1
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Kumar N, Sharma S, Kumar R, Meena VK, Barua S. Evolution of drug resistance against antiviral agents that target cellular factors. Virology 2024; 600:110239. [PMID: 39276671 DOI: 10.1016/j.virol.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have classically been developed by directly disrupting the functions of viral proteins. However, this strategy has been largely unsuccessful due to the rapid generation of viral escape mutants. It has been well established that as compared to the virus-centric approach, the strategy of developing antiviral drugs by targeting host-dependency factors (HDFs) minimizes drug resistance. However, recent reports have indicated that drug resistance against some of the host-targeting antiviral agents can in fact occur under some circumstances. Long-term selection pressure of a host-targeting antiviral agent may induce the virus to use an alternate cellular factor or alters its affinity towards the target that confers resistance. Alternatively, virus may synchronize its life cycle with the patterns of drug therapy. In addition, virus may subvert host's immune system to perpetuate under the limiting conditions of the targeted cellular factor. This review describes novel potential mechanisms that may account for the acquiring resistance against agents that target HDFs.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKAUST), Jammu, India.
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
3
|
Mittal P, Khandelwal N, Chander Y, Verma A, Kumar R, Putatunda C, Barua S, Gulati BR, Kumar N. p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein. Virusdisease 2024; 35:329-337. [PMID: 39071879 PMCID: PMC11269555 DOI: 10.1007/s13337-024-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 07/30/2024] Open
Abstract
The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.
Collapse
Affiliation(s)
- Priyasi Mittal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
- Om Sterling Global University (OSGU), Hisar, Haryana 125001 India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Baldev Raj Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| |
Collapse
|
4
|
Silva SLR, Dias IRSB, Rodrigues ACBDC, Costa RGA, Oliveira MDS, Barbosa GADC, Soares MBP, Dias RB, Valverde LF, Rocha CAG, Roy N, Park CY, Bezerra DP. Emetine induces oxidative stress, cell differentiation and NF-κB inhibition, suppressing AML stem/progenitor cells. Cell Death Discov 2024; 10:201. [PMID: 38684672 PMCID: PMC11059384 DOI: 10.1038/s41420-024-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs. Herein, we explored the antileukemic potential of emetine, focusing on its effects on AML stem/progenitor cells. Emetine exhibited potent cytotoxic activity both in hematologic and solid cancer cells and induced AML cell differentiation. Emetine also inhibited AML stem/progenitor cells, as evidenced by decreased expression of CD34, CD97, CD99, and CD123 in KG-1a cells, indicating anti-AML stem/progenitor cell activities. The administration of emetine at a dosage of 10 mg/kg for two weeks showed no significant toxicity and significantly reduced xenograft leukemic growth in vivo. NF-κB activation was reduced in emetine-treated KG-1a cells, as shown by reduced phospho-NF-κB p65 (S529) and nuclear NF-κB p65. DNA fragmentation, YO-PRO-1 staining, mitochondrial depolarization and increased levels of active caspase-3 and cleaved PARP (Asp214) were detected in emetine-treated KG-1a cells. Moreover, treatment with the pancaspase inhibitor Z-VAD(OMe)-FMK partially prevented the apoptotic cell death induced by emetine. Emetine treatment also increased cellular and mitochondrial reactive oxygen species, and emetine-induced apoptosis in KG-1a cells was partially prevented by the antioxidant N-acetylcysteine, indicating that emetine induces apoptosis, at least in part, by inducing oxidative stress. Overall, these studies indicate that emetine is a novel potential anti-AML agent with promising activity against stem/progenitor cells, encouraging the development of further studies aimed at its clinical application.
