centre Hospitalier Perrens, Bordeaux, France
| | - Muriel Koehl
- University of Bordeaux, France
- INSERM, Neurocentre Magendie, UMR1215, Bordeaux, France
| | - Lucile Capuron
- University of Bordeaux, France
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Pierre Ellul
- Robert Debré Hospital, Child and Adolescent department, APHP, Paris University, Paris, France
- Immunology-Immunopathology-Immunotherapy (i3), UMRS 959, INSERM, Paris, France
| | - Hugo Peyre
- Robert Debré Hospital, Child and Adolescent department, APHP, Paris University, Paris, France
- Centre de Ressource Autisme Languedoc-Roussillon et Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris Saclay, UVSQ, Inserm, CESP, Tem DevPsy, 94807, Villejuif, France
| | - Judith Van der Waerden
- INSERM U1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, Équipe de Recherche en Épidémiologie Sociale, Paris, France
| | - Maria Melchior
- INSERM U1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, Équipe de Recherche en Épidémiologie Sociale, Paris, France
| | - Sylvana Côté
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
- Research Unit on Children's Psychosocial Maladjustment, Montreal, Canada
- University of Montreal, Department of Social and Preventive Medicine, Montreal, Canada
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
- Paris University, France
| | - Nicolas Glaichenhaus
- Université Côte d’Azur, Nice, France
- Centre National de Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Fondation FondaMental, Créteil, France
| | - Laetitia Davidovic
- Université Côte d’Azur, Nice, France
- Centre National de Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Fondation FondaMental, Créteil, France
| | - Cedric Galera
- University of Bordeaux, France
- INSERM, Bordeaux Population Health Center, UMR1219, France
- Centre Hospitalier Perrens, Bordeaux, France
- Research Unit on Children's Psychosocial Maladjustment, Montreal, Canada
| |
Collapse
|
14
|
Maggioni E, Pigoni A, Fontana E, Delvecchio G, Bonivento C, Bianchi V, Mauri M, Bellina M, Girometti R, Agarwal N, Nobile M, Brambilla P. Right frontal cingulate cortex mediates the effect of prenatal complications on youth internalizing behaviors. Mol Psychiatry 2024; 29:2074-2083. [PMID: 38378927 PMCID: PMC11408263 DOI: 10.1038/s41380-024-02475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Prenatal and perinatal complications represent well-known risk factors for the future development of psychiatric disorders. Such influence might become manifested during childhood and adolescence, as key periods for brain and behavioral changes. Internalizing and externalizing behaviors in adolescence have been associated with the risk of psychiatric onset later in life. Both brain morphology and behavior seem to be affected by obstetric complications, but a clear link among these three aspects is missing. Here, we aimed at analyzing the association between prenatal and perinatal complications, behavioral issues, and brain volumes in a group of children and adolescents. Eighty-two children and adolescents with emotional-behavioral problems underwent clinical and 3 T brain magnetic resonance imaging (MRI) assessments. The former included information on behavior, through the Child Behavior Checklist/6-18 (CBCL/6-18), and on the occurrence of obstetric complications. The relationships between clinical and gray matter volume (GMV) measures were investigated through multiple generalized linear models and mediation models. We found a mutual link between prenatal complications, GMV alterations in the frontal gyrus, and withdrawn problems. Specifically, complications during pregnancy were associated with higher CBCL/6-18 withdrawn scores and GMV reductions in the right superior frontal gyrus and anterior cingulate cortex. Finally, a mediation effect of these GMV measures on the association between prenatal complications and the withdrawn dimension was identified. Our findings suggest a key role of obstetric complications in affecting brain structure and behavior. For the first time, a mediator role of frontal GMV in the relationship between prenatal complications and internalizing symptoms was suggested. Once replicated on independent cohorts, this evidence will have relevant implications for planning preventive interventions.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa Fontana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Valentina Bianchi
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Maddalena Mauri
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Monica Bellina
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine (DMED), University of Udine, Udine, Italy
- University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Nivedita Agarwal
- Neuroimaging Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Maria Nobile
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
15
|
Yang S, Datta D, Krienen FM, Ling E, Woo E, May A, Anderson GM, Galvin VC, Gonzalez-Burgos G, Lewis DA, McCarroll SA, Arnsten AF, Wang M. Kynurenic acid inflammatory signaling expands in primates and impairs prefrontal cortical cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598842. [PMID: 38915595 PMCID: PMC11195225 DOI: 10.1101/2024.06.13.598842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.
Collapse
|
16
|
Njuguna IN, King'e M, Moraa H, Kumar M, Benki-Nugent S, Wagner AD, McGrath CJ, Dorsey S, Ndegwa S, Onyango A, Wamalwa D, John-Stewart G. Cohort profile: longitudinal and population comparison of children who are HIV-exposed uninfected and children who are HIV unexposed in Kenya (HOPE study). BMJ Open 2024; 14:e081975. [PMID: 38844397 PMCID: PMC11163661 DOI: 10.1136/bmjopen-2023-081975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
PURPOSE Globally, the number of children/adolescents exposed to HIV but uninfected (HIV-exposed uninfected, HEU) is growing. The HEU outcomes: population-evaluation and screening strategies study was designed to provide population-level evidence of the impact of HIV and recent antiretroviral therapy regimen exposure on neurodevelopmental, hearing and mental health outcomes from infancy to adolescence. PARTICIPANTS The study includes a prospective mother-infant cohort and cross-sectional child/youth-caregiver cohorts conducted in Kenya.Between 2021 and 2022, the study enrolled 2000 mother-infant pairs (1000 HEU and 1000 HIV-unexposed uninfected (HUU)) for longitudinal follow-up. Infants were eligible if they were aged 4-10 weeks and healthy. Mothers were eligible if their HIV status was known and were ≥18 years. Study visits are 6 monthly until the child reaches age 3 years.Cross-sectional cohorts spanning ages 3-18 years started enrolment in 2022. Target enrolment is 4400 children/youth (4000 HEU and 400 HUU). Children and youth are eligible if they are HIV negative, maternal HIV status and timing of diagnosis is known, and caregivers are ≥18 years.Data on infant/child/youth growth, neurodevelopment, mental health, morbidity and hearing are collected at enrolment using standardised tools. Dry blood spots samples are collected for telomere length assessment at baseline and yearly for the longitudinal cohort. Growth z-scores, neurodevelopmental scores, telomere length and prevalence of developmental and hearing problems will be compared between HEU/HUU populations. FINDINGS TO DATE Full cohort enrolment for the longitudinal cohort is complete and participants are in follow-up. At 1 year of age, comparing HEU to HUU neurodevelopment using the Malawi developmental assessment tool, we found that HEU infants had higher language scores and comparable scores in fine motor, gross motor and social scores. The cross-sectional cohort has enrolled over 2000 participants and recruitment is ongoing. FUTURE PLANS Longitudinal cohort follow-up and enrolment to the cross-sectional study will be completed in June 2024.
