1
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
Background Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
2
|
Hills SL, Wong JM, Staples JE. Arboviral vaccines for use in pregnant travelers. Travel Med Infect Dis 2023; 55:102624. [PMID: 37517630 DOI: 10.1016/j.tmaid.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Pregnant women traveling abroad can be exposed to a variety of arboviruses, primarily spread by mosquitoes or ticks. Some arboviral infections can be of particular concern for pregnant women or their fetuses. Vaccination is one preventive measure that can reduce the risk for infection. Several arboviral vaccines have been licensed for many years and can be used to prevent infection in travelers, namely Japanese encephalitis, yellow fever, and tick-borne encephalitis vaccines. Recommendations on use of these vaccines in pregnancy vary. Other arboviral vaccines have been licensed but are not indicated for use in pregnant travelers (e.g., dengue vaccines) or are in development (e.g., chikungunya, Zika vaccines). This review describes arboviral vaccines for travelers, focusing on women who are pregnant and those planning travel during pregnancy.
Collapse
Affiliation(s)
- S L Hills
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - J M Wong
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - J E Staples
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
3
|
Synthesis and evaluation of anti-yellow fever virus activity of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones. Eur J Med Chem 2023; 248:115117. [PMID: 36657300 DOI: 10.1016/j.ejmech.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Yellow fever disease is one of public health concerns in the tropics. Despite its significant medicinal and economic impact among large groups of the population, there is a lack of effective treatment against yellow fever. In this regard, here we describe the synthesis of a series of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones and evaluation of their in vitro inhibitory activity against yellow fever virus. Among all tested compounds 4 derivatives possessing strong inhibitory activity at μM concentrations were identified. All the active compounds revealed a good toxicity profile. These facts make the compounds interesting candidates for further evaluation of their efficacy in the treatment of yellow fever virus infection in vivo.
Collapse
|
4
|
Howard-Jones AR, Pham D, Sparks R, Maddocks S, Dwyer DE, Kok J, Basile K. Arthropod-Borne Flaviviruses in Pregnancy. Microorganisms 2023; 11:433. [PMID: 36838398 PMCID: PMC9959669 DOI: 10.3390/microorganisms11020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are a diverse group of enveloped RNA viruses that cause significant clinical manifestations in the pregnancy and postpartum periods. This review highlights the epidemiology, pathophysiology, clinical features, diagnosis, and prevention of the key arthropod-borne flaviviruses of concern in pregnancy and the neonatal period-Zika, Dengue, Japanese encephalitis, West Nile, and Yellow fever viruses. Increased disease severity during pregnancy, risk of congenital malformations, and manifestations of postnatal infection vary widely amongst this virus family and may be quite marked. Laboratory confirmation of infection is complex, especially due to the reliance on serology for which flavivirus cross-reactivity challenges diagnostic specificity. As such, a thorough clinical history including relevant geographic exposures and prior vaccinations is paramount for accurate diagnosis. Novel vaccines are eagerly anticipated to ameliorate the impact of these flaviviruses, particularly neuroinvasive disease manifestations and congenital infection, with consideration of vaccine safety in pregnant women and children pivotal. Moving forward, the geographical spread of flaviviruses, as for other zoonoses, will be heavily influenced by climate change due to the potential expansion of vector and reservoir host habitats. Ongoing 'One Health' engagement across the human-animal-environment interface is critical to detect and responding to emergent flavivirus epidemics.
Collapse
Affiliation(s)
- Annaleise R. Howard-Jones
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Rebecca Sparks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Dominic E. Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead, NSW 2145, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Salgado Á, de Melo-Minardi RC, Giovanetti M, Veloso A, Morais-Rodrigues F, Adelino T, de Jesus R, Tosta S, Azevedo V, Lourenco J, Alcantara LCJ. Machine learning models exploring characteristic single-nucleotide signatures in yellow fever virus. PLoS One 2022; 17:e0278982. [PMID: 36508435 PMCID: PMC9744328 DOI: 10.1371/journal.pone.0278982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the tropics. Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas where the virus has not been reported for decades, consisting of urban areas where a large number of unvaccinated people live. We developed a machine learning framework combining three different algorithms (XGBoost, random forest and regularized logistic regression) to analyze YFV genomic sequences. This method was applied to 56 YFV sequences from human infections and 27 from non-human primate (NHPs) infections to investigate the presence of genetic signatures possibly related to disease severity (in human related sequences) and differences in PCR cycle threshold (Ct) values (in NHP related sequences). Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G, V643A) and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1 (A171V), NS3 (I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein structural analysis on these SNVs, describing possible impacts on protein function. Despite the fact that the dataset is limited in size and that this study does not consider virus-host interactions, our work highlights the use of machine learning as a versatile and fast initial approach to genomic data exploration.
Collapse
Affiliation(s)
- Álvaro Salgado
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (AS); (LCJA); (JL)
| | - Raquel C. de Melo-Minardi
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta Giovanetti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adriano Veloso
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francielly Morais-Rodrigues
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Stephane Tosta
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Lourenco
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (AS); (LCJA); (JL)
| | - Luiz Carlos J. Alcantara
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: (AS); (LCJA); (JL)
| |
Collapse
|
6
|
Exotic viral hepatitis: A review on epidemiology, pathogenesis, and treatment. J Hepatol 2022; 77:1431-1443. [PMID: 35817222 DOI: 10.1016/j.jhep.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022]
Abstract
Certain "exotic" viruses are known to cause clinical diseases with potential liver involvement. These include viruses, beyond regular hepatotropic viruses (hepatitis A, -B(D), -C, -E, cytomegalovirus, Epstein-Barr virus), that can be found in (sub)tropical areas and can cause "exotic viral hepatitis". Transmission routes typically involve arthropods (Crimean Congo haemorrhagic fever, dengue, Rift Valley fever, yellow fever). However, some of these viruses are transmitted by the aerosolised excreta of rodents (Hantavirus, Lassa fever), or via direct contact or contact with bodily fluids (Ebola). Although some exotic viruses are associated with high fatality rates, such as Ebola for example, the clinical presentation of most exotic viruses can range from mild flu-like symptoms, in most cases, right through to being potentially fatal. A smaller percentage of people develop severe disease with haemorrhagic fever, possibly with (fulminant) hepatitis. Liver involvement is often caused by direct tropism for hepatocytes and Kupffer cells, resulting in virus-mediated and/or immune-mediated necrosis. In all exotic hepatitis viruses, PCR is the most sensitive diagnostic method. The determination of IgM/IgG antibodies is a reasonable alternative, but cross-reactivity can be a problem in the case of flaviviruses. Licenced vaccines are available for yellow fever and Ebola, and they are currently under development for dengue. Therapy for exotic viral hepatitis is predominantly supportive. To ensure that preventive measures can be introduced to control possible outbreaks, the timely detection of these viruses is very important.
Collapse
|
7
|
Casagrande TZ, Costa-Rocha IAD, Gavi MBRDO, Miyamoto ST, Martins PC, Serrano ÉV, Dinis VG, Machado KLLL, Gouvea SA, Caser LC, Campi-Azevedo AC, Teixeira-Carvalho A, Peruhype-Magalhães V, Bissoli MDF, Gouvea MDPG, Lima SMBD, Miranda EH, Trindade GF, Lyra DGP, Burian APN, Neto LFDSP, da Mota LMH, Martins-Filho OA, Valim V. Previous biological therapy and impairment of the IFN-γ/IL-10 axis are associated with low immune response to 17DD-YF vaccination in patients with spondyloarthritis. Vaccine 2022; 40:4580-4593. [PMID: 35728990 DOI: 10.1016/j.vaccine.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
Yellow fever (YF) vaccination is known to induce a suboptimal response in patients with autoimmune diseases (AIDs). To date, few studies have focused on the performance of 17DD-YF vaccination in patients with spondyloarthritis (SpA). In general, patients with SpA are young and have less comorbidities than other patients with AIDs, and frequently receive biological disease-modifying antirheumatic drugs (DMARDs) that may impact their response to vaccines. Taking this background information, the present study aimed to investigate whether the use of biological DMARDs, even after planned washout, or disease activity measured by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), would impact the overall performance of planned 17DD-YF primary vaccination in patients with SpA. For this purpose, 74 subjects were enrolled in a prospective study, including adult patients with SpA (SpA; n = 51) and a healthy control (HC; n = 23) group. Analysis of YF specific neutralizing antibodies test (PRNT), along with YF viremia and the levels of serum chemokines, cytokines, and growth factors were performed at distinct time points (D0, D3, D4, D5, D6, D7, D14, and D28). The BASDAI scores were evaluated at D0 and D180. Data demonstrated that overall, the SpA group presented lower PRNT titers and seropositivity rates as compared to the HC group (GeoMean = 112 vs. 440; 73% vs. 96%, respectively). In SpA subgroup analyses, previous biological DMARDs (BIO-IT) led to a lower PRNT titers (BIO-IT 79, 95% CI [39-150] vs. without biological DMARDs [non-BIO-IT] 159, 95% CI [94-267], p < 0.001). The non-BIO-IT group achieved a response similar to the HC group (81% vs. 96%, p = 0.112), whereas the BIO-IT group had a lower seroconversion rate (64% vs. 96% HC, p = 0.007). The BASDAI was not associated with PRNT levels and did not change after 6 months of follow-up. No differences in YF viremia were observed amongst subgroups. Higher baseline levels of serum biomarkers were observed in the BIO-IT group vs. the non-BIO-IT group, as well as in those with a BASDAI ≥ 4 vs. those with a BASDAI < 4. Increasing levels of several biomarkers were observed in SpA, especially in the BIO-IT and BASDAI ≥ 4 subgroups throughout the timeline kinetics, with impairment/disturbance in the IFN-γ/IL-10 axis around the peak of viremia (D5). Altogether, these findings suggested that the use of biological DMARDs impacts the response to the 17DD-YF vaccine, even after planned washout. Therefore, previous biological DMARD therapy, the inflammatory status prior vaccination, and impairment of the IFN-γ/IL-10 axis at the peak of viremia may determine the immunogenicity of 17DD-YF vaccination in patients with SpA.