Collapse
Affiliation(s)
- Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | | | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Gabriela A da C Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propaedeutics, Federal University of Bahia (UFBA), Salvador, BA, 40301-155, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propaedeutics, Federal University of Bahia (UFBA), Salvador, BA, 40301-155, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, BA, 41253-190, Brazil
| | - Nainita Roy
- Department of Pathology, School of Medicine, New York University, New York, NY, 10016, United States of America
| | - Christopher Y Park
- Department of Pathology, School of Medicine, New York University, New York, NY, 10016, United States of America
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil.
| |
Collapse
|
5
|
Ianevski A, Frøysa IT, Lysvand H, Calitz C, Smura T, Schjelderup Nilsen HJ, Høyer E, Afset JE, Sridhar A, Wolthers KC, Zusinaite E, Tenson T, Kurg R, Oksenych V, Galabov AS, Stoyanova A, Bjørås M, Kainov DE. The combination of pleconaril, rupintrivir, and remdesivir efficiently inhibits enterovirus infections in vitro, delaying the development of drug-resistant virus variants. Antiviral Res 2024; 224:105842. [PMID: 38417531 DOI: 10.1016/j.antiviral.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Irene Trøen Frøysa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | | | - Erling Høyer
- Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Adithya Sridhar
- OrganoVIR Labs, Dept of Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam University Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adelina Stoyanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Institute for Molecular Medicine Finland, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Sidorenko VS, Cohen I, Dorjee K, Minetti CA, Remeta DP, Gao J, Potapova I, Wang HZ, Hearing J, Yen WY, Kim HK, Hashimoto K, Moriya M, Dickman KG, Yin X, Garcia-Diaz M, Chennamshetti R, Bonala R, Johnson F, Waldeck AL, Gupta R, Li C, Breslauer KJ, Grollman AP, Rosenquist TA. Mechanisms of antiviral action and toxicities of ipecac alkaloids: Emetine and dehydroemetine exhibit anti-coronaviral activities at non-cardiotoxic concentrations. Virus Res 2024; 341:199322. [PMID: 38228190 PMCID: PMC10831786 DOI: 10.1016/j.virusres.2024.199322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ira Cohen
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kunchok Dorjee
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Junyuan Gao
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Irina Potapova
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hong Zhan Wang
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Janet Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Wan-Yi Yen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Keiji Hashimoto
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Masaaki Moriya
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xingyu Yin
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rajesh Chennamshetti
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha Bonala
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Amanda L Waldeck
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacy, Stony Brook University Hospital, Stony Brook, New York 11794, USA
| | - Ramesh Gupta
- ChemMaster International Inc., Happauge, New York 11788, USA
| | - Chaoping Li
- Chemistry Service Unit of Shanghai Haoyuan Chemexpress Co., Ltd., Shanghai, PR China 201203
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Šlachtová V, Casaretto N, Brulíková L, Six Y. Bicyclic N-dihalocyclopropylamide derivatives as precursors of nitrogen-containing fused polycyclic systems. Org Biomol Chem 2023; 21:6325-6341. [PMID: 37337777 DOI: 10.1039/d3ob00643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Examples of carbon-carbon bond-forming cyclisation reactions, involving allyl cations generated by the thermal ring-opening of halocyclopropanes, have been scarcely reported. In this contribution, we are describing the results of a study conducted with N-dihalocyclopropylamide substrates, designed as precursors of cyclic iminium intermediates that were aimed at participating in intramolecular reactions with electron-rich aromatic groups. Competitive side-reactions were identified, and access to the desired polycyclic products was carefully evaluated. The results were found to be strongly dependent on the substitution pattern of the nucleophilic aromatic moieties, as well as on the sizes of the rings of the target products. In spite of the rather moderate yields generally obtained, this approach represents a particularly short and inexpensive route to various interesting nitrogen-containing polycyclic systems, namely benzoindolizidine, benzoquinolizidine, piperidinobenzoazepane and azepanoisoquinoline compounds.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168 CNRS/École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Yvan Six
- Laboratoire de Synthèse Organique (LSO), UMR 7652 CNRS/ENSTA/École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France.