Collapse
Affiliation(s)
- Irene N Njuguna
- Department of Medical Research, Kenyatta National Hospital, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Maureen King'e
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Helen Moraa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Manasi Kumar
- Grossman School of Medicine, New York University, New York City, New York, USA
- Department of Psychiatry, University of Nairobi, Nairobi, Kenya
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Anjuli Dawn Wagner
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Christine J McGrath
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Shannon Dorsey
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Psychiatry, University of Washington, Seattle, Washington, USA
| | - Serah Ndegwa
- Departnment of Surgery, University of Nairobi, Nairobi, Kenya
| | - Alvin Onyango
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Deaprtment of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Pesch MH, Leung J, Lanzieri TM, Tinker SC, Rose CE, Danielson ML, Yeargin-Allsopp M, Grosse SD. Autism Spectrum Disorder Diagnoses and Congenital Cytomegalovirus. Pediatrics 2024; 153:e2023064081. [PMID: 38808409 PMCID: PMC11153325 DOI: 10.1542/peds.2023-064081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE To examine the association between congenital cytomegalovirus (cCMV) and autism spectrum disorder (ASD) administrative diagnoses in US children. METHODS Cohort study using 2014 to 2020 Medicaid claims data. We used diagnosis codes to identify cCMV (exposure), ASD (outcome), and covariates among children enrolled from birth through ≥4 to <7 years. Covariates include central nervous system (CNS) anomaly or injury diagnosis codes, including brain anomaly, microcephaly within 45 days of birth, cerebral palsy, epilepsy, or chorioretinitis. We used Cox proportional hazards regression models to estimate hazard ratios and 95% confidence intervals, overall and stratified by sex, birth weight and gestational age outcome (low birth weight or preterm birth), and presence of CNS anomaly or injury. RESULTS Among 2 989 659 children, we identified 1044 (3.5 per 10 000) children with cCMV and 74 872 (25.0 per 1000) children with ASD. Of those with cCMV, 49% also had CNS anomaly or injury diagnosis codes. Children with cCMV were more likely to have ASD diagnoses (hazard ratio: 2.5; 95% confidence interval: 2.0-3.2, adjusting for birth year, sex, and region). This association differed by sex and absence of CNS anomaly or injury but not birth outcome. CONCLUSIONS Children with (versus without) cCMV diagnoses in Medicaid claims data, most of whom likely had symptomatic cCMV, were more likely to have ASD diagnoses. Future research investigating ASD risk among cohorts identified through universal cCMV screening may help elucidate these observed associations.
Collapse
Affiliation(s)
- Megan H. Pesch
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Jessica Leung
- National Center for Immunization and Respiratory Diseases
| | | | - Sarah C. Tinker
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charles E. Rose
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa L. Danielson
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marshalyn Yeargin-Allsopp
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Scott D. Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
18
|
Li A, Schwartz DA, Vo A, VanAbel R, Coler C, Li E, Lukman B, Del Rosario B, Vong A, Li M, Adams Waldorf KM. Impact of SARS-CoV-2 infection during pregnancy on the placenta and fetus. Semin Perinatol 2024; 48:151919. [PMID: 38897829 PMCID: PMC11288977 DOI: 10.1016/j.semperi.2024.151919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Pregnant people and their fetuses are vulnerable to adverse health outcomes from coronavirus 2019 disease (COVID-19) due to infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been associated with higher rates of maternal mortality, preterm birth, and stillbirth. While SARS-CoV-2 infection of the placenta and vertical transmission is rare, this may be due to the typically longer time interval between maternal infection and testing of the placenta and neonate. Placental injury is evident in cases of SARS-CoV-2-associated stillbirth with massive perivillous fibrin deposition, chronic histiocytic intervillositis, and trophoblast necrosis. Maternal COVID-19 can also polarize fetal immunity, which may have long-term effects on neurodevelopment. Although the COVID-19 pandemic continues to evolve, the impact of emerging SARS-CoV-2 variants on placental and perinatal injury/mortality remains concerning for maternal and perinatal health. Here, we highlight the impact of COVID-19 on the placenta and fetus and remaining knowledge gaps.
Collapse
Affiliation(s)
- Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - David A Schwartz
- Perinatal Pathology Consulting, Atlanta, Georgia, United States of America
| | - Andrew Vo
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Roslyn VanAbel
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Celeste Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America; School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Edmunda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Bryan Lukman
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Briana Del Rosario
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Ashley Vong
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America; School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America; School of Medicine, University of Washington, Seattle, Washington, United States of America; Department of Global Health, University of Washington, Seattle, Washington, United States of America.
| |
Collapse
|
19
|
McMahon CL, Hurley EM, Muniz Perez A, Estrada M, Lodge DJ, Hsieh J. Prenatal SARS-CoV-2 infection results in neurodevelopmental and behavioral outcomes in mice. JCI Insight 2024; 9:e179068. [PMID: 38781563 PMCID: PMC11383367 DOI: 10.1172/jci.insight.179068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE2-knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine whether infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus or in any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study reveals long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Erin M Hurley
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, and
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Lorthe E, Marchand-Martin L, Letouzey M, Aubert AM, Pierrat V, Benhammou V, Delorme P, Marret S, Ancel PY, Goffinet F, L'Hélias LF, Kayem G. Tocolysis after preterm prelabor rupture of membranes and 5-year outcomes: a population-based cohort study. Am J Obstet Gynecol 2024; 230:570.e1-570.e18. [PMID: 37827270 DOI: 10.1016/j.ajog.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The administration of tocolytics after preterm prelabor rupture of membranes remains a controversial practice. In theory, reducing uterine contractility should delay delivery and allow for optimal antenatal management, thereby reducing the risks for prematurity and adverse consequences over the life course. However, tocolysis may be associated with neonatal death or long-term adverse neurodevelopmental outcomes, mainly related to prolonged fetal exposure to intrauterine infection or inflammation. In a previous study, we showed that tocolysis administration was not associated with short-term benefits. There are currently no data available to evaluate the impact of tocolysis on neurodevelopmental outcomes in school-aged children born prematurely in this clinical setting. OBJECTIVE This study aimed to investigate whether tocolysis administered after preterm prelabor rupture of membranes is associated with neurodevelopmental outcomes at 5.5 years of age. STUDY DESIGN We used data from a prospective, population-based cohort study of preterm births recruited in 2011 (referred to as the EPIPAGE-2 study) and for whom the results of a comprehensive medical and neurodevelopmental assessment of the infant at age 5.5 years were available. We included pregnant individuals with preterm prelabor rupture of membranes at 24 to 32 weeks' gestation in singleton pregnancies with a live fetus at the time of rupture, birth at 24 to 34 weeks' gestation, and participation of the infant in an assessment at 5.5 years of age. Exposure was the administration of any tocolytic treatment after preterm prelabor rupture of membranes. The main outcome was survival without moderate to severe neurodevelopmental disabilities at 5.5 years of age. Secondary outcomes included survival without any neurodevelopmental disabilities, cerebral palsy, full-scale intelligence quotient, developmental coordination disorders, and behavioral difficulties. A propensity-score analysis was used to minimize the indication bias in the estimation of the treatment effect on outcomes. RESULTS Overall, 596 of 803 pregnant individuals (73.4%) received tocolytics after preterm prelabor rupture of membranes. At the 5.5-year follow-up, 82.7% and 82.5% of the children in the tocolysis and no tocolysis groups, respectively, were alive without moderate to severe neurodevelopmental disabilities; 52.7% and 51.1%, respectively, were alive without any neurodevelopmental disabilities. After applying multiple imputations and inverse probability of treatment weighting, we found no association between the exposure to tocolytics and survival without moderate to severe neurodevelopmental disabilities (odds ratio, 0.93; 95% confidence interval, 0.55-1.60), survival without any neurodevelopmental disabilities (odds ratio, 1.02; 95% confidence interval, 0.65-1.61), or any of the other outcomes. CONCLUSION There was no difference in the neurodevelopmental outcomes at age 5.5 years among children with and without antenatal exposure to tocolysis after preterm prelabor rupture of membranes. To date, the health benefits of tocolytics remain unproven, both in the short- and long-term.