Collapse
Affiliation(s)
- Thays Zanon Casagrande
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil; Programa de Pós-graduação em Saúde Coletiva da Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Samira Tatiyama Miyamoto
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Priscila Costa Martins
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Érica Vieira Serrano
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Valquiria Garcia Dinis
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil; Escola de Ciências da Saúde da Santa Casa de Misericórdia, Vitória, ES, Brazil
| | - Ketty Lysie Libardi Lira Machado
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil; Programa de Pós-graduação em Saúde Coletiva da Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Sonia Alves Gouvea
- Programa de Pós-graduação em Biotecnologia da Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Larissa Carvalho Caser
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Maria de Fatima Bissoli
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Maria da Penha Gomes Gouvea
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil; Programa de Pós-graduação em Saúde Coletiva da Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Sheila Maria Barbosa de Lima
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Emily Hime Miranda
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Gisela Freitas Trindade
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Danielle Grillo Pacheco Lyra
- Departamento de Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | | | | | - Licia Maria Henrique da Mota
- Serviço de Reumatologia do Hospital Universitário de Brasília, Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Valéria Valim
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil; Programa de Pós-graduação em Saúde Coletiva da Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil.
| |
Collapse
|
8
|
Desantis J, Felicetti T, Cannalire R. An overview on small molecules acting as broad spectrum-agents for yellow fever infection. Expert Opin Drug Discov 2022; 17:755-773. [PMID: 35638299 DOI: 10.1080/17460441.2022.2084529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Yellow Fever virus (YFV) is a mosquito-borne flavivirus, endemic in 47 countries in Africa and South America, which causes febrile symptoms that can evolve in 15% of the patients to serious haemorrhagic conditions, liver injury, and multiorgan failure. Although a highly effective vaccine (YF-17D vaccine) is available, to date, no antiviral drugs have been approved for the prevention and treatment of YFV infections. AREAS COVERED This review article focuses on the description of viral targets that have been considered within YFV and flavivirus drug discovery studies and on the most relevant candidates reported so far that elicit broad-spectrum inhibition against relevant strains and mutants of YFV. EXPERT OPINION Considering the growing interest on (re)emerging vector-borne viral infections, it is expected that flavivirus drug discovery will quickly deliver potential candidates for clinical evaluation. Due to similarity among flaviviral targets, several candidates identified against different flaviviruses have shown broad-spectrum activity, thus exhibiting anti-YFV activity, as well. In this regard, it would be desirable to routinely include the assessment of antiviral activity against different YFV strains. On the other hand, the development of host targeting agents are still at an initial stage and deserve further focused efforts.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
9
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
10
|
Furtado ND, Raphael LDM, Ribeiro IP, de Mello IS, Fernandes DR, Gómez MM, dos Santos AAC, Nogueira MDS, de Castro MG, de Abreu FVS, Martins LC, Vasconcelos PFDC, Lourenço-de-Oliveira R, Bonaldo MC. Biological Characterization of Yellow Fever Viruses Isolated From Non-human Primates in Brazil With Distinct Genomic Landscapes. Front Microbiol 2022; 13:757084. [PMID: 35237244 PMCID: PMC8882863 DOI: 10.3389/fmicb.2022.757084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Since the beginning of the XXI Century, the yellow fever virus (YFV) has been cyclically spreading from the Amazon basin to Brazil’s South and Southeast regions, culminating in an unprecedented outbreak that started in 2016. In this work, we studied four YFV isolated from non-human primates obtained during outbreaks in the states of Rio Grande do Sul in 2008 (PR4408), Goiás (GO05), and Espírito Santo (ES-504) in 2017, and Rio de Janeiro (RJ 155) in 2019. These isolates have genomic differences mainly distributed in non-structural proteins. We compared the isolates’ rates of infection in mammal and mosquito cells and neurovirulence in adult mice. RJ 155 and PR4408 YFV isolates exhibited higher infectivity in mammalian cells and neurovirulence in mice. In mosquito Aag2 cells, GO05 and PR4408 displayed the lowest proliferation rates. These results suggest that RJ 155 and PR4408 YFV isolates carry some genomic markers that increase infectivity in mammal hosts. From this characterization, it is possible to contribute to discovering new molecular markers for the virulence of YFV.
Collapse
Affiliation(s)
- Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lidiane de Menezes Raphael
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ieda Pereira Ribeiro
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Déberli Ruiz Fernandes
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | - Mônica da Silva Nogueira
- Centro de Experimentação Animal, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Márcia Gonçalves de Castro
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lívia Carício Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas/Fundação Oswaldo Cruz (FIOCRUZ), Pará, Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Myrna Cristina Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Myrna Cristina Bonaldo,
| |
Collapse
|
11
|
Dong HL, Wang HJ, Liu ZY, Ye Q, Qin XL, Li D, Deng YQ, Jiang T, Li XF, Qin CF. Visualization of yellow fever virus infection in mice using a bioluminescent reporter virus. Emerg Microbes Infect 2021; 10:1739-1750. [PMID: 34379047 PMCID: PMC8425728 DOI: 10.1080/22221751.2021.1967705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Yellow fever virus (YFV) is a re-emerging flavivirus, which can lead to severe clinical manifestations and high mortality, with no specific antiviral therapies available. The live-attenuated yellow fever vaccine 17D (YF17D) has been widely used for over eighty years. However, the emergence of yellow fever vaccine-associated viscerotropic disease (YFL-AVD) and yellow fever vaccine-associated neurotropic disease (YFL-AND) raised non-negligible concerns. Additionally, the attenuation mechanism of YF17D is still unclear. Thus, the development of convenient models is crucial to understand the mechanisms behind YF17D attenuation and its adverse effects. In this work, we generated a reporter YF17D expressing nano-luciferase (NLuc). In vitro and in vivo characterization demonstrated that the NLuc-YF17D shared similar biological properties with its parental strain and the NLuc activity can reflect viral infectivity reliably. Combined with in vivo bioluminescence imaging, a series of mice models of YF17D infection was established, which will be useful for the evaluation of antiviral medicines and novel vaccine candidates. Especially, we demonstrated that intraperitoneally (i.p.) infection of NLuc-YF17D in type I interferon receptor-deficient mice A129 resulted in outcomes resembling YEL-AVD and YEL-AND, evidenced by viral replication in multiple organs and invasion of the central neuronal system. Finally, in vitro and in vivo assays based on this reporter virus were established to evaluate the antiviral activities of validated antiviral agents. In conclusion, the bioluminescent reporter virus described herein provides a powerful platform to study YF17D attenuation and vaccine-associated diseases as well as to develop novel countermeasures against YFV.
Collapse
Affiliation(s)
- Hao-Long Dong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hong-Jiang Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Comprehensive Basic Experiment, The Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Zhong-Yu Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ling Qin
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Medicine and Health, Guangxi Vocational and Technical Institute of industry, Nanning, People's Republic of China
| | - Dan Li
- The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Pharmacology, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
12
|
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021; 14:ph14070622. [PMID: 34203242 PMCID: PMC8308861 DOI: 10.3390/ph14070622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.
