1
|
Esmaeili H, Ghorani M, Joghataei SM, Villanueva-Saz S, Lacasta D. Live attenuated goatpox vaccination in pregnant Murcia-Granada goats: dosage implications and outcomes. BMC Vet Res 2024; 20:544. [PMID: 39623355 PMCID: PMC11610293 DOI: 10.1186/s12917-024-04395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Infectious diseases, particularly the Goatpox virus (GTPV) from the Poxviridae family, significantly impact livestock health and agricultural economies, especially in developing regions. Recent GTPV outbreaks in previously eradicated areas underscore the need for effective control measures, with vaccination being the most reliable strategy. This study investigates the effects of administering standard and double doses of live attenuated goatpox vaccine in pregnant Murcia-Granada goats, a non-native breed in Iran, to determine optimal vaccination protocols. RESULTS In 2018, 400 healthy and pregnant Murcia Granada goats imported from Spain were divided into groups of 200 and vaccinated with either a standard dose (0.5 ml) or a double dose (single 0.9 ml injection) of live attenuated goatpox vaccine. Post-vaccination, the goats were monitored daily for clinical signs of infection, with samples collected for PCR analysis to detect the presence of GTPV strains. In group A, which received the standard vaccine dose, no abortions or vaccine-related side effects were observed, and body temperatures remained normal. In group B, administered a double dose, 37% of the goats experienced abortions, displaying signs of GTPV infection, such as skin lesions (pox lesions) and increased body temperatures. Molecular analysis confirmed the vaccine strain of GTPV as the infection source, ruling out external contamination. Statistical analysis showed no significant differences in abortion rates concerning gestational age or t he age of the pregnant goats. CONCLUSION The study highlights the importance of adhering to standard vaccine dosages in pregnant Murcia Granada goats to prevent adverse outcomes like abortions. This study emphasizes the necessity to review and revise vaccination protocols tailored to specific breeds and varying maintenance conditions, including pregnancy and outbreak scenarios. These findings stress the necessity for cautious and tailored vaccination strategies to ensure the safety and efficacy of vaccines in different goat breeds.
Collapse
Affiliation(s)
- Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 1419963114, Tehran, Iran.
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadreza Ghorani
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 5166616471, Iran
| | - Seyed Mehdi Joghataei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 1419963114, Tehran, Iran
| | - Sergio Villanueva-Saz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza, 50013, Spain
| | - Delia Lacasta
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza, 50013, Spain
| |
Collapse
|
2
|
Kumar R, Kamboj H, Dhanda S, Verma A, Chander Y, Nehra K, Bhati A, Dedar RK, Sharma DK, Barua S, Tripathi BN, Sharma S, Kumar N. Identification of miR-29a as a novel biomarker for lumpy skin disease virus exposure in cattle. Virulence 2024; 15:2324711. [PMID: 38527940 PMCID: PMC10965105 DOI: 10.1080/21505594.2024.2324711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.
Collapse
Affiliation(s)
- Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Kamboj
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Shweta Dhanda
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Kuldeep Nehra
- Livestock Research Station, Rajasthan University of Veterinary and Animal Sciences, Nohar, Rajasthan, India
| | | | - Ramesh Kumar Dedar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Deepak Kumar Sharma
- Department of Veterinary Microbiology, Rajasthan University of Veterinary and Animal Sciences, Udaipur, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N. Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
3
|
Haider A, Abbas Z, Taqveem A, Ali A, Khurshid M, Naggar RFE, Rohaim MA, Munir M. Lumpy Skin Disease: Insights into Molecular Pathogenesis and Control Strategies. Vet Sci 2024; 11:561. [PMID: 39591335 PMCID: PMC11598853 DOI: 10.3390/vetsci11110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that affects buffaloes and cattle across various regions, including both tropical and temperate climates. Intriguingly, the virus-carrying skin sores remain the primary source of infection for extended periods, exacerbated by the abundance of vectors in disease-endemic countries. Recent scientific advances have revealed the molecular aspects of LSD and offered improved vaccines and valuable antiviral targets. This review summarizes the molecular features of LSD and its effect on various livestock species. We then provide an extensive discussion on the transmission dynamics of LSD and the roles of vectors in its continued spread among livestock populations. Additionally, this review critically analyses the rationales behind, as well as the affordability and effectiveness, of current control strategies worldwide.
Collapse
Affiliation(s)
- Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Zaheer Abbas
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Ahsen Taqveem
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujrat 50700, Pakistan;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
4
|
Chala W, Adamu K, Mohammed H, Deresse G, Tesfaye S, Gelaye E. Outbreak Investigation, Isolation, and Molecular Characterization of Lumpy Skin Disease Virus in Cattle from North West Oromia Region, Ethiopia. Vet Med Int 2024; 2024:6038724. [PMID: 39184947 PMCID: PMC11343636 DOI: 10.1155/2024/6038724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024] Open
Abstract
Lumpy skin disease (LSD) is an economically significant viral disease because of its high morbidity and high production loss. Vaccination of cattle using LSD vaccines is a more effective disease preventive and control strategy in endemic countries such as Ethiopia. Despite high vaccination coverage, there is an increasing number of field reports of the disease outbreaks. Thus, an observational study was designed to investigate disease, characterize the disease-causing agent, and isolate the virus from a local isolate for future vaccine development. Wera Jarso and Amuru districts in North West Oromia were chosen based on outbreak occurrence. For this study skin, 13 pooled biopsy samples were collected from affected cattle. In this outbreak investigation, the morbidity rate was 6.50%, the mortality rate was 0.50%, and the case fatality rate was 7.77%. The virus was isolated from all skin samples on both lamb testis and lamb kidney primary cells and confirmed to be LSDV using conventional and real-time PCR genotyping. Therefore, after each suspected LSD outbreak, a molecular test should be carried out to confirm the cause of the disease, targeting the previously suggested RPO30 or GPCR genes. Further studies targeting more regions and outbreaks, including full genome sequencing to check for genetic differences between the field viruses and vaccine strains, are recommended.
Collapse
Affiliation(s)
- Workisa Chala
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Kasaye Adamu
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Hawa Mohammed
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Getaw Deresse
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Shimelis Tesfaye
- College of Veterinary Medicine and AgricultureAddis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Esayas Gelaye
- Food and Agriculture Organization of the United NationsSub-Regional Office for Eastern Africa, P.O. Box 5536, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Shumilova I, Shalina K, Abed Alhussen M, Prutnikov P, Krotova A, Byadovskaya O, Prokhvatilova L, Chvala I, Sprygin A. An Attenuated Vaccine Virus of the Neethling Lineage Protects Cattle against the Virulent Recombinant Vaccine-like Isolate of the Lumpy Skin Disease Virus Belonging to the Currently Established Cluster 2.5. Vaccines (Basel) 2024; 12:598. [PMID: 38932327 PMCID: PMC11209201 DOI: 10.3390/vaccines12060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Lumpy skin disease (LSD) is an emerging transboundary and highly infectious viral disease mainly affecting cattle. The fact that it was initially confined to Africa and then spread beyond its geographical range to other regions, including the Middle East, Turkey, Europe, the Balkans, Russia and Asia, is an indication of the underestimation and neglect of this disease. Vaccination is considered the most effective way to control the spread of LSDV, when combined with other control measures. LSD is now on the rise in Southeast Asia, where the circulating virus belongs to recombinant lineage 2.5. In this study, we evaluated the efficacy of an attenuated LSDV strain belonging to the Neethling cluster 1.1 by challenge with a virulent recombinant vaccine-like LSDV isolate "Mongolia/2021" belonging to cluster 2.5. Some of the vaccinated animals showed an increase in body temperature of 1-1.5 °C above the physiological norm, without clinical signs, local reactions, vaccine-induced viremia or generalization, demonstrating the efficacy and safety of the vaccine strain against a recombinant strain. Furthermore, all the vaccinated animals showed strong immune responses, indicating a high level of immunogenicity. However, the control group challenged with "Mongolia/2021" LSD showed moderate to severe clinical signs seen in an outbreak, with high levels of virus shedding in blood samples and nasal swabs. Overall, the results of the present study demonstrate that the attenuated LSDV Neethling strain vaccine has a promising protective phenotype against the circulating strains, suggesting its potential as an effective tool for the containment and control of LSD in affected countries from Southeast Asia.
Collapse
|
6
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
7
|
Hakobyan V, Sargsyan K, Elbakyan H, Sargsyan V, Markosyan T, Chobanyan G, Badalyan M, Kharatyan S. Duration of Immunity in Cattle to Lumpy Skin Disease Utilizing a Sheep Pox Vaccine. Vet Sci 2024; 11:164. [PMID: 38668431 PMCID: PMC11053425 DOI: 10.3390/vetsci11040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
The transmission of lumpy skin disease (LSD) occurs through ticks, mosquitoes, and flies. The most effective way to combat LSD is to conduct large-scale vaccination, covering the entire cattle population with safe and effective vaccines, while introducing restrictions on the movement of livestock. The first and only LSD cases that occurred in Armenia happened in 2015,and they were controlled with the use of a once yearly heterologous sheep pox vaccine for cattle in high-risk areas. We have previously reported on the safety and immunogenicity of this vaccine in cattle, but information on the duration of immunity is lacking. Our aim was to determine the duration of immunity to the LSD virus (LSDV) in cattle when utilizing a heterologous sheep pox vaccine. We have evaluated antibodies in cattle blood prior to and post-vaccination (1, 6, and 11 months). We have utilized an enzyme-linked immunosorbent assay to follow the development and waning of LSDV antibodies in vaccinated cattle in two age groups: 1) young unvaccinated cattle ≤12 months of age and 2) adult cattle that had previously been vaccinated. Our results were consistent with our previous study in Armenia, showing a high level of population immunity, 80.0-83.3%, in both age groups at 1 month, with a significant (p = 0.001) drop for young cattle at 6 months. Previously vaccinated adult cattle showed a longer duration of immunity at 11 months for this heterologous sheep pox vaccine. Based on these data, we advise that young cattle receive an additional booster vaccination 4-6 months after their first vaccination, and then yearly vaccinations in high-risk areas.
