1
|
Li Y, Li C, Zhao C, Wu J, Zhu Y, Wang F, Zhong J, Yan Y, Jin Y, Dong W, Chen J, Yang X, Zhou J, Hu B. Coronavirus M protein promotes mitophagy over virophagy by recruiting PDPK1 to phosphorylate SQSTM1 at T138. Nat Commun 2024; 15:8927. [PMID: 39414765 PMCID: PMC11484861 DOI: 10.1038/s41467-024-53100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Autophagy plays a dual role in coronavirus infection, facilitating the elimination of either proviral components (virophagy) or antiviral factors such as mitochondria (mitophagy), leading to complex mechanisms of immune evasion. Understanding the mechanisms that govern the switch between the autophagic degradation of deleterious or beneficial substrates in coronavirus infection is crucial for developing precise drug targets to treat virus-induced diseases. However, this switch remains largely unknown. Using a dual split-fluorescence assay, we identify PDPK1 as a negative regulator of innate immunity, directing the transition from virophagy to mitophagy through the phosphorylation of SQSTM1 at T138. Remarkably, a PDPK1-targeting peptide inhibits the replication of various RNA viruses by restoring innate immunity through enhanced virophagy and suppressed mitophagy, thereby protecting female mice from lethal infections. These findings underscore the detrimental role of PDPK1 in innate immunity by orchestrating the shift from virophagy to mitophagy, positioning PDPK1 as a promising pharmacological target for effectively combating a broad spectrum of virus infections.
Collapse
Affiliation(s)
- Yahui Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chunyan Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Chenchen Zhao
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiayu Wu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Ya Zhu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Fei Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiepeng Zhong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jinyang Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Palmero Casanova B, Albentosa González L, Maringer K, Sabariegos R, Mas A. A conserved role for AKT in the replication of emerging flaviviruses in vertebrates and vectors. Virus Res 2024; 348:199447. [PMID: 39117146 PMCID: PMC11364138 DOI: 10.1016/j.virusres.2024.199447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One third of all emerging infectious diseases are vector-borne, with no licensed antiviral therapies available against any vector-borne viruses. Zika virus and Usutu virus are two emerging flaviviruses transmitted primarily by mosquitoes. These viruses modulate different host pathways, including the PI3K/AKT/mTOR pathway. Here, we report the effect on ZIKV and USUV replication of two AKT inhibitors, Miransertib (ARQ-092, allosteric inhibitor) and Capivasertib (AZD5363, competitive inhibitor) in different mammalian and mosquito cell lines. Miransertib showed a stronger inhibitory effect against ZIKV and USUV than Capivasertib in mammalian cells, while Capivasertib showed a stronger effect in mosquito cells. These findings indicate that AKT plays a conserved role in flavivirus infection, in both the vertebrate host and invertebrate vector. Nevertheless, the specific function of AKT may vary depending on the host species. These findings indicate that AKT may be playing a conserved role in flavivirus infection in both, the vertebrate host and the invertebrate vector. However, the specific function of AKT may vary depending on the host species. A better understanding of virus-host interactions is therefore required to develop new treatments to prevent human disease and new approaches to control transmission by insect vectors.
Collapse
Affiliation(s)
- Blanca Palmero Casanova
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain
| | - Laura Albentosa González
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Kevin Maringer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Rosario Sabariegos
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain; Facultad de Medicina, Universidad de Castilla-La Mancha. C/Almansa 14, 02008 Albacete, Spain
| | - Antonio Mas
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain.
| |
Collapse
|
3
|
Aparecida Santos L, de Castro Dutra J, Picoli Marinho E, Cosme Cotta Malaquias L, Nascimento Gomes B, Caravita Grisolia J, Andrade Dias N, Burger E. Celecoxib exhibits antifungal effect against Paracoccidioides brasiliensis both directly and indirectly by activating neutrophil responses. Int Immunopharmacol 2024; 138:112606. [PMID: 38963980 DOI: 10.1016/j.intimp.2024.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Celecoxib, an anti-inflammatory drug, combined therapies using antimicrobials and immune modulator drugs are being studied. OBJECTIVE To assess whether Celecoxib has direct in vitro antifungal effect against the Paracoccidioides brasiliensis, the causative agent of Paracoccidioidomycosis-(PCM) and also if it improves the in vivo activity of neutrophils-(PMN) in an experimental murine subcutaneous-(air pouch) model of the disease. METHODS The antifungal activity of Celecoxib(6 mg/mL) on P. brasiliensis-(Pb18) was evaluated using the microdilution technique. Splenocytes co-cultured with Pb18 and treated with Celecoxib(6 mg/mL) were co-cultured for 24, 48 and 72-hours. Swiss mice were inoculated with Pb18 and treated with Celecoxib(6 mg/kg) in the subcutaneous air pouch. Neutrophils were collected from the air pouch. Mitochondrial activity, reactive oxygen production, catalase, peroxidase, cytokines and chemokines, nitrogen species, total protein, microbicidal activity of PMNs and viable Pb18 cells numbers were analyzed. RESULTS Celecoxib had no cytotoxic effect on splenocytes co-cultured with Pb18, but had a marked direct antifungal effect, inhibiting fungal growth both in vitro and in vivo. Celecoxib interaction with immune system cells in the air pouch, it leads to activation of PMNs, as confirmed by several parameters (mitochondrial activity, reactive oxygen species, peroxidase, KC and IL-6 increase, killing constant and phagocytosis). Celecoxib was able to reduce IL-4, IL-10 and IL-12 cytokine production. The number of recovered viable Pb18 decreased dramatically. CONCLUSIONS This is the first report of the direct antifungal activity of Celecoxib against P. brasiliensis. The use of Celecoxib opens a new possibility for future treatment of PCM.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julia de Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Enrico Picoli Marinho
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julianne Caravita Grisolia
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Nayara Andrade Dias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil.