Collapse
Affiliation(s)
- Elsa Lorthe
- Unit of Population Epidemiology, Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland; Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France.
| | - Laetitia Marchand-Martin
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France
| | - Mathilde Letouzey
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Department of Neonatal Pediatrics, Poissy Saint Germain Hospital, Poissy, France
| | - Adrien M Aubert
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France
| | - Véronique Pierrat
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Department of Neonatology, Centre Hospitalier Intercommunal Créteil, Créteil, France
| | - Valérie Benhammou
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France
| | - Pierre Delorme
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Department of Gynecology and Obstetrics, Armand Trousseau Hospital, APHP, FHU Prema, Paris Sorbonne University, Paris, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital, Rouen, France; Inserm Unit 1245, Team Perinatal Handicap, School of Medicine of Rouen, Normandy University, Normandy, France
| | - Pierre-Yves Ancel
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Clinical Research Unit, Center for Clinical Investigation P1419, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - François Goffinet
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; AP-HP Centre, Maternité Port-Royal, Department of Obstetrics and Gynaecology, Université Paris Cité, FHU PREMA, Paris, France
| | - Laurence Foix L'Hélias
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Department of Neonatal Pediatrics, Armand Trousseau Hospital, APHP, FHU Prema, Paris Sorbonne University, Paris, France
| | - Gilles Kayem
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), Paris, France; Department of Gynecology and Obstetrics, Armand Trousseau Hospital, APHP, FHU Prema, Paris Sorbonne University, Paris, France
| |
Collapse
|
21
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2024:S0006-3223(24)01260-5. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the life span, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Geng M, Ding P, Wang S, Wang B, Tong J, Gao H, Yan S, Liu K, Wu X, Zhu P, Cao Y, Huang K, Tao F. Prenatal antibiotics exposure and preschoolers' internalizing and externalizing problems: A biomonitoring-based prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170891. [PMID: 38346651 DOI: 10.1016/j.scitotenv.2024.170891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Biomonitoring-based epidemiological studies on prenatal antibiotic exposure and behavioral problems in preschoolers are lacking. The present study aimed to investigate the relationship between prenatal antibiotic exposure and internalizing and externalizing problems in preschoolers. METHODS Data from 2449 mother-child pairs were analyzed. Urine samples were repeatedly collected across three trimesters, and 43 antibiotics and 2 metabolites were measured, including preferred as veterinary antibiotics (PVAs), VAs, preferred as human antibiotics and human antibiotics. Preschoolers' internalizing and externalizing problems were evaluated by the Achenbach Child Behavior Checklist. Poisson regression models with generalized estimating equations were used to estimate risk ratios (RRs) and 95 % confidence intervals (CIs) for preschoolers' internalizing, externalizing and total problems across tertiles of antibiotic concentrations during three periods of pregnancy, and performed several subgroup analyses. RESULTS First-trimester urinary oxytetracycline (RR = 1.69, 95%CI: 1.20, 2.39, P-FDR = 0.011), tetracycline (RR = 1.91, 95%CI: 1.36, 2.68, P-FDR < 0.001), doxycycline (RR = 1.66, 95%CI: 1.28, 2.17, P-FDR < 0.001) and PVAs (RR = 1.79, 95%CI: 1.29, 2.48, P-FDR < 0.001) concentrations in the highest tertile were related to an elevated risk of internalizing problems compared with concentrations in the lowest tertile. First-trimester urinary doxycycline concentrations in the third tertile were also associated with an increased risk of externalizing problems compared with the first tertile (RR = 2.00, 95%CI: 1.28, 3.15, P-FDR = 0.042). Compared with concentrations in the lowest tertile, first-trimester urinary doxycycline (RR = 1.63, 95%CI: 1.19, 2.22, P-FDR = 0.028) and PVAs (RR = 1.67, 95%CI: 1.14, 2.43, P-FDR = 0.047) concentrations in the middle tertile were related to an increased risk of total problems. Furthermore, the type of main caregiver and children's outdoor activities time modified the relationships between specific prenatal antibiotic exposure and preschoolers' behavioral problems. CONCLUSIONS Exposure to specific antibiotics during the first trimester may be related to an increased risk of internalizing and externalizing problems in preschoolers.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatric, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
24
|
Arakelyan A, Avagyan S, Kurnosov A, Mkrtchyan T, Mkrtchyan G, Zakharyan R, Mayilyan KR, Binder H. Temporal changes of gene expression in health, schizophrenia, bipolar disorder, and major depressive disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:19. [PMID: 38368435 PMCID: PMC10874418 DOI: 10.1038/s41537-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.
- Armenian Bioinformatics Institute, Yerevan, Armenia.