Collapse
Affiliation(s)
- Varduhi Hakobyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Khachik Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Hasmik Elbakyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Vazgen Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Tigran Markosyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Gayane Chobanyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Manvel Badalyan
- Chair of Biosciences and General Chemistry, Armenian National Agrarian University, 74 Teryan Street, Yerevan 0009, Armenia;
| | - Satenik Kharatyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| |
Collapse
|
8
|
Haga IR, Shih BB, Tore G, Polo N, Ribeca P, Gombo-Ochir D, Shura G, Tserenchimed T, Enkhbold B, Purevtseren D, Ulziibat G, Damdinjav B, Yimer L, Bari FD, Gizaw D, Adedeji AJ, Atai RB, Adole JA, Dogonyaro BB, Kumarawadu PL, Batten C, Corla A, Freimanis GL, Tennakoon C, Law A, Lycett S, Downing T, Beard PM. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024; 16:557. [PMID: 38675899 PMCID: PMC11053774 DOI: 10.3390/v16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.
Collapse
Grants
- BB/R002606/1, BB/R008833/1, BB/X011038/1, BB/X011046/1, BB/CCG2250, BB/CCG1780/1, BBS/E/RL/230002C, BBS/E/RL/230002D, , BBS/E/I/00007039, /1, BB/IDG2250/1, Biotechnology and Biological Sciences Research Council
Collapse
Affiliation(s)
- Ismar R. Haga
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Barbara B. Shih
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK
| | - Gessica Tore
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Noemi Polo
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- UK Health Security Agency, 61 Colindale Ave, London NW9 5EQ, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, Mathematics Institute, Zeeman Builing, University of Warwick, Coventry CV4 7AL, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Ronald Ross Building, University of Liverpool, Liverpool L69 7BE, UK
- Biomathematics and Statistics Scotland, James Maxwell Clerk Building, Peter Guthrie Tait Road, Kings Buildings, Edinburgh EH9 3FD, UK
| | - Delgerzul Gombo-Ochir
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gansukh Shura
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Tsagaan Tserenchimed
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Bazarragchaa Enkhbold
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Dulam Purevtseren
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gerelmaa Ulziibat
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Batchuluun Damdinjav
- General Authority for Veterinary Service, Ministry of Food, Agriculture and Light Industry, Ulaanbaatar 13381, Mongolia;
| | - Lama Yimer
- School of Veterinary Medicine, Wollega University, Nekemte P.O. Box 395, Ethiopia;
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Fufa D. Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Daniel Gizaw
- Animal Health Institute (AHI), Sebata P.O. Box 04, Ethiopia;
| | - Adeyinka Jeremy Adedeji
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Rebecca Bitiyong Atai
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Jolly Amoche Adole
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | | | | | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Graham L. Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Chandana Tennakoon
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Andy Law
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Tim Downing
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Philippa M. Beard
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
9
|
Sarwar MF, Waseem QUA, Awan MF, Ali S, Ahmad A, Malook SU, Ali Q. In-silico characterization of LSDV132 protein divulged its BCL-2-like nature. Heliyon 2024; 10:e27657. [PMID: 38510042 PMCID: PMC10951589 DOI: 10.1016/j.heliyon.2024.e27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.
Collapse
Affiliation(s)
- Muhammad Farhan Sarwar
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Qurat ul Ain Waseem
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Mudassar Fareed Awan
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Sajed Ali
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saif ul Malook
- Department of Entomology & Nematology, University of Florida, USA
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Liang Z, Wang S, Yao K, Ren S, Cheng P, Qu M, Ma X, Gao X, Yin X, Wang X, Sun Y. Lumpy skin disease virus ORF127 protein suppresses type I interferon responses by inhibiting K63-linked ubiquitination of tank binding kinase 1. FASEB J 2024; 38:e23467. [PMID: 38329325 DOI: 10.1096/fj.202301987rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Lumpy skin disease (LSD) is a severe animal infectious disease caused by lumpy skin disease virus (LSDV), inducing extensive nodules on the cattle mucosa or the scarfskin. LSDV genome encodes multiple proteins to evade host innate immune response. However, the underlying molecular mechanisms are poorly understood. In this study, we found that LSDV could suppress the expression of IFN-β and interferon-stimulated genes (ISGs) in MDBK cells during the early stage of infection. Subsequently, an unbiased screen was performed to screen the LSDV genes with inhibitory effects on the type I interferon (IFN-I) production. ORF127 protein was identified as one of the strongest inhibitory effectors on the expression of IFN-β and ISGs, meanwhile, the 1-43 aa of N-terminal of ORF127 played a vital role in suppressing the expression of IFN-β. Overexpression of ORF127 could significantly promote LSDV replication through inhibiting the production of IFN-β and ISGs in MDBK cells. Mechanism study showed that ORF127 specifically interacted with TBK1 and decreased the K63-linked polyubiquitination of TBK1 which suppressed the phosphorylation of TBK1 and ultimately decreased the production of IFN-β. In addition, truncation mutation analysis indicated that the 1-43 aa of N-terminal of ORF127 protein was the key structural domain for its interaction with TBK1. In short, these results validated that ORF127 played a negative role in regulating IFN-β expression through cGAS-STING signaling pathway. Taken together, this study clarified the molecular mechanism of ORF127 gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for the treatment and prevention of LSD.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xin Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Yadav D, Rao GSNK, Paliwal D, Singh A, Alam A, Sharma PK, Surendra AV, Varshney P, Kumar Y. Cracking the Code of Lumpy Skin Disease: Identifying Causes, Symptoms and Treatment Options for Livestock Farmers. Infect Disord Drug Targets 2024; 24:e150124225632. [PMID: 38231058 DOI: 10.2174/0118715265261364231120053105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 01/18/2024]
Abstract
The novel bovine viral infection known as lumpy skin disease is common in most African and Middle Eastern countries, with a significant likelihood of disease transfer to Asia and Europe. Recent rapid disease spread in formerly disease-free zones highlights the need of understanding disease limits and distribution mechanisms. Capripox virus, the causal agent, may also cause sheeppox and Goatpox. Even though the virus is expelled through several bodily fluids and excretions, the most common causes of infection include sperm and skin sores. Thus, vulnerable hosts are mostly infected mechanically by hematophagous arthropods such as biting flies, mosquitoes, and ticks. As a result, milk production lowers, abortions, permanent or temporary sterility, hide damage, and mortality occur, contributing to a massive financial loss for countries that raise cattle. These illnesses are economically significant because they affect international trade. The spread of Capripox viruses appears to be spreading because to a lack of effectual vaccinations and poverty in rural areas. Lumpy skin disease has reached historic levels; as a consequence, vaccination remains the only viable option to keep the illness from spreading in endemic as well as newly impacted areas. This study is intended to offer a full update on existing knowledge of the disease's pathological characteristics, mechanisms of spread, transmission, control measures, and available vaccinations.
Collapse
Affiliation(s)
- Devdhar Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Deepika Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amit Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amareswarapu V Surendra
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prachi Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Kumar N, Barua S, Kumar R, Khandelwal N, Kumar A, Verma A, Singh L, Godara B, Chander Y, Kumar G, Riyesh T, Sharma DK, Pathak A, Kumar S, Dedar RK, Mehta V, Gaur M, Bhardwaj B, Vyas V, Chaudhary S, Yadav V, Bhati A, Kaul R, Bashir A, Andrabi A, Yousuf RW, Koul A, Kachhawaha S, Gurav A, Gautam S, Tiwari HA, Munjal VK, Gupta MK, Kumar R, Gulati BR, Misri J, Kumar A, Mohanty AK, Nandi S, Singh KP, Pal Y, Dutt T, Tripathi BN. Evaluation of the safety, immunogenicity and efficacy of a new live-attenuated lumpy skin disease vaccine in India. Virulence 2023; 14:2190647. [PMID: 36919498 PMCID: PMC10038050 DOI: 10.1080/21505594.2023.2190647] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Mukteswar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Lokender Singh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhagraj Godara
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Garvit Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Deepak Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary and Animal Science, Udaipur, India
| | - Anubha Pathak
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Vishal Mehta
- Department of Animal Husbandry, Banswara, Rajasthan, India
| | - Mitesh Gaur
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Udaipur, India
| | | | - Vithilesh Vyas
- Department of Animal Husbandry, Jodhpur, Rajasthan, India
| | | | | | - Adrish Bhati
- Livestock Research station, Nohar, Rajasthan, India
| | - Rakesh Kaul
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Arif Bashir
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Anjum Andrabi
- Animal Husbandry Department, Jammu and Kashmir, India
| | | | | | - Subhash Kachhawaha
- Krishi Vigyan Kendra, ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - Amol Gurav
- Indian Veterinary Research Institute, Mukteswar, India
| | | | | | | | - Madhurendu K Gupta
- Department of Veterinary Pathology, Birsa Agricultural University, Ranchi, India
| | - Rajender Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Baldev R Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, India
| | - Ashok Kumar
- Animal Science Division, Indian Council of Agricultural Research, India
| | | | - Sukdeb Nandi
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Triveni Dutt
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- Animal Science Division, Indian Council of Agricultural Research, India
| |
Collapse
|
13
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
14
|
Berguido FJ, Chibssa TR, Loitsch A, Liu Y, Krstevski K, Djadjovski I, Tuppurainen E, Petrović T, Vidanović D, Caufour P, Settypalli TBK, Grünwald-Gruber C, Grabherr R, Diallo A, Cattoli G, Lamien CE. Harnessing Attenuation-Related Mutations of Viral Genomes: Development of a Serological Assay to Differentiate between Capripoxvirus-Infected and -Vaccinated Animals. Viruses 2023; 15:2318. [PMID: 38140559 PMCID: PMC10747038 DOI: 10.3390/v15122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.