Collapse
Affiliation(s)
- Arne Krüger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
| | - Ana Paula de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Vanessa de Sá
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
- Correspondence: (H.U.); (C.W.)
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
- Correspondence: (H.U.); (C.W.)
| |
Collapse
|
13
|
Serum biomarker profile orchestrating the seroconversion status of patients with autoimmune diseases upon planned primary 17DD Yellow fever vaccination. Sci Rep 2021; 11:10431. [PMID: 34001945 PMCID: PMC8128885 DOI: 10.1038/s41598-021-89770-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate whether the serum biomarkers of immune response orchestrate the seroconversion status in patients with autoimmune diseases (AID) upon planned primary 17DD-YF vaccination. For this purpose a total of 161 individuals were enrolled in a prospective study, including patients with Rheumatoid Arthritis (RA = 38), Spondyloarthritis (SpA = 51), Systemic Lupus Erythematosus (SLE = 21) and Sjögren's Syndrome (SS = 30) along with a group of healthy controls (HC = 21). Analysis of plaque reduction neutralization test (PRNT) titers and seropositivity rates along with the 17DD-YF viremia and serum biomarkers were carried out at distinct time points (D0/D3-4/D5-6/D7/D14-28). The results demonstrated an overall lower PRNT titer and seropositivity rate (170 vs. 448; 77 vs. 95%) in AID as compared to HC, especially in SpA and SLE subgroups. No significant differences were observed in the viremia levels amongst groups. In general, a more prominent serum biomarker response was observed in AID as compared to HC, throughout the timeline kinetics. Remarkably, AID/PRNT(-) exhibited higher levels of several biomarkers at baseline as compared to AID/PRNT+. Moreover, while AID/PRNT(+) exhibited earlier increase in serum biomarkers at D3-4/D5-6, the AID/PRNT(-) displayed higher response at later time points (D7/D14-D28). Of note, a synchronic increase of IFN-γ at the peak of viremia (D5-6) was observed in HC and AID/PRNT(+) groups, whereas a later asynchronous IFN-γ response was reported for AID/PRNT(-) at D7. The biomarker profile tends to deflate at post-vaccination timeline, highlighting a putative immunomodulatory effect of live attenuated 17DD-YF vaccine in AID/PRNT(+), but not in AID/PRNT(-). Altogether these data suggested that inflammatory status prior vaccination, low IFN-γ at viremia peak and the occurrence of asynchronous biomarker storm after 17DD-YF vaccination may orchestrate the lack of neutralizing antibody response γ.
Collapse
|
14
|
Ndeffo-Mbah ML, Pandey A. Global Risk and Elimination of Yellow Fever Epidemics. J Infect Dis 2021; 221:2026-2034. [PMID: 31545372 DOI: 10.1093/infdis/jiz375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Yellow fever (YF) is a vector-borne viral hemorrhagic disease endemic in Africa and Latin America. In 2016, the World Health Organization (WHO) developed the Eliminate YF Epidemics strategy aiming at eliminating YF epidemics by 2026. METHODS We developed a spatiotemporal model of YF, accounting for the impact of temperature, vector distribution, and socioeconomic factors on disease transmission. We validated our model against previous estimates of YF basic reproductive number (R0). We used the model to estimate global risk of YF outbreaks and vaccination efforts needed to achieve elimination of YF epidemics. RESULTS We showed that the global risk of YF outbreaks is highly heterogeneous. High-risk transmission areas (R0 > 6) are mainly found in West Africa and the Equatorial region of Latin America. We showed that vaccination coverage needed to eliminate YF epidemics in an endemic country varies substantially between districts. In many endemic countries, a 90% vaccination coverage is needed to achieve elimination. However, in some high-risk districts in Africa, a 95% coverage may be required. CONCLUSIONS Global elimination of YF epidemics requires higher population-level immunity than the 80% coverage recommended by the WHO. Optimal YF vaccination strategy should be tailored to the risk profile of each endemic country.
Collapse
Affiliation(s)
- Martial L Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences.,Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
15
|
Pichkur EB, Samygina VR, Ivanova AL, Fedotov AY, Ivanov AP, Khvatov EV, Ishmukhametov AA, Vorovich MF. Preliminary Structural Study of Inactivated Yellow Fever Virus. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, Setthapramote C, Bredenbeek PJ, Bozzacco L, MacDonald MR, Clark JJ, Rice CM, Patel AH, Kohl A, Varjak M. Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res 2020; 183:104939. [PMID: 32980446 PMCID: PMC7649875 DOI: 10.1016/j.antiviral.2020.104939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/30/2023]
Abstract
Yellow fever virus (YFV), a member of the Flaviviridae family, is an arthropod-borne virus that can cause severe disease in humans with a lethality rate of up to 60%. Since 2017, increases in YFV activity in areas of South America and Africa have been described. Although a vaccine is available, named strain 17D (Theiler and Smith, 1937), it is contraindicated for use in the elderly, expectant mothers, immunocompromised people, among others. To this day there is no antiviral treatment against YFV to reduce the severity of viral infection. Here, we used a circular polymerase extension reaction (CPER)-based reverse genetics approach to generate a full-length reporter virus (YFVhb) by introducing a small HiBit tag in the NS1 protein. The reporter virus replicates at a similar rate to the parental YFV in HuH-7 cells. Using YFVhb, we designed a high throughput antiviral screening luciferase-based assay to identify inhibitors that target any step of the viral replication cycle. We validated our assay by using a range of inhibitors including drugs, immune sera and neutralizing single chain variable fragments (scFv). In light of the recent upsurge in YFV and a potential spread of the virus, this assay is a further tool in the development of antiviral therapy against YFV. Bacteria-free approach to rescue yellow fever virus. Novel tagged yellow fever virus that permits quantifiable assays. Usage of the novel tagged virus for screening of antivirals and immune sera. Novel antiviral compounds against YFV were identified.
Collapse
Affiliation(s)
| | | | | | | | - Peter J Bredenbeek
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jordan J Clark
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Arvind H Patel
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
17
|
Bothra A, Maheswari A, Singh M, Pawar M, Jodhani K. Cutaneous manifestations of viral outbreaks. Australas J Dermatol 2020; 62:27-36. [PMID: 32895964 DOI: 10.1111/ajd.13421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
As the world tries to grapple with the COVID-19 pandemic, dermatologists are left in a lurch as there is a lacuna in dermatologic literature as well as training regarding the cutaneous manifestations of varied viral agents capable of causing epidemics/pandemics or the potential to be bio-weaponised. Such outbreaks have the potential to become a pandemic given this age of globalisation. The quote by George Santayana stands true 'Those who cannot remember the past are condemned to repeat it'. Thus, this article lends a perspective to the recent viral outbreaks and is aimed at summarising these agents and their clinical features to serve as a quick reference for dermatologists.
Collapse
Affiliation(s)
- Atul Bothra
- Department of Dermatology, Gauhati Medical College & Hospital, Guwahati, India
| | - Anshu Maheswari
- Consultant Dermatologist, Private Practice, New Delhi, India
| | - Mehak Singh
- Department of Dermatology, JK Medical College & LN Hospital, Bhopal, India
| | - Manoj Pawar
- Department of Dermatology, MVP's Dr.V.P Medical College & Hospital & Research center, Nashik, India
| | - Kirti Jodhani
- Department of Dermatology, Gauhati Medical College & Hospital, Guwahati, India
| |
Collapse
|
18
|
Endale A, Medhin G, Hilo AA, Abegaz WE, Legesse M. Knowledge, Attitude, and Practice of Jinka University Students About Yellow Fever, Ethiopia: A Cross-Sectional Study. Risk Manag Healthc Policy 2020; 13:1225-1236. [PMID: 32884383 PMCID: PMC7443455 DOI: 10.2147/rmhp.s250930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Yellow fever (YF) is endemic in South Omo area of Ethiopia. Although Jinka University (JKU) is located in South Omo Zone, there is no information regarding the level of knowledge, attitude, and practice of students toward YF. The current study aimed to assess knowledge, attitude, and practice of JKU students toward YF and factors associated with the overall knowledge and attitude about the disease. METHODS In this cross-sectional study, a semi-structured self-administered questionnaire was used to collect data from randomly selected regular program JNU students. Data were analyzed using SPSS. Bivariate and multivariable logistic regression analyses were performed to investigate associations of socio-demographic factors with overall knowledge and attitude scores. RESULTS A total of 322 students (61.2% males, mean age of 20.7 years) participated in this study. Of these, 94.1% joined the University from places other than South Omo area and 86.0% (277/322) ever heard about YF. 9.6% were found to have a high level of overall knowledge about YF. High overall knowledge of YF was associated with being born and grown up in South Omo area (AOR=3.91; 95% CI: 1.28, 11.98) and being a student of a social science discipline (AOR=3.52; 95% CI: 1.22, 10.13). 48.8% of the participants had favorable overall attitude toward YF. Being a second-year student (AOR=1.96; 95% CI: 1.14-3.37), being born and grown up in South Omo area (AOR=5.13; 95% CI: 1.32-19.98), and having high overall knowledge of YF (AOR=13.24; 95% CI: 3.69, 47.44) were associated with favorable overall attitude toward YF. On the other hand, only 5.8% of the participants reported that they were vaccinated for YF. CONCLUSION The low level of knowledge and low vaccination coverage of JKU students to YF, especially among those students from other parts of the country, calls for urgent awareness creation during admission and making vaccination available.