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia.
| | | | | | - Tigran Mkrtchyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | | | - Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Karine R Mayilyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
25
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
26
|
Tietze E, Barbosa AR, Araujo B, Euclydes V, Spiegelberg B, Cho HJ, Lee YK, Wang Y, McCord A, Lorenzetti A, Feltrin A, van de Leemput J, Di Carlo P, Ursini G, Benjamin KJ, Brentani H, Kleinman JE, Hyde TM, Weinberger DR, McKay R, Shin JH, Sawada T, Paquola ACM, Erwin JA. Human archetypal pluripotent stem cells differentiate into trophoblast stem cells via endogenous BMP5/7 induction without transitioning through naive state. Sci Rep 2024; 14:3291. [PMID: 38332235 PMCID: PMC10853519 DOI: 10.1038/s41598-024-53381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
Collapse
Affiliation(s)
- Ethan Tietze
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andre Rocha Barbosa
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Veronica Euclydes
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Bailey Spiegelberg
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | - Joyce van de Leemput
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Precision Disease Modeling and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helena Brentani
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald McKay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Kumari A, Vertii A. Perspective: "Current understanding of NADs dynamics and mechanisms of Disease". Gene 2024; 894:147960. [PMID: 37923094 DOI: 10.1016/j.gene.2023.147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chromatin architecture is essential for gene regulation, and multiple levels of the 3D chromatin organization exhibit dynamic changes during organismal development and cell differentiation. Heterochromatin, termed compartment B in Hi-C datasets, is a phase-separating gene-silencing form of chromatin, preferentially located at the two nuclear sites, nuclear (lamina-associate chromatin domains, LADs) and nucleoli (nucleoli-associated chromatin domains, NADs) peripheries. LADs and NADs contain both interchangeable and location-specific chromatin domains. Recent studies suggest striking dynamics in LADs and NADs during the differentiation of embryonic stem cells into neural progenitors and neurons. Here we discuss recent advances in understanding NADs changes during neuronal differentiation and future questions on how NADs integrity can contribute to healthy neurodevelopment and neurodevelopment diseases.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US.
| |
Collapse
|
28
|
Wang X, Ling Z, Luo T, Zhou Q, Zhao G, Li B, Xia K, Li J. Severity of Autism Spectrum Disorder Symptoms Associated with de novo Variants and Pregnancy-Induced Hypertension. J Autism Dev Disord 2024; 54:749-764. [PMID: 36445517 DOI: 10.1007/s10803-022-05824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
Genetic factors, particularly, de novo variants (DNV), and an environment factor, exposure to pregnancy-induced hypertension (PIH), were reported to be associated with risk of autism spectrum disorder (ASD); however, how they jointly affect the severity of ASD symptom is unclear. We assessed the severity of core ASD symptoms affected by functional de novo variants or PIH. We selected phenotype data from Simon's Simplex Collection database, used genotypes from previous studies, and created linear regression models. We found that ASD patients carrying DNV with PIH exposure had increased adaptive and cognitive ability, decreased social problems, and enhanced repetitive behaviors; however, there was no difference in patients without DNV between those with or without PIH exposure. In addition, the DNV genes carried by patients exposed to PIH were enriched in ubiquitin-dependent proteolytic processes, highlighting how candidate genes in pathways and environments interact. The results indicate the joint contribution of DNV and PIH to ASD.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Qiao Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- University of South China, Hengyang, Hunan, China.
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China.
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Qing X, Jiang J, Yuan C, Wang K. Mendelian randomization analysis identifies a genetic casual association between circulating C-reactive protein and intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107554. [PMID: 38176227 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The causal effect of C-reactive protein (CRP) on intracerebral hemorrhage (ICH) remains controversial. We discussed the causal association of CRP with ICH based on two-sample Mendelian randomization. METHODS The data from two genome-wide association studies (GWAS) of European ancestry was extracted, including circulating CRP levels (204,402 individuals) and ICH (1,687 cases and 201,146 controls). The inverse variance weighted (IVW) method was primary tool to evaluate the causal relationship of circulating CRP levels on ICH risk. MR-Egger regression and MR-PRESSO global test were utilized to identify pleiotropy. Heterogeneity was discussed with Cochran's Q test. The leave-one-out analysis explored the reliability of the results. RESULTS 54 SNPs were identified as instrumental variables (IVs) for circulating CRP levels, and these IVs had no significant horizontal pleiotropy, heterogeneity, or bias. MR analysis demonstrated a causal relationship between elevated circulating CRP levels and decreased risk of ICH (ORIVW = 0.828, 95% CI 0.692-0.992, P = 0.040). CONCLUSION Elevated circulating CRP levels demonstrated a significant potentially protective causal relationship with risk of ICH.
Collapse
Affiliation(s)
- Xin Qing
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, PR China; West China Hospital, Sichuan University, Chengdu, PR China
| | - Junyi Jiang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, PR China
| | - Chunlei Yuan
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, PR China
| | - Ke Wang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, PR China.
| |
Collapse
|
30
|
Gan Y, Chen Y, Zhong H, Liu Z, Geng J, Wang H, Wang W. Gut microbes in central nervous system development and related disorders. Front Immunol 2024; 14:1288256. [PMID: 38343438 PMCID: PMC10854220 DOI: 10.3389/fimmu.2023.1288256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The association between gut microbiota and central nervous system (CNS) development has garnered significant research attention in recent years. Evidence suggests bidirectional communication between the CNS and gut microbiota through the brain-gut axis. As a long and complex process, CNS development is highly susceptible to both endogenous and exogenous factors. The gut microbiota impacts the CNS by regulating neurogenesis, myelination, glial cell function, synaptic pruning, and blood-brain barrier permeability, with implication in various CNS disorders. This review outlines the relationship between gut microbiota and stages of CNS development (prenatal and postnatal), emphasizing the integral role of gut microbes. Furthermore, the review explores the implications of gut microbiota in neurodevelopmental disorders, such as autism spectrum disorder, Rett syndrome, and Angelman syndrome, offering insights into early detection, prompt intervention, and innovative treatments.
Collapse
Affiliation(s)
- Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yao Chen
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
31
|
Reissland N, Ustun B, Einbeck J. The effects of lockdown during the COVID-19 pandemic on fetal movement profiles. BMC Pregnancy Childbirth 2024; 24:56. [PMID: 38212680 PMCID: PMC10782783 DOI: 10.1186/s12884-024-06259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
PURPOSE The current study investigated the direct impact of the COVID-19 lockdown on fetal movements, addressing a critical research gap. While previous research has predominantly examined the effects of lockdown on maternal health and postnatal outcomes, little attention has been paid to the direct consequences on fetal well-being as indicated by their movement profile. METHODS We conducted analysis of movement profiles in 20 healthy fetuses during the COVID-19 pandemic lockdown (third national UK lockdown period between January and March 2021) and compared them with 20 healthy fetuses from pre-covid pregnancies, all at 32 weeks gestation. We controlled for maternal stress, depression, and anxiety. RESULTS Pregnant mothers during pre-covid compared with those during the COVID-19 lockdown reported similar levels of stress (p = 0.47), depression (p = 0.15), and anxiety (p = 0.07). Their fetuses, however, differed in their movement profiles with mouth movement frequencies significantly higher during COVID-19 lockdown (COVID-19 lockdown: mean of 5.909) compared to pre-Covid pregnancies (mean of 3.308; p = 0.029). Furthermore, controlling for maternal anxiety a regression analysis indicated that frequency of fetal mouth movements (p = 0.017), upper face movements (p = 0.008), and touch movements (p = 0.031) were all significantly higher in fetuses observed during lockdown compared to fetuses before the Covid period. CONCLUSION Fetuses show an effect of lockdown independent of maternal anxiety, stress, or depression. These findings contribute to our understanding of fetal development during extraordinary circumstances, raising questions about the potential effects of having to stay indoors during lockdowns.