| |
Collapse
|
10
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Thirumugam G, Radhakrishnan Y, Ramamurthi S, Bhaskar JP, Krishnaswamy B. A systematic review on impact of SARS-CoV-2 infection. Microbiol Res 2023; 271:127364. [PMID: 36989761 PMCID: PMC10015779 DOI: 10.1016/j.micres.2023.127364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Innumerable pathogens including RNA viruses have catastrophic pandemic propensity, in turn, SARS-CoV-2 infection is highly contagious. Emergence of SARS-CoV-2 variants with high mutation rate additionally codifies infectious ability of virus and arisen clinical imputations to human health. Although, our knowledge of mechanism of virus infection and its impact on host system has been substantially demystified, uncertainties about the emergence of virus are still not fully understood. To date, there are no potentially curative drugs are identified against the viral infection. Even though, drugs are repurposed in the initial period of infection, many are significantly negative in clinical trials. Moreover, the infection is dependent on organ status, co-morbid conditions, variant of virus and geographic region. This review article aims to comprehensively describe the SARS-CoV-2 infection and the impacts in the host cellular system. This review also briefly provides an overview of genome, proteome and metabolome associated risk to infection and the advancement of therapeutics in SARS-CoV-2 infection management.
Collapse
Key Words
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- who, world health organization
- mers-cov-middle, east respiratory syndrome coronavirus
- ig, immunoglobulin
- rgd, arginine-glycine-aspartic
- nk-natural, killer cells
- s1 and s2, subunits of s protein
- nsp, non-structural proteins
- voi, varian of interest
- voc, variant of concern
- vum-variant, under monitoring
- ace2, angiotensin converting enzyme 2
- nsp-non-structural, proteins
- orf-open, reading frame
- sars-cov-2
- variants
- omics
- alternative medicines
Collapse
Affiliation(s)
- Gowripriya Thirumugam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Yashwanth Radhakrishnan
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Suresh Ramamurthi
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Balamurugan Krishnaswamy
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India,Corresponding author
| |
Collapse
|
12
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
14
|
Yamada M, Azuma K, Takizawa I, Ejima Y, Yamano M, Satoh K, Doi T, Ueda H, Tokuyama H. Efficient and Scalable Asymmetric Total Synthesis of (−)-Emetine with Pharmaceutical Grade Quality; First Multigram Scale Synthesis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Masatoshi Yamada
- Chemical Research and Development, SPERA PHARMA, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Kazuki Azuma
- Chemical Research and Development, SPERA PHARMA, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Iori Takizawa
- Chemical Research and Development, SPERA PHARMA, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Yuki Ejima
- Chemical Research and Development, SPERA PHARMA, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Mitsuhisa Yamano
- Chemical Research and Development, SPERA PHARMA, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-0024, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Kasabe B, Ahire G, Patil P, Punekar M, Davuluri KS, Kakade M, Alagarasu K, Parashar D, Cherian S. Drug repurposing approach against chikungunya virus: an in vitro and in silico study. Front Cell Infect Microbiol 2023; 13:1132538. [PMID: 37180434 PMCID: PMC10174255 DOI: 10.3389/fcimb.2023.1132538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes mosquitoes. There are no licenced antivirals or vaccines for treatment or prevention. Drug repurposing approach has emerged as a novel concept to find alternative uses of therapeutics to battle pathogens. In the present study, anti CHIKV activity of fourteen FDA-approved drugs was investigated by in vitro and in silico approaches. Focus-forming unit assay, immunofluorescence test, and quantitative RT-PCR assay were used to assess the in vitro inhibitory effect of these drugs against CHIKV in Vero CCL-81 cells. The findings showed that nine compounds, viz., temsirolimus, 2-fluoroadenine, doxorubicin, felbinac, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol exhibit anti chikungunya activity. Furthermore, in silico molecular docking studies performed by targeting CHIKV structural and non-structural proteins revealed that these drugs can bind to structural protein targets such as envelope protein, and capsid, and non-structural proteins NSP2, NSP3 and NSP4 (RdRp). Findings from in vitro and in silico studies reveal that these drugs can suppress the infection and replication of CHIKV and further in vivo studies followed by clinical trials are warranted.