Collapse
Affiliation(s)
- Francisco J. Berguido
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, WagramerStrasse 5, P.O. Box 100, 1400 Vienna, Austria
- Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | | | - Angelika Loitsch
- Austrian Agency for Health and Food Safety (AGES), Spargelfeldstrasse 191, 1220 Vienna, Austria
| | - Yang Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| | - Eeva Tuppurainen
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Tamaš Petrović
- Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, Zicka 34, 36103 Kraljevo, Serbia
| | - Philippe Caufour
- UMR ASTRE Cirad-Inrae, University of Montpellier (I-MUSE), 34398 Montpellier, France
| | - Tirumala Bharani K. Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, WagramerStrasse 5, P.O. Box 100, 1400 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Reingard Grabherr
- Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Adama Diallo
- Independent Researcher, Hahngasse, 24-26, 02/07, 1090 Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, WagramerStrasse 5, P.O. Box 100, 1400 Vienna, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, WagramerStrasse 5, P.O. Box 100, 1400 Vienna, Austria
| |
Collapse
|
15
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
16
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
17
|
Schlosser-Perrin L, Holzmuller P, Fernandez B, Miotello G, Dahmani N, Neyret A, Bertagnoli S, Armengaud J, Caufour P. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J Virol 2023; 97:e0072323. [PMID: 37737587 PMCID: PMC10617387 DOI: 10.1128/jvi.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.
Collapse
Affiliation(s)
- Léo Schlosser-Perrin
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Bernard Fernandez
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Noureddine Dahmani
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Philippe Caufour
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
18
|
Akther M, Akter SH, Sarker S, Aleri JW, Annandale H, Abraham S, Uddin JM. Global Burden of Lumpy Skin Disease, Outbreaks, and Future Challenges. Viruses 2023; 15:1861. [PMID: 37766268 PMCID: PMC10535115 DOI: 10.3390/v15091861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Lumpy skin disease (LSD), a current global concern, causes economic devastation in livestock industries, with cattle and water buffalo reported to have higher morbidity and lower mortality rates. LSD is caused by lumpy skin disease virus (LSDV), a member of the Poxviridae family. It is an enzootic, rapidly explorative and sometimes fatal infection, characterized by multiple raised nodules on the skin of infected animals. It was first reported in Zambia in 1929 and is considered endemic in Africa south of the Sahara desert. It has gradually spread beyond Africa into the Middle East, with periodic occurrences in Asian and East European countries. Recently, it has been spreading in most Asian countries including far East Asia and threatens incursion to LSD-free countries. Rapid and accurate diagnostic capabilities, virus identification, vaccine development, vector control, regional and international collaborations and effective biosecurity policies are important for the control, prevention, and eradication of LSD infections. This review critically evaluates the global burden of LSD, the chronological historical outbreaks of LSD, and future directions for collaborative global actions.
Collapse
Affiliation(s)
- Mahfuza Akther
- Department of Pathology and Parasitology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Joshua W. Aleri
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Henry Annandale
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Jasim M. Uddin
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
19
|
Wolff J, Beer M, Hoffmann B. Cross-Protection of an Inactivated and a Live-Attenuated Lumpy Skin Disease Virus Vaccine against Sheeppox Virus Infections in Sheep. Vaccines (Basel) 2023; 11:vaccines11040763. [PMID: 37112675 PMCID: PMC10143431 DOI: 10.3390/vaccines11040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. In our study, we compared a commercially available live-attenuated lumpy skin disease virus (LSDV) vaccine strain (Lumpyvax) with our recently developed inactivated LSDV vaccine candidate regarding their protective efficacy against SPPV in sheep. Both vaccines were proven to be safe in sheep, and neither clinical signs nor viremia could be detected after vaccination and challenge infection. However, the local replication of the challenge virus in the nasal mucosa of previously vaccinated animals was observed. Because of the advantages of an inactivated vaccine and its heterologous protection efficacy against SPPV in sheep, our inactivated LSDV vaccine candidate is a promising additional tool for the prevention and control of SPPV outbreaks in the future.
Collapse
Affiliation(s)
- Janika Wolff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
20
|
Sareyyüpoğlu B, Uzar S, Saraç F, Enül H, Adıay C, Çokçalışkan C, Arslan A, Öztap G, Gülyaz V. Immune response against lumpy skin disease after simultaneous vaccination of cattle with sheep pox and goatpox and foot and mouth disease vaccines. Vet Microbiol 2023; 281:109726. [PMID: 37054661 DOI: 10.1016/j.vetmic.2023.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Foot and mouth disease (FMD) and Lumpy skin disease (LSD) are contagious viral diseases that cause significant economic damage in the livestock industry of countries. Cattle are vaccinated two times a year with FMD and sheep pox and goat pox vaccines (SGP) within 30-day intervals to combat both diseases in Türkiye. However, vaccinations in different periods increase vaccination costs, labor, and distress on animals. Therefore, it was aimed to determine the effects of simultaneous vaccination of FMD and SGP vaccines on the immunity against LSD and FMD in cattle. For this purpose, animals were divided into 4 groups; SGP vaccinated group (Group 1, n = 10), FMD vaccinated group (Group 2, n = 10), FMD and SGP simultaneously vaccinated group (Group 3, n = 10), and the unvaccinated control group (Group 4, n = 6). Blood samples were collected and analyzed to detect the antibody response against the LSD via Capripoxvirus (CaPV) ELISA and FMD by Virus Neutralisation test (VNT) and Liquid Phase Blocking ELISA (LPBE). A live virus challenge study was performed to determine the immune response against LSD. The mean antibody titers were determined protective levels on 28 days post vaccination (DPV) against FMDV serotypes O and A, respectively. The logarithmic difference of skin lesions was calculated log10 titer > 2.5. LSD genome could not be detected in the blood, eyes, and nose swap samples of the challenged animals on the 15th day via PCR. In conclusion, adequate protective immune response was provided against LSD when the SGP and FMD vaccines were used simultaneously in cattle.
Collapse
Affiliation(s)
| | - Serdar Uzar
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Fahriye Saraç
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Hakan Enül
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Cumhur Adıay
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | | | | | - Gonca Öztap
- Ministry of Agriculture and Forestry, General Directorate Food and Control, Ankara, Turkiye
| | - Veli Gülyaz
- Harran University Veterinary Faculty Department of Virology, Sanlıurfa, Turkiye
| |
Collapse
|
21
|
Du G, Wu J, Zhang C, Cao X, Li L, He J, Zhang Y, Shang Y. Generation and application of immortalized sertoli cell line from sheep testis. J Virol Methods 2023; 316:114727. [PMID: 36990185 DOI: 10.1016/j.jviromet.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Primary sheep testicular Sertoli cells (STSCs) are ideal for investigating the molecular and pathogenic processes of capripoxvirus. However, the high cost of isolation and culture of primary STSCs, time-consuming operation, and short lifespan greatly limit their real-world application. In our study, the primary STSCs were isolated and immortalized by transfection of a lentiviral recombinant plasmid containing simian virus 40 (SV40) large T antigen. Androgen-binding protein (ABP) and vimentin (VIM) protein expression, SV40 large T antigen activity, proliferation assays, and apoptosis analysis results showed that immortalized large T antigen STSCs (TSTSCs) still had the same physiological characteristics and biological functions as primary STSCs. Moreover, immortalized TSTSCs had strong anti-apoptosis ability, extended lifespan, and enhanced proliferative activity compared to primary STSCs, which had not transformed in vitro and showed any signs of malignancy phenotype in nude mice. Besides, immortalized TSTSCs were susceptible to goatpox virus (GTPV), lumpy skin disease virus (LSDV), and Orf virus (ORFV). In conclusion, immortalized TSTSCs are useful in vitro models to study GTPV, LSDV, and ORFV in a wide range of ways, suggesting that it can be safely used in virus isolation, vaccine and drug screening studies in future.