Collapse
Affiliation(s)
- Adugna Endale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- School of Medicine, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology & Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
20
|
Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020; 56:150-167. [PMID: 32076918 PMCID: PMC7089181 DOI: 10.1007/s11262-020-01737-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.
Collapse
Affiliation(s)
- J J Bugert
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - F Hucke
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - P Zanetta
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - M Bassetto
- Department of Chemistry, Swansea University, Swansea, SA2 8PP, UK
| | - A Brancale
- Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
21
|
An Ethnobotanical Survey of a Dryland Botanical Garden and Its Environs in Kenya: The Mutomo Hill Plant Sanctuary. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1543831. [PMID: 32256635 PMCID: PMC7103046 DOI: 10.1155/2020/1543831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Mutomo hill plant sanctuary is a ten-hectare piece of land in Kenya listed as a botanical garden under the Botanical Gardens Conservation International, originally established in 1964 with the aim of conserving indigenous flora from destructive anthropogenic activities. This paper presents ethnobotanical documentation of medicinal plants of Mutomo hill plant sanctuary and its environs. An ethnobotanical survey was carried out in Mutomo hill plant sanctuary and its environs with 48 herbalists aged between 32 and 96 years from July 2018 to February 2019 using a semistructured open-ended questionnaire. The plants were collected through random surveys with each herbalist in different ecotypes around the villages and within the Mutomo hill plant sanctuary. The Relative Frequency of Citation (RFC) for each species reported was calculated to determine the plant species frequently collected. In total, 68 different plant species distributed in 28 families and 54 genera were reported. The frequently used plant families were Leguminosae (13 species), Lamiaceae (6 species), and Euphorbiaceae (6 species). Shrubs (37%) and trees (34%) were the dominant growth habits reported. The most cited plant species were Cassia abbreviata Oliv. (RFC = 0.63), Acacia nilotica (L.). Delile (RFC = 0.54), Strychnos heningsii Gilg (RFC = 0.46), and Aloe secundiflora Engl. (RFC = 0.31). Root (19 species) and bark (19 species) were the frequently collected plant parts. Infectious diseases (33) and digestive system disorders (24) were reported to be managed with the majority of the plant species. This study contributes to safeguarding the traditional knowledge on medicinal plants in the study area, which is useful in appreciating and acknowledging the cultural heritage of the Kamba people from the local perspective of Mutomo area in Kenya. It also adds to the knowledge base and documentation of medicinal plants, which is useful information as potential data for drug development.
Collapse
|
22
|
Ramyasoma HPBKD, Dassanayake RS, Hapugoda M, Capurro ML, Silva Gunawardene YIN. Multiple dengue virus serotypes resistant transgenic Aedes aegypti fitness evaluated under laboratory conditions. RNA Biol 2020; 17:918-929. [PMID: 32138589 DOI: 10.1080/15476286.2020.1735210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue viruses (DENV) are the wildest transmitted arbovirus members of the family Flaviviridae, genus Flavivirus. Dengue viruses are composed of four serotypes, DENV1, 2, 3, and 4, and these viruses can cause dengue fever and dengue haemorrhagic fever or dengue shock syndrome, when infecting humans. RNA interference (RNAi) is a self-defence mechanism, which can be used to prevent invasions of RNA viruses to the host. Genetically engineering a host with an RNAi molecule that targets a single virus serotype may develop escape mutants, and can cause unusual dominance over other serotypes. Therefore, the simultaneous targeting of multiple serotypes is necessary to block DENV transmission. Here, we report the development of transgenic Aedes aegypti based on a bioinformatically designed multiple miRshRNA (microRNA-based shRNA) DNA sequence under the control of a blood-meal induced promoter, Carboxypeptidase A, to induce RNAi for DENV in Aedes aegypti, and demonstrate the expression of a synthetic multiple shRNA polycistronic cluster having RNA interference sequences to target DENV genomes. The transgenic mosquitoes have lower rates of infection, dissemination, and transmission for DENV2 and DENV4 compared to wild mosquitoes, with a significant reduction of dengue copy number and antigen levels in the midgut. These levels of DENV were low enough to make transgenic mosquitoes stop the DENV transmission from infected host to a susceptible host and refractory to DENV2 and DENV4 infection. Such multiple resistance in Ae. aegypti has not been documented previously. Laboratory fitness measurement of transgenic Ae. aegypti showed results comparable to other reported transgenic mosquitoes.
Collapse
Affiliation(s)
| | | | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya , Kelaniya, Sri Lanka
| | - Margareth L Capurro
- Department of Parasitology (ICB), University of São Paulo , São Paulo, Brazil
| | | |
Collapse
|
23
|
Sztajnbok J, Sant'Ana Malaque CM, Nihei CH, Duayer IF, Leme Britto ZM, Beraldo EG, AzevedoTeixeira RF. Severe Yellow Fever and Extreme Hyperferritinemia Managed with Therapeutic Plasma Exchange. Am J Trop Med Hyg 2020; 101:705-707. [PMID: 31309922 DOI: 10.4269/ajtmh.19-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 43-year-old man was admitted to the intensive care unit and diagnosed with yellow fever. He presented with refractory bleeding, extreme hyperferritinemia, and multiple organ dysfunction syndrome, requiring renal replacement therapy, mechanical ventilation, and treatment with vasoactive drugs. Because the bleeding did not respond to fresh-frozen plasma administration, the patient received therapeutic plasma exchange, which was accompanied by a marked improvement of the clinical and biochemical parameters, including a significant decline in serum ferritin levels.
Collapse
Affiliation(s)
- Jaques Sztajnbok
- Intensive Care Unit, Infectious Diseases Institute Emílio Ribas, São Paulo, Brazil
| | | | - Camila Hitomi Nihei
- Intensive Care Unit, Infectious Diseases Institute Emílio Ribas, São Paulo, Brazil
| | - Irene Faria Duayer
- Intensive Care Unit, Infectious Diseases Institute Emílio Ribas, São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
da Silva FC, Magaldi FM, Sato HK, Bevilacqua E. Yellow Fever Vaccination in a Mouse Model Is Associated With Uninterrupted Pregnancies and Viable Neonates Except When Administered at Implantation Period. Front Microbiol 2020; 11:245. [PMID: 32153534 PMCID: PMC7044120 DOI: 10.3389/fmicb.2020.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
The potential risk of yellow fever (YF) infection in unvaccinated pregnant women has aroused serious concerns. In this study, we evaluated the effect of the YF vaccine during gestation using a mouse model, analyzing placental structure, immunolocalization of the virus antigen, and viral activity at the maternal-fetal barrier and in the maternal liver and fetus. The YF vaccine (17DD) was administered subcutaneously at a dose of 2.0 log10 PFU to CD-1 mice on gestational days (gd) 0.5, 5.5, and 11.5 (n = 5–10/group). The control group received sterile saline (n = 5–10/group). Maternal liver, implantation sites with fetus, and placentas were collected on gd18.5. The numbers of implantation sites, reabsorbed embryos, and stillborn fetuses were counted, and placentas and live fetuses were weighed. Tissues (placenta, fetuses, and liver) of vaccinated pregnant mice on gd5.5 (n = 15) were paraffin-embedded in 10% buffered-formalin and collected in TRIzol for immunolocalization of YF vaccine virus and PCR, respectively. PCR products were also subjected to automated sequence analysis. Fetal growth restriction (p < 0.0001) and a significant decrease in fetal viability (p < 0.0001) occurred only when the vaccine was administered on gd5.5. In stillbirths, the viral antigen was consistently immunolocalized at the maternal-fetal barrier and in fetal organs, suggesting a transplacental transfer. In stillbirths, RNA of the vaccine virus was also detected by reverse transcriptase-PCR indicating viral activity in the maternal liver and fetal tissues. In conclusion, the findings of this study in the mouse suggest that vaccination did not cause adverse outcomes with respect to fetal development except when administered during the early gestational stage, indicating the implantation period as a susceptible period in which the YF vaccine virus might interfere with pregnancy.