Collapse
Affiliation(s)
- N Reissland
- Department of Psychology, Durham University, Science Site, South Road, Durham, UK.
| | - B Ustun
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - J Einbeck
- Department of Mathematical Sciences, Durham University, Durham, UK
| |
Collapse
|
32
|
Egorova M, Egorov V, Zabrodskaya Y. Maternal Influenza and Offspring Neurodevelopment. Curr Issues Mol Biol 2024; 46:355-366. [PMID: 38248325 PMCID: PMC10814929 DOI: 10.3390/cimb46010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review examines the complex interactions between maternal influenza infection, the immune system, and the neurodevelopment of the offspring. It highlights the importance of high-quality studies to clarify the association between maternal exposure to the virus and neuropsychiatric disorders in the offspring. Additionally, it emphasizes that the development of accurate animal models is vital for studying the impact of infectious diseases during pregnancy and identifying potential therapeutic targets. By drawing attention to the complex nature of these interactions, this review underscores the need for ongoing research to improve the understanding and outcomes for pregnant women and their offspring.
Collapse
Affiliation(s)
- Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
| | - Vladimir Egorov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia
| |
Collapse
|
33
|
Ameri S, Moseholm E, Weis N. Psychiatric disorders in perinatally HIV-exposed, uninfected children: a systematic review. AIDS Care 2024; 36:70-79. [PMID: 36328977 DOI: 10.1080/09540121.2022.2141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The population of perinatally HIV-exposed but uninfected (HEU) children is growing rapidly globally. However, perinatal HIV and antiretroviral (ARV) medicine exposure in HIV-uninfected children has raised concerns about HEU children's mental well-being. The objective of this study was to systematically review the literature on psychiatric disorders in HEU children. The PRISMA guideline was used as a methodical frame of reference. A systematic search was conducted in 5 databases. Data from the included studies were extracted, and the results were summarized qualitatively. The search identified 1,976 articles of which 105 were eligible for full-text analysis. 13 studies met the inclusion criteria. Eight studies compared psychiatric disorder prevalence in perinatally HIV-infected children with HEU children, and only one study found a difference between the two groups. Three studies found that HEU children had a higher prevalence of psychiatric disorders compared with HIV-unexposed, uninfected (HUU) children. These findings indicate that factors such as psychosocial stress, socioeconomic status, and stigma contribute to the increased risk of mental disorders in HEU children. More research is needed comparing HEU children with HUU children adjusting for potential confounders that might partially explain the higher rates seen in the HIV-exposed population.Prospero ID: CRD42020212420.
Collapse
Affiliation(s)
- Sammy Ameri
- Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Ellen Moseholm
- Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Musillo C, Creutzberg KC, Collacchi B, Ajmone-Cat MA, De Simone R, Lepre M, Amrein I, Riva MA, Berry A, Cirulli F. Bdnf-Nrf-2 crosstalk and emotional behavior are disrupted in a sex-dependent fashion in adolescent mice exposed to maternal stress or maternal obesity. Transl Psychiatry 2023; 13:399. [PMID: 38105264 PMCID: PMC10725882 DOI: 10.1038/s41398-023-02701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Maternal obesity has been recognized as a stressor affecting the developing fetal brain, leading to long-term negative outcomes comparable to those resulting from maternal psychological stress, although the mechanisms have not been completely elucidated. In this study, we tested the hypothesis that adverse prenatal conditions as diverse as maternal stress and maternal obesity might affect emotional regulation and stress response in the offspring through common pathways, with a main focus on oxidative stress and neuroplasticity. We contrasted and compared adolescent male and female offspring in two mouse models of maternal psychophysical stress (restraint during pregnancy - PNS) and maternal obesity (high-fat diet before and during gestation - mHFD) by combining behavioral assays, evaluation of the hypothalamic-pituitary-adrenal (HPA) axis reactivity, immunohistochemistry and gene expression analysis of selected markers of neuronal function and neuroinflammation in the hippocampus, a key region involved in stress appraisal. Prenatal administration of the antioxidant N-acetyl-cysteine (NAC) was used as a strategy to protect fetal neurodevelopment from the negative effects of PNS and mHFD. Our findings show that these two stressors produce overlapping effects, reducing brain anti-oxidant defenses (Nrf-2) and leading to sex-dependent impairments of hippocampal Bdnf expression and alterations of the emotional behavior and HPA axis functionality. Prenatal NAC administration, by restoring the redox balance, was able to exert long-term protective effects on brain development, suggesting that the modulation of redox pathways might be an effective strategy to target common shared mechanisms between different adverse prenatal conditions.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Marcello Lepre
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zurich, Switzerland
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
35
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Evidence for the participation of CHCHD2/MNRR1, a mitochondrial protein, in spontaneous labor at term and in preterm labor with intra-amniotic infection. J Matern Fetal Neonatal Med 2023; 36:2183088. [PMID: 36941246 DOI: 10.1080/14767058.2023.2183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Intra-amniotic inflammation (IAI), associated with either microbe (infection) or danger signals (sterile), plays a major role in the pathophysiology of preterm labor and delivery. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2) [also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1)], a mitochondrial protein involved in oxidative phosphorylation and cell survival, is capable of sensing tissue hypoxia and inflammatory signaling. The ability to maintain an appropriate energy balance at the cellular level while adapting to environmental stress is essential for the survival of an organism. Mitochondrial dysfunction has been observed in acute systemic inflammatory conditions, such as sepsis, and is proposed to be involved in sepsis-induced multi-organ failure. The purpose of this study was to determine the amniotic fluid concentrations of CHCHD2/MNRR1 in pregnant women, women at term in labor, and those in preterm labor (PTL) with and without IAI. METHODS This cross-sectional study comprised patients allocated to the following groups: (1) mid-trimester (n = 16); (2) term in labor (n = 37); (3) term not in labor (n = 22); (4) PTL without IAI who delivered at term (n = 25); (5) PTL without IAI who delivered preterm (n = 47); and (6) PTL with IAI who delivered preterm (n = 53). Diagnosis of IAI (amniotic fluid interleukin-6 concentration ≥2.6 ng/mL) included cases associated with microbial invasion of the amniotic cavity and those