Collapse
Affiliation(s)
- Guoyu Du
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Department of Veterinary Obstetrics, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Cheng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research (CAAS), China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Lingxia Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yong Zhang
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
22
|
Hakobyan V, Sargsyan K, Kharatyan S, Elbakyan H, Sargsyan V, Markosyan T, Vardanyan T, Badalyan M, Achenbach JE. The Serological Response in Cattle following Administration of a Heterologous Sheep Pox Virus Strain Vaccine for Protection from Lumpy Skin Disease; Current Situation in Armenia. Vet Sci 2023; 10:vetsci10020102. [PMID: 36851406 PMCID: PMC9965929 DOI: 10.3390/vetsci10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Lumpy skin disease (LSD) is a highly infectious viral disease of cattle caused by LSD virus (LSDV), which was first reported in Armenia in late 2015. It was identified in pasture-raised cattle near the border with Iran. Currently, vaccination plays a key role in preventing further incursion of disease in high-risk areas. The purpose of this work was to assess the quality of vaccination currently used in Armenia by determining the immune response of the heterologous dry culture sheep pox virus-based vaccine against LSD in cattle. Seroprevalence and seroconversion testing was carried out using an ELISA to detect specific antibodies against LSD before and 30 days after vaccination in three adjacent regions of Armenia (Ararat, Armavir, Gegharkunik). Ixodes ticks were also examined for the presence of LSDV via real-time PCR. We found that the heterologous vaccine used in Armenia creates a high level of population immunity of 86.09% (83.83-87.97%) and no adverse side effects were observed in cattle. Of the 6 types of Ixodes ticks identified and tested, we found no evidence of LSDV circulating in these vectors. These results suggest that regular serological monitoring via ELISA and heterologous vaccination should continue in areas of Armenia at high risk for incursion of LSD to reduce the spread of this highly infectious transboundary disease.
Collapse
Affiliation(s)
- Varduhi Hakobyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
- Correspondence: ; Tel.: +374-91453912
| | - Khachik Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Satenik Kharatyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Hasmik Elbakyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Vazgen Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Tigran Markosyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Tigranuhi Vardanyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Yerevan 0071, Armenia
| | - Manvel Badalyan
- General Biology Department, Armenian National Agrarian University, 74 Teryan Street, Yerevan 0009, Armenia
| | - Jenna E. Achenbach
- Battelle Memorial Institute, 1001 Research Park Boulevard, Town Center Two, Suite 400, Charlottesville, VA 22911, USA
| |
Collapse
|
23
|
Saadh MJ. Silver nanoparticles inhibit goatpox virus replication. Arch Virol 2023; 168:32. [PMID: 36604362 DOI: 10.1007/s00705-022-05667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2023]
Abstract
No effective drugs against goatpox virus (GTPV) exist despite the high morbidity and mortality (up to 100%) caused by this virus. In this study, the antiviral activity of silver nanoparticles (AgNPs) against GTPV, a member of the genus Capripoxvirus, was evaluated. Piper betle leaf extract was used as a reducing agent during the biological synthesis of AgNPs from silver nitrate. The AgNPs were characterized using ultraviolet/visible (UV/vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). AgNPs were tested at different concentrations as antiviral agents against GTPV, and the reduction in the median tissue culture infectious dose (TCID50/mL) was used to quantitate antiviral activity. AgNPs caused significant inhibition of GTPV replication by preventing virus entry into the host cell. Pre-treatment of cells with AgNPs caused a slight reduction in infectivity, but this did not significantly correlate with the effect on virus attachment. AgNPs also appeared to significantly reduce the viral genome copy number. This study demonstrates that the AgNPs are capable of inhibiting GTPV replication in vitro.
Collapse
|
24
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
25
|
Trinh TBN, Nguyen VT, Nguyen TTH, Mai NTA, Le PN, Lai TNH, Phan TH, Tran DH, Pham NT, Dam VP, Nguyen TL, Ambagala A, Babiuk S, Le VP. Molecular and histopathological characterization of lumpy skin disease in cattle in northern Vietnam during the 2020-2021 outbreaks. Arch Virol 2022; 167:2143-2149. [PMID: 35831756 DOI: 10.1007/s00705-022-05533-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) is a serious emerging infectious disease in cattle caused by a virus of the family Poxviridae. According to the Department of Animal Health, LSD first occurred in Vietnam at the end of October 2020 in Cao Bang and Lang Son provinces. So far, the disease has infected over 63,000 animals, resulting in 9170 deaths occurring in 32 different provinces in northern and central Vietnam. In this study, skin samples from lumpy skin disease virus (LSDV)-infected cattle from the northern provinces of Vietnam displaying clinical symptoms including fever (> 40 °C), runny nose, drooling, and skin lesions were used for genetic characterization and histopathology. Genetic analysis of the partial P32 (LSDV074), partial F (LSDV117), complete RPO30 (LSDV035), and complete G-protein-coupled-chemokine-like receptor (GPCR) (LSDV011) genes showed that all Vietnamese LSDV strains belonged to the genus Capripoxvirus and were closely related to LSDV strains isolated in China. Microscopic examination of the skin lesions showed thickening of the epidermal layer of the skin and hair follicles, hyperplasia of sebaceous glands, intracytoplasmic inclusion bodies, and hemorrhages in the mesoderm.
Collapse
Affiliation(s)
| | - Van Tam Nguyen
- Research Centre for Plant and Animal Health, Hanoi, Vietnam
| | | | - Nguyen Tuan Anh Mai
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Phuong Nam Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Ngoc Ha Lai
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Huong Phan
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Duc Hoan Tran
- Bac Giang Agriculture and Forestry University, Bac Giang, Vietnam
| | | | - Van Phai Dam
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Lan Nguyen
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.
- Vietnam National University of Agriculture, Hanoi, Vietnam.
| |
Collapse
|
26
|
Comparative evaluation of the diagnostic potential of two major core proteins of goatpox virus expressed in the prokaryotic system. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Liao K, Peng W, Qian B, Nan W, Shan Y, Zeng D, Tang F, Wu X, Chen Y, Xue F, Dai J. A highly adaptable platform powered by CRISPR-Cas12a to diagnose lumpy skin disease in cattle. Anal Chim Acta 2022; 1221:340079. [PMID: 35934339 DOI: 10.1016/j.aca.2022.340079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) in cattle, a transboundary viral disease of cattle once restricted to Africa, has been spreading to many European and Asian countries in the past decade with huge economic losses. This emerging worldwide threat to cattle warrants the development of diagnostic methods for accurate disease screening of suspected samples to effectively control the spread of LSD. In this study, we integrated pre-amplification and three kinds of sensor systems with CRISPR and therefore established an LSD diagnosis platform with highly adaptable and ultra-sensitive advantages. It was the first CRISPR-powered platform that could identify lumpy skin disease virus from vaccine strains of goat pox virus and sheep pox virus. Its limit of detection (LOD) was one copy/reaction after introducing PCR or recombinase-aided amplification (RAA). Moreover, this platform achieved a satisfactory overall agreement in clinical diagnoses of 50 samples and its reproducibility and accuracy were superior to other qPCR methods we tested. The whole diagnostic procedure, from DNA extraction to the results, could complete in 5 h with a total cost of 1.7-9.6 $/test. Overall, this CRISPR-powered platform provided a novel diagnostic tool for portable, ultra-sensitive, rapid, and highly adaptable disease screening of LSD and may be an effective method to control this transboundary disease's spread.
Collapse
Affiliation(s)
- Kai Liao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanqing Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Nan
- Laboratory of Diagnostics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Yuping Shan
- Lianyungang Animal Husbandry and Veterinary Station, Lianyungang, Jiangsu, 222003, China
| | - Dexin Zeng
- Technology Center of Hefei Customs, Hefei, 230022, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodong Wu
- Laboratory of Diagnostics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Yiping Chen
- Laboratory of Diagnostics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China.
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
28
|
Sudhakar SB, Mishra N, Kalaiyarasu S, Jhade SK, Singh VP. Genetic and phylogenetic analysis of lumpy skin disease viruses (LSDV) isolated from the first and subsequent field outbreaks in India during 2019 reveals close proximity with unique signatures of historical Kenyan NI-2490/Kenya/KSGP-like field strains. Transbound Emerg Dis 2022; 69:e451-e462. [PMID: 34529889 DOI: 10.1111/tbed.14322] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD), an economically important viral disease of cattle caused by lumpy skin disease virus (LSDV) has recently spread into South and East Asia. LSD emerged in India in August 2019, first in Odisha State and spread to other areas, but there is scanty data on source and molecular epidemiology of LSDV involved in the initial outbreaks. Here we report genetic relationships and molecular features of LSDV, causing outbreaks in cattle spanning seven districts in Odisha and West Bengal States during August-December, 2019. Twelve LSDV isolates obtained using lamb testis cells were sequenced and analysed in four complete genes, GPCR, RPO30, P32 and EEV. The phylogenetic analysis revealed that all the Indian LSDV isolates from 2019 outbreaks are very closely related (99.7%-100%) to the historical Kenyan NI-2490/Kenya/KSGP-like field strains. Importantly, our results demonstrated that LSDV strains involved in 2019 outbreaks in India and Bangladesh are very similar in GPCR (99.7%), RPO30 (100%) and partial EEV (100%) sequences, indicating a common exotic source of LSDV introduction. Additionally, a 12-nucleotide insertion was found in GPCR gene of LSDV strains from 2019 outbreaks in India and Bangladesh. The findings of this study highlight the importance of continuous monitoring and molecular characterization of LSDV strains. These data should be useful while developing diagnostic and control strategies against LSD in India.