Collapse
Affiliation(s)
- Bhagyashri Kasabe
- Bioinformatics Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Gunwant Ahire
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Poonam Patil
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Madhura Punekar
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Kusuma Sai Davuluri
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Mahadeo Kakade
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
- *Correspondence: Deepti Parashar, ; Sarah Cherian,
| | - Sarah Cherian
- Bioinformatics Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
- *Correspondence: Deepti Parashar, ; Sarah Cherian,
| |
Collapse
|
16
|
Li B, Zhang T, Li J, Yu M. Antiviral Disaccharide Lead Compounds against SARS-CoV-2 through Computer-Aided High-Throughput Screen. Chembiochem 2022; 23:e202200461. [PMID: 36265004 PMCID: PMC9874536 DOI: 10.1002/cbic.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.
Collapse
Affiliation(s)
- Binjie Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tianji Zhang
- Division of Chemistry and Analytical ScienceNational Institute of MetrologyBeijing100029P. R. China
| | - Jin‐ping Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsala75123Sweden
| | - Ming‐jia Yu
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
17
|
Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100079. [PMID: 36060987 PMCID: PMC9420082 DOI: 10.1016/j.ejmcr.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
18
|
Ji X, Meng X, Zhu X, He Q, Cui Y. Research and development of Chinese anti-COVID-19 drugs. Acta Pharm Sin B 2022; 12:4271-4286. [PMID: 36119967 PMCID: PMC9472487 DOI: 10.1016/j.apsb.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak and spread of coronavirus disease 2019 (COVID-19) highlighted the importance and urgency of the research and development of therapeutic drugs. Very early into the COVID-19 pandemic, China has begun developing drugs, with some notable progress. Herein, we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China. Furthermore, we discussed the developmental prospects, mechanisms of action, and advantages and disadvantages of the anti-COVID-19 drugs in development, with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the variants. Neutralizing antibody is an effective approach to overcome COVID-19. However, drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies. Taking into account current epidemic trends, small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum. Traditional Chinese medicines, including natural products and traditional Chinese medicine prescriptions, contribute to the treatment of COVID-19 due to their unique mechanism of action. Currently, the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements, thus prompting us to expect even more rapidly available solutions.
Collapse
Affiliation(s)
- Xiwei Ji
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Xiangrui Meng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
19
|
Lu L, Zheng J, Liu B, Wu H, Huang J, Wu L, Li D. The m7G Modification Level and Immune Infiltration Characteristics in Patients with COVID-19. J Multidiscip Healthc 2022; 15:2461-2472. [PMID: 36320552 PMCID: PMC9618243 DOI: 10.2147/jmdh.s385050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose The 7-methylguanosine (m7G)-related genes were used to identify the clinical severity and prognosis of patients with coronavirus disease 2019 (COVID-19) and to identify possible therapeutic targets. Patients and Methods The GSE157103 dataset provides the transcriptional spectrum and clinical information required to analyze the expression of m7G-related genes and the disease subtypes. R language was applied for immune infiltration analysis, functional enrichment analysis, and nomogram model construction. Results Most m7G-related genes were up-regulated in COVID-19 and were closely related to immune cell infiltration. Disease subtypes were grouped using a clustering algorithm. It was found that the m7G-cluster B was associated with higher immune infiltration, lower mechanical ventilation, lower intensive care unit (ICU) status, higher ventilator-free days, and lower m7G scores. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between m7G-cluster A and B were enriched in viral infection and immune-related aspects, including COVID-19 infection; Th17, Th1, and Th2 cell differentiation, and human T-cell leukemia virus 1 infection. Finally, through machine learning, six disease characteristic genes, NUDT4B, IFIT5, LARP1, EIF4E, LSM1, and NUDT4, were screened and used to develop a nomogram model to estimate disease risk. Conclusion The expression of most m7G genes was higher in COVID-19 patients compared with that in non-COVID-19 patients. The m7G-cluster B showed higher immune infiltration and milder symptoms. The predictive nomogram based on the six m7G genes can be used to accurately assess risk.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Jiaolong Zheng