Collapse
Affiliation(s)
- Fernanda C da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda M Magaldi
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helena K Sato
- Secretaria do Estado de São Paulo, Epidemiological Surveillance Center, Department of Health, São Paulo, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Krubiner CB, Schwartz DA. Viral Hemorrhagic Fevers in Pregnant Women and the Vaccine Landscape: Comparisons Between Yellow Fever, Ebola, and Lassa Fever. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Chen Z, Liu K, Liu X, Lou Y. Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply. J Theor Biol 2019; 486:110085. [PMID: 31758966 DOI: 10.1016/j.jtbi.2019.110085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/10/2019] [Accepted: 11/16/2019] [Indexed: 11/26/2022]
Abstract
The control strategies of emergency infectious diseases are constrained by limited medical resources. The fractional dose vaccination strategy as one of feasible strategies was proposed in response to global shortages of vaccine stockpiles. Although a variety of epidemic models have been developed under the circumstances of limited resources in treatment, few models particularly investigated vaccination strategies in resource-limited settings. In this paper, we develop a two-group SIR model with incorporation of proportionate mixing patterns and n-fold fractional dose vaccination related parameters to evaluate the efficiency of fractional dose vaccination on disease control at the population level. The existence and uniqueness of the final size of the two-group SIR epidemic model, the formulation of the basic reproduction number and the relationship between them are established. Moreover, numerical simulations are performed based on this two-group vector-free model to investigate the effectiveness of n-fold fractional dose vaccination by using the emergency outbreaks of yellow fever in Angola in 2016. By employing linear and nonlinear dose-response relationships, we compare the resulting fluctuations of four characteristics of the epidemics, which are the outbreak size, the peak time of the outbreak, the basic reproduction number and the infection attack rate (IAR). For both types of dose-response relationships, dose-fractionation takes positive effects in lowering the outbreak size, delay the peak time of the outbreak, reducing the basic reproduction number and the IAR of yellow fever only when the vaccine efficacy is high enough. Moreover, five-fold fractional dose vaccination strategy may not be the optimal vaccination strategy as proposed by the World Health Organization if the dose-response relationship is nonlinear.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Kaihui Liu
- Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiuxiang Liu
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Yijun Lou
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Disease Resurgence, Production Capability Issues and Safety Concerns in the Context of an Aging Population: Is There a Need for a New Yellow Fever Vaccine? Vaccines (Basel) 2019; 7:vaccines7040179. [PMID: 31717289 PMCID: PMC6963298 DOI: 10.3390/vaccines7040179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Yellow fever is a potentially fatal, mosquito-borne viral disease that appears to be experiencing a resurgence in endemic areas in Africa and South America and spreading to non-endemic areas despite an effective vaccine. This trend has increased the level of concern about the disease and the potential for importation to areas in Asia with ecological conditions that can sustain yellow fever virus transmission. In this article, we provide a broad overview of yellow fever burden of disease, natural history, treatment, vaccine, prevention and control initiatives, and vaccine and therapeutic agent development efforts.
Collapse
|
28
|
Escosteguy CC, Pereira AGL, Marques MRVE, Lima TRDA, Galliez RM, Medronho RDA. Yellow fever: profile of cases and factors associated with death in a hospital in the State of Rio de Janeiro, 2017-2018. Rev Saude Publica 2019; 53:89. [PMID: 31644770 PMCID: PMC6802947 DOI: 10.11606/s1518-8787.2019053001434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Describe the clinical and epidemiological profile of confirmed cases of yellow fever whose patients were hospitalized in a general hospital for infectious diseases in the State of Rio de Janeiro, Brazil, from March 11, 2017 to June 15, 2018, during a recent outbreak and factors associated with death. METHODS This is a retrospective observational study with analysis of secondary databases of local epidemiological surveillance system, and complementary data collection from epidemiological investigation records and clinical records. Study variables included demographic, epidemiological, clinical, and laboratory data. A descriptive statistical analysis and a bivariate and multivariate analysis by logistic regression were performed to analyze factors associated with death. RESULTS Fifty-two patients diagnosed with yellow fever were hospitalized, 86.5% male patients, median age 49.5 years, 40.4% rural workers. The most frequent signs and symptoms were fever (90.4%), jaundice (86.5%), nausea and/or vomiting (69.2%), changes in renal excretion (53.8%), bleeding (50%), and abdominal pain (48.1%), with comorbidity in 38.5% of all cases. The lethality rate was 40.4%. Factors significantly associated with a higher chance of death in the bivariate analysis were: bleeding, changes in renal excretion, and maximum values of direct bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine. In the multivariate analysis by logistic regression, only changes in renal excretion and ALT remained significant predictors of higher chance of death. A threshold effect was also observed for AST. The cutoff points identified as high risk for death were ALT > 4,000 U/L and AST > 6,000 U/L. CONCLUSIONS This study contributed to the knowledge on the profile of confirmed cases of high severity yellow fever. The main factors associated with death were changes in renal excretion and elevated serum transaminases, especially ALT. High lethality emphasizes the need for early diagnosis and treatment, and the importance of increasing vaccination coverage.
Collapse
Affiliation(s)
| | - Alessandra Gonçalves Lisbôa Pereira
- Hospital Federal dos Servidores do Estado. Serviço de Epidemiologia. Rio de Janeiro, RJ, Brasil.,Universidade Estácio de Sá. Faculdade de Medicina. Rio de Janeiro, RJ, Brasil
| | | | - Tatiana Rodrigues de Araujo Lima
- Hospital Federal dos Servidores do Estado. Serviço de Epidemiologia. Rio de Janeiro, RJ, Brasil.,Universidade do Estado do Rio de Janeiro. Faculdade de Enfermagem. Rio de Janeiro, RJ, Brasil
| | - Rafael Mello Galliez
- Instituto Estadual de Infectologia São Sebastião. Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Rio de Janeiro, RJ, Brasil
| | - Roberto de Andrade Medronho
- Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro. Instituto de Estudos em Saúde Coletiva. Rio de Janeiro, RJ, Brasil
| |
Collapse
|
29
|
Laurent-Rolle M, Morrison J. The Role of NS5 Protein in Determination of Host Cell Range for Yellow Fever Virus. DNA Cell Biol 2019; 38:1414-1417. [PMID: 31633391 DOI: 10.1089/dna.2019.5115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yellow fever virus (YFV) tropism is restricted to human and nonhuman primates. The nonstructural protein 5 (NS5) protein of YFV binds to primate signal transducer and activator of transcription 2 (STAT2) and antagonizes interferon (IFN) signaling. However, YFV NS5 is unable to bind mouse STAT2 and antagonize murine IFN signaling. A similar observation has been made with the NS5 protein of both dengue virus (DENV) and Zika virus (ZIKV). However, the key difference between the NS5 protein of YFV and those of DENV and ZIKV is that YFV NS5 binds human STAT2 in an IFN-dependent manner. In human cells, IFN-I treatment induces K63-linked ubiquitination on lysine (K) 6 of YFV NS5, which is required for binding human STAT2. This IFN-induced ubiquitination of YFV NS5 is absent in murine cells resulting in the lack of binding of YFV NS5 and human STAT2 in murine cells. This highlights the importance of YFV NS5 ubiquitination in determining the host cell range for YFV.
Collapse
Affiliation(s)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, California
| |
Collapse
|
30
|
Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019; 11:v11100960. [PMID: 31627415 PMCID: PMC6832525 DOI: 10.3390/v11100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host–virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.
Collapse
|
31
|
Metabolic perturbations and cellular stress underpin susceptibility to symptomatic live-attenuated yellow fever infection. Nat Med 2019; 25:1218-1224. [PMID: 31308506 DOI: 10.1038/s41591-019-0510-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Flaviviral infections result in a wide spectrum of clinical outcomes, ranging from asymptomatic infection to severe disease. Although the correlates of severe disease have been explored1-4, the pathophysiology that differentiates symptomatic from asymptomatic infection remains undefined. To understand the molecular underpinnings of symptomatic infection, the blood transcriptomic and metabolomic profiles of individuals were examined before and after inoculation with the live yellow fever viral vaccine (YF17D). It was found that individuals with adaptive endoplasmic reticulum (ER) stress and reduced tricarboxylic acid cycle activity at baseline showed increased susceptibility to symptomatic outcome. YF17D infection in these individuals induced maladaptive ER stress, triggering downstream proinflammatory responses that correlated with symptomatic outcome. The findings of the present study thus suggest that the ER stress response and immunometabolism underpin symptomatic yellow fever and possibly even other flaviviral infections. Modulating either ER stress or metabolism could be exploited for prophylaxis against symptomatic flaviviral infection outcome.