Collapse
Affiliation(s)
- Shashi Bhushan Sudhakar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Niranjan Mishra
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Sandeep Kumar Jhade
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| |
Collapse
|
29
|
Vandenbussche F, Mathijs E, Philips W, Saduakassova M, De Leeuw I, Sultanov A, Haegeman A, De Clercq K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022; 14:v14071429. [PMID: 35891412 PMCID: PMC9318037 DOI: 10.3390/v14071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.
Collapse
Affiliation(s)
- Frank Vandenbussche
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Elisabeth Mathijs
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Wannes Philips
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Meruyert Saduakassova
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Akhmetzhan Sultanov
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
- Correspondence:
| |
Collapse
|
30
|
Shoulah SA, Elshafae SM, Gaballa MMS, Moussa MA, Selim A, Attia K, AlKahtani MDF, Albohairy FM. Adverse effect of vaccination in xenogeneic animals. Microb Pathog 2022; 166:105541. [PMID: 35469999 DOI: 10.1016/j.micpath.2022.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) is a devastating, emerging viral disease of cattle. It causes significant economic losses due to trade restrictions that are placed on infected animals and the biological effects of the disease: infertility, dramatic loss in milk production, induction of abortion and mortality. It is caused by lumpy skin disease virus (LSDV), which belongs to the Poxviridae family. Vaccination has been determined to be the most effective way to control LSD infection among livestock. However, some adverse effects have been reported in animals vaccinated with live vaccines. To the best of our knowledge, this is the first study to report the systemic lesions that are associated with LSD vaccination in xenogeneic animals. The aim of our study was to compare the immunogenicity and pathogenicity of a live attenuated vaccine of Romanian strain of sheeppox virus (SPPV) through study of two different routes of administration in xenogeneic animals (mice). Swiss male mice were inoculated with two doses of SPPV vaccine by two different routes intranasal (IN, through nebulisation), and intraperitoneal (IP) injection) and the levels of immunoglobulins and histopathological findings were reported. Our results showed marked increases in levels of immunoglobulins (Ig) dependent on the administration route: IgG in IP-inoculated mice and IgA in IN-vaccinated mice. IgM levels became markedly high after vaccination via both routes. Histologically, nebulisation of mice with SPPV vaccine caused more pulmonary lesions than did IP injection and promoted the proliferation of megakaryocytes in splenic tissues. In contrast, IP injection had less effect on pulmonary tissues and induced activation of extramedullary haematopoiesis (EH) in the hepatic tissues. LSD vaccination in xenogeneic animals caused serious systemic complications and the severity of the lesions caused to tissue depended on the route of administration.
Collapse
Affiliation(s)
- Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Said M Elshafae
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Maha A Moussa
- Department of Statistics, Faculty of Commerce, Benha University, Benha, Qalyobiya, 13511, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt.
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muneera D F AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 102275, Riyadh 11675, Saudi Arabia
| | - Fatima M Albohairy
- Electron Microscope Research Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kumar A, Venkatesan G, Hosamani M, Bhanuprakash V, Balamurugan V, Ramakrishnan MA, Singh RK. The complete genome sequence of Indian sheeppox vaccine virus and comparative analysis with other capripoxviruses. Gene 2022; 810:146085. [PMID: 34843879 DOI: 10.1016/j.gene.2021.146085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022]
Abstract
Sheeppox virus (SPPV) is responsible for a significant economic loss to sheep husbandry in enzootic regions of Africa, the Middle East, and Asia including the Indian subcontinent. In this study, we present the complete genome sequence of SPPV vaccine strain SPPV-Srin38/00 from India determined by next-generation sequencing (NGS) using Illumina technology. The attenuated Srinagar vaccine strain of SPPV (SPPV-Srin38/00) was developed by serial passaging the virus initially in lamb testes (LT) cells followed by Vero cell line. The SPPV-Srin38/00 virus has a genome size of 150, 103 bp, which encodes for 147 functional putative genes and consists of a central coding region flanked by two identical 2353 bp inverted terminal repeats (ITRs). Comparative phylogenetic analysis based on complete genome sequences of Capripoxviruses formed three distinct groups each for SPPV, GTPV, and LSDV with clustering of SPPV-Srin38/00 strain with SPPV-A strain. Nine ORFs of SPPV-Srin38/00 namely SPPV-Srin_002/SPPV-Srin_155, SPPV-Srin_004/SPPV-Srin_153, SPPV-Srin_009, SPPV-Srin_013, SPPV-Srin_026, SPPV-Srin_132, and SPPV-Srin_136 were found to be fragmented as compared to LSDV, whereas only one ORF (such as SPPV-Srin_136) was found to be fragmented as compared to GTPV. SPPV genomes, including the SPPV-Srin38/00 strain, shared 99.78-99.98% intraspecies nucleotide identity, indicating that SPPV strains have extremely low genetic diversity. The strain shared 96.80-97.08% and 97.11-97.61% nt identity with GTPV and LSDV strains, respectively. Its ORFs 016, 021, 022, 130 and 138 are the least identical ORFs among three species of the genus Capripoxvirus with 72.5-93% aa identity to GTPV and LSDV strains and may be potentially used for differentiation of CaPV species. This study may contribute to a better understanding of the epidemiology and evolution of capripoxviruses as well as the development of specific detection methods, better expression vectors, and vaccines with improved safety and efficacy.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India.
| | - Gnanavel Venkatesan
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - M Hosamani
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - V Bhanuprakash
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - V Balamurugan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics Bengaluru, Karnataka, India
| | - M A Ramakrishnan
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
32
|
Uzar S, Sarac F, Gulyaz V, Enul H, Yılmaz H, Turan N. Comparison and efficacy of two different sheep pox vaccines prepared from the Bakırköy strain against lumpy skin disease in cattle. Clin Exp Vaccine Res 2022; 11:1-11. [PMID: 35223661 PMCID: PMC8844671 DOI: 10.7774/cevr.2022.11.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Serdar Uzar
- Istanbul Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Fahriye Sarac
- Istanbul Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Veli Gulyaz
- Harran University, Veterinary Faculty, Sanlıurfa, Turkey
| | - Hakan Enul
- Istanbul Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Huseyin Yılmaz
- Istanbul University-Cerrahpasa, Veterinary Faculty, Istanbul, Turkey
| | - Nuri Turan
- Istanbul University-Cerrahpasa, Veterinary Faculty, Istanbul, Turkey
| |
Collapse
|
33
|
Azeem S, Sharma B, Shabir S, Akbar H, Venter E. Lumpy skin disease is expanding its geographic range: A challenge for Asian livestock management and food security. Vet J 2021; 279:105785. [PMID: 34915159 DOI: 10.1016/j.tvjl.2021.105785] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
In recent years, lumpy skin disease virus has extended its geographical range outside of endemic sub-Saharan countries to the Middle East and Asia indicating transboundary spread. Recently, lumpy skin disease (LSD) outbreaks have been reported in Asian countries such as Bangladesh, India, China, Nepal, Bhutan, Vietnam, Myanmar, Sri Lanka, Thailand, Malaysia, Laos and for the first time and represent a cause of serious concern for their livestock and dairy industries. This report summarizes information on the recent outbreaks of LSD in southern Asia and emphasizes the threat it poses to neighbouring countries. Various strategies and actions needed to control outbreaks of this emerging disease in Asia are also suggested.
Collapse
Affiliation(s)
- Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Banshi Sharma
- Food and Agriculture Organization Country Office for Nepal, United Nations Building, Pulchowk, Lalitpur, Kathmandu, Nepal
| | - Shafqat Shabir
- Department of Parasitology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haroon Akbar
- Department of Parasitology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, Australia; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
34
|
Zewdie G, Derese G, Getachew B, Belay H, Akalu M. Review of sheep and goat pox disease: current updates on epidemiology, diagnosis, prevention and control measures in Ethiopia. ANIMAL DISEASES 2021; 1:28. [PMID: 34806086 PMCID: PMC8591591 DOI: 10.1186/s44149-021-00028-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Sheep pox, goat pox, and lumpy skin diseases are economically significant and contagious viral diseases of sheep, goats and cattle, respectively, caused by the genus Capripoxvirus (CaPV) of the family Poxviridae. Currently, CaPV infection of small ruminants (sheep and goats) has been distributed widely and are prevalent in Central Africa, the Middle East, Europe and Asia. This disease poses challenges to food production and distribution, affecting rural livelihoods in most African countries, including Ethiopia. Transmission occurs mainly by direct or indirect contact with infected animals. They cause high morbidity (75-100% in endemic areas) and mortality (10-85%). Additionally, the mortality rate can approach 100% in susceptible animals. Diagnosis largely relies on clinical symptoms, confirmed by laboratory testing using real-time PCR, electron microscopy, virus isolation, serology and histology. Control and eradication of sheep pox virus (SPPV), goat pox virus (GTPV), and lumpy skin disease (LSDV) depend on timely recognition of disease eruption, vector control, and movement restriction. To date, attenuated vaccines originating from KSGPV O-180 strains are effective and widely used in Ethiopia to control CaPV throughout the country. This vaccine strain is clinically safe to control CaPV in small ruminants but not in cattle which may be associated with insufficient vaccination coverage and the production of low-quality vaccines.