| |
Collapse
|
4
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
5
|
Trammell CE, Rowe EH, Char AB, Jones BJ, Fawcett S, Ahlers LRH, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. J Virol 2023; 97:e0111223. [PMID: 37796127 PMCID: PMC10617537 DOI: 10.1128/jvi.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Laura R. H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Viettri M, Caraballo G, Sanchez ME, Espejel-Nuñez A, Betanzos A, Ortiz-Navarrete V, Estrada-Gutierrez G, Nava P, Ludert JE. Comparative Infections of Zika, Dengue, and Yellow Fever Viruses in Human Cytotrophoblast-Derived Cells Suggest a Gating Role for the Cytotrophoblast in Zika Virus Placental Invasion. Microbiol Spectr 2023; 11:e0063023. [PMID: 37227282 PMCID: PMC10269719 DOI: 10.1128/spectrum.00630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
The Zika virus (ZIKV) is teratogenic and considered a TORCH pathogen (toxoplasmosis [Toxoplasma gondii], rubella, cytomegalovirus, herpes simplex virus [HSV], and other microorganisms capable of crossing the blood-placenta barrier). In contrast, the related flavivirus dengue virus (DENV) and the attenuated yellow fever virus vaccine strain (YFV-17D) are not. Understanding the mechanisms used by ZIKV to cross the placenta is necessary. In this work, parallel infections with ZIKV of African and Asian lineages, DENV, and YFV-17D were compared for kinetics and growth efficiency, activation of mTOR pathways, and cytokine secretion profile using cytotrophoblast-derived HTR8 cells and monocytic U937 cells differentiated to M2 macrophages. In HTR8 cells, ZIKV replication, especially the African strain, was significantly more efficient and faster than DENV or YFV-17D. In macrophages, ZIKV replication was also more efficient, although differences between strains were reduced. Greater activation of the mTORC1 and mTORC2 pathways in HTR8 cells infected with ZIKV than with DENV or YFV-17D was observed. HTR8 cells treated with mTOR inhibitors showed a 20-fold reduction in ZIKV yield, versus 5- and 3.5-fold reductions for DENV and YFV-17D, respectively. Finally, infection with ZIKV, but not DENV or YFV-17D, efficiently inhibited the interferon (IFN) and chemoattractant responses in both cell lines. These results suggest a gating role for the cytotrophoblast cells in favoring entry of ZIKV, but not DENV and YFV-17D, into the placental stroma. IMPORTANCE Zika virus acquisition during pregnancy is associated with severe fetal damage. The Zika virus is related to dengue virus and yellow fever virus, yet fetal damage has not been related to dengue or inadvertent vaccination for yellow fever during pregnancy. Mechanisms used by the Zika virus to cross the placenta need to be deciphered. By comparing parallel infections of Zika virus strains belonging to the African and Asian lineages, dengue virus, and the yellow fever vaccine virus strain YFV-17D in placenta-derived cytotrophoblast cells and differentiated macrophages, evidence was found that Zika virus infections, especially by the African strains, were more efficient in cytotrophoblast cells than dengue virus or yellow fever vaccine virus strain infections. Meanwhile, no significant differences were observed in macrophages. Robust activation of the mTOR signaling pathways and inhibition of the IFN and chemoattractant response appear to be related to the better growth capacity of the Zika viruses in the cytotrophoblast-derived cells.
