1
|
Maeda S, Kai K, Kawasaki K, Tanaka T, Ide T, Noshiro H. Analysis of CD1a-Positive Monocyte-Derived Cells in the Regional Lymph Nodes of Patients with Gallbladder Cancer. Int J Mol Sci 2024; 25:12763. [PMID: 39684473 DOI: 10.3390/ijms252312763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Dendritic cells (DCs) are known to be major antigen-presenting cells, and lymph nodes (LNs) play an important role in DC-mediated immune response. CD1a is known as a marker of monocyte-derived DCs. The present study focused on the infiltration of CD1a-positive DCs (CD1a-DCs) into regional LNs in 70 cases of gallbladder cancer (GBC). After univariate analyses, the results showed that LN infiltration by CD1a-DCs was associated with unfavorable clinical outcomes in patients with GBC, with all cases categorized in the CD1a-DCs high group had nodal metastasis. LN infiltration by CD1a-DCs was not an independent prognostic factor identified by multivariate analyses. After subgroup analyses of cases with LN metastasis (n = 32), no significant impacts of CD1a-DCs infiltration into metastatic LNs were observed. In contrast, CD1a-DCs infiltration into primary tumors had a significant impact on surgical outcomes. The results of strong confounding between CD1a-DCs and LN metastasis support the theory that CD1a-DCs are developed from monocytes at tumor sites. As the results of previous research focused on CD1a-DCs infiltration into regional LNs of other organs varied, the role and significance of CD1a-DCs infiltration in regional LNs may be different according to the tumor histology or its primary site. Thus, further studies are needed to clarify the role and significance of CD1a-DCs infiltration into regional LNs of solid cancers.
Collapse
Affiliation(s)
- Sachiko Maeda
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Saga University Hospital, Saga 849-8501, Japan
| | - Kanako Kawasaki
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takao Ide
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
2
|
Najm R, Hachim MY, Kandasamy RK. Divulging a Pleiotropic Role of Succinate Receptor SUCNR1 in Renal Cell Carcinoma Microenvironment. Cancers (Basel) 2022; 14:cancers14246064. [PMID: 36551549 PMCID: PMC9776839 DOI: 10.3390/cancers14246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The succinate receptor, SUCNR1, has been attributed to tumor progression, metastasis, and immune response modulation upon its activation via the oncometabolite succinate. Nonetheless, little is known about the prognostic relevance of SUCNR1 and its association with tumor immune infiltrates and microbiota in renal cell carcinoma (RCC). Herein, publicly available platforms including Human Protein Atlas, cBioPortal, TIMER2.0, and TISIDB were utilized to depict a divergent implication of SUCNR1 in the immune microenvironment of clear cell RCC (KIRC) and papillary RCC (KIRP); the two major subtypes of RCC. Our results showed that the SUCNR1 expression level was augmented in RCC compared to other solid cancers, yet with opposite survival rate predictions in RCC subtypes. Consequently, a higher expression level of SUCNR1 was associated with a good disease-specific survival rate (p = 5.797 × 10-5) in KIRC patients albeit a poor prognostic prediction in KIRP patients (p = 1.9282 × 10-3). Intriguingly, SUCNR1 was mainly correlated to immunomodulators and diverse immune infiltrates in KIRP. Additionally, the SUCNR1 was mostly associated with a repertoire of microbes including beneficial bacteria that likely influenced a better disease-specific survival rate in KIRC. Our findings illustrate a significant novel subtype-specific role of SUCNR1 in RCC which potentially modulates tumor immune infiltration and microbiome signature, hence altering the prognosis of cancer patients.
Collapse
Affiliation(s)
- Rania Najm
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: or
| |
Collapse
|
3
|
Brech D, Herbstritt AS, Diederich S, Straub T, Kokolakis E, Irmler M, Beckers J, Büttner FA, Schaeffeler E, Winter S, Schwab M, Nelson PJ, Noessner E. Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival. Cells 2022; 11:3289. [PMID: 36291154 PMCID: PMC9600747 DOI: 10.3390/cells11203289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described "enriched-in-renal cell carcinoma" (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.
Collapse
Affiliation(s)
- Dorothee Brech
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Anna S. Herbstritt
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Sarah Diederich
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | - Evangelos Kokolakis
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Florian A. Büttner
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Elke Schaeffeler
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Stefan Winter
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72074 Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, 72074 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| |
Collapse
|
4
|
Olguín-Contreras LF, Mendler AN, Popowicz G, Hu B, Noessner E. Double Strike Approach for Tumor Attack: Engineering T Cells Using a CD40L:CD28 Chimeric Co-Stimulatory Switch Protein for Enhanced Tumor Targeting in Adoptive Cell Therapy. Front Immunol 2021; 12:750478. [PMID: 34912334 PMCID: PMC8666660 DOI: 10.3389/fimmu.2021.750478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.
Collapse
Affiliation(s)
| | - Anna N. Mendler
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Grzegorz Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, Munich, Germany
| | - Bin Hu
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
- Immunoanalytics Research Group - Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
5
|
Anker J, Miller J, Taylor N, Kyprianou N, Tsao CK. From Bench to Bedside: How the Tumor Microenvironment Is Impacting the Future of Immunotherapy for Renal Cell Carcinoma. Cells 2021; 10:3231. [PMID: 34831452 PMCID: PMC8619121 DOI: 10.3390/cells10113231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has revolutionized the treatment landscape for many cancer types. The treatment for renal cell carcinoma (RCC) has especially evolved in recent years, from cytokine-based immunotherapies to immune checkpoint inhibitors. Although clinical benefit from immunotherapy is limited to a subset of patients, many combination-based approaches have led to improved outcomes. The success of such approaches is a direct result of the tumor immunology knowledge accrued regarding the RCC microenvironment, which, while highly immunogenic, demonstrates many unique characteristics. Ongoing translational work has elucidated some of the mechanisms of response, as well as primary and secondary resistance, to immunotherapy. Here, we provide a comprehensive review of the RCC immunophenotype with a specific focus on how preclinical and clinical data are shaping the future of immunotherapy.
Collapse
Affiliation(s)
- Jonathan Anker
- Division of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Justin Miller
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
| | - Nicole Taylor
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
| | - Natasha Kyprianou
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Che-Kai Tsao
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
6
|
Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, Liu J, Yu Y. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Front Immunol 2021; 12:653358. [PMID: 33746989 PMCID: PMC7970116 DOI: 10.3389/fimmu.2021.653358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Precision Medicine/methods
- Progression-Free Survival
- Randomized Controlled Trials as Topic
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Noessner E, Brech D, Mendler AN, Masouris I, Schlenker R, Prinz PU. Intratumoral alterations of dendritic-cell differentiation and CD8(+) T-cell anergy are immune escape mechanisms of clear cell renal cell carcinoma. Oncoimmunology 2021; 1:1451-1453. [PMID: 23243626 PMCID: PMC3518535 DOI: 10.4161/onci.21356] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytotoxic lymphocytes and dendritic cells infiltrating human renal cell carcinoma (RCC) are not sufficient to prevent tumor progression. Our studies identified alterations of the immune cell infiltrate as well as some of the underlying mechanisms. This knowledge should facilitate the development of anti-RCC therapies that achieve better tumor control.