Collapse
Affiliation(s)
- Girma Zewdie
- National Veterinary Institute, P. O. Box: 19, Bishoftu, Ethiopia
| | - Getaw Derese
- National Veterinary Institute, P. O. Box: 19, Bishoftu, Ethiopia
| | | | - Hassen Belay
- Africa Union Pan African Veterinary Vaccine Center (AU-PANVAC), P. O. Box: 1746, Bishoftu, Ethiopia
| | - Mirtneh Akalu
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Gunture, AP 522502 India
| |
Collapse
|
35
|
Tuppurainen E, Dietze K, Wolff J, Bergmann H, Beltran-Alcrudo D, Fahrion A, Lamien CE, Busch F, Sauter-Louis C, Conraths FJ, De Clercq K, Hoffmann B, Knauf S. Review: Vaccines and Vaccination against Lumpy Skin Disease. Vaccines (Basel) 2021; 9:1136. [PMID: 34696244 PMCID: PMC8539040 DOI: 10.3390/vaccines9101136] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
The geographical distribution of lumpy skin disease (LSD), an economically important cattle disease caused by a capripoxvirus, has reached an unprecedented extent. Vaccination is the only way to prevent the spread of the infection in endemic and newly affected regions. Yet, in the event of an outbreak, selection of the best vaccine is a major challenge for veterinary authorities and farmers. Decision makers need sound scientific information to support their decisions and subsequent actions. The available vaccine products vary in terms of quality, efficacy, safety, side effects, and price. The pros and cons of different types of live attenuated and inactivated vaccines, vaccination strategies, and associated risks are discussed. Seroconversion, which typically follows vaccination, places specific demands on the tools and methods used to evaluate the effectiveness of the LSD vaccination campaigns in the field. We aimed to give a comprehensive update on available vaccines and vaccination against LSD, to better prepare affected and at-risk countries to control LSD and ensure the safe trade of cattle.
Collapse
Affiliation(s)
- Eeva Tuppurainen
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Janika Wolff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Hannes Bergmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Daniel Beltran-Alcrudo
- Regional Office for Europe and Central Asia, Food and Agriculture Organization, 20 Kalman Imre utca, H-1054 Budapest, Hungary;
| | - Anna Fahrion
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Charles Euloge Lamien
- FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Friedenstrasse 1, A-2444 Seibersdorf, Austria;
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Carola Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| |
Collapse
|
36
|
KUMAR PANKAJ, KUMARI RASHMIREKHA, DEVI SARITA, TRIPATHI MANOJKUMAR, SINGH JASPREET, KUMAR RAVI, KUMAR MANISH. Emergence and transboundary spread of lumpy skin disease in South Asia. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i7.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lumpy skin disease (LSD) is an OIE notifiable, transboundary pox viral disease of livestock. LSD is an emerging disease severely affecting livestock economics. The zoonotic potential of the LSD virus has not been extensively studied and reported. In approximately 90 years, the virus dispersed to numerous world locations after its first emergence in Zambia. LSD virus emergence in South Asia prevailed among livestock (cattle and water buffalo) owners due to economic/financial losses. The estimate of the economic impact of LSD in the southern, eastern and southeastern countries suggested direct losses of livestock and production of approximately USD 1.45 billion. In 2019, nearly the same time, the disease was reported for the first time from many bordering countries, such as India, Nepal, China, and Bangladesh. In 2020, the LSD was also recorded in Bhutan, Sri Lanka, Bangladesh, Vietnam and Southeast China. In 2021, it further spread to new countries such as Thailand, Malaysia and Cambodia. Cattle affected with LSD show a characteristic nodular lesion or skin lump over the whole body and may occasionally be associated with systemic signs. Hematophagous arthropod-borne mechanical transmission is considered primary and the most common route; however, other transmission routes related to illegal animal trade have played a role in the emergence of LSD in countries otherwise/earlier free from it. Among serological diagnostic tests, OIE recommends virus neutralization as the standard gold test. Diagnosis in LSD-free countries requires virus isolation and further sequencing of the isolate. Control of LSD is possible by most of the measures applied for rapidly transmitting viral infection, including vaccination. LSD virus-specific vaccines are considered suitable to confer protection to cattle and buffalo over heterologous vaccines. In countries such as India, the lack of a specific policy for LSD at the time of the first onset of this disease, the high density of susceptible unvaccinated populations, unawareness among farmers, veterinarians and prevailing laws of no slaughter of cattle created a favourable situation of its spread to many states. Amid COVID-19, the whole world is in turmoil; the emergence of diseases such as LSD is further lowering the economy, and hence must be reviewed to save and sustain the backbone of the developing country's economy in Southeast Asia.
Collapse
|
37
|
The Importance of Quality Control of LSDV Live Attenuated Vaccines for Its Safe Application in the Field. Vaccines (Basel) 2021; 9:vaccines9091019. [PMID: 34579256 PMCID: PMC8472990 DOI: 10.3390/vaccines9091019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023] Open
Abstract
Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance of a quality procedure via the evaluation of the LSD vaccine, Lumpivax (Kevevapi). The initial PCR screening revealed the presence of wild type LSD virus (LSDV) and goatpox virus (GTPV), in addition to vaccine LSDV. New phylogenetic PCRs were developed to characterize in detail the genomic content and a vaccination/challenge trial was conducted to evaluate the impact on efficacy and diagnostics. The characterization confirmed the presence of LSDV wild-, vaccine- and GTPV-like sequences in the vaccine vial and also in samples taken from the vaccinated animals. The analysis was also suggestive for the presence of GTPV-LSDV (vaccine/wild) recombinants. In addition, the LSDV status of some of the animal samples was greatly influenced by the differentiating real-PCR used and could result in misinterpretation. Although the vaccine was clinically protective, the viral genomic content of the vaccine (being it multiple Capripox viruses and/or recombinants) and the impact on the diagnostics casts serious doubts of its use in the field.
Collapse
|
38
|
Shafik NG, Khafagy HA, AM A, Bassiuony AI, Fouad Zaki F, Mikhael CA, Samy Abousenna M. Comparative study between lumpy skin disease virus and sheep pox virus vaccines against recent field isolate of lumpy skin disease virus. BIONATURA 2021. [DOI: 10.21931/rb/2021.01.03.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lumpy Skin Disease (LSD) is a vector born disease of cattle, caused by Lumpy Skin Disease Virus (LSDV), there is antigenic relationship between LSDV, Sheeppox virus (SPPV) and Goat pox virus GTPV within a genus Capripoxvirus, accordingly it can be used homologous or heterologous Capripoxvirus strains for vaccination of cattle against LSD. This study compare the efficacy of live attenuated Neethling LSDV vaccine and live attenuated Romanian SSPV Vaccine against recent circulating LSDV field isolate. The evaluation was done in calves as the main host of LSD, through using three different batches for each vaccine type. Experimental calf groups were vaccinated with vaccines batches, and after 21 days serum samples were collected for evaluation of humoral immune response by using SNT and commercial ELISA technique, then the vaccinated calves were challenged by virulent LSDV field isolate. The results of SNT for vaccinated calves by LSDV vaccines indicated mean neutralizing antibody titer 1.2, 1.6 and1.5 log10 for the batches 1, 2 and 3 respectively, while vaccinated calves by SPPV vaccines indicated 1.05, 1.05 and 1.5 log10 for the batches 1,2 and 3 respectively; the ELISA mean sample to positive (S/P) percentage for the vaccine batches 1, 2 and 3 of LSDV were 40, 45 and 42% respectively and for SPPV vaccine batches 1,2 and 3 were 35, 37 and 40 % respectively, the challenge test indicated mean difference titer for the groups of calves vaccinated with LSDV vaccine were 4.2, 4.5 and 3.8 log10 and for groups vaccinated with SPPV vaccine were 2.6, 2 and 2.65 log10 respectively, it was concluded that potential using of Neethling LSDV vaccine against LSD is superior for combating and prevention of the lumpy skin disease.
Collapse
Affiliation(s)
- Nermeen G Shafik
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center, Cairo, Egypt
| | - Heba A Khafagy
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center, Cairo, Egypt
| | - Amal AM
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center, Cairo, Egypt
| | - Ayatollah I Bassiuony
- Veterinary Serum and Vaccine Research Institute, Pox department, Agricultural Research Center, Cairo, Egypt
| | - Farid Fouad Zaki
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center, Cairo, Egypt
| | - Christine A Mikhael
- Veterinary Serum and Vaccine Research Institute, Pox department, Agricultural Research Center, Cairo, Egypt
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center, Cairo, Egypt
| |
Collapse
|
39
|
Draft Genome Sequence of the Capripoxvirus Vaccine Strain KSGP 0240, Reisolated from Cattle. Microbiol Resour Announc 2021; 10:e0044021. [PMID: 34323614 PMCID: PMC8320456 DOI: 10.1128/mra.00440-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of lumpy skin disease in cattle is based on vaccination with live attenuated vaccines. The Kenyan strain KSGP 0240 is commonly used to vaccinate ruminants against capripox infections, but the conferred protection is still controversial. In this study, we report the draft genome sequence of the vaccine strain KSGP 0240, reisolated from cattle.