Collapse
Affiliation(s)
- Mercedes Viettri
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gerson Caraballo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Maria Elena Sanchez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Porfirio Nava
- Department of Biophysical Physiology and Neuroscience, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
7
|
Trammell CE, Rowe EH, Jones BJ, Char AB, Fawcett S, Ahlers LR, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524426. [PMID: 36712090 PMCID: PMC9882177 DOI: 10.1101/2023.01.17.524426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
West Nile virus (WNV) is the most prevalent mosquito-borne virus in the United States with approximately 2,000 cases each year. There are currently no approved human vaccines and a lack of prophylactic and therapeutic treatments. Understanding host responses to infection may reveal potential intervention targets to reduce virus replication and disease progression. The use of Drosophila melanogaster as a model organism to understand innate immunity and host antiviral responses is well established. Previous studies revealed that insulin-mediated signaling regulates WNV infection in invertebrates by regulating canonical antiviral pathways. Because insulin signaling is well-conserved across insect and mammalian species, we sought to determine if results using D. melanogaster can be extrapolated for the analysis of orthologous pathways in humans. Here, we identify insulin-mediated endothelin signaling using the D. melanogaster model and evaluate an orthologous pathway in human cells during WNV infection. We demonstrate that endothelin signaling reduces WNV replication through the activation of canonical antiviral signaling. Taken together, our findings show that endothelin-mediated antiviral immunity is broadly conserved across species and reduces replication of viruses that can cause severe human disease. IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identifies potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Laura R.H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Li K, Ji Q, Jiang S, Zhang N. Advancement in the Development of Therapeutics Against Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:946957. [PMID: 35880081 PMCID: PMC9307976 DOI: 10.3389/fcimb.2022.946957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV), a re-emerging arbovirus, causes teratogenic effects on the fetus and normal nerve functions, resulting in harmful autoimmune responses, which call for the development of therapeutics against ZIKV infection. In this review, we introduce the pathogenesis of ZIKV infection and summarize the advancement in the development of therapeutics against ZIKV infection. It provides guidance for the development of effective therapeutics against ZIKV infection.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qianting Ji
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE), National Health Commission (NHC) and Chinese Academy of Medical Sciences (CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Naru Zhang,
| | - Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Shibo Jiang, ; Naru Zhang,
| |
Collapse
|
9
|
Trammell CE, Ramirez G, Sanchez-Vargas I, St Clair LA, Ratnayake OC, Luckhart S, Perera R, Goodman AG. Coupled small molecules target RNA interference and JAK/STAT signaling to reduce Zika virus infection in Aedes aegypti. PLoS Pathog 2022; 18:e1010411. [PMID: 35377915 PMCID: PMC9017935 DOI: 10.1371/journal.ppat.1010411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/19/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Gabriela Ramirez
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Irma Sanchez-Vargas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura A. St Clair
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, United States of America
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (RP); (AGG)
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail: (RP); (AGG)
| |
Collapse
|
10
|
Leo IR, Aswad L, Stahl M, Kunold E, Post F, Erkers T, Struyf N, Mermelekas G, Joshi RN, Gracia-Villacampa E, Östling P, Kallioniemi OP, Tamm KP, Siavelis I, Lehtiö J, Vesterlund M, Jafari R. Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines. Nat Commun 2022; 13:1691. [PMID: 35354797 PMCID: PMC8967900 DOI: 10.1038/s41467-022-29224-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although standard-of-care chemotherapeutics are sufficient for most ALL cases, there are subsets of patients with poor response who relapse in disease. The biology underlying differences between subtypes and their response to therapy has only partially been explained by genetic and transcriptomic profiling. Here, we perform comprehensive multi-omic analyses of 49 readily available childhood ALL cell lines, using proteomics, transcriptomics, and pharmacoproteomic characterization. We connect the molecular phenotypes with drug responses to 528 oncology drugs, identifying drug correlations as well as lineage-dependent correlations. We also identify the diacylglycerol-analog bryostatin-1 as a therapeutic candidate in the MEF2D-HNRNPUL1 fusion high-risk subtype, for which this drug activates pro-apoptotic ERK signaling associated with molecular mediators of pre-B cell negative selection. Our data is the foundation for the interactive online Functional Omics Resource of ALL (FORALL) with navigable proteomics, transcriptomics, and drug sensitivity profiles at https://proteomics.se/forall. Childhood acute lymphoblastic leukemia is characterised by a range of genetic aberrations. Here, the authors use multi-omics profiling of ALL cell lines to connect molecular phenotypes and drug responses to provide an interactive resource of drug sensitivity.
Collapse
Affiliation(s)
- Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Luay Aswad
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Matthias Stahl
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Frederik Post
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden.,Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Muenster, Germany
| | - Tom Erkers
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Nona Struyf
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Georgios Mermelekas
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Rubin Narayan Joshi
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Eva Gracia-Villacampa
- Division of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Päivi Östling
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Olli P Kallioniemi
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Katja Pokrovskaja Tamm
- Department of Oncology-Pathology, Karolinska Institutet, J6:140 BioClinicum, Akademiska stråket 1, 171 64, Solna, Sweden
| | - Ioannis Siavelis
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Mattias Vesterlund
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| |
Collapse
|
11
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
12
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
13
|
Tsao N, Chang YC, Hsieh SY, Li TC, Chiu CC, Yu HH, Hsu TC, Kuo CF. AR-12 Has a Bactericidal Activity and a Synergistic Effect with Gentamicin against Group A Streptococcus. Int J Mol Sci 2021; 22:ijms222111617. [PMID: 34769046 PMCID: PMC8583967 DOI: 10.3390/ijms222111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.