Collapse
Affiliation(s)
- Elfriede Noessner
- Institute of Molecular Immunology; Helmholtz Center Munich; German Research Center for Environmental Health; Munich, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Human kidney clonal proliferation disclose lineage-restricted precursor characteristics. Sci Rep 2020; 10:22097. [PMID: 33328501 PMCID: PMC7745030 DOI: 10.1038/s41598-020-78366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.
Collapse
|
9
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Wang X, Lopez R, Luchtel RA, Hafizi S, Gartrell B, Shenoy N. Immune evasion in renal cell carcinoma: biology, clinical translation, future directions. Kidney Int 2020; 99:75-85. [PMID: 32949550 DOI: 10.1016/j.kint.2020.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Targeted therapies and immune checkpoint inhibitors have advanced the treatment landscape of Renal Cell Carcinoma (RCC) over the last decade. While checkpoint inhibitors have demonstrated survival benefit and are currently approved in the front-line and second-line settings, primary and secondary resistance is common. A comprehensive understanding of the mechanisms of immune evasion in RCC is therefore critical to the development of effective combination treatment strategies. This article reviews the current understanding of the different, yet coordinated, mechanisms adopted by RCC cells to evade immune killing; summarizes various aspects of clinical translation thus far, including the currently registered RCC clinical trials exploring agents in combination with checkpoint inhibitors; and provides perspectives on the current landscape and future directions for the field.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, New York, New York, USA
| | - Robert Lopez
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Rebecca A Luchtel
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Sassan Hafizi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Benjamin Gartrell
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Niraj Shenoy
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Experimental Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
11
|
Complex Immune Contextures Characterise Malignant Peritoneal Mesothelioma: Loss of Adaptive Immunological Signature in the More Aggressive Histological Types. J Immunol Res 2018; 2018:5804230. [PMID: 30510965 PMCID: PMC6231377 DOI: 10.1155/2018/5804230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 01/01/2023] Open
Abstract
Malignant peritoneal mesothelioma (MpM), arising in the setting of local inflammation, is a rare aggressive tumour with a poor prognosis and limited therapeutic options. The three major MpM histological variants, epithelioid (E-MpMs), biphasic, and sarcomatoid MpMs (S-MpMs), are characterised by an increased aggressiveness and enhanced levels of EZH2 expression. To investigate the MpM immune contexture along the spectrum of MpM histotypes, an extended in situ analysis was performed on a series of 14 cases. Tumour-infiltrating immune cells and their functionality were assessed by immunohistochemistry, immunofluorescence, qRT-PCR, and flow cytometry analysis. MpMs are featured by a complex immune landscape modulated along the spectrum of MpM variants. Tumour-infiltrating T cells and evidence for pre-existing antitumour immunity are mainly confined to E-MpMs. However, Th1-related immunological features are progressively impaired in the more aggressive forms of E-MpMs and completely lost in S-MpM. Concomitantly, E-MpMs show also signs of active immune suppression, such as the occurrence of Tregs and Bregs and the expression of the immune checkpoint inhibitory molecules PD1 and PDL1. This study enriches the rising rationale for immunotherapy in MpM and points to the E-MpMs as the most immune-sensitive MpM histotypes, but it also suggests that synergistic interventions aimed at modifying the tumour microenvironment (TME) should be considered to make immunotherapy beneficial for these patients.
Collapse
|
12
|
Kildey K, Law BMP, Muczynski KA, Wilkinson R, Helen H, Kassianos AJ. Identification and Quantitation of Leukocyte Populations in Human Kidney Tissue by Multi-parameter Flow Cytometry. Bio Protoc 2018; 8:e2980. [PMID: 34395780 DOI: 10.21769/bioprotoc.2980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 11/02/2022] Open
Abstract
Inflammatory immune cells play direct pathological roles in cases of acute kidney injury (AKI) and chronic kidney disease (CKD). However, the identification and characterization of distinct populations of leukocytes in human kidney biopsies have been confounded by the limitations of immunohistochemical (IHC)-based techniques used to detect them. This methodology is not amenable to the combinations of multiple markers necessary to unequivocally define discrete immune cell populations. We have developed a multi-parameter, flow cytometric-based approach that addresses the need for panels of cell-specific markers in the identification of immune cell populations, allowing both the accurate detection and quantitation of leukocyte subpopulations from a single, clinical kidney biopsy specimen. In this approach, fresh human kidney tissue is dissociated into a single cell suspension followed by antibody-labeling and flow cytometric-based acquisition and analysis. This novel technique provides a major step forward in identifying and enumerating immune cell subpopulations in human kidney disease and is a powerful platform to complement traditional histopathological examinations of clinical kidney biopsies.
Collapse
Affiliation(s)
- Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Becker M P Law
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Healy Helen
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Medical School, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Abstract
Current therapies of renal cell carcinoma (RCC), a highly vascularised tumour, mostly rely on anti-angiogenic treatment options. These include tyrosine kinase inhibitors (TKIs) and anti-VEGF monoclonal antibodies. Although these strategies aim at restraining vascularisation to control tumour growth, the effects of such therapies are much wider, as affecting the vessel structure deeply modifies the microenvironment of the tumour mass. The aim of this review is to provide an overview of current knowledge on the global effects of anti-angiogenic treatment, mostly TKIs, on the shaping of the immune component of the RCC microenvironment. The data supporting the modification of immunity by anti-angiogenic therapies are collected to reveal the potential of angiogenesis modulation as a strategy for the adjuvant anti-cancer approach in immunotherapy.
Collapse
|
14
|
Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Baras AS, Patel SS, Anders RA, Rimm DL, Cimino-Mathews A. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 2018; 31:214-234. [PMID: 29192647 PMCID: PMC6132263 DOI: 10.1038/modpathol.2017.156] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/06/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Characterizing the tumor immune microenvironment enables the identification of new prognostic and predictive biomarkers, the development of novel therapeutic targets and strategies, and the possibility to guide first-line treatment algorithms. Although the driving elements within the tumor microenvironment of individual primary organ sites differ, many of the salient features remain the same. The presence of a robust antitumor milieu characterized by an abundance of CD8+ cytotoxic T-cells, Th1 helper cells, and associated cytokines often indicates a degree of tumor containment by the immune system and can even lead to tumor elimination. Some of these features have been combined into an 'Immunoscore', which has been shown to complement the prognostic ability of the current TNM staging for early stage colorectal carcinomas. Features of the immune microenvironment are also potential therapeutic targets, and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis are especially promising. FDA-approved indications for anti-PD-1/PD-L1 are rapidly expanding across numerous tumor types and, in certain cases, are accompanied by companion or complimentary PD-L1 immunohistochemical diagnostics. Pathologists have direct visual access to tumor tissue and in-depth knowledge of the histological variations between and within tumor types and thus are poised to drive forward our understanding of the tumor microenvironment. This review summarizes the key components of the tumor microenvironment, presents an overview of and the challenges with PD-L1 antibodies and assays, and addresses newer candidate biomarkers, such as CD8+ cell density and mutational load. Characteristics of the local immune contexture and current pathology-related practices for specific tumor types are also addressed. In the future, characterization of the host antitumor immune response using multiplexed and multimodality biomarkers may help predict which patients will respond to immune-based therapies.