of sterile nature (absence of detectable bacteria, using culture and molecular microbiology techniques). Amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations were determined with a validated and sensitive immunoassay. RESULTS (1) CHCHD2/MNRR1 was detectable in all amniotic fluid samples and women at term without labor had a higher amniotic fluid CHCHD2/MNRR1 concentration than those in the mid-trimester (p = 0.003); (2) the amniotic fluid concentration of CHCHD2/MNRR1 in women at term in labor was higher than that in women at term without labor (p = 0.01); (3) women with PTL and IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those without IAI, either with preterm (p < 0.001) or term delivery (p = 0.01); (4) women with microbial-associated IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those with sterile IAI (p < 0.001); (5) among women with PTL and IAI, the amniotic fluid concentration of CHCHD2/MNRR1 correlated with that of interleukin-6 (Spearman's Rho = 0.7; p < 0.001); and (6) no correlation was observed between amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations among women with PTL. CONCLUSION CHCHD2/MNRR1 is a physiological constituent of human amniotic fluid in normal pregnancy, and the amniotic concentration of this mitochondrial protein increases during pregnancy, labor at term, and preterm labor with intra-amniotic infection. Hence, CHCHD2/MNRR1 may be released into the amniotic cavity by dysfunctional mitochondria during microbial-associated IAI.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
36
|
Volqvartz T, Andersen HHB, Pedersen LH, Larsen A. Obesity in pregnancy-Long-term effects on offspring hypothalamic-pituitary-adrenal axis and associations with placental cortisol metabolism: A systematic review. Eur J Neurosci 2023; 58:4393-4422. [PMID: 37974556 DOI: 10.1111/ejn.16184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Obesity, affecting one in three pregnant women worldwide, is not only a major obstetric risk factor. The resulting low-grade inflammation may have a long-term impact on the offspring's HPA axis through dysregulation of maternal, placental and fetal corticosteroid metabolism, and children born of obese mothers have increased risk of diabetes and cardiovascular disease. The long-term effects of maternal obesity on offspring neurodevelopment are, however, undetermined and could depend on the specific effects on placental and fetal cortisol metabolism. This systematic review evaluates how maternal obesity affects placental cortisol metabolism and the offspring's HPA axis. Pubmed, Embase and Scopus were searched for original studies on maternal BMI, obesity, and cortisol metabolism and transfer. Fifteen studies were included after the screening of 4556 identified records. Studies were small with heterogeneous exposures and outcomes. Two studies found that maternal obesity reduced placental HSD11β2 activity. In one study, umbilical cord blood cortisol levels were affected by maternal BMI. In three studies, an altered cortisol response was consistently seen among offspring in childhood (n = 2) or adulthood (n = 1). Maternal BMI was not associated with placental HSD11β1 or HSD11β2 mRNA expression, or placental HSD11β2 methylation. In conclusion, high maternal BMI is associated with reduced placental HSD11β2 activity and a dampened cortisol level among offspring, but the data is sparse. Further investigations are needed to clarify whether the HPA axis is affected by prenatal factors including maternal obesity and investigate if adverse effects can be ameliorated by optimising the intrauterine environment.
Collapse
Affiliation(s)
- Tabia Volqvartz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lars Henning Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Abstract
The developing brain is particularly vulnerable to extrinsic environmental events such as anemia and iron deficiency during periods of rapid development. Studies of infants with postnatal iron deficiency and iron deficiency anemia clearly demonstrated negative effects on short-term and long-term brain development and function. Randomized interventional trials studied erythropoiesis-stimulating agents and hemoglobin-based red blood cell transfusion thresholds to determine how they affect preterm infant neurodevelopment. Studies of red blood cell transfusion components are limited in preterm neonates. A biomarker strategy measuring brain iron status and health in the preanemic period is desirable to evaluate treatment options and brain response.
Collapse
Affiliation(s)
- Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA.
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Academic Office Building, 2450 Riverside Avenue, SAO-401, Minneapolis, MN 55454, USA
| |
Collapse
|
38
|
Perna J, Bellato A, Ganapathy PS, Solmi M, Zampieri A, Faraone SV, Cortese S. Association between Autism Spectrum Disorder (ASD) and vision problems. A systematic review and meta-analysis. Mol Psychiatry 2023; 28:5011-5023. [PMID: 37495888 DOI: 10.1038/s41380-023-02143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
AIM To conduct a systematic review and meta-analysis assessing whether vision and/or eye disorders are associated with Autism Spectrum Disorder (ASD). METHOD Based on a pre-registered protocol (PROSPERO: CRD42022328485), we searched PubMed, Web of Knowledge/Science, Ovid Medline, Embase and APA PsycINFO up to 5th February 2022, with no language/type of document restrictions. We included observational studies 1) reporting at least one measure of vision in people of any age with a diagnosis of ASD based on DSM or ICD criteria, or ADOS; or 2) reporting the prevalence of ASD in people with and without vision disorders. Study quality was assessed with the Appraisal tool for Cross-Sectional Studies (AXIS). Random-effects meta-analyses were used for data synthesis. RESULTS We included 49 studies in the narrative synthesis and 46 studies in the meta-analyses (15,629,159 individuals distributed across multiple different measures). We found meta-analytic evidence of increased prevalence of strabismus (OR = 4.72 [95% CI: 4.60, 4.85]) in people with versus those without ASD (non-significant heterogeneity: Q = 1.0545, p = 0.7881). We also found evidence of increased accommodation deficits (Hedge's g = 0.68 [CI: 0.28, 1.08]) (non-significant heterogeneity: Q = 6.9331, p = 0.0741), reduced peripheral vision (-0.82 [CI: -1.32, -0.33]) (non-significant heterogeneity: Q = 4.8075, p = 0.4398), reduced stereoacuity (0.73 [CI: -1.14, -0.31]) (non-significant heterogeneity: Q = 0.8974, p = 0.3435), increased color discrimination difficulties (0.69 [CI: 0.27,1.10]) (non-significant heterogeneity: Q = 9.9928, p = 0.1890), reduced contrast sensitivity (0.45 [CI: -0.60, -0.30]) (non-significant heterogeneity: Q = 9.9928, p = 0.1890) and increased retinal thickness (=0.29 [CI: 0.07, 0.51]) (non-significant heterogeneity: Q = 0.8113, p = 0.9918) in ASD. DISCUSSION ASD is associated with some self-reported and objectively measured functional vision problems, and structural alterations of the eye, even though we observed several methodological limitations in the individual studies included in our meta-analyses. Further research should clarify the causal relationship, if any, between ASD and problems of vision during early life. PROSPERO REGISTRATION CRD42022328485.