Collapse
Affiliation(s)
- Nina Tsao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Ya-Chu Chang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Sung-Yuan Hsieh
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300024, Taiwan;
| | - Tang-Chi Li
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Ching-Chen Chiu
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Hai-Han Yu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Tzu-Ching Hsu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7967)
| |
Collapse
|
14
|
Abstract
Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.
Collapse
|
15
|
In Silico Structure-Based Design of Antiviral Peptides Targeting the Severe Fever with Thrombocytopenia Syndrome Virus Glycoprotein Gn. Viruses 2021; 13:v13102047. [PMID: 34696477 PMCID: PMC8539749 DOI: 10.3390/v13102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.
Collapse
|
16
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
17
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
18
|
Yang D, Chu H, Lu G, Shuai H, Wang Y, Hou Y, Zhang X, Huang X, Hu B, Chai Y, Yuen TTT, Zhao X, Lee ACY, Ye Z, Li C, Chik KKH, Zhang AJ, Zhou J, Yuan S, Chan JFW. STAT2-dependent restriction of Zika virus by human macrophages but not dendritic cells. Emerg Microbes Infect 2021; 10:1024-1037. [PMID: 33979266 PMCID: PMC8205058 DOI: 10.1080/22221751.2021.1929503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that poses significant threats to global public health. Macrophages and dendritic cells are both key sentinel cells in the host immune response and play critical roles in the pathogenesis of flavivirus infections. Recent studies showed that ZIKV could productively infect monocyte-derived dendritic cells (moDCs), but the role of macrophages in ZIKV infection remains incompletely understood. In this study, we first compared ZIKV infection in monocyte-derived macrophages (MDMs) and moDCs derived from the same donors. We demonstrated that while both MDMs and moDCs were susceptible to epidemic (Puerto Rico) and pre-epidemic (Uganda) strains of ZIKV, virus replication was largely restricted in MDMs but not in moDCs. ZIKV induced significant apoptosis in moDCs but not MDMs. The restricted virus replication in MDMs was not due to inefficient virus entry but was related to post-entry events in the viral replication cycle. In stark contrast with moDCs, ZIKV failed to inhibit STAT1 and STAT2 phosphorylation in MDMs. This resulted in the lack of efficient antagonism of the host type I interferon-mediated antiviral responses. Importantly, depletion of STAT2 but not STAT1 in MDMs significantly rescued the replication of ZIKV and the prototype flavivirus yellow fever virus. Overall, our findings revealed a differential interplay between macrophages and dendritic cells with ZIKV. While dendritic cells may be exploited by ZIKV to facilitate virus replication, macrophages restricted ZIKV infection.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Ziwei Ye
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Cun Li
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
19
|
Kang X, Wang Y, Liang W, Tang X, Zhang Y, Wang L, Zhao P, Lu Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103904. [PMID: 33245980 DOI: 10.1016/j.dci.2020.103904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Forkhead-box O (FoxO) is the primary transcriptional effector of the insulin-like signaling pathway that enhances gluconeogenesis through transcriptional activation of PEPCK and G6Pase in mammals. We have previously demonstrated the involvement of phosphoenolpyruvate carboxykinase (BmPEPCK-2) in antiviral immunity against the multiplication of Bombyx mori nuclearpolyhedrosisvirus (BmNPV) in silkworm. Therefore, we speculated that BmFoxO might suppress BmNPV by regulating the expression of PEPCK in silkworm. In the present study, we found that the expression of BmFoxO decreased after BmNPV infection in Bombyx mori; this finding was consistent with BmPEPCK-2 expression. In addition, the expression of BmFoxO was altered, and it was found that reduced expression of BmFoxO (dsBmFoxO) downregulated the expression of BmPEPCK-2 and increased the viral fluorescence and content in silkworm embryonic cell line BmE cells, and vice versa. BmFoxO could upregulate the expression of BmPEPCK-2 by binding to the BmPEPCK-2 promoter. Moreover, overexpression of BmFoxO significantly increased the expression of autophagy genes ATG6/7/8 after infection with BmNPV, consistent with BmPEPCK-2. These results indicate that BmNPV downregulates transcription factor BmFoxO to elevate virus infection, and BmFoxO overexpression upregulates BmPEPCK-2 expression and enhances silkworm antiviral resistance.