Collapse
Affiliation(s)
- Janis M Taube
- Department of Dermatology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tricia R Cottrell
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Nicolas A Giraldo
- Department of Dermatology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Alexander S Baras
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Sanjay S Patel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert A Anders
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Cimino-Mathews
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| |
Collapse
|
15
|
Fortis SP, Sofopoulos M, Sotiriadou NN, Haritos C, Vaxevanis CK, Anastasopoulou EA, Janssen N, Arnogiannaki N, Ardavanis A, Pawelec G, Perez SA, Baxevanis CN. Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer. J Immunother Cancer 2017; 5:39. [PMID: 28428887 PMCID: PMC5395775 DOI: 10.1186/s40425-017-0240-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Tumor immune cell infiltrates are essential in hindering cancer progression and may complement the TNM classification. CD8+ and CD163+ cells have prognostic impact in breast cancer but their spatial heterogeneity has not been extensively explored in this type of cancer. Here, their potential as prognostic biomarkers was evaluated, depending on their combined densities in the tumor center (TC) and the tumor invasive margin (IM). Methods CD8+ and CD163+ cells were quantified by immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples from a cohort totaling 162 patients with histologically-confirmed primary invasive non-metastatic ductal breast cancer diagnosed between 2000 and 2015. Clinical follow-up (median 6.9 years) was available for 97 of these patients. Results Differential densities of CD8+ and CD163+ cells in the combined TC and IM compartments (i.e., high(H)/low(L), respectively for CD8+ cells and the reverse L/H combination for CD163+ cells) were found to have significant prognostic value for survival, and allowed better patient stratification than TNM stage, tumor size, lymph node invasion and histological grade. The combined evaluation of CD8+ and CD163+ cell densities jointly in TC and IM further improves prediction of clinical outcomes based on disease-free and overall survival. Patients having the favorable immune signatures had favorable clinical outcomes despite poor clinicopathological parameters. Conclusions Given the important roles of CD8+ and CD163+ cells in regulating opposing immune circuits, adding an assessment of their differential densities to the prognostic biomarker armamentarium in breast cancer would be valuable. Larger validation studies are necessary to confirm these findings. Trial registrations Study code: IRB-ID 6079/448/10-6-13 Date of approval: 10/06/2013 Retrospective study (2000–2010) First patient prospectively enrolled 14/2/2014 Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0240-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | - Christoforos Haritos
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | - Nicole Janssen
- Center for Medical Research, Eberhard-Karls Universität, Tübingen, Germany
| | | | | | - Graham Pawelec
- Center for Medical Research, Eberhard-Karls Universität, Tübingen, Germany
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
16
|
Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo. Cytokine 2017; 91:65-73. [DOI: 10.1016/j.cyto.2016.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022]
|
17
|
Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, Sanchez-Salas R, Ingels A, Oudard S, Moatti A, Buttard B, Bourass S, Germain C, Cathelineau X, Fridman WH, Sautès-Fridman C. Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early Relapse in Localized Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2017; 23:4416-4428. [PMID: 28213366 DOI: 10.1158/1078-0432.ccr-16-2848] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/12/2016] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The efficacy of PD-1 checkpoint blockade as adjuvant therapy in localized clear cell renal cell carcinoma (ccRCC) is currently unknown. The identification of tumor microenvironment (TME) prognostic biomarkers in this setting may help define which patients could benefit from checkpoint blockade and uncover new therapeutic targets.Experimental Design: We performed multiparametric flow cytometric immunophenotypic analysis of T cells isolated from tumor tissue [tumor-infiltrating lymphocytes (TIL)], adjacent non-malignant renal tissue [renal-infiltrating lymphocytes (RIL)], and peripheral blood lymphocytes (PBL), in a cohort of patients (n = 40) with localized ccRCC. Immunophenotypic data were integrated with prognostic and histopathologic variables, T-cell receptor (TCR) repertoire analysis of sorted CD8+PD-1+ TILs, tumor mRNA expression, and digital quantitative immunohistochemistry.Results: On the basis of TIL phenotypic characterization, we identified three dominant immune profiles in localized ccRCC: (i) immune-regulated, characterized by polyclonal/poorly cytotoxic CD8+PD-1+Tim-3+Lag-3+ TILs and CD4+ICOS+ cells with a Treg phenotype (CD25+CD127-Foxp3+/Helios+GITR+), that developed in inflamed tumors with prominent infiltrations by dysfunctional dendritic cells and high PD-L1 expression; (ii) immune-activated, enriched in oligoclonal/cytotoxic CD8+PD-1+Tim-3+ TILs, that represented 22% of the tumors; and (iii) immune-silent, enriched in TILs exhibiting RIL-like phenotype, that represented 56% of patients in the cohort. Only immune-regulated tumors displayed aggressive histologic features, high risk of disease progression in the year following nephrectomy, and a CD8+PD-1+Tim-3+ and CD4+ICOS+ PBL phenotypic signature.Conclusions: In localized ccRCC, the infiltration with CD8+PD-1+Tim-3+Lag-3+ exhausted TILs and ICOS+ Treg identifies the patients with deleterious prognosis who could benefit from adjuvant therapy with TME-modulating agents and checkpoint blockade. This work also provides PBL phenotypic markers that could allow their identification. Clin Cancer Res; 23(15); 4416-28. ©2017 AACR.