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Haicong Wu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Jiaofeng Huang
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Liqing Wu
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China,Correspondence: Dongliang Li, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, No. 156 Xierhuan Road, Fuzhou, Fujian, 350025, People’s Republic of China, Tel/Fax +86 591 22859128, Email
| |
Collapse
|
20
|
Amahong K, Zhang W, Zhou Y, Zhang S, Yin J, Li F, Xu H, Yan T, Yue Z, Liu Y, Hou T, Qiu Y, Tao L, Han L, Zhu F. CovInter: interaction data between coronavirus RNAs and host proteins. Nucleic Acids Res 2022; 51:D546-D556. [PMID: 36200814 PMCID: PMC9825556 DOI: 10.1093/nar/gkac834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
Coronavirus has brought about three massive outbreaks in the past two decades. Each step of its life cycle invariably depends on the interactions among virus and host molecules. The interaction between virus RNA and host protein (IVRHP) is unique compared to other virus-host molecular interactions and represents not only an attempt by viruses to promote their translation/replication, but also the host's endeavor to combat viral pathogenicity. In other words, there is an urgent need to develop a database for providing such IVRHP data. In this study, a new database was therefore constructed to describe the interactions between coronavirus RNAs and host proteins (CovInter). This database is unique in (a) unambiguously characterizing the interactions between virus RNA and host protein, (b) comprehensively providing experimentally validated biological function for hundreds of host proteins key in viral infection and (c) systematically quantifying the differential expression patterns (before and after infection) of these key proteins. Given the devastating and persistent threat of coronaviruses, CovInter is highly expected to fill the gap in the whole process of the 'molecular arms race' between viruses and their hosts, which will then aid in the discovery of new antiviral therapies. It's now free and publicly accessible at: https://idrblab.org/covinter/.
Collapse
Affiliation(s)
| | | | | | - Song Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Hongquan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zixuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Lin Tao
- Correspondence may also be addressed to Lin Tao.
| | - Lianyi Han
- Correspondence may also be addressed to Lianyi Han.
| | - Feng Zhu
- To whom correspondence should be addressed. Tel: +86 189 8946 6518; Fax: +86 571 8820 8444;
| |
Collapse
|
21
|
Spirin P, Shyrokova E, Vedernikova V, Lebedev T, Prassolov V. Emetine in Combination with Chloroquine Induces Oncolytic Potential of HIV-1-Based Lentiviral Particles. Cells 2022; 11:cells11182829. [PMID: 36139404 PMCID: PMC9497060 DOI: 10.3390/cells11182829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.
Collapse
Affiliation(s)
- Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Correspondence:
| | - Elena Shyrokova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Valeria Vedernikova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
22
|
Wang Z, Belecciu T, Eaves J, Reimers M, Bachmann MH, Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J Biomol Struct Dyn 2022:1-21. [PMID: 35993534 DOI: 10.1080/07391102.2022.2112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zirui Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Joelle Eaves
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael H Bachmann
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Chander Y, Kumar R, Verma A, Khandelwal N, Nagori H, Singh N, Sharma S, Pal Y, Puvar A, Pandit R, Shukla N, Chavada P, Tripathi BN, Barua S, Kumar N. Resistance evolution against host-directed antiviral agents: Buffalopox virus switches to use p38-ϒ under long-term selective pressure of an inhibitor targeting p38-α. Mol Biol Evol 2022; 39:6668988. [PMID: 35975687 PMCID: PMC9435063 DOI: 10.1093/molbev/msac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Nagori
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hiar, Haryana, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Rameshchandra Pandit
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Priyank Chavada
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Bhupendra N Tripathi
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
24
|
Valipour M, Irannejad H, Emami S. Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 2022; 21:2379-2386. [DOI: 10.1080/15384101.2022.2100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
26
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
27
|
Gonzalez BL, de Oliveira NC, Ritter MR, Tonin FS, Melo EB, Sanches ACC, Fernandez‐Llimos F, Petruco MV, de Mello JCP, Chierrito D, de Medeiros Araújo DC. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review. Phytother Res 2022; 36:2686-2709. [PMID: 35355337 PMCID: PMC9111026 DOI: 10.1002/ptr.7442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.