Collapse
Affiliation(s)
- Xiaoli Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
20
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
21
|
Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat Microbiol 2020; 5:1439-1448. [PMID: 33028965 DOI: 10.1038/s41564-020-00802-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is causing a pandemic of COVID-19, with high infectivity and significant mortality1. Currently, therapeutic options for COVID-19 are limited. Historically, metal compounds have found use as antimicrobial agents, but their antiviral activities have rarely been explored. Here, we test a set of metallodrugs and related compounds, and identify ranitidine bismuth citrate, a commonly used drug for the treatment of Helicobacter pylori infection, as a potent anti-SARS-CoV-2 agent, both in vitro and in vivo. Ranitidine bismuth citrate exhibited low cytotoxicity and protected SARS-CoV-2-infected cells with a high selectivity index of 975. Importantly, ranitidine bismuth citrate suppressed SARS-CoV-2 replication, leading to decreased viral loads in both upper and lower respiratory tracts, and relieved virus-associated pneumonia in a golden Syrian hamster model. In vitro studies showed that ranitidine bismuth citrate and its related compounds exhibited inhibition towards both the ATPase (IC50 = 0.69 µM) and DNA-unwinding (IC50 = 0.70 µM) activities of the SARS-CoV-2 helicase via an irreversible displacement of zinc(II) ions from the enzyme by bismuth(III) ions. Our findings highlight viral helicase as a druggable target and the clinical potential of bismuth(III) drugs or other metallodrugs for the treatment of SARS-CoV-2 infection.
Collapse
|
22
|
Rayner JO, Roberts RA, Kim J, Poklepovic A, Roberts JL, Booth L, Dent P. AR12 (OSU-03012) suppresses GRP78 expression and inhibits SARS-CoV-2 replication. Biochem Pharmacol 2020; 182:114227. [PMID: 32966814 PMCID: PMC7502229 DOI: 10.1016/j.bcp.2020.114227] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
AR12 is a derivative of celecoxib which no-longer acts against COX2 but instead inhibits the ATPase activity of multiple chaperone proteins, in particular GRP78. GRP78 acts as a sensor of endoplasmic reticulum stress and is an essential chaperone required for the life cycle of all mammalian viruses. We and others previously demonstrated in vitro and in vivo that AR12 increases autophagosome formation and autophagic flux, enhances virus protein degradation, preventing virus reproduction, and prolonging the survival of infected animals. In this report, we determined whether AR12 could act against SARS-CoV-2. In a dose-dependent fashion AR12 inhibited SARS-CoV-2 spike protein expression in transfected or infected cells. AR12 suppressed the production of infectious virions via autophagosome formation, which was also associated with degradation of GRP78. After AR12 exposure, the colocalization of GRP78 with spike protein was reduced. Knock down of eIF2α prevented AR12-induced spike degradation and knock down of Beclin1 or ATG5 caused the spike protein to localize in LAMP2+ vesicles without apparent degradation. HCT116 cells expressing ATG16L1 T300, found in the majority of persons of non-European descent, particularly from Africa, expressed greater amounts of GRP78 and SARS-CoV-2 receptor angiotensin converting enzyme 2 compared to ATG16L1 A300, predominantly found in Europeans, suggestive that ATG16L1 T300 expression may be associated with a greater ability to be infected and to reproduce SARS-CoV-2. In conclusion, our findings demonstrate that AR12 represents a clinically relevant anti-viral drug for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Jonathan O Rayner
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Rosemary A Roberts
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Jin Kim
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Jane L Roberts
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States.
| |
Collapse
|
23
|
Identification of Inhibitors of ZIKV Replication. Viruses 2020; 12:v12091041. [PMID: 32961956 PMCID: PMC7551609 DOI: 10.3390/v12091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in the Zika forest of Uganda and it has emerged recently as a global health threat, with recurring outbreaks and its associations with congenital microcephaly through maternal fetal transmission and Guillain-Barré syndrome. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or antivirals to treat ZIKV infections, which underscores an urgent medical need for the development of disease intervention strategies to treat ZIKV infection and associated disease. Drug repurposing offers various advantages over developing an entirely new drug by significantly reducing the timeline and resources required to advance a candidate antiviral into the clinic. Screening the ReFRAME library, we identified ten compounds with antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV). Moreover, we showed the ability of these ten compounds to inhibit influenza A and B virus infections, supporting their broad-spectrum antiviral activity. In this study, we further evaluated the broad-spectrum antiviral activity of the ten identified compounds by testing their activity against ZIKV. Among the ten compounds, Azaribine (SI-MTT = 146.29), AVN-944 (SI-MTT = 278.16), and Brequinar (SI-MTT = 157.42) showed potent anti-ZIKV activity in post-treatment therapeutic conditions. We also observed potent anti-ZIKV activity for Mycophenolate mofetil (SI-MTT = 20.51), Mycophenolic acid (SI-MTT = 36.33), and AVN-944 (SI-MTT = 24.51) in pre-treatment prophylactic conditions and potent co-treatment inhibitory activity for Obatoclax (SI-MTT = 60.58), Azaribine (SI-MTT = 91.51), and Mycophenolate mofetil (SI-MTT = 73.26) in co-treatment conditions. Importantly, the inhibitory effect of these compounds was strain independent, as they similarly inhibited ZIKV strains from both African and Asian/American lineages. Our results support the broad-spectrum antiviral activity of these ten compounds and suggest their use for the development of antiviral treatment options of ZIKV infection.