Collapse
Affiliation(s)
- Nicolas A Giraldo
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Etienne Becht
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Yann Vano
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Georges Pompidou European Hospital, Oncology Department, Paris 5 - Descartes University, Assistance Publique Hopitaux de Paris, Paris, France
| | - Florent Petitprez
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Carte d'Identité des Tumeurs, Ligue contre le Cancer, Paris, France
| | - Laetitia Lacroix
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Pierre Validire
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | | | - Alexandre Ingels
- Urology Department, Institut Mutualiste Montsouris, Paris, France
| | - Stephane Oudard
- Georges Pompidou European Hospital, Oncology Department, Paris 5 - Descartes University, Assistance Publique Hopitaux de Paris, Paris, France
| | - Audrey Moatti
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Benedicte Buttard
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sarah Bourass
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France.,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Xavier Cathelineau
- Urology Department, Institut Mutualiste Montsouris, Paris, France.,University Paris Descartes Paris, Medical School, Paris, France
| | - Wolf H Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France. .,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, immune control and escape", Paris, France. .,University Paris Descartes Paris, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,UPMC University Paris, Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
18
|
Liu H, Gao C, Yu H. Safety and effectiveness of percutaneous radiofrequency ablation in early stage renal cell carcinoma. Oncol Lett 2017; 12:4618-4622. [PMID: 28101217 PMCID: PMC5228026 DOI: 10.3892/ol.2016.5267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to analyze the safety and effectiveness of percutaneous radiofrequency ablation (RFA) in early stage renal cell carcinoma. A total of 76 patients suffering from early stage renal cell carcinoma were selected and randomly assigned into the observation group (41 cases) or the control group (35 cases). Percutaneous RFA was used in the observation group, while retroperitoneoscopic radical operation of renal cell carcinoma was used in the control group, and the operative effects were compared. In the observation group, operation time, blood loss during operation, length of stay and incidence rate of complications were lower than those in control group (P<0.05). For both groups, serum C-reactive protein, interleukin-6 and T lymphocyte counts at 1, 2 and 3 days after operation were all increased; however, the control group had significantly greater increase for all the time points (P<0.05). For total effective rates, tumour-free survival times and survival rates, there were no statistically significant differences between the two groups (P>0.05). Percutaneous RFA has a reduced size of operation wound and a quick postoperative recovery time in the treatment of early stage renal cell carcinoma. It results in less inflammation and immunity-based injuries in the body and achieves the same clinical outcomes as retroperitoneoscopic radical operation of renal cell carcinoma.
Collapse
Affiliation(s)
- Hang Liu
- Department of Interventional Therapy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Changzhong Gao
- Department of Radiology, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Hualong Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
19
|
Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 2016; 271:260-75. [PMID: 27088920 DOI: 10.1111/imr.12405] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The characterization of the microenvironment of human tumors led to the description of tertiary lymphoid structures (TLS) characterized by mature dendritic cells in a T-cell zone adjacent to B-cell follicle including a germinal center. TLS represent sites of lymphoid neogenesis that develop in most solid cancers. Analysis of the current literature shows that the TLS presence is associated with a favorable clinical outcome for cancer patients, regardless of the approach used to quantify TLS and the stage of the disease. Using several approaches that combine immunohistochemistry, gene expression assays, and flow cytometry on large series of lung tumors, our work demonstrated that TLS are important sites for the initiation and/or maintenance of the local and systemic T- and B-cell responses against tumors. Surrounded by high endothelial venules, they represent a privileged area for the recruitment of lymphocytes into tumors and generation of central-memory T and B cells that circulate and limit cancer progression. TLS can be considered as a novel biomarker to stratify the overall survival risk of untreated cancer patients and as a marker of efficient immunotherapies. The induction and manipulation of cancer-associated TLS using drug agonists and/or biotherapies should open new avenues to treat cancer patients.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| |
Collapse
|
20
|
Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Adv Immunol 2016; 130:95-190. [DOI: 10.1016/bs.ai.2015.12.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Kamińska K, Czarnecka AM, Escudier B, Lian F, Szczylik C. Interleukin-6 as an emerging regulator of renal cell cancer. Urol Oncol 2015; 33:476-85. [PMID: 26296264 DOI: 10.1016/j.urolonc.2015.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our knowledge on the molecular basis of kidney cancer metastasisis still relatively low. About 25-30% of patients suffering from clear cell renal cell carcinoma (ccRCC)present metastatic disease at the time of primary diagnosis. Only 10% of patients diagnosed with stage IV disease survive 5 years and 20-50% of patients diagnosed with localized tumor develop metastases within 3 years. High mortality of patients with this cancer is associated with a large potential for metastasis and resistance to oncologic treatments such as chemo- and radiotherapy. Literature data based on studies conducted on other types of cancers suggest that in metastatic ccRCC, the complex of interleukin-6 (IL-6) and its soluble receptor (sIL-6R; complex IL-6/sIL-6R) and the signal transduction pathway (gp130/STAT3) might play a key role in this process. PURPOSE Therefore, in this review we focus on the role of IL-6 and its signaling pathways as a factor for development and spread of RCC. Analyzing the molecular basis of cancer spreading will enable the development of prognostic tests, evaluate individual predisposition for metastasis, and produce drugs that target metastases. As the development of effective systemic treatments evolve from advancements in molecular biology, continued studies directed at understanding the genetic and molecular complexities of this disease are critical to improve RCC treatment options.
Collapse
Affiliation(s)
| | - Anna M Czarnecka
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Bernard Escudier
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Fei Lian
- Emory University School of Medicine, Atlanta, GA
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
22
|
Batal I, De Serres SA, Safa K, Bijol V, Ueno T, Onozato ML, Iafrate AJ, Herter JM, Lichtman AH, Mayadas TN, Guleria I, Rennke HG, Najafian N, Chandraker A. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival. J Am Soc Nephrol 2015; 26:3102-13. [PMID: 25855773 DOI: 10.1681/asn.2014080804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.
Collapse
Affiliation(s)
- Ibrahim Batal
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;
| | - Sacha A De Serres
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Kassem Safa
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Takuya Ueno
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Maristela L Onozato
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Indira Guleria
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nader Najafian
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
23
|
Toma M, Wehner R, Kloß A, Hübner L, Fodelianaki G, Erdmann K, Füssel S, Zastrow S, Meinhardt M, Seliger B, Brech D, Noessner E, Tonn T, Schäkel K, Bornhäuser M, Bachmann MP, Wirth MP, Baretton G, Schmitz M. Accumulation of tolerogenic human 6-sulfo LacNAc dendritic cells in renal cell carcinoma is associated with poor prognosis. Oncoimmunology 2015; 4:e1008342. [PMID: 26155414 DOI: 10.1080/2162402x.2015.1008342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) essentially contribute to the induction and regulation of innate and adaptive immunity. Based on these important properties, DCs may profoundly influence tumor progression in patients. However, little is known about the role of distinct human DC subsets in primary tumors and their impact on clinical outcome. In the present study, we investigated the characteristics of human 6-sulfo LacNAc (slan) DCs in clear cell renal cell carcinoma (ccRCC). slanDCs have been shown to display various tumor-directed properties and to accumulate in tumor-draining lymph nodes from patients. When evaluating 263 ccRCC and 227 tumor-free tissue samples, we found increased frequencies of slanDCs in ccRCC tissues compared to tumor-free tissues. slanDCs were also detectable in the majority of 24 metastatic lymph nodes and 67 distant metastases from ccRCC patients. Remarkably, a higher density of slanDCs was significantly associated with a reduced progression-free, tumor-specific or overall survival of ccRCC patients. Tumor-infiltrating slanDCs displayed an immature phenotype expressing interleukin-10. ccRCC cells efficiently impaired slanDC-induced T-cell proliferation and programming as well as natural killer (NK) cell activation. In conclusion, these findings indicate that higher slanDC numbers in ccRCC tissues are associated with poor prognosis. The induction of a tolerogenic phenotype in slanDCs leading to an insufficient activation of innate and adaptive antitumor immunity may represent a novel immune escape mechanism of ccRCC. These observations may have implications for the design of therapeutic strategies that harness tumor-directed functional properties of DCs against ccRCC.