Collapse
Affiliation(s)
| | | | | | - Fernanda Stumpf Tonin
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade Federal do Paraná—UFPRCuritibaParanáBrazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do Paraná—UNIOESTECascavelParanáBrazil
| | | | | | | | | | - Danielly Chierrito
- Departamento de FarmáciaUniversidade Estadual de Maringá—UEMMaringáParanáBrazil
| | | |
Collapse
|
28
|
Multi-Step In Silico Discovery of Natural Drugs against COVID-19 Targeting Main Protease. Int J Mol Sci 2022; 23:ijms23136912. [PMID: 35805916 PMCID: PMC9266348 DOI: 10.3390/ijms23136912] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.
Collapse
|
29
|
Valipour M. Different Aspects of Emetine's Capabilities as a Highly Potent SARS-CoV-2 Inhibitor against COVID-19. ACS Pharmacol Transl Sci 2022; 5:387-399. [PMID: 35702393 PMCID: PMC9159504 DOI: 10.1021/acsptsci.2c00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/18/2023]
Abstract
In the global movement to find the appropriate agents to fight the coronavirus disease of 2019 (COVID-19), emetine is one of the strongest anti-SARS-CoV-2 compounds with sub-micromolar EC50 values, identified in several studies and high-throughput screening efforts. The reported anti-SARS-CoV-2 mechanisms indicate the effect of this compound on both virus-based and host-based targets. In addition to having excellent antiviral effects, emetine can relieve COVID-19 patients by reducing inflammation through inhibitory activity against NF-κB by the mechanism of IκBα phosphorylation inhibition; it can also limit the lipopolysaccharide-induced expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Emetine also can well reduce pulmonary arterial hypertension as an important COVID-19 complication by modulating a variety of cellular processes such as the Rho-kinase/CyPA/Bsg signaling pathway. The therapeutic value of emetine for combating COVID-19 was highlighted when in vivo pharmacokinetic studies showed that the concentration of this compound in the lungs increases significantly higher than the EC50 of the drug. Despite its valuable therapeutic effects, emetine has some cardiotoxic effects that limit its use in high doses. However, high therapeutic capabilities make emetine a valuable lead compound that can be used for the design and development of less toxic anti-COVID-19 agents in the future. This Review provides a collection of information on the capabilities of emetine and its potential for the treatment of COVID-19, along with structural analysis which could be used for further research in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry,
Faculty of Pharmacy, Mazandaran University
of Medical Sciences, 48175-866 Sari, Iran
| |
Collapse
|
30
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022; 167:751-805. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Kumar R, Khandelwal N, Chander Y, Nagori H, Verma A, Barua A, Godara B, Pal Y, Gulati BR, Tripathi BN, Barua S, Kumar N. S-adenosylmethionine-dependent methyltransferase inhibitor DZNep blocks transcription and translation of SARS-CoV-2 genome with a low tendency to select for drug-resistant viral variants. Antiviral Res 2021; 197:105232. [PMID: 34968527 PMCID: PMC8714615 DOI: 10.1016/j.antiviral.2021.105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5’ cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Nagori
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Aditya Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhagraj Godara
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Baldev R Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| |
Collapse
|
33
|
Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021; 59:959-977. [PMID: 34724178 PMCID: PMC8559138 DOI: 10.1007/s12275-021-1467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has underscored the lack of approved drugs against acute viral diseases. Plants are considered inexhaustible sources of drugs for several diseases and clinical conditions, but plant-derived compounds have seen little success in the field of antivirals. Here, we present the case for the use of compounds from vascular plants, including alkaloids, flavonoids, polyphenols, and tannins, as antivirals, particularly for the treatment of COVID-19. We review current evidence for the use of these phytochemicals against SARS-CoV-2 infection and present their potential targets in the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Kiho Lee
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea.