Collapse
|
32
|
Faddy HM, Fryk JJ, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC. Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion 2019; 59:2223-2227. [PMID: 31050821 DOI: 10.1111/trf.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Yellow fever virus (YFV) is endemic to tropical and subtropical areas in South America and Africa, and is currently a major public health threat in Brazil. Transfusion transmission of the yellow fever vaccine virus has been demonstrated, which is indicative of the potential for viral transfusion transmission. An approach to manage the potential YFV transfusion transmission risk is the use of pathogen inactivation (PI) technology systems, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets (Macopharma). We aimed to investigate the efficacy of these PI technology systems to inactivate YFV in plasma or platelet concentrates (PCs). STUDY DESIGN AND METHODS YFV spiked plasma units were treated using THERAFLEX MB-Plasma system (visible light doses: 20, 40, 60, and 120 [standard] J/cm2 ) in the presence of methylene blue (approx. 0.8 μmol/L) and spiked PCs were treated using THERAFLEX UV-Platelets system (ultraviolet C doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2 ). Samples were taken before the first and after each illumination dose and tested for residual virus using a modified plaque assay. RESULTS YFV infectivity was reduced by an average of 4.77 log or greater in plasma treated with the THERAFLEX MB-Plasma system and by 4.8 log or greater in PCs treated with THERAFLEX UV-Platelets system. CONCLUSIONS Our study suggests the THERAFLEX MB-Plasma and the THERAFLEX UV-Platelets systems can efficiently inactivate YFV in plasma or PCs to a similar degree as that for other arboviruses. Given the reduction levels observed in this study, these PI technology systems could be an effective option for managing YFV transfusion-transmission risk in plasma and PCs.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Vieira V, Pacheco L, Demetrio L, Balbi E, Bellinha T, Toledo R, Auler L, Halpern M, Pinto L, Guaraldi B, Victor L, Bigi J, Carius L, Roma J. Liver Transplantation for Acute Liver Failure due to Yellow Fever: A Case Report. Transplant Proc 2019; 51:1625-1628. [DOI: 10.1016/j.transproceed.2019.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Pinheiro GG, Rocha MN, de Oliveira MA, Moreira LA, Andrade Filho JD. Detection of Yellow Fever Virus in Sylvatic Mosquitoes during Disease Outbreaks of 2017⁻2018 in Minas Gerais State, Brazil. INSECTS 2019; 10:E136. [PMID: 31083286 PMCID: PMC6572267 DOI: 10.3390/insects10050136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 01/05/2023]
Abstract
Brazil has experienced several arbovirus outbreaks in recent years, among which yellow fever stands out. The state of Minas Gerais faced outbreaks of sylvatic yellow fever in 2017 and 2018, with 1002 confirmed cases and 340 deaths. This work presents the results of survey efforts to detect the yellow fever virus in mosquitoes from two conservation areas in the metropolitan region of Belo Horizonte, Brazil. A total of 867 mosquitoes of 20 species were collected between September 2017 and May 2018, the most abundant being Psorophora (Janthinosoma) ferox (von Humboldt, 1819) (31.3%), Limatus durhamii Theobald, 1901 (19.1%) and Haemagogus (Haemagogus) janthinomys Dyar, 1921 (18.2%). Total RNA was extracted from the mosquitoes for real-time PCR analysis for yellow fever, chikungunya, mayaro, Zika and dengue viruses. The yellow fever infection rate was 8.2% for Hg. janthinomys (13 mosquitoes), which is the main vector of sylvatic yellow fever in Brazil. In addition to surveying the mosquito fauna of these conservation units, this work demonstrates the importance of monitoring the circulation of viruses near large urban centers.
Collapse
Affiliation(s)
- Guilherme Garcia Pinheiro
- Coleção de Mosquitos Neotropicais, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
| | - Marcele Neves Rocha
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
| | - Maria Angélica de Oliveira
- Coleção de Mosquitos Neotropicais, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
| | - José Dilermando Andrade Filho
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil.
| |
Collapse
|
35
|
Moussallem TM, Gava C, Ardisson KS, Marques CS, Graceli GC, Koski ADPV, Almada GL, da Silva AR, de Jesus FAA, Rodrigues GAP, da Silva TCC. Yellow fever outbreak in a rural-urban mixed community of Espírito Santo, Brazil: epidemiological aspects. Rev Panam Salud Publica 2019; 43:e29. [PMID: 31093253 PMCID: PMC6519667 DOI: 10.26633/rpsp.2019.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
Objective. To describe the epidemiological aspects of an outbreak of yellow fever (YF) that occurred in the state of Espírito Santo, Brazil, from 1 January 2017 – 31 July 2017. Methods. A descriptive, quantitative, retrospective approach analyzed secondary data obtained from the national notification systems, Information System of Diseases Notifications (SINAN), Laboratory Environment Manager (GAL), and the Espírito Santo Health Secretariat (SESA). Results. From 1 January 2017 – 8 July 2017, a total of 824 cases were reported in Espírito Santo, 307 (37%) of which were confirmed as YF. Of these, 95 (30.9%) died from the disease. Men were those most affected, corresponding to 244 (79.5%) cases, and women to 63 (20.5%) cases. The greatest incidence rate registered was in the city of Santa Leopoldina (380.2 cases/100 000 inhabitants). The outbreak evolved rapidly and a response was possible due to a multidisciplinary group created specifically to tackle the YF outbreak. Conclusions. The data were received and analyzed quickly and the response, consisting of immediate treatment of the cases and a blocking vaccination strategy, was developed to halt the progression of this fatal disease. In spite of these efforts, the case fatality rate of yellow fever remained high.