Collapse
Key Words
- CTLs, cytotoxic T cells
- DCs, dendritic cells
- FCS, fetal calf serum
- HLA, human leukocyte antigen
- IFNγ, interferonγ
- IL, interleukin
- ILT, immunoglobulin-like transcript
- LPS, lipopolysaccharide
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PMA, phorbol myristate acetate
- T cells
- TMAs, tissue microarrays
- TNF-α, tumor necrosis factor-α
- Th1 cells, T helper type I cells
- ccRCC, clear cell renal cell carcinoma
- dendritic cells
- renal cell carcinoma
- slan, 6-sulfo LacNAc
- tumor immunology
- tumor microenvironment
Collapse
Affiliation(s)
- Marieta Toma
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Anja Kloß
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Linda Hübner
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Georgia Fodelianaki
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany ; Center for Regenerative Therapies Dresden ; Dresden, Germany
| | - Kati Erdmann
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Susanne Füssel
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Stefan Zastrow
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology; Martin Luther University Halle-Wittenberg ; Halle (Saale), Germany
| | - Dorothee Brech
- Institute of Molecular Immunology; Helmholtz Center Munich; German Research Center for Environmental Health Munich ; Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology; Helmholtz Center Munich; German Research Center for Environmental Health Munich ; Munich, Germany
| | - Torsten Tonn
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Red Cross Blood Service ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology; University Hospital of Heidelberg ; Heidelberg, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany ; Department of Medicine I; University Hospital of Dresden ; Dresden, Germany
| | - Michael P Bachmann
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany ; Department of Radioimmunology; Institute of Radiopharmaceutical Cancer Research; Helmholtz Center Dresden-Rossendorf ; Dresden, Germany
| | - Manfred P Wirth
- Department of Urology; University Hospital of Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Gustavo Baretton
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany ; Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| |
Collapse
|
24
|
Wouters M, Dijkgraaf EM, Kuijjer ML, Jordanova ES, Hollema H, Welters M, van der Hoeven J, Daemen T, Kroep JR, Nijman HW, van der Burg SH. Interleukin-6 receptor and its ligand interleukin-6 are opposite markers for survival and infiltration with mature myeloid cells in ovarian cancer. Oncoimmunology 2015; 3:e962397. [PMID: 25964862 PMCID: PMC4353164 DOI: 10.4161/21624011.2014.962397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
An increased level of interleukin-6 (IL-6) in epithelial ovarian cancer (EOC) is correlated with a worse prognosis. IL-6 stimulates tumor-growth and inflammation. We investigated the intricate interaction between the IL-6 signaling pathway and tumor-infiltrating myeloid cells (TIMs) to determine their prognostic impact in EOC. 160 EOC samples were analyzed for the expression of IL-6, its receptor (IL-6R) and downstream signaling via pSTAT3 by immunohistochemistry. Triple color immunofluorescence confocal microscopy was used to identify myeloid cell populations by CD14, CD33, and CD163. The relationship between these markers, tumor-infiltrating immune cells, clinical-pathological characteristics and survival was investigated. EOC displayed a dense infiltration with myeloid cells, in particular of the CD163+ type. The distribution pattern of all myeloid subtypes was comparable among the different histological subtypes. Analysis of the tumor cells revealed a high expression of IL-6R in 15% and of IL-6 in 23% of patients. Interestingly, tumors expressing IL-6 or IL-6R formed two different groups. Tumors with a high expression of IL-6R displayed low mature myeloid cell infiltration and a longer disease-specific survival (DSS), especially in late stage tumors. High expression of IL-6R was an independent prognostic factor for survival by multivariate analyses (hazard ratio = 0.474, p = 0.011). In contrast, tumors with high epithelial IL-6 expression displayed a dense infiltration of mature myeloid cells and were correlated with a shorter DSS. Furthermore, in densely CD8+ T-cell infiltrated tumors, the ratio between these lymphoid cells and CD163+ myeloid cells was predictive for survival. Thus, IL-6 and IL-6R are opposite markers for myeloid cell infiltration and survival.