Collapse
|
40
|
Chibssa TR, Kangethe RT, Berguido FJ, Settypalli TBK, Liu Y, Grabherr R, Loitsch A, Sassu EL, Pichler R, Cattoli G, Diallo A, Wijewardana V, Lamien CE. Innate Immune Responses to Wildtype and Attenuated Sheeppox Virus Mediated Through RIG-1 Sensing in PBMC In-Vitro. Front Immunol 2021; 12:666543. [PMID: 34211465 PMCID: PMC8240667 DOI: 10.3389/fimmu.2021.666543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κβ p65 (NF-κβ), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κβ, between IL-18 and IL-15, and between NF-κβ and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 β, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.
Collapse
Affiliation(s)
- Tesfaye Rufael Chibssa
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.,Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Francisco J Berguido
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Yang Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Reingard Grabherr
- Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Angelika Loitsch
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Elena Lucia Sassu
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Adama Diallo
- Laboratoire National d'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal.,UMR CIRAD INRA, Animal, Santé, Territoires, Risques et Ecosystèmes (ASTRE), Montpellier, France
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Agricultural and Biotechnology Laboratory, Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
41
|
Safini N, Bamouh Z, Hamdi J, Jazouli M, Tadlaoui KO, El Harrak M. In-vitro and in-vivo study of the interference between Rift Valley fever virus (clone 13) and Sheeppox/Limpy Skin disease viruses. Sci Rep 2021; 11:12395. [PMID: 34117312 PMCID: PMC8196192 DOI: 10.1038/s41598-021-91926-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/17/2021] [Indexed: 11/09/2022] Open
Abstract
Viral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their natural hosts, sheep and cattle. A combination of SPPV/RVFV and LSDV/RVFV was used to co-infect susceptible cells and animals to detect potential competition. In-vitro interference was evaluated by estimating viral infectivity and copies of viral RNA by a qPCR during three serial passages in cell cultures, whereas in-vivo interference was assessed through antibody responses to vaccination. When lamb testis primary cells were infected with the mixture of capripox and RVFV, the replication of both SPPV and LSDV was inhibited by RVFV. In animals, SPPV/RVFV or LSDV/RVFV combinations inhibited the replication SPPV and LSDV and the antibody response following vaccination. The combined SPPV/RVFV did not protect sheep after challenging with the virulent strain of SPPV and the LSDV/RVFV did not induce interferon Gamma to LSDV, while immunological response to RVFV remain unaffected. Our goal was to assess this interference response to RVFV/capripoxviruses’ coinfection in order to develop effective combined live-attenuated vaccines as a control strategy for RVF and SPP/LSD diseases. Our findings indicated that this approach was not suitable for developing a combined SPPV/LSDV/RVFV vaccine candidate because of interference of replication and the immune response among these viruses.
Collapse
Affiliation(s)
- N Safini
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco.
| | - Z Bamouh
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco
| | - J Hamdi
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco
| | - M Jazouli
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco
| | - K O Tadlaoui
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco
| | - M El Harrak
- R&D Virology, MCI Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC), B.P. 278, 28810, Mohammedia, Morocco
| |
Collapse
|
42
|
Bamouh Z, Hamdi J, Fellahi S, Khayi S, Jazouli M, Tadlaoui KO, Fihri OF, Tuppurainen E, Elharrak M. Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle. Vaccines (Basel) 2021; 9:vaccines9060621. [PMID: 34201339 PMCID: PMC8226854 DOI: 10.3390/vaccines9060621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. The only method for successful control is early diagnosis and efficient vaccination. Adverse effects of vaccination such as local inflammation at the injection site and localized or generalized skin lesions in some vaccinated animals have been reported with live vaccines. The aim of this work was to compare the safety of two lumpy skin disease (LSD) vaccine strains, Kenyan (Kn) Sheep and Goat Pox (KSGP O-240) and LSDV Neethling (Nt) strain, and to determine the etiology of the post-vaccination (pv) reactions observed in cattle. Experimental cattle were vaccinated under controlled conditions with Nt- and KSGP O-240-based vaccines, using two different doses, and animals were observed for 3 months for any adverse reactions. Three out of 45 cattle vaccinated with LSDV Nt strain (6.7%) and three out of 24 cattle vaccinated with Kn strain (12.5%) presented LSD-like skin nodules, providing evidence that the post-vaccination lesions may not be strain-dependent. Lesions appeared 1–3 weeks after vaccination and were localized in the neck or covering the whole body. Animals recovered after 3 weeks. There is a positive correlation between the vaccine dose and the appearance of skin lesions in vaccinated animals; at the 105 dose, 12% of the animals reacted versus 3.7% at the 104 dose. Both strains induced solid immunity when protection was measured by neutralizing antibody seroconversion.
Collapse
Affiliation(s)
- Zahra Bamouh
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
- Correspondence: ; Tel.: +212-6621-989-42
| | - Jihane Hamdi
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Siham Fellahi
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Slimane Khayi
- CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Mohammed Jazouli
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
| | | | - Ouafaa Fassi Fihri
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Eeva Tuppurainen
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut Federal Research Institute for Animal Health, 10 17493 Greifswald-Insel Riems, Germany;
| | - Mehdi Elharrak
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
| |
Collapse
|
43
|
Genetic Evidence of Multiple Introductions of Lumpy Skin Disease Virus into Saratov Region, Russia. Pathogens 2021; 10:pathogens10060716. [PMID: 34200428 PMCID: PMC8227815 DOI: 10.3390/pathogens10060716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Lumpy skin disease virus (LSDV) is the causative agent of lumpy skin disease (LSD) that has been recently reported in the South-East and North Asian parts of the Russian Federation. During 2017–2019, there were more than 30 LSD outbreaks in Saratov Region despite active inoculation of cattle with heterologous vaccine. Importantly, the first case of the novel recombinant LSDV strain was reported here in 2017. This study aimed to determine the main clonal lineage(s) of LSDV strains circulated within Saratov Region and other regions of Russia since the first introduction of LSDV. The molecular typing and subtyping based on the coding regions of the G-protein-coupled chemokine receptor (GPCR) gene resulted in a discrimination of all outbreak-related LSDV strains into two main types, such as Type I and Type II, and subtypes Ia-d and IIa-g. Phylogenetically, eleven LSDV lineages were revealed in Russia including the five ones in Saratov Region. They were the following: (i) the Neethling wild Type Ia/2017; (ii) the recombinant Saratov IIc/2017/2019; (iii) the specific Dergachevskyi IId/2017; (iv) the Khvalynsky IIg/2018, and (v) the Haden-Type IIa lineage for the six LSDV strains detected in cattle immunized with heterologous vaccine during the last LSD outbreak in the Saratov Region, Nesterovo Village, in 2019 (Nesterovo-2019 strains). A single LSDV strain detected in Saratov Region in 2017 had the same Type Ia that was identified in 2016 in the bordered Republic of Kazakhstan. Phylogeographic analysis demonstrated three nominal clusters of LSDV types in the following Russian Federation territories: (I) the Central European part; (II) the South-East of the European part; (III) the North Asian part. Cluster I was represented by mainly Type I strains, while both Clusters 2 and 3 contained predominantly Type II strains. The Clusters I and II partially overlapped, while Cluster 3 was separate. Multiple introductions of LSDV into Saratov Region in 2017–2019 using GPCR-based molecular typing and subtyping were revealed. This scheme is a promising tool for molecular discrimination of LSDV strains derived from both vaccinated and unvaccinated against LSD cattle as well as for molecular epidemiology.
Collapse
|
44
|
Vidanović D, Tešović B, Šekler M, Debeljak Z, Vasković N, Matović K, Koltsov A, Krstevski K, Petrović T, De Leeuw I, Haegeman A. Validation of TaqMan-Based Assays for Specific Detection and Differentiation of Wild-Type and Neethling Vaccine Strains of LSDV. Microorganisms 2021; 9:microorganisms9061234. [PMID: 34204157 PMCID: PMC8229051 DOI: 10.3390/microorganisms9061234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Lumpy skin disease (LSD) is an important animal disease with significant health and economic impacts. It is considered a notifiable disease by the OIE. Attenuated strains of LSDV have been successfully used as vaccines (LAV) but can also produce mild or systemic reactions. Vaccination campaigns using LAVs are therefore only viable if accompanying DIVA assays are available. Two DIVA qPCR assays able to distinguish Neethling-based LAVs and wild-type LSDV were developed. Upon validation, both assays were shown to have high sensitivity and specificity with a diagnostic performance comparable to other published DIVA assays. This confirmed their potential as reliable tools to confirm infection in animals during vaccination campaigns based on Neethling vaccine strains.
Collapse
Affiliation(s)
- Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
- Correspondence: ; Tel.: +381-648247533
| | - Bojana Tešović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
| | - Milanko Šekler
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
| | - Zoran Debeljak
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
| | - Nikola Vasković
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
| | - Kazimir Matović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (B.T.); (M.Š.); (Z.D.); (N.V.); (K.M.)
| | - Andrey Koltsov
- Federal Research Center of Virology and Microbiology, 601125 Pokrov, Russia;
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, University Ss Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia;
| | - Tamaš Petrović
- Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia;
| | | | | |
Collapse
|
45
|
Molecular Analysis of East African Lumpy Skin Disease Viruses Reveals a Mixed Isolate with Features of Both Vaccine and Field Isolates. Microorganisms 2021; 9:microorganisms9061142. [PMID: 34073392 PMCID: PMC8229927 DOI: 10.3390/microorganisms9061142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.