Collapse
|
24
|
Legros V, Jeannin P, Burlaud-Gaillard J, Chaze T, Gianetto QG, Butler-Browne G, Mouly V, Zoladek J, Afonso PV, Gonzàlez MN, Matondo M, Riederer I, Roingeard P, Gessain A, Choumet V, Ceccaldi PE. Differentiation-dependent susceptibility of human muscle cells to Zika virus infection. PLoS Negl Trop Dis 2020; 14:e0008282. [PMID: 32817655 PMCID: PMC7508361 DOI: 10.1371/journal.pntd.0008282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/22/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022] Open
Abstract
Muscle cells are potential targets of many arboviruses, such as Ross River, Dengue, Sindbis, and chikungunya viruses, that may be involved in the physiopathological course of the infection. During the recent outbreak of Zika virus (ZIKV), myalgia was one of the most frequently reported symptoms. We investigated the susceptibility of human muscle cells to ZIKV infection. Using an in vitro model of human primary myoblasts that can be differentiated into myotubes, we found that myoblasts can be productively infected by ZIKV. In contrast, myotubes were shown to be resistant to ZIKV infection, suggesting a differentiation-dependent susceptibility. Infection was accompanied by a caspase-independent cytopathic effect, associated with paraptosis-like cytoplasmic vacuolization. Proteomic profiling was performed 24h and 48h post-infection in cells infected with two different isolates. Proteome changes indicate that ZIKV infection induces an upregulation of proteins involved in the activation of the Interferon type I pathway, and a downregulation of protein synthesis. This work constitutes the first observation of primary human muscle cells susceptibility to ZIKV infection, and differentiation-dependent restriction of infection from myoblasts to myotubes. Since myoblasts constitute the reservoir of stem cells involved in reparation/regeneration in muscle tissue, the infection of muscle cells and the viral-induced alterations observed here could have consequences in ZIKV infection pathogenesis. Muscle cells are potential targets of many arboviruses, such as Ross River, Dengue, Sindbis, and chikungunya viruses, and may be involved in the disease manifestation. During the recent outbreak of Zika virus (ZIKV), myalgia was one of the most frequently reported symptoms. We investigated the susceptibility of human muscle cells to ZIKV infection. Using an in vitro model of human muscle stem cells (myoblasts) that can be differentiated into differentiated muscle cells (myotubes), we found that myoblasts can be infected by ZIKV. In contrast, myotubes were shown to be resistant to ZIKV infection. Infection induced the death of infected cells. Protein levels 24h and 48h post-infection indicate that ZIKV infection induces an upregulation of proteins involved in the activation of the Interferon type I pathway, and a downregulation of protein synthesis. This work constitutes the first observation of primary human muscle cells susceptibility to ZIKV infection, muscle stem cells being susceptible while differentiated muscle cells are resistant. Since myoblasts constitute the reservoir of stem cells involved in reparation/regeneration in muscle tissue, the infection of muscle cells and the viral-induced alterations observed here could have consequences during ZIKV infection.
Collapse
Affiliation(s)
- Vincent Legros
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
| | - Patricia Jeannin
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
| | - Julien Burlaud-Gaillard
- INSERM U1259 & Plate Forme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU, Tours, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR 2000 IP CNRS, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR 2000 IP CNRS, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Jim Zoladek
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
| | - Philippe V. Afonso
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
| | - Mariela-Natacha Gonzàlez
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR 2000 IP CNRS, Institut Pasteur, Paris, France
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Philippe Roingeard
- INSERM U1259 & Plate Forme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU, Tours, France
| | - Antoine Gessain
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
| | - Valérie Choumet
- Unité Environnement et Risques Infectieux, Département de santé globale, Institut Pasteur, Paris, France
- * E-mail: (VC); (PEC)
| | - Pierre-Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département de virologie, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
- UMR CNRS 3569, Paris, France
- * E-mail: (VC); (PEC)
| |
Collapse
|
25
|
Yuan S, Chu H, Huang J, Zhao X, Ye ZW, Lai PM, Wen L, Cai JP, Mo Y, Cao J, Liang R, Poon VKM, Sze KH, Zhou J, To KKW, Chen Z, Chen H, Jin DY, Chan JFW, Yuen KY. Viruses harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target. SCIENCE ADVANCES 2020; 6:eaba7910. [PMID: 32923629 PMCID: PMC7455044 DOI: 10.1126/sciadv.aba7910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.