Collapse
Affiliation(s)
- Tálib Moysés Moussallem
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Special Center for Epidemiological Surveillance VitóriaEspírito Santo Brazil Special Center for Epidemiological Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Caroline Gava
- Oswaldo Cruz Foundation Oswaldo Cruz Foundation Sergio Arouca National School of Public Health Rio de JaneiroRio de Janeiro Brazil Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karla Spandl Ardisson
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Center for Strategic Information and Responses in Health Surveillance VitóriaEspírito Santo Brazil Center for Strategic Information and Responses in Health Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Clemilda Soares Marques
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Center for Strategic Information and Responses in Health Surveillance VitóriaEspírito Santo Brazil Center for Strategic Information and Responses in Health Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Giselle Calmon Graceli
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Special Center for Epidemiological Surveillance VitóriaEspírito Santo Brazil Special Center for Epidemiological Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Aline da Penha Valadares Koski
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Special Center for Epidemiological Surveillance VitóriaEspírito Santo Brazil Special Center for Epidemiological Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Gilton Luiz Almada
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Center for Strategic Information and Responses in Health Surveillance VitóriaEspírito Santo Brazil Center for Strategic Information and Responses in Health Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Alexandre Rodrigues da Silva
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Dório Silva Hospital SerraEspírito Santo Brazil Dório Silva Hospital, Espírito Santo State Health Secretariat, Serra, Espírito Santo, Brazil
| | - Fernando Antonio Alves de Jesus
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Dório Silva Hospital SerraEspírito Santo Brazil Dório Silva Hospital, Espírito Santo State Health Secretariat, Serra, Espírito Santo, Brazil
| | - Gilsa Aparecida Pimenta Rodrigues
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Health Surveillance Management VitóriaEspírito Santo Brazil Health Surveillance Management, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| | - Theresa Cristina Cardoso da Silva
- Espírito Santo State Health Secretariat Espírito Santo State Health Secretariat Special Center for Epidemiological Surveillance VitóriaEspírito Santo Brazil Special Center for Epidemiological Surveillance, Espírito Santo State Health Secretariat, Vitória, Espírito Santo, Brazil
| |
Collapse
|
36
|
Singh S, Kumar A. Ocular Manifestations of Emerging Flaviviruses and the Blood-Retinal Barrier. Viruses 2018; 10:v10100530. [PMID: 30274199 PMCID: PMC6213219 DOI: 10.3390/v10100530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Despite flaviviruses remaining the leading cause of systemic human infections worldwide, ocular manifestations of these mosquito-transmitted viruses are considered relatively uncommon in part due to under-reporting. However, recent outbreaks of Zika virus (ZIKV) implicated in causing multiple ocular abnormalities, such as conjunctivitis, retinal hemorrhages, chorioretinal atrophy, posterior uveitis, optic neuritis, and maculopathies, has rejuvenated a significant interest in understanding the pathogenesis of flaviviruses, including ZIKV, in the eye. In this review, first, we summarize the current knowledge of the major flaviviruses (Dengue, West Nile, Yellow Fever, and Japanese Encephalitis) reported to cause ocular manifestations in humans with emphasis on recent ZIKV outbreaks. Second, being an immune privilege organ, the eye is protected from systemic infections by the presence of blood-retinal barriers (BRB). Hence, we discuss how flaviviruses modulate retinal innate response and breach the protective BRB to cause ocular or retinal pathology. Finally, we describe recently identified infection signatures of ZIKV and discuss whether these system biology-predicted genes or signaling pathways (e.g., cellular metabolism) could contribute to the pathogenesis of ocular manifestations and assist in the development of ocular antiviral therapies against ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|
38
|
Klitting R, Riziki T, Moureau G, Piorkowski G, Gould EA, de Lamballerie X. Exploratory re-encoding of yellow fever virus genome: new insights for the design of live-attenuated viruses. Virus Evol 2018; 4:vey021. [PMID: 30057792 PMCID: PMC6057501 DOI: 10.1093/ve/vey021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Virus attenuation by genome re-encoding is a pioneering approach for generating effective live-attenuated vaccine candidates. Its core principle is to introduce a large number of synonymous substitutions into the viral genome to produce stable attenuation of the targeted virus. Introduction of large numbers of mutations has also been shown to maintain stability of the attenuated phenotype by lowering the risk of reversion and recombination of re-encoded genomes. Identifying mutations with low fitness cost is pivotal as this increases the number that can be introduced and generates more stable and attenuated viruses. Here, we sought to identify mutations with low deleterious impact on the in vivo replication and virulence of yellow fever virus (YFV). Following comparative bioinformatic analyses of flaviviral genomes, we categorised synonymous transition mutations according to their impact on CpG/UpA composition and secondary RNA structures. We then designed seventeen re-encoded viruses with 100–400 synonymous mutations in the NS2A-to-NS4B coding region of YFV Asibi and Ap7M (hamster-adapted) genomes. Each virus contained a panel of synonymous mutations designed according to the above categorisation criteria. The replication and fitness characteristics of parent and re-encoded viruses were compared in vitro using cell culture competition experiments. In vivo laboratory hamster models were also used to compare relative virulence and immunogenicity characteristics. Most of the re-encoded strains showed no decrease in replicative fitness in vitro. However, they showed reduced virulence and, in some instances, decreased replicative fitness in vivo. Importantly, the most attenuated of the re-encoded strains induced robust, protective immunity in hamsters following challenge with Ap7M, a virulent virus. Overall, the introduction of transitions with no or a marginal increase in the number of CpG/UpA dinucleotides had the mildest impact on YFV replication and virulence in vivo. Thus, this strategy can be incorporated in procedures for the finely tuned creation of substantially re-encoded viral genomes.
Collapse
Affiliation(s)
- R Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - T Riziki
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - G Moureau
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - G Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - E A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - X de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
39
|
Costa-Pereira C, Campi-Azevedo AC, Coelho-dos-Reis JG, Peruhype-Magalhães V, Araújo MSS, do Vale Antonelli LR, Fonseca CT, Lemos JA, Malaquias LCC, de Souza Gomes M, Rodrigues Amaral L, Rios M, Chancey C, Persi HR, Pereira JM, de Sousa Maia MDL, Freire MDS, Martins RDM, Homma A, Simões M, Yamamura AY, Farias RHG, Romano APM, Domingues CM, Tauil PL, Vasconcelos PFC, Caldas IR, Camacho LA, Teixeira-Carvalho A, Martins-Filho OA. Multi-parameter approach to evaluate the timing of memory status after 17DD-YF primary vaccination. PLoS Negl Trop Dis 2018; 12:e0006462. [PMID: 29879134 PMCID: PMC5991646 DOI: 10.1371/journal.pntd.0006462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
In this investigation, machine-enhanced techniques were applied to bring about scientific insights to identify a minimum set of phenotypic/functional memory-related biomarkers for post-vaccination follow-up upon yellow fever (YF) vaccination. For this purpose, memory status of circulating T-cells (Naïve/early-effector/Central-Memory/Effector-Memory) and B-cells (Naïve/non-Classical-Memory/Classical-Memory) along with the cytokine profile (IFN/TNF/IL-5/IL-10) were monitored before-NV(day0) and at distinct time-points after 17DD-YF primary vaccination—PV(day30-45); PV(year1-9) and PV(year10-11). A set of biomarkers (eEfCD4; EMCD4; CMCD19; EMCD8; IFNCD4; IL-5CD8; TNFCD4; IFNCD8; TNFCD8; IL-5CD19; IL-5CD4) were observed in PV(day30-45), but not in NV(day0), with most of them still observed in PV(year1-9). Deficiencies of phenotypic/functional biomarkers were observed in NV(day0), while total lack of memory-related attributes was observed in PV(year10-11), regardless of the age at primary vaccination. Venn-diagram analysis pre-selected 10 attributes (eEfCD4, EMCD4, CMCD19, EMCD8, IFNCD4, IL-5CD8, TNFCD4, IFNCD8, TNFCD8 and IL-5CD4), of which the overall mean presented moderate accuracy to discriminate PV(day30-45)&PV(year1-9) from NV(day0)&PV(year10-11). Multi-parameter approaches and decision-tree algorithms defined the EMCD8 and IL-5CD4 attributes as the top-two predictors with moderated performance. Together with the PRNT titers, the top-two biomarkers led to a resultant memory status observed in 80% and 51% of volunteers in PV(day30-45) and PV(year1-9), contrasting with 0% and 29% found in NV(day0) and PV(year10-11), respectively. The deficiency of memory-related attributes observed at PV(year10-11) underscores the conspicuous time-dependent decrease of resultant memory following17DD-YF primary vaccination that could be useful to monitor potential correlates of protection in areas under risk of YF transmission. In this study, a set of immunological biomarkers was studied in order to understand protection upon vaccination with yellow fever (17DD-YF) vaccine. For this purpose, the immunological memory statuses of circulating T- and B-cells along with the plasmatic molecules (cytokine profile) were monitored before and at distinct time-points after primary vaccination. A set of biomarkers were measured in the peripheral blood of primary 17-DD vaccinees after 30–45 days of vaccination, which were relatively sustained in vaccinees after 1–9 years of primary vaccination. Deficiencies and a total lack of memory-related immunological responses to yellow fever virus were observed after 10 to 11 years post-vaccination, regardless of the age at primary vaccination. Multi-parameter approaches defined two biomarkers (EMCD8 and IL-5CD4) as the top-two predictors of protection. The deficiency of attributes observed after 10–11 years post-vaccination reveals a time-dependent decrease of immunological memory responses related to the 17DD-YF vaccination. Therefore, these results highly suggest the need for close attention to vaccinees in YF endemic areas with more than 10 years of vaccination. At last, the biomarkers proposed in this study could be useful to monitor protection in YF-vaccinees living in or travelling to areas under risk of YF transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jandira Aparecida Lemos
- Secretaria de Estado de Saúde, Governo do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Laurence Rodrigues Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Rios
- Center for Biologics Evaluation and Research – CBER – Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America
| | - Caren Chancey
- Center for Biologics Evaluation and Research – CBER – Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America
| | | | | | | | - Marcos da Silva Freire
- Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos- FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Akira Homma
- Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos- FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos- FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Yoshida Yamamura
- Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos- FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Carla Magda Domingues
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Federal District, Brazil
| | | | | | | | - Luiz Antônio Camacho
- Escola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
40
|
Klitting R, Roth L, Rey FA, de Lamballerie X. Molecular determinants of Yellow Fever Virus pathogenicity in Syrian Golden Hamsters: one mutation away from virulence. Emerg Microbes Infect 2018; 7:51. [PMID: 29593212 PMCID: PMC5874243 DOI: 10.1038/s41426-018-0053-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/12/2022]
Abstract
Yellow fever virus (Flavivirus genus) is an arthropod-borne pathogen, which can infect humans, causing a severe viscerotropic disease with a high mortality rate. Adapted viral strains allow the reproduction of yellow fever disease in hamsters with features similar to the human disease. Here, we used the Infectious Subgenomic Amplicons reverse genetics method to produce an equivalent to the hamster-virulent strain, Yellow Fever Ap7, by introducing a set of four synonymous and six nonsynonymous mutations into a single subgenomic amplicon, derived from the sequence of the Asibi strain. The resulting strain, Yellow Fever Ap7M, induced a disease similar to that described for Ap7 in terms of symptoms, weight evolution, viral loads in the liver and lethality. Using the same methodology, we produced mutant strains derived from either Ap7M or Asibi viruses and investigated the role of each of Ap7M nonsynonymous mutations in its in vivo phenotype. This allowed identifying key components of the virulence mechanism in hamsters. In Ap7M virus, the reversion of either E/Q27H or E/D155A mutations led to an important reduction of both virulence and in vivo replicative fitness. In addition, the introduction of the single D155A Ap7M mutation within the E protein of the Asibi virus was sufficient to drastically modify its phenotype in hamsters toward both a greater replication efficiency and virulence. Finally, inspection of the Asibi strain E protein structure combined to in vivo testing revealed the importance of an exposed α-helix in domain I, containing residues 154 and 155, for Ap7M virulence in hamsters.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France.