Collapse
Key Words
- DSS, disease-specific survival
- EOC, epithelial ovarian cancer
- FIGO, International Federation of Gynecology and Obstetrics
- IL-6, interleukin-6; IL-6R, interleukin-6 receptor
- IL-6R, interleukin-6, IL-6, interleukin-6 receptor
- MDSC, myeloid-derived suppressor cell
- T reg, regulatory T cell
- TAM, tumor-associated macrophage
- TIL, tumor-infiltrating lymphocytes
- TIM, tumor-infiltrating myeloid cell
- TMA, tissue microarray
- epithelial ovarian cancer
- pSTAT3
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
- tumor-infiltrating myeloid cells
Collapse
Affiliation(s)
- McA Wouters
- Department of Gynecologic Oncology; University of Groningen; University Medical Center Groningen ; Hanzeplein ; Groningen, The Netherlands ; Department of Medical Microbiology; University of Groningen; University Medical Center Groningen ; Hanzeplein , Groningen, The Netherlands
| | - E M Dijkgraaf
- Department of ClinicalOncology; Leiden University Medical Center ; Albinusdreef , Leiden, The Netherlands
| | - M L Kuijjer
- Department of Biostatistics and Computational Biology; Dana-Farber Cancer Institute ; Boston, MA USA ; Department of Biostatistics; Harvard School of Public Health ; Boston, MA USA
| | - E S Jordanova
- Center for Gynaecological Oncology Amsterdam ; VUMC, De Boelelaan , Amsterdam, The Netherlands
| | - H Hollema
- Department of Pathology; University of Groningen; University Medical Center Groningen ; Hanzeplein , Groningen, The Netherlands
| | - Mjp Welters
- Department of ClinicalOncology; Leiden University Medical Center ; Albinusdreef , Leiden, The Netherlands
| | - Jjm van der Hoeven
- Department of ClinicalOncology; Leiden University Medical Center ; Albinusdreef , Leiden, The Netherlands
| | - T Daemen
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen ; Hanzeplein , Groningen, The Netherlands
| | - J R Kroep
- Department of ClinicalOncology; Leiden University Medical Center ; Albinusdreef , Leiden, The Netherlands
| | - H W Nijman
- Department of Gynecologic Oncology; University of Groningen; University Medical Center Groningen ; Hanzeplein ; Groningen, The Netherlands
| | - S H van der Burg
- Department of ClinicalOncology; Leiden University Medical Center ; Albinusdreef , Leiden, The Netherlands
| |
Collapse
|
25
|
Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14 + PD-L1 + phenotype in prostate cancer. Oncoimmunology 2014; 3:e955331. [PMID: 25941611 DOI: 10.4161/21624011.2014.955331] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/25/2014] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated stromal myofibroblasts are essential for the progression and metastatic spread of solid tumors. Corresponding myeloid cell infiltration into primary tumors is a negative prognostic factor in some malignancies. The aim of this study was to define the exact role of stromal myofibroblasts and stromal factors in early prostate carcinoma (PCa) regulating monocyte infiltration and differentiation into dendritic cells (DCs). Epithelial and stromal primary cultures were generated from PCa biopsies and their purity confirmed. Stromal cells produced significantly more of the (C-C) motif chemokine ligand 2 (CCL2), interleukin 6 (IL-6) and transforming growth factor β (TGFβ) than epithelial cells. Monocyte chemoattraction was predominantly due to stromal-derived factors, mainly CCL2. DCs generated in the presence of stromal (but not epithelial) factors upregulated CD209, but failed to downregulate the monocyte marker CD14 in a signal transducer and activator of transcription 3 (STAT3)-dependent manner. Monocytes exposed to stromal factors did not produce detectable amounts of IL-10, however, upon lipopolysaccharide stimulation, stromal factor generated dendritic cells (sDC) produced significantly more IL-10 and less IL-12 than their conventional DC counterparts. sDC failed to cross-present tumor-antigen to CD8+ T cells and suppressed T-cell proliferation. Most importantly, sDC expressed significantly elevated levels of programmed cell death ligand-1 (PD-L1) in a primarily STAT3 and IL-6-dependent manner. In parallel with our findings in vitro, tumor-infiltrating CD14+ cells in situ were found to express both PD-L1 and CD209, and a higher percentage of tumor-associated CD3+ T cells expressed programmed cell death-1 (PD-1) molecules compared to T cells in blood. These results demonstrate a hitherto undescribed, fundamental contribution of tumor-associated stromal myofibroblasts to the development of an immunosuppressive microenvironment in early PCa.
Collapse
Key Words
- CCL2
- CCL2, (C–C) motif chemokine ligand-2
- CFSE, carboxyfluorescein succinimidyl ester
- CK, cytokeratin
- CM, conditioned media
- CXCL, chemokine (C–X–C) motif
- DC, dendritic cell
- ELISA, enzyme-linked immunosorbent assay
- GM-CSF, granulocyte macrophage colony-stimulating factor
- HFF, human foreskin fibroblast
- HGF, hepatocyte growth factor
- I-TAC, interferon-inducible T cell α chemoattractant
- IFN, interferon
- IL, interleukin
- IL-6
- IP-10, interferon-γ induced protein 10
- LPS, lipopolysaccharide
- MIF, macrophage inhibitory factor
- PBMC, peripheral blood mononuclear cells
- PCaEp, prostate cancer epithelia
- PCaSt, prostate cancer stroma
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed cell death ligand-1
- RANTES/CCL5, regulated on activation, normal T cell expressed and secreted
- SCBM, stromal cell basal media
- SDF-1, stromal-derived factor-1
- STAT3
- STAT3, signal transducer and activator of transcription 3
- TGFβ, transforming growth factor β
- TIL, tumor infiltrating leukocytes
- VEGF, vascular endothelial growth factor
- antigen cross-presentation
- dendritic cells
- immunosuppression
- prostate cancer
- sDC, DC generated in the presence of 50% PCaSt-CM
- tumor microenvironment
- tumor stroma
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Lisa K Spary
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| | - Josephine Salimu
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| | - Jason P Webber
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| | - Aled Clayton
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| | - Malcolm D Mason
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| | - Zsuzsanna Tabi
- Institute of Cancer and Genetics; School of Medicine ; Cardiff University ; Whitchurch, Cardiff, UK
| |
Collapse
|
26
|
Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, Jordanova ES, de Gruijl TD. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2014; 3:48-58. [PMID: 25361854 DOI: 10.1158/2326-6066.cir-14-0149] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better understanding of the microenvironment in relation to lymph node metastasis is essential for the development of effective immunotherapeutic strategies against cervical cancer. In the present study, we investigated the microenvironment of tumor-draining lymph nodes of patients with cervical cancer by comprehensive flow cytometry-based phenotyping and enumeration of immune-cell subsets in tumor-negative (LN(-), n = 20) versus tumor-positive lymph nodes (LN(+), n = 8), and by the study of cytokine release profiles (n = 4 for both LN(-) and LN(+)). We found significantly lower CD4(+) and higher CD8(+) T-cell frequencies in LN(+) samples, accompanied by increased surface levels of activation markers (HLA-DR; ICOS; PD-1; CTLA-4) and the memory marker CD45RO. Furthermore, in LN(+), we found increased rates of a potentially regulatory antigen-presenting cell (APC) subset (CD11c(hi)CD14(+)PD-L1(+)) and of myeloid-derived suppressor cell subsets; the LN(+) APC subset correlated with significantly elevated frequencies of FoxP3(+) regulatory T cells (Treg). After in vitro stimulation with different Toll-like receptor (TLR) ligands (PGN; Poly-IC; R848), we observed higher production levels of IL6, IL10, and TNFα but lower levels of IFNγ in LN(+) samples. We conclude that, despite increased T-cell differentiation and activation, a switch to a profound immune-suppressive microenvironment in LN(+) of patients with cervical cancer will enable immune escape. Our data indicate that the CD14(+)PD-L1(+) APC/Treg axis is a particularly attractive and relevant therapeutic target to specifically tackle microenvironmental immune suppression and thus enhances the efficacy of immunotherapy in patients with metastasized cervical cancer.