Collapse
MESH Headings
- A549 Cells
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antiviral Agents/pharmacology
- Betacoronavirus/drug effects
- Binding Sites/genetics
- COVID-19
- Cell Line, Tumor
- Chlorocebus aethiops
- Cinnamates/pharmacology
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Dogs
- HEK293 Cells
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV-1/drug effects
- Host-Pathogen Interactions/drug effects
- Humans
- Influenza A virus/drug effects
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Protein Binding/genetics
- Protein Transport/drug effects
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/genetics
- SARS-CoV-2
- Transforming Growth Factor beta1/metabolism
- Vero Cells
- Virus Replication/drug effects
- Zika Virus/drug effects
- Zika Virus Infection/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yufei Mo
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
26
|
AR-12 Exhibits Direct and Host-Targeted Antibacterial Activity toward Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00236-20. [PMID: 32482678 PMCID: PMC7526805 DOI: 10.1128/aac.00236-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic options for Mycobacterium abscessus infections are extremely limited. New or repurposed drugs are needed. The anti-M. abscessus activity of AR-12 (OSU-03012), reported to express broad-spectrum antimicrobial effects, was investigated in vitro and in vivo Antimicrobial susceptibility testing was performed on 194 clinical isolates. Minimum bactericidal concentration and time-kill kinetics assays were conducted to distinguish the bactericidal versus bacteriostatic activity of AR-12. Synergy between AR-12 and five clinically important antibiotics was determined using a checkerboard synergy assay. The activity of AR-12 against intracellular M. abscessus residing within macrophage was also evaluated. Finally, the potency of AR-12 in vivo was determined in a neutropenic mouse model that mimics pulmonary M. abscessus infection. AR-12 exhibited high anti-M. abscessus activity in vitro, with an MIC50 of 4 mg/liter (8.7 μM) and an MIC90 of 8 mg/liter (17.4 μM) for both subsp. abscessus and subsp. massiliense AR-12 and amikacin exhibited comparable bactericidal activity against extracellular M. abscessus in culture. AR-12, however, exhibited significantly greater intracellular antibacterial activity than amikacin and caused a significant reduction in the bacterial load in the lungs of neutropenic mice infected with M. abscessus No antagonism between AR-12 and clarithromycin, amikacin, imipenem, cefoxitin, or tigecycline was evident. In conclusion, AR-12 is active against M. abscessus in vitro and in vivo and does not antagonize the most frequently used anti-M. abscessus drugs. As such, AR-12 is a potential candidate to include in novel strategies to treat M. abscessus infections.
Collapse
|
27
|
Chu H, Yuen TTT, Chik KKH, Yuan S, Shuai H, Zou Z, Wang Y, Zhu Z, Yang D, Poon VKM, Chan CCS, Zhou J, Yin F, Kok KH, Yuen KY, Chan JFW. Targeting the Inositol-Requiring Enzyme-1 Pathway Efficiently Reverts Zika Virus-Induced Neurogenesis and Spermatogenesis Marker Perturbations. ACS Infect Dis 2020; 6:1745-1758. [PMID: 32329611 DOI: 10.1021/acsinfecdis.9b00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that may be associated with congenital anomalies in infected fetuses and severe neurological and genital tract complications in infected adults. Currently, antiviral treatments to revert these ZIKV-induced complications are lacking. ZIKV infection has recently been suggested to upregulate the host unfolded protein response, which may contribute to the congenital neurological anomalies. As an extension from these findings, we thoroughly investigated the ZIKV-induced unfolded protein response using a combination of the neuronal cell line, induced pluripotent stem cell-derived human neuronal stem and progenitor cells, and an interferon receptor-deficient A129 mouse model. Our results revealed a critical contribution of the inositol-requiring enzyme-1 (IRE1) arm of the unfolded protein response to ZIKV-induced neurological and testicular complications. Importantly, the inhibition of the IRE1 signaling pathway activation with KIRA6 (kinase-inhibiting RNAse attenuator 6), a selective small molecule IRE1 inhibitor that promotes cell survival, potently reverted the ZIKV-induced perturbations of the key gene expressions associated with neurogenesis and spermatogenesis in vitro and in vivo, highlighting the potential of IRE1 inhibition as a novel host-targeting antiviral strategy in combating against ZIKV-induced neurological and testicular pathologies.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Terrence T. T. Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kenn K. H. Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zijiao Zou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Vincent K. M. Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Chris C. S. Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jasper F. W. Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| |
Collapse
|
28
|
Zhang X, Chu H, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Zhu Z, Yuan S, Yin F, Chan JFW, Yuen KY. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect 2020; 9:733-746. [PMID: 32223537 PMCID: PMC7170352 DOI: 10.1080/22221751.2020.1738277] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are an integral component of the host competitive endogenous RNA (ceRNA) network. These noncoding RNAs are characterized by their unique splicing reactions to form covalently closed loop structures and play important RNA regulatory roles in cells. Recent studies showed that circRNA expressions were perturbed in viral infections and circRNAs might serve as potential antiviral targets. We investigated the host ceRNA network changes and biological relevance of circRNAs in human lung adenocarcinoma epithelial (Calu-3) cells infected with the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). A total of ≥49337 putative circRNAs were predicted. Among the 7845 genes which generated putative circRNAs, 147 (1.9%) of them each generated ≥30 putative circRNAs and were involved in various biological, cellular, and metabolic processes, including viral infections. Differential expression (DE) analysis showed that the proportion of DE circRNAs significantly (P < 0.001) increased at 24 h-post infection. These DE circRNAs were clustered into 4 groups according to their time-course expression patterns and demonstrated inter-cluster and intra-cluster variations in the predicted functions of their host genes. Our comprehensive circRNA-miRNA-mRNA network identified 7 key DE circRNAs involved in various biological processes upon MERS-CoV infection. Specific siRNA knockdown of two selected DE circRNAs (circFNDC3B and circCNOT1) significantly reduced MERS-CoV load and their target mRNA expression which modulates various biological pathways, including the mitogen-activated protein kinase (MAPK) and ubiquitination pathways. These results provided novel insights into the ceRNA network perturbations, biological relevance of circRNAs, and potential host-targeting antiviral strategies for MERS-CoV infection.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, People's Republic of China.,Key Laboratory of Translational Tropical Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
29
|
Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020; 56:150-167. [PMID: 32076918 PMCID: PMC7089181 DOI: 10.1007/s11262-020-01737-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.