Collapse
Affiliation(s)
- John Perna
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alessio Bellato
- School of Psychology, University of Nottingham Malaysia, Selangor, Malaysia
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Andrea Zampieri
- Vittorio Emanuele III Hospital - Montecchio Maggiore, Vicenza, Italy
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Pfarr JK, Meller T, Brosch K, Stein F, Thomas-Odenthal F, Evermann U, Wroblewski A, Ringwald KG, Hahn T, Meinert S, Winter A, Thiel K, Flinkenflügel K, Jansen A, Krug A, Dannlowski U, Kircher T, Gaser C, Nenadić I. Data-driven multivariate identification of gyrification patterns in a transdiagnostic patient cohort: A cluster analysis approach. Neuroimage 2023; 281:120349. [PMID: 37683808 DOI: 10.1016/j.neuroimage.2023.120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Multivariate data-driven statistical approaches offer the opportunity to study multi-dimensional interdependences between a large set of biological parameters, such as high-dimensional brain imaging data. For gyrification, a putative marker of early neurodevelopment, direct comparisons of patterns among multiple psychiatric disorders and investigations of potential heterogeneity of gyrification within one disorder and a transdiagnostic characterization of neuroanatomical features are lacking. METHODS In this study we used a data-driven, multivariate statistical approach to analyze cortical gyrification in a large cohort of N = 1028 patients with major psychiatric disorders (Major depressive disorder: n = 783, bipolar disorder: n = 129, schizoaffective disorder: n = 44, schizophrenia: n = 72) to identify cluster patterns of gyrification beyond diagnostic categories. RESULTS Cluster analysis applied on gyrification data of 68 brain regions (DK-40 atlas) identified three clusters showing difference in overall (global) gyrification and minor regional variation (regions). Newly, data-driven subgroups are further discriminative in cognition and transdiagnostic disease risk factors. CONCLUSIONS Results indicate that gyrification is associated with transdiagnostic risk factors rather than diagnostic categories and further imply a more global role of gyrification related to mental health than a disorder specific one. Our findings support previous studies highlighting the importance of association cortices involved in psychopathology. Explorative, data-driven approaches like ours can help to elucidate if the brain imaging data on hand and its a priori applied grouping actually has the potential to find meaningful effects or if previous hypotheses about the phenotype as well as its grouping have to be revisited.
Collapse
Affiliation(s)
- Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Department of Psychology, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany.
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Germany; Institute for Translational Neuroscience, University of Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Germany
| | | | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry und Psychotherapy, University Hospital Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| |
Collapse
|
41
|
Takahashi Y, Takahashi T, Usuda H, Carter S, Fee EL, Furfaro L, Chemtob S, Olson DM, Keelan JA, Kallapur S, Kemp MW. Pharmacological blockade of the interleukin-1 receptor suppressed Escherichia coli lipopolysaccharide-induced neuroinflammation in preterm fetal sheep. Am J Obstet Gynecol MFM 2023; 5:101124. [PMID: 37597799 DOI: 10.1016/j.ajogmf.2023.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Intraamniotic inflammation is associated with preterm birth, especially in cases occurring before 32 weeks' gestation, and is causally linked with an increased risk for neonatal mortality and morbidity. Targeted anti-inflammatory interventions may assist in improving the outcomes for pregnancies impacted by intrauterine inflammation. Interleukin-1 is a central upstream mediator of inflammation. Accordingly, interleukin-1 is a promising candidate target for intervention therapies and has been targeted previously using the interleukin-1 receptor antagonist, anakinra. Recent studies have shown that the novel, noncompetitive, allosteric interleukin-1 receptor inhibitor, rytvela, partially resolved inflammation associated with preterm birth and fetal injury. In this study, we used a preterm sheep model of chorioamnionitis to investigate the anti-inflammatory efficacy of rytvela and anakinra, administered in the amniotic fluid in the setting of intraamniotic Escherichia coli lipopolysaccharide exposure. OBJECTIVE We hypothesized that both rytvela and anakinra would reduce lipopolysaccharide-induced intrauterine inflammation and protect the fetal brain. STUDY DESIGN Ewes with a singleton fetus at 105 days of gestation (term is ∼150 days) were randomized to one of the following groups: (1) intraamniotic injections of 2 mL saline at time=0 and time=24 hours as a negative control group (saline group, n=12); (2) intraamniotic injection of 10 mg Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2 mL saline at time=0 hours and time=24 hours as an inflammation positive control group (lipopolysaccharide group, n=11); (3) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2.5 mg rytvela at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of rytvela (lipopolysaccharide + rytvela group, n=10); or (4) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 100 mg anakinra at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of anakinra (lipopolysaccharide + anakinra group, n=12). Amniotic fluid was sampled at time 0, 24, and 48 hours (ie, at each intervention and at delivery). Fetal umbilical cord blood was collected at delivery for differential blood counts and chemical studies. Inflammation was characterized by the analysis of fetal tissue cytokine and chemokine levels using quantitative polymerase chain reaction, enzyme-linked inmmunosorbent assay, and histology. The primary study outcome of interest was the assessment of anakinra and rytvela brain-protective effects in the setting of Escherichia coli lipopolysaccharide-induced intrauterine inflammation. Secondary outcomes of interest were to assess protection from fetal and intrauterine (ie, amniotic fluid, chorioamnion) inflammation. RESULTS Intraamniotic administration of lipopolysaccharide caused inflammation of the fetal lung, brain, and chorioamnionitis in preterm fetal sheep. Relative to treatment with saline only in the setting of lipopolysaccharide exposure, intraamniotic administration of both rytvela and anakinra both significantly prevented periventricular white matter injury, microglial activation, and histologic chorioamnionitis. Anakinra showed additional efficacy in inhibiting fetal lung myeloperoxidase activity, but its use was associated with metabolic acidaemia and reduced fetal plasma insulin-like growth factor-1 levels at delivery. CONCLUSION Intraamniotic administration of rytvela or anakinra significantly inhibited fetal brain inflammation and chorioamnionitis in preterm fetal sheep exposed to intraamniotic lipopolysaccharide. In addition, anakinra treatment was associated with potential negative impacts on the developing fetus.
Collapse
Affiliation(s)
- Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp).
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp)
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp)
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dr S Carter, and Kemp)
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada (Dr Chemtob)
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Alberta, Canada (Dr Olson)
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Suhas Kallapur
- Department of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA (Dr Kallapur)
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp); School of Veterinary and Life Sciences, Murdoch University, Perth, Australia (Dr Kemp); Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dr S Carter, and Kemp)
| |
Collapse
|
42
|
Parker N, Cheng W, Hindley GFL, Parekh P, Shadrin AA, Maximov II, Smeland OB, Djurovic S, Dale AM, Westlye LT, Frei O, Andreassen OA. Psychiatric disorders and brain white matter exhibit genetic overlap implicating developmental and neural cell biology. Mol Psychiatry 2023; 28:4924-4932. [PMID: 37759039 DOI: 10.1038/s41380-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Nadine Parker
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Weiqiu Cheng
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Olav B Smeland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Williams SR, Robertson FC, Wedderburn CJ, Ringshaw JE, Bradford L, Nyakonda CN, Hoffman N, Joshi SH, Zar HJ, Stein DJ, Donald KA. 1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study. Front Neurosci 2023; 17:1251575. [PMID: 37901429 PMCID: PMC10600451 DOI: 10.3389/fnins.2023.1251575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Alterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure. Methods We used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age. Results Our study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17-0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35-0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson's r = -0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson's r = 0.51, p = 0.032). Conclusion Reduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.