Collapse
Affiliation(s)
- A Marijne Heeren
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bas D Koster
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Samuels
- Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Debbie M Ferns
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Dafni Chondronasiou
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
van Esch EMG, van Poelgeest MIE, Trimbos JBMZ, Fleuren GJ, Jordanova ES, van der Burg SH. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia. Int J Cancer 2014; 136:E85-94. [PMID: 25220265 DOI: 10.1002/ijc.29173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Human papilloma virus (HPV)-induced usual-type vulvar intraepithelial neoplasia (uVIN) is infiltrated by myeloid cells but the type and role of these cells is unclear. We used triple immunofluorescent confocal microscopy to locate, identify and quantify myeloid cells based on their staining pattern for CD14, CD33 and CD163 in a cohort of 43 primary and 20 recurrent uVIN lesions, 21 carcinomas and 26 normal vulvar tissues. The progressive course of uVIN is characterized by an increase in both intraepithelial and stromal mature M1 and M2 macrophages. While the M2 macrophages outnumber M1 macrophages in healthy controls and uVIN, they are matched in number by M1 macrophages in cancer. Importantly, uVIN patients with a dense intraepithelial infiltration with mature CD14+ macrophages (irrespective of M1 or M2 type) displayed approximately a six times higher risk to develop a recurrence and a high number of these cells constituted an independent prognostic factor for recurrence. In addition, a dense intraepithelial CD14+ cell infiltration was associated with high numbers of intraepithelial CD4+ Tregs and low numbers of stromal CD8+TIM3+ T cells. Patients with low numbers of intraepithelial CD14+ cells and high numbers of stromal CD8+TIM3+ cells showed the best recurrence-free survival. These data clearly show the importance of the local immune response in HPV-induced vulvar neoplasia and may be of help in predicting the prognosis of patients or their response to immunotherapy.
Collapse
Affiliation(s)
- Edith M G van Esch
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Naujoks M, Weiß J, Riedel T, Hömberg N, Przewoznik M, Noessner E, Röcken M, Mocikat R. Alterations of costimulatory molecules and instructive cytokines expressed by dendritic cells in the microenvironment of an endogenous mouse lymphoma. Cancer Immunol Immunother 2014; 63:491-9. [PMID: 24638151 PMCID: PMC11029135 DOI: 10.1007/s00262-014-1538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.
Collapse
Affiliation(s)
- Marcella Naujoks
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Jakob Weiß
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Tanja Riedel
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Nadine Hömberg
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Margarethe Przewoznik
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Elfriede Noessner
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard-Karls-Universität, Tübingen, Germany
| | - Ralph Mocikat
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
29
|
Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G, Cascinu S. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2013; 62:1757-68. [PMID: 24132754 PMCID: PMC11029754 DOI: 10.1007/s00262-013-1487-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruited into the renal cell carcinoma (RCC) microenvironment. In response to inflammatory stimuli, macrophages undergo M1 (classical) or M2 (alternative) activation. M1 cells produce high levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12, IL-23 and IL-6, while M2 cells produce anti-inflammatory cytokines, such as IL-10, thus contributing to RCC-related immune dysfunction. The presence of extensive TAM infiltration in RCC microenvironment contributes to cancer progression and metastasis by stimulating angiogenesis, tumor growth, and cellular migration and invasion. Moreover, TAMs are involved in epithelial-mesenchymal transition of RCC cancer cells and in the development of tumor resistance to targeted agents. Interestingly, macrophage autophagy seems to play an important role in RCC. Based on this scenario, TAMs represent a promising and effective target for cancer therapy in RCC. Several strategies have been proposed to suppress TAM recruitment, to deplete their number, to switch M2 TAMs into antitumor M1 phenotype and to inhibit TAM-associated molecules. In this review, we summarize current data on the essential role of TAMs in RCC angiogenesis, invasion, impaired anti-tumor immune response and development of drug resistance, thus describing the emerging TAM-centered therapies for RCC patients.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126, Ancona, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van de Ven R, Lindenberg JJ, Oosterhoff D, de Gruijl TD. Dendritic Cell Plasticity in Tumor-Conditioned Skin: CD14(+) Cells at the Cross-Roads of Immune Activation and Suppression. Front Immunol 2013; 4:403. [PMID: 24324467 PMCID: PMC3839226 DOI: 10.3389/fimmu.2013.00403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Tumors abuse myeloid plasticity to re-direct dendritic cell (DC) differentiation from T cell stimulatory subsets to immune-suppressive subsets that can interfere with anti-tumor immunity. Lined by a dense network of easily accessible DC the skin is a preferred site for the delivery of DC-targeted vaccines. Various groups have recently been focusing on functional aspects of DC subsets in the skin and how these may be affected by tumor-derived suppressive factors. IL-6, Prostaglandin-E2, and IL-10 were identified as factors in cultures of primary human tumors responsible for the inhibited development and activation of skin DC as well as monocyte-derived DC. IL-10 was found to be uniquely able to convert fully developed DC to immature macrophage-like cells with functional M2 characteristics in a physiologically highly relevant skin explant model in which the phenotypic and functional traits of “crawl-out” DC were studied. Mostly from mouse studies, the JAK2/STAT3 signaling pathway has emerged as a “master switch” of tumor-induced immune suppression. Our lab has additionally identified p38-MAPK as an important signaling element in human DC suppression, and recently validated it as such in ex vivo cultures of single-cell suspensions from melanoma metastases. Through the identification of molecular mechanisms and signaling events that drive myeloid immune suppression in human tumors, more effective DC-targeted cancer vaccines may be designed.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands ; Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center , Portland, OR , USA
| | | | | | | |
Collapse
|
31
|
Okita Y, Tanaka H, Ohira M, Muguruma K, Kubo N, Watanabe M, Fukushima W, Hirakawa K. Role of tumor-infiltrating CD11b+ antigen-presenting cells in the progression of gastric cancer. J Surg Res 2013; 186:192-200. [PMID: 24120241 DOI: 10.1016/j.jss.2013.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tumor-infiltrating antigen-presenting cells (APCs), involving tumor-associated macrophages and tumor-infiltrating dendritic cells, play an important role in tumor immunity and immune escape. The aim of this study was to determine whether tumor infiltrating CD11b(+) APCs may affect tumor progression and clinical outcome. METHODS The immunohistochemical analysis was used to evaluate the expression of CD11b, FOXP3, and CD8 in 214 gastric cancer tissues. Concentrations of immunosuppressive cytokines in medium conditioned by gastric cancer cells were measured by enzyme-linked immunosorbent assay. Effects of addition of tumor-conditioned media on CD11c(+) cells were examined by flow cytometry. RESULTS Almost all tumor-infiltrating CD11b(+) cell expressed CD11c and was considered to be APCs. High CD11b(+) cell infiltration was significantly correlated with huge tumor, positive venous invasion, lymph node metastasis, and tumor, node, metastasis stage. Patients with high CD11b(+) cell infiltration had a poorer surgical outcome than those with low CD11b infiltration. Multivariate analysis revealed that CD11b(+) cell infiltration was one of the independent prognostic factors. Tumor-conditioned medium obtained from several gastric cancer cell lines contained immunosuppressive cytokines, transforming growth factor-beta, interleukin-10, and vascular endothelial growth factor. The addition of tumor-conditioned medium decreased the expression of major histocompatibility complex-II and increased the expression of CD11b and programmed death ligand 2 on CD11c(+) APCs. Infiltration of CD11b(+) cells significantly correlate with the degree of FOXP3(+) cell infiltration but not with CD8(+) cell infiltration. CONCLUSIONS Tumor-infiltrating CD11b(+) APCs affected local tumor cell-immune cell interactions and correlated to the poor prognosis of the patients with gastric cancer.