Collapse
Affiliation(s)
- J J Bugert
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - F Hucke
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - P Zanetta
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - M Bassetto
- Department of Chemistry, Swansea University, Swansea, SA2 8PP, UK
| | - A Brancale
- Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
30
|
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.
Collapse
|
31
|
Yuan S, Chan JFW, Ye ZW, Wen L, Tsang TGW, Cao J, Huang J, Chan CCY, Chik KKH, Choi GKY, Cai JP, Yin F, Chu H, Liang M, Jin DY, Yuen KY. Screening of an FDA-Approved Drug Library with a Two-Tier System Identifies an Entry Inhibitor of Severe Fever with Thrombocytopenia Syndrome Virus. Viruses 2019; 11:v11040385. [PMID: 31027241 PMCID: PMC6520937 DOI: 10.3390/v11040385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans with case-fatality rates of up to 30%. There are currently very limited treatment options for SFTSV infection. We conducted a drug repurposing program by establishing a two-tier test system to rapidly screen a Food and Drug Administration- (FDA)-approved drug library for drug compounds with anti-SFTSV activity in vitro. We identified five drug compounds that inhibited SFTSV replication at low micromolar concentrations, including hexachlorophene, triclosan, regorafenib, eltrombopag, and broxyquinoline. Among them, hexachlorophene was the most potent with an IC50 of 1.3 ± 0.3 µM and a selectivity index of 18.7. Mechanistic studies suggested that hexachlorophene was a virus entry inhibitor, which impaired SFTSV entry into host cells by interfering with cell membrane fusion. Molecular docking analysis predicted that the binding of hexachlorophene with the hydrophobic pocket between domain I and domain III of the SFTSV Gc glycoprotein was highly stable. The novel antiviral activity and mechanism of hexachlorophene in this study would facilitate the use of hexachlorophene as a lead compound to develop more entry inhibitors with higher anti-SFTSV potency and lower toxicity.
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Terance Gi-Wai Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jianli Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Chris Chun-Yiu Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kenn Ka-Heng Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Garnet Kwan-Yue Choi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pathogen Biology, Hainan Medical University, Haikou 571101, China.
- Key Laboratory of Translational Tropical Medicine, Hainan Medical University, Haikou 571101, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mifang Liang
- Key Laboratory for Medical Virology and National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571101, China, and The University of Hong Kong, Pokfulam, Hong Kong, China.
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
32
|
Targeting SUMO Modification of the Non-Structural Protein 5 of Zika Virus as a Host-Targeting Antiviral Strategy. Int J Mol Sci 2019; 20:ijms20020392. [PMID: 30658479 PMCID: PMC6359730 DOI: 10.3390/ijms20020392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
Post-translational modifications of host or viral proteins are key strategies exploited by viruses to support virus replication and counteract host immune response. SUMOylation is a post-translational modification process mediated by a family of ubiquitin-like proteins called small ubiquitin-like modifier (SUMO) proteins. Multiple sequence alignment of 78 representative flaviviruses showed that most (72/78, 92.3%) have a putative SUMO-interacting motif (SIM) at their non-structural 5 (NS5) protein’s N-terminal domain. The putative SIM was highly conserved among 414 pre-epidemic and epidemic Zika virus (ZIKV) strains, with all of them having a putative SIM core amino acid sequence of VIDL (327/414, 79.0%) or VVDL (87/414, 21.0%). Molecular docking predicted that the hydrophobic SIM core residues bind to the β2 strand of the SUMO-1 protein, and the acidic residues flanking the core strengthen the binding through interactions with the basic surface of the SUMO protein. The SUMO inhibitor 2-D08 significantly reduced replication of flaviviruses and protected cells against ZIKV-induced cytopathic effects in vitro. A SIM-mutated ZIKV NS5 failed to efficiently suppress type I interferon signaling. Overall, these findings may suggest SUMO modification of the viral NS5 protein to be an evolutionarily conserved post-translational modification process among flaviviruses to enhance virus replication and suppress host antiviral response.
Collapse
|