Collapse
|
46
|
Haegeman A, De Leeuw I, Mostin L, Campe WV, Aerts L, Venter E, Tuppurainen E, Saegerman C, De Clercq K. Comparative Evaluation of Lumpy Skin Disease Virus-Based Live Attenuated Vaccines. Vaccines (Basel) 2021; 9:vaccines9050473. [PMID: 34066658 PMCID: PMC8151199 DOI: 10.3390/vaccines9050473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines form the cornerstone of any control, eradication and preventative strategy and this is no different for lumpy skin disease. However, the usefulness of a vaccine is determined by a multiplicity of factors which include stability, efficiency, safety and ease of use, to name a few. Although the vaccination campaign in the Balkans against lumpy skin disease virus (LSDV) was successful and has been implemented with success in the past in other countries, data of vaccine failure have also been reported. It was therefore the purpose of this study to compare five homologous live attenuated LSDV vaccines (LSDV LAV) in a standardized setting. All five LSDV LAVs studied were able to protect against a challenge with virulent LSDV. Aside from small differences in serological responses, important differences were seen in side effects such as a local reaction and a Neethling response upon vaccination between the analyzed vaccines. These observations can have important implications in the applicability in the field for some of these LSDV LAVs.
Collapse
Affiliation(s)
- Andy Haegeman
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
- Correspondence:
| | - Ilse De Leeuw
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
| | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (L.M.); (W.V.C.)
| | - Willem Van Campe
- Experimental Center Machelen, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (L.M.); (W.V.C.)
| | - Laetitia Aerts
- EURL for Diseases Caused by Capripox Viruses, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Estelle Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
- College of Public Health, Medical and Veterinary Sciences, Discipline: Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| | - Eeva Tuppurainen
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut Federal Research Institute for Animal Health, 17489 Greifswald-Insel Riems, Germany;
| | - Claude Saegerman
- Fundamental and Applied Research for Animals & Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium;
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
| |
Collapse
|
47
|
Hamdi J, Munyanduki H, Omari Tadlaoui K, El Harrak M, Fassi Fihri O. Capripoxvirus Infections in Ruminants: A Review. Microorganisms 2021; 9:902. [PMID: 33922409 PMCID: PMC8145859 DOI: 10.3390/microorganisms9050902] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lumpy skin disease, sheeppox, and goatpox are notifiable diseases of cattle, sheep, and goats, respectively, caused by viruses of the Capripoxvirus genus. They are responsible for both direct and indirect financial losses. These losses arise through animal mortality, morbidity cost of vaccinations, and constraints to animals and animal products' trade. Control and eradication of capripoxviruses depend on early detection of outbreaks, vector control, strict animal movement, and vaccination which remains the most effective means of control. To date, live attenuated vaccines are widely used; however, conferred protection remains controversial. Many vaccines have been associated with adverse reactions and incomplete protection in sheep, goats, and cattle. Many combination- and recombinant-based vaccines have also been developed. Here, we review capripoxvirus infections and the immunity conferred against capripoxviruses by their respective vaccines for each ruminant species. We also review their related cross protection to heterologous infections.
Collapse
Affiliation(s)
- Jihane Hamdi
- Department of Research and Development, Multi-Chemical Industry Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC) B.P., 278, Mohammedia 28810, Morocco; (K.O.T.); (M.E.H.)
| | | | - Khalid Omari Tadlaoui
- Department of Research and Development, Multi-Chemical Industry Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC) B.P., 278, Mohammedia 28810, Morocco; (K.O.T.); (M.E.H.)
| | - Mehdi El Harrak
- Department of Research and Development, Multi-Chemical Industry Santé Animale, Lot. 157, Z I, Sud-Ouest (ERAC) B.P., 278, Mohammedia 28810, Morocco; (K.O.T.); (M.E.H.)
| | - Ouafaa Fassi Fihri
- Department of Microbiology, Immunology and Contagious Diseases, Agronomic and Veterinary Institute Hassan II, Madinat Al Irfane, Rabat 6202, Morocco;
| |
Collapse
|
48
|
Differentiation of Capripox Viruses by Nanopore Sequencing. Vaccines (Basel) 2021; 9:vaccines9040351. [PMID: 33917413 PMCID: PMC8067513 DOI: 10.3390/vaccines9040351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The genus capripoxvirus (CaPV), family Poxviridae, includes three virus species: goatpox virus (GPV), sheeppox virus (SPV) and lumpy skin disease virus (LSDV). CaPV causes disease outbreaks with consequent economic losses in Africa and the Middle East. LSDV has recently spread to Southeast Europe. As CaPVs share 96–97% genetic similarity along the length of the entire genome and are difficult to distinguish using serological assays, simple, reliable and fast methods for diagnosis and species differentiation are crucial in cases of disease outbreak. The present study aimed to develop a field-applicable CaPV differentiation method. Nanopore technology was used for whole genome sequencing. A local database of complete CaPV genomes and partial sequences of three genes (RPO30, P32 and GPCR) was established for offline Basic Local Alignment Search Tool (BLAST). Specificities of 98.04% in whole genome and 97.86% in RPO30 gene runs were obtained among the three virus species, while other databases were less specific. The total run time was shortened to approximately 2 h. Functionality of the developed procedure was proved by samples with high host background sequences. Reliable differentiation options for the quality and capacity of hardware, and sample quality of suspected cases, were derived from these findings. The whole workflow can be performed rapidly with a mobile suitcase laboratory and mini-computer, allowing application at the point-of-need with limited resource settings.
Collapse
|
49
|
Kumar N, Chander Y, Kumar R, Khandelwal N, Riyesh T, Chaudhary K, Shanmugasundaram K, Kumar S, Kumar A, Gupta MK, Pal Y, Barua S, Tripathi BN. Isolation and characterization of lumpy skin disease virus from cattle in India. PLoS One 2021; 16:e0241022. [PMID: 33428633 PMCID: PMC7799759 DOI: 10.1371/journal.pone.0241022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
Lumpy skin disease (LSD) has devastating economic impact. During the last decade, LSD had spread to climatically new and previously disease-free countries, which also includes its recent emergence in the Indian subcontinent (2019). This study deals with the LSD outbreak(s) from cattle in Ranchi (India). Virus was isolated from the scabs (skin lesions) in the primary goat kidney cells. Phylogenetic analysis based on nucleotide sequencing of LSD virus (LSDV) ORF011, ORF012 and ORF036 suggested that the isolated virus (LSDV/Bos taurus-tc/India/2019/Ranchi) is closely related to Kenyan LSDV strains. Further, we adapted the isolated virus in Vero cells. Infection of the isolated LSDV to Vero cells did not produce cytopathic effect (CPE) until the 4th blind passage, but upon adaptation, it produced high viral titres in the cultured cells. The kinetics of viral DNA synthesis and one-step growth curve analysis suggested that Vero cell-adapted LSDV initiates synthesizing its genome at ~24 hours post-infection (hpi) with a peak level at ~96 hpi whereas evidence of progeny virus particles was observed at 36–48 hours (h) with a peak titre at ~120 h. To the best of our knowledge, this study describes the first successful isolation of LSDV in India, besides providing insights into the life cycle Vero cell-adapted LSDV.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- * E-mail: (NK); (SB); (BNT)
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Khushboo Chaudhary
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjit Kumar
- Department of Veterinary Pathology, College of Veterinary Sciences, Birsa Agricultural University, Ranchi, India
| | - Anand Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Sciences, Birsa Agricultural University, Ranchi, India
| | - Madhurendu K. Gupta
- Department of Veterinary Pathology, College of Veterinary Sciences, Birsa Agricultural University, Ranchi, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- * E-mail: (NK); (SB); (BNT)
| | - Bhupendra N. Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- * E-mail: (NK); (SB); (BNT)
| |
Collapse
|
50
|
Wolff J, Moritz T, Schlottau K, Hoffmann D, Beer M, Hoffmann B. Development of a Safe and Highly Efficient Inactivated Vaccine Candidate against Lumpy Skin Disease Virus. Vaccines (Basel) 2020; 9:vaccines9010004. [PMID: 33374808 PMCID: PMC7823700 DOI: 10.3390/vaccines9010004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Capripox virus (CaPV)-induced diseases (lumpy skin disease, sheeppox, goatpox) are described as the most serious pox diseases of livestock animals, and therefore are listed as notifiable diseases under guidelines of the World Organisation for Animal Health (OIE). Until now, only live-attenuated vaccines are commercially available for the control of CaPV. Due to numerous potential problems after vaccination (e.g., loss of the disease-free status of the respective country, the possibility of vaccine virus shedding and transmission as well as the risk of recombination with field strains during natural outbreaks), the use of these vaccines must be considered carefully and is not recommended in CaPV-free countries. Therefore, innocuous and efficacious inactivated vaccines against CaPV would provide a great tool for control of these diseases. Unfortunately, most inactivated Capripox vaccines were reported as insufficient and protection seemed to be only short-lived. Nevertheless, a few studies dealing with inactivated vaccines against CaPV are published, giving evidence for good clinical protection against CaPV-infections. In our studies, a low molecular weight copolymer-adjuvanted vaccine formulation was able to induce sterile immunity in the respective animals after severe challenge infection. Our findings strongly support the possibility of useful inactivated vaccines against CaPV-infections, and indicate a marked impact of the chosen adjuvant for the level of protection.
Collapse
|