Collapse
Affiliation(s)
- Yoshihiro Okita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kassianos AJ, Wang X, Sampangi S, Muczynski K, Healy H, Wilkinson R. Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A(+) and CD1c(+) myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F1391-401. [PMID: 24049150 DOI: 10.1152/ajprenal.00318.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Collapse
Affiliation(s)
- Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Queensland Institute of Medical Research, Level 9, Bancroft Centre, Herston 4006, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Graves A, Hessamodini H, Wong G, Lim WH. Metastatic renal cell carcinoma: update on epidemiology, genetics, and therapeutic modalities. Immunotargets Ther 2013; 2:73-90. [PMID: 27471690 PMCID: PMC4928369 DOI: 10.2147/itt.s31426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment of advanced renal cell carcinoma (RCC) remains a major therapeutic challenge for clinicians. Despite advances in the understanding of the immunobiology of RCC and the availability of several novel targeted agents, there has been little improvement in the survival of patients with metastatic RCC. This review will focus on the recent understanding of risk factors and treatment options and outcomes of metastatic RCC, in particular, targeted therapeutic agents that inhibit vascular endothelial growth factor and mammalian target of rapamycin pathways. Prospective studies are required to determine whether sequential targeted therapy will further improve progression-free survival in RCC. Ongoing research to develop novel agents with better tolerability and enhanced efficacy in the treatment of metastatic RCC is required.
Collapse
Affiliation(s)
- Angela Graves
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Hannah Hessamodini
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Germaine Wong
- Centre for Kidney Research, University of Sydney, Sydney, NSW, Australia
| | - Wai H Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
de Vos van Steenwijk PJ, Ramwadhdoebe TH, Goedemans R, Doorduijn EM, van Ham JJ, Gorter A, van Hall T, Kuijjer ML, van Poelgeest MIE, van der Burg SH, Jordanova ES. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma. Int J Cancer 2013; 133:2884-94. [PMID: 23740735 DOI: 10.1002/ijc.28309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/17/2013] [Indexed: 01/10/2023]
Abstract
One of the hallmarks of cancer is the influx of myeloid cells. In our study, we investigated the constitution of tumor-infiltrating myeloid cells and their relationship to other tumor-infiltrating immune cells, tumor characteristics and the disease-specific survival of patients with cervical cancer (CxCa). Triple-color immunofluorescence confocal microscopy was used to locate, identify and quantify macrophages (CD14), their maturation status (CD33) and their polarization (CD163) in a cohort of 86 patients with cervical carcinoma. Quantification of the numbers of myeloid cells revealed that a strong intraepithelial infiltration of CD14+ cells, and more specifically the population of CD14+CD33-CD163- matured M1 macrophages, is associated with a large influx of intraepithelial T lymphocytes (p = 0.008), improved disease-specific survival (p = 0.007) and forms an independent prognostic factor for survival (p = 0.033). The intraepithelial CD8+ T-cell and regulatory T-cell (Treg) ratio also forms an independent prognostic factor (p = 0.010) and combination of these two factors reveals a further increased benefit in survival for patients whose tumor displays a dense infiltration with intraepithelial matured M1 macrophages and a high CD8 T-cell/Treg ratio, indicating that both populations of immune cells simultaneously improve survival. Subsequently, we made a heatmap including all known immune parameters for these patients, whereby we were able to identify different immune signatures in CxCa. These results indicate that reinforcement and activation of the intratumoral M1 macrophages may form an attractive immunotherapeutic option in CxCa.
Collapse
|
35
|
Disteldorf EM, Panzer U. Is there a role for proximal tubular cells in regulating dendritic cell maturation and function in renal disease? Nephrol Dial Transplant 2012; 28:239-41. [PMID: 23036900 DOI: 10.1093/ndt/gfs444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erik M Disteldorf
- Department of Nephrology, III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
36
|
Prinz PU, Mendler AN, Masouris I, Durner L, Oberneder R, Noessner E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. THE JOURNAL OF IMMUNOLOGY 2012; 188:5990-6000. [DOI: 10.4049/jimmunol.1103028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 2011; 9:216. [PMID: 22176642 PMCID: PMC3286485 DOI: 10.1186/1479-5876-9-216] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/16/2011] [Indexed: 12/27/2022] Open
Abstract
Evading immune destruction and tumor promoting inflammation are important hallmarks in the development of cancer. Macrophages are present in most human tumors and are often associated with bad prognosis. Tumor associated macrophages come in many functional flavors ranging from what is known as classically activated macrophages (M1) associated with acute inflammation and T-cell immunity to immune suppressive macrophages (M2) associated with the promotion of tumor growth. The role of these functionally different myeloid cells is extensively studied in mice tumor models but dissimilarities in markers and receptors make the direct translation to human cancer difficult. This review focuses on recent reports discriminating the type of infiltrating macrophages in human tumors and the environmental cues present that steer their differentiation. Finally, immunotherapeutic approaches to interfere in this process are discussed.
Collapse
Affiliation(s)
- Moniek Heusinkveld
- Dept, of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
38
|
Noessner E, Lindenmeyer M, Nelson PJ, Segerer S. Dendritic cells in human renal inflammation--Part II. Nephron Clin Pract 2011; 119:e91-8. [PMID: 22133869 DOI: 10.1159/000332032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are bone marrow-derived professional antigen-presenting cells that act as master regulators of acquired and innate immune responses. Here, we review the available information on their role in human renal inflammation. In the 1980s and early 1990s, major histocompatibility complex class II antigen- (HLA-DR) positive DCs were first described in normal human kidneys and in the interstitium of kidneys from patients with glomerulonephritis. Several DC subtypes were subsequently distinguished based on their expression of CD1c/BDCA-1, CD141/BDCA-3 and CD209/DC-SIGN (in combination with HLA-DR). These cells were almost exclusively found in the tubulointerstitium, with increased numbers seen during glomerulonephritis. It appears that the human renal tubulointerstitium harbors different DC types which allow the collection of both exogenous as well as endogenous antigens. Plasmacytoid DCs have a plasma cell-like morphology and were commonly found within nodular tubulointerstitial infiltrates. Follicular DCs are rarely seen, but show a predominant localization in organized infiltrates. CD207/langerin is a marker for Langerhans cells. Langerin-positive cells have been found in association with the collecting ducts and urothelium. A functional characterization of these subtypes has been hampered by the difficulty of obtaining samples for analysis. However, these studies are clearly required to define the role of DCs and DC subsets in the pathophysiology of renal disease.
Collapse
Affiliation(s)
- Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | |
Collapse
|