| | - Laura Roth
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France
| | - Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, 75015, Paris, France
- CNRS UMR3569, Institut Pasteur, 75015, Paris, France
| | - Xavier de Lamballerie
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France
| |
Collapse
|
41
|
Zhao S, Stone L, Gao D, He D. Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Negl Trop Dis 2018; 12:e0006158. [PMID: 29338001 PMCID: PMC5798855 DOI: 10.1371/journal.pntd.0006158] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/05/2018] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening viral disease endemic to tropical and subtropical regions of Africa and South America. YF has largely been controlled by widespread national vaccination campaigns. Nevertheless, between December 2015 and August 2016, YF resurged in Angola, quickly spread and became the largest YF outbreak for the last 30 years. Recently, YF resurged again in Brazil (December 2016). Thus, there is an urgent need to gain better understanding of the transmission pattern of YF. MODEL The present study provides a refined mathematical model, combined with modern likelihood-based statistical inference techniques, to assess and reconstruct important epidemiological processes underlying Angola's YF outbreak. This includes the outbreak's attack rate, the reproduction number ([Formula: see text]), the role of the mosquito vector, the influence of climatic factors, and the unusual but noticeable appearance of two-waves in the YF outbreak. The model explores actual and hypothetical vaccination strategies, and the impacts of possible human reactive behaviors (e.g., response to media precautions). FINDINGS While there were 73 deaths reported over the study period, the model indicates that the vaccination campaign saved 5.1-fold more people from death and saved from illness 5.6-fold of the observed 941 cases. Delaying the availability of the vaccines further would have greatly worsened the epidemic in terms of increased cases and deaths. The analysis estimated a mean [Formula: see text] and an attack rate of 0.09-0.15% (proportion of population infected) over the whole period from December 2015 to August 2016. Our estimated lower and upper bounds of [Formula: see text] are in line with previous studies. Unusually, [Formula: see text] oscillated in a manner that was "delayed" with the reported deaths. High recent number of deaths were associated (followed) with periods of relatively low disease transmission and low [Formula: see text], and vice-versa. The time-series of Luanda's YF cases suggest the outbreak occurred in two waves, a feature that would have become far more prominent had there been no mass vaccination. The waves could possibly be due to protective reactive behavioral changes of the population affecting the mosquito population. The second wave could well be an outcome of the March-April rainfall patterns in the 2016 El Niño year by creating ideal conditions for the breeding of the mosquito vectors. The modelling framework is a powerful tool for studying future YF epidemic outbreaks, and provides a basis for future vaccination campaign evaluations.
Collapse
Affiliation(s)
- Shi Zhao
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
| | - Lewi Stone
- School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia
- Biomathematics Unit, Department of Zoology, Tel Aviv University, Ramat Aviv, Israel
| | - Daozhou Gao
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
42
|
Atkins C, Freiberg AN. Recent advances in the development of antiviral therapeutics for Rift Valley fever virus infection. Future Virol 2017; 12:651-665. [PMID: 29181086 DOI: 10.2217/fvl-2017-0060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to sub-Saharan Africa and the Arabian Peninsula and the etiological agent of Rift Valley fever. Rift Valley fever is a disease of major public health and economic concern, affecting livestock and humans. In ruminants, RVFV infection is characterized by high mortality rates in newborns and near 100% abortion rates in pregnant animals. Infection in humans is typically manifested as a self-limiting febrile illness, but can lead to severe and fatal hepatitis, encephalitis, hemorrhagic fever or retinitis with partial or complete blindness. Currently, there are no specific treatment options available for RVFV infection. This review presents a summary of the therapeutic approaches that have been explored on the treatment of RVFV infection.
Collapse
Affiliation(s)
- Colm Atkins
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
43
|
Affiliation(s)
- Mobeen H Rathore
- University of Florida Center for HIV/AIDS Research, Education and Service (UF CARES), 910 North Jefferson Street, Jacksonville, FL 32209, USA; Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA.
| | - Jonathan Runyon
- Nicklaus Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA
| | - Tanveer-Ul Haque
- Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA
| |
Collapse
|
44
|
Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 2017; 39:551-561. [PMID: 28555386 DOI: 10.1007/s00281-017-0637-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Georgia Research Alliance Eminent Scholar in Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
45
|
Low JGH, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis 2017; 215:S96-S102. [PMID: 28403438 PMCID: PMC5388029 DOI: 10.1093/infdis/jiw423] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue.
Collapse
Affiliation(s)
- Jenny G H Low
- Department of Infectious Diseases, Singapore General Hospital
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore.,Singapore MIT Alliance in Research and Technology Infectious Diseases Interdisciplinary Research Group
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore
| |
Collapse
|
46
|
Douam F, Hrebikova G, Albrecht YES, Sellau J, Sharon Y, Ding Q, Ploss A. Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome. Nat Commun 2017; 8:14781. [PMID: 28290449 PMCID: PMC5424064 DOI: 10.1038/ncomms14781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (−) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (−) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus–host interaction events that could be pivotal in regulating flavivirus virulence and attenuation. Analysis of virus replication on a single-cell level is often hampered by a lack of specific or sensitive enough reagents. Here, Douam et al. use RNA-flow technique to track (+) and (−) strand RNA of yellow fever virus in hematopoietic cells in mouse models and identify virus-host interactions that affect disease outcome.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Yentli E Soto Albrecht
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Yael Sharon
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
47
|
Affiliation(s)
- Luciano Z Goldani
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Secção de Doenças Infecciosas, Porto Alegre, MG, Brazil.
| |
Collapse
|
48
|
Jorge TR, Mosimann ALP, Noronha LD, Maron A, Duarte dos Santos CN. Isolation and characterization of a Brazilian strain of yellow fever virus from an epizootic outbreak in 2009. Acta Trop 2017; 166:114-120. [PMID: 27818122 DOI: 10.1016/j.actatropica.2016.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
During a series of epizootics caused by Yellow fever virus in Brazil between 2007 and 2009, a monkey was found dead (May 2009) in a sylvatic area in the State of Paraná. Brain samples from this animal were used for immunohistochemical analysis and isolation of a wild-type strain of YFV. This viral strain was characterized, and sequence analyzes demonstrated that it is closely related with YFV strains of the recently identified subclade 1E of the South American genotype I. Further characterization included indirect-immunofluorescence of different infected cell lines and analysis of the kinetics of virus replication and infectivity inhibition by type I IFN. The generated data contributes to the knowledge of YFV evolution and phylogeny. Additionally, the reagents generated and characterized during this study, such as a panel of monoclonal antibodies, are useful tools for further studies on YFV. Lastly, this case stresses the importance of yellow fever surveillance through sentinel monkeys.
Collapse
|
49
|
Gerold G, Bruening J, Weigel B, Pietschmann T. Protein Interactions during the Flavivirus and Hepacivirus Life Cycle. Mol Cell Proteomics 2017; 16:S75-S91. [PMID: 28077444 DOI: 10.1074/mcp.r116.065649] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
Protein-protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met.
Collapse
Affiliation(s)
- Gisa Gerold
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Janina Bruening
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Bettina Weigel
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
50
|
Kim E, Erdos G, Huang S, Kenniston T, Falo LD, Gambotto A. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation. EBioMedicine 2016; 13:315-320. [PMID: 27717627 PMCID: PMC5264651 DOI: 10.1016/j.ebiom.2016.09.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/01/2022] Open
Abstract
Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA). The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%). No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Thomas Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|