| |
Collapse
|
34
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
35
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|
36
|
Yang ZH, Wang B, Ma Q, Wang L, Lin YX, Yan HF, Fan ZX, Chen HJ, Ge Z, Zhu F, Wang HJ, Zhang BN, Sun HD, Feng LM. Potential Mechanisms of Action of Chinese Patent Medicines for COVID-19: A Review. Front Pharmacol 2021; 12:668407. [PMID: 34335247 PMCID: PMC8320351 DOI: 10.3389/fphar.2021.668407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an emergent infectious pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is highly contagious and pathogenic. COVID-19 has rapidly swept across the world since it was first discovered in December 2019 and has drawn significant attention worldwide. During the early stages of the outbreak in China, traditional Chinese medicines (TCMs) were involved in the whole treatment process. As an indispensable part of TCM, Chinese patent medicines (CPMs) played an irreplaceable role in the prevention and treatment of this epidemic. Their use has achieved remarkable therapeutic efficacy during the period of medical observation and clinical treatment of mild, moderate, severe, and critical cases and during convalescence. In order to better propagate and make full use of the benefits of TCM in the treatment of COVID-19, this review will summarize the potential target of SARS-CoV-2 as well as the theoretical basis and clinical efficacy of recommended 22 CPMs by the National Health Commission and the Administration of TCM and local provinces or cities in the treatment of COVID-19. Additionally, the study will further analyze the drug composition, potential active ingredients, potential targets, regulated signaling pathways, and possible mechanisms for COVID-19 through anti-inflammatory and immunoregulation, antiviral, improve lung injury, antipyretic and organ protection to provide meaningful information about the clinical application of CPMs.
Collapse
Affiliation(s)
- Zhi-Hua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ya-Xin Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hai-Feng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zi-Xuan Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao-Jia Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Zhu
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou, China
| | - Hui-Jie Wang
- Department of Cardiology, Traditional Chinese Medicine Hospital of Tianjin Beichen District, Tianjin, China
| | - Bao-Nan Zhang
- Department of Cardiology, Traditional Chinese Medicine Hospital of Tianjin Beichen District, Tianjin, China
| | - Hai-Dong Sun
- Tianjin Fourth Central Hospital, Tianjin, China
- Shenzhen Hospital Futian of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Min Feng
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. J Neurosci 2021; 41:5338-5349. [PMID: 34162747 PMCID: PMC8221594 DOI: 10.1523/jneurosci.3188-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.
Collapse
Affiliation(s)
- Olivia Swain
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Sofia K Romano
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Ritika Miryala
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jocelyn Tsai
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Vinnie Parikh
- Neuroscience Department, Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland 21205
| | - George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Majnooni MB, Fakhri S, Bahrami G, Naseri M, Farzaei MH, Echeverría J. Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6632623. [PMID: 34104202 PMCID: PMC8159655 DOI: 10.1155/2021/6632623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Since its inception, the coronavirus disease 2019 (COVID-19) pandemic has infected millions of people around the world. Therefore, it is necessary to find effective treatments against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), as it is the viral source of COVID-19. Alkaloids are one of the most widespread plant-derived natural compounds with prominent antiviral effects. Accordingly, these phytochemicals have been promising candidates towards discovering effective treatments for COVID-19. Alkaloids have shown potential anti-SARS-CoV activities via inhibiting pathogenesis-associated targets of the Coronaviridae family that are required for the virus life cycle. In the current study, the chemistry, plant sources, and antiviral effects of alkaloids, as well as their anti-SARS-CoV-2 effect with related mechanisms, are reviewed towards discovering an effective treatment against COVID-19.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|