Collapse
Affiliation(s)
- Simone R. Williams
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C. Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica E. Ringshaw
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Layla Bradford
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Charmaine N. Nyakonda
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H. Joshi
- Departments of Neurology and Bioengineering, UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
44
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
45
|
Moseholm E, Ameri S, Storgaard M, Pedersen G, Johansen IS, Katzenstein TL, Weis N. Psychiatric Diagnoses Among HIV-Exposed and HIV-Unexposed Uninfected Children: A Danish Nationwide Cohort Study. AIDS Patient Care STDS 2023; 37:469-479. [PMID: 37862077 DOI: 10.1089/apc.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
This nationwide registry-based cohort study aimed to compare the risk of psychiatric diagnoses among HIV-exposed uninfected (HEU) children with a matched comparison group of HIV-unexposed uninfected (HUU) children, born in Denmark. We hypothesized that HEU children had an increased risk of psychiatric diagnoses and that this increased risk may differ by sex and age. All HEU children born in Denmark between year 2000 and 2020 were included. Each HEU child was matched by year of birth, maternal age at birth, and maternal immigration status to 10 HUU children. The primary outcome was risk of any psychiatric diagnosis (International Classification of Diseases, 10th Revision F00-F99). Incidence rate ratios (IRRs) were estimated using Poisson regression. Analyses stratifying by sex and age were also conducted. In total, 550 HEU children and 5500 HUU children were included. HEU children had an increased risk of any psychiatric disorder [IRR 1.45; 95% confidence interval (CI): 1.04-2.04] in the unadjusted analysis, but in the adjusted analysis, the risk was only significant for children aged 6-11 years [adjusted incidence rate ratio (aIRR) 1.93; 95% CI: 1.14-3.28]. Stratifying by sex, girls aged 6-11 years had an increased risk of any psychiatric disorder (aIRR 3.04; 95% CI: 1.27-7.28), while boys had an increased risk at age 12-20 years (aIRR 2.47; 95% CI: 1.18-5.17). In conclusion, HEU girls aged 6-11 years and HEU boys aged 12-20 years had an increased risk of any psychiatric disorder compared with HUU girls and boys, respectively. These findings highlight the importance of addressing the mental health needs of HEU children/adolescents.
Collapse
Affiliation(s)
- Ellen Moseholm
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Hvidovre, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sammy Ameri
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Hvidovre, Denmark
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Gitte Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Terese L Katzenstein
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
47
|
Gonçalves J, Melro M, Alenquer M, Araújo C, Castro-Neves J, Amaral-Silva D, Ferreira F, Ramalho JS, Charepe N, Serrano F, Pontinha C, Amorim MJ, Soares H. Balance between maternal antiviral response and placental transfer of protection in gestational SARS-CoV-2 infection. JCI Insight 2023; 8:e167140. [PMID: 37490342 PMCID: PMC10544212 DOI: 10.1172/jci.insight.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
The intricate interplay between maternal immune response to SARS-CoV-2 and the transfer of protective factors to the fetus remains unclear. By analyzing mother-neonate dyads from second and third trimester SARS-CoV-2 infections, our study shows that neutralizing antibodies (NAbs) are infrequently detected in cord blood. We uncovered that this is due to impaired IgG-NAb placental transfer in symptomatic infection and to the predominance of maternal SARS-CoV-2 NAbs of the IgA and IgM isotypes, which are prevented from crossing the placenta. Crucially, the balance between maternal antiviral response and transplacental transfer of IgG-NAbs appears to hinge on IL-6 and IL-10 produced in response to SARS-CoV-2 infection. In addition, asymptomatic maternal infection was associated with expansion of anti-SARS-CoV-2 IgM and NK cell frequency. Our findings identify a protective role for IgA/IgM-NAbs in gestational SARS-CoV-2 infection and open the possibility that the maternal immune response to SARS-CoV-2 infection might benefit the neonate in 2 ways, first by skewing maternal immune response toward immediate viral clearance, and second by endowing the neonate with protective mechanisms to curtail horizontal viral transmission in the critical postnatal period, via the priming of IgA/IgM-NAbs to be transferred by the breast milk and via NK cell expansion in the neonate.
Collapse
Affiliation(s)
- Juliana Gonçalves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Magda Melro
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Marta Alenquer
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Catarina Araújo
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Júlia Castro-Neves
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Daniela Amaral-Silva
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Filipe Ferreira
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | | | - Nádia Charepe
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Fátima Serrano
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- CHRC, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| | - Carlos Pontinha
- Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Gulbenkian Institute of Science, Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Portuguese Catholic University, Lisbon, Portugal
| | - Helena Soares
- Human Immunobiology and Pathogenesis Laboratory, iNOVA4Health, Nova Medical School, Faculty of Medical Sciences, Nova University, Lisbon, Portugal
| |
Collapse
|
48
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
49
|
Kochunov P, Ma Y, Hatch KS, Gao S, Acheson A, Jahanshad N, Thompson PM, Adhikari BM, Bruce H, Van der Vaart A, Chiappelli J, Du X, Sotiras A, Kvarta MD, Ma T, Chen S, Hong LE. Ancestral, Pregnancy, and Negative Early-Life Risks Shape Children's Brain (Dis)similarity to Schizophrenia. Biol Psychiatry 2023; 94:332-340. [PMID: 36948435 PMCID: PMC10511664 DOI: 10.1016/j.biopsych.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Familial, obstetric, and early-life environmental risks for schizophrenia spectrum disorder (SSD) alter normal cerebral development, leading to the formation of characteristic brain deficit patterns prior to onset of symptoms. We hypothesized that the insidious effects of these risks may increase brain similarity to adult SSD deficit patterns in prepubescent children. METHODS We used data collected by the Adolescent Brain Cognitive Development (ABCD) Study (N = 8940, age = 9.9 ± 0.1 years, 4307/4633 female/male), including 727 (age = 9.9 ± 0.1 years, 351/376 female/male) children with family history of SSD, to evaluate unfavorable cerebral effects of ancestral SSD history, pre/perinatal environment, and negative early-life environment. We used a regional vulnerability index to measure the alignment of a child's cerebral patterns with the adult SSD pattern derived from a large meta-analysis of case-control differences. RESULTS In children with a family history of SSD, the regional vulnerability index captured significantly more variance in ancestral history than traditional whole-brain and regional brain measurements. In children with and without family history of SSD, the regional vulnerability index also captured more variance associated with negative pre/perinatal environment and early-life experiences than traditional brain measurements. CONCLUSIONS In summary, in a cohort in which most children will not develop SSD, familial, pre/perinatal, and early developmental risks can alter brain patterns in the direction observed in adult patients with SSD. Individual similarity to adult SSD patterns may provide an early biomarker of the effects of genetic and developmental risks on the brain prior to psychotic or prodromal symptom onset.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of the Sunshine Coast, Marina del Rey, California
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of the Sunshine Coast, Marina del Rey, California
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrew Van der Vaart
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Aris Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Mark D Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, Maryland
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|