1
|
Schulz SI, Schultze-Mosgau MH, Engelen A, Singh N, Pawsey S, Francke K, Lock R, Rottmann A. Mass Balance Recovery, Absorption, Metabolism, and Excretion of Elinzanetant in Healthy Human Volunteers and in vitro Biotransformation. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00930-3. [PMID: 39719488 DOI: 10.1007/s13318-024-00930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Elinzanetant is a dual neurokinin-1,3 receptor antagonist in development for the treatment of menopausal vasomotor symptoms. The objectives of these studies were to characterize the mass balance and biotransformation of elinzanetant. METHODS In the clinical evaluation, whole blood, plasma, urine, and feces were collected from healthy fasted male volunteers (n = 6) following a single dose of 120 mg [14C]-elinzanetant oral suspension for analysis of total radioactivity and metabolite profiling. In vitro reaction phenotyping and kinetics experiments on enzymes involved in elinzanetant metabolism were performed. RESULTS On average, 90.8% of the total radioactivity administered was recovered in excreta over 480 h, mostly via the fecal route (feces 90.4%; urine 0.4%). Elinzanetant was rapidly absorbed and extensively metabolized but remained the main circulating species in plasma, accounting for 39.1% of total radioactivity. Known principal and active metabolites M27, M30/34, and M18/21 accounted for 7.6%, 13.7%, and 4.9% of total radioactivity in plasma, respectively. All other radiolabeled plasma components were each < 3.5%, revealing the oxidation product M30/34 as the only metabolite with relevant exposure (> 10% of total radioactivity). In feces, metabolites resulting from oxidative biotransformation accounted, in sum, for ~ 40% of the dose, while elinzanetant remained the primary drug-related moiety. Results of in vitro experiments indicated that metabolism of elinzanetant was primarily mediated by cytochrome P450 3A4, with minor contribution from uridine 5'-diphospho-glucuronosyltransferase. CONCLUSIONS Elinzanetant is metabolized mainly via oxidative biotransformation mediated by cytochrome P450 3A4, and primarily excreted in feces. The primary oxidation product M30/34 is a major human metabolite of elinzanetant. TRIAL REGISTRATION NUMBER NCT04654897.
Collapse
Affiliation(s)
- Simone I Schulz
- Preclinical Development-Drug Metabolism and Pharmacokinetics, Bayer AG, Wuppertal, Germany
| | | | - Anna Engelen
- Preclinical Development-Drug Metabolism and Pharmacokinetics, Bayer AG, Wuppertal, Germany
| | - Nand Singh
- Medical Department, Quotient Sciences, Nottingham, UK
| | | | - Klaus Francke
- Early Clinical Development, Bayer AG, Berlin, Germany
| | | | - Antje Rottmann
- Preclinical Development-Drug Metabolism and Pharmacokinetics, Bayer AG, Berlin, Germany
| |
Collapse
|
2
|
Maková B, Mik V, Lišková B, Drašarová L, Medvedíková M, Hořínková A, Vojta P, Zatloukal M, Plíhalová L, Hönig M, Doležal K, Forejt K, Oždian T, Hajdúch M, Strnad M, Voller J. Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study. Eur J Med Chem 2024; 284:117176. [PMID: 39756144 DOI: 10.1016/j.ejmech.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
Collapse
Affiliation(s)
- Barbara Maková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Mik
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Alena Hořínková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Petr Vojta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hönig
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kristýna Forejt
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Cavallero A, Donadel G, Puccini P, Gervasi PG, Gabisonia K, Longo V, Gabriele M. New insight on porcine carboxylesterases expression and activity in lung tissues. Res Vet Sci 2024; 175:105314. [PMID: 38823354 DOI: 10.1016/j.rvsc.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.
Collapse
Affiliation(s)
- Andrea Cavallero
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Giorgia Donadel
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.P.A., via Palermo 26/A, Parma, Italy
| | - Pier Giovanni Gervasi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Interdisciplinary Center "Health Science", Scuola Superiore Sant'Anna, c/o Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Morena Gabriele
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
5
|
Ren Q, Chen J, Wesseling S, Bouwmeester H, Rietjens IMCM. Physiologically based Kinetic Modeling-Facilitated Quantitative In Vitro to In Vivo Extrapolation to Predict the Effects of Aloe-Emodin in Rats and Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16163-16176. [PMID: 38980703 PMCID: PMC11273626 DOI: 10.1021/acs.jafc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Aloe-emodin, a natural hydroxyanthraquinone, exerts both adverse and protective effects. This study aimed at investigating these potential effects of aloe-emodin in humans upon the use of food supplements and herbal medicines using a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach. For this, PBK models in rats and humans were established for aloe-emodin including its active metabolite rhein and used to convert in vitro data on hepatotoxicity, nephrotoxicity, reactive oxidative species (ROS) generation, and Nrf2 induction to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived by BMD analysis. The derived PODs were subsequently compared to the estimated daily intakes (EDIs) resulting from the use of food supplements or herbal medicines. It is concluded that the dose levels of aloe-emodin from food supplements or herbal medicines are unlikely to induce toxicity, ROS generation, or Nrf2 activation in liver and kidney.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Jiaqi Chen
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
6
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
7
|
Ali MI, Thirukovela NS, Kumar GB, Dasari G, Badithapuram V, Manchal R, Bandari S. Design, synthesis, in silico molecular docking, and ADMET studies of quinoxaline-isoxazole-piperazine conjugates as EGFR-targeting agents. Chem Biol Drug Des 2024; 103:e14499. [PMID: 38444047 DOI: 10.1111/cbdd.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
In this paper, we report the synthesis of quinoxaline-isoxazole-piperazine conjugates. The anticancer activity was evaluated against three human cancer cell lines, including MCF-7 (breast), HepG-2 (liver), and HCT-116 (colorectal). The outcomes of the tested compounds 5d, 5e, and 5f have shown more potent activity when compared to the standard drug erlotinib. In a cell survivability test (MCF-10A), three potent compounds (5d, 5e, and 5f) were evaluated against the normal breast cell line, although neither of them displayed any significant cytotoxicity with IC50 values greater than 84 μM. Furthermore, the compounds 5d, 5e, and 5f were tested for tyrosine kinase EGFR inhibitory action using erlotinib as the reference drug and compound 5e was shown to be more potent in inhibiting the tyrosine kinase EGFR than sorafenib. In addition to this, molecular docking studies of compounds 5d, 5e, and 5f demonstrated that these compounds had more EGFR-binding interactions. The potent compounds 5d, 5e, and 5f were subjected to in silico pharmacokinetic assessment by SWISS, ADME, and pkCSM. While the compounds 5d, 5e, and 5f followed Lipinski, Veber, Egan, and Muegge rules without any deviation.
Collapse
Affiliation(s)
- Mohammad Imtiyaz Ali
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | | | - Gajjela Bharath Kumar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Gouthami Dasari
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Srinivas Bandari
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| |
Collapse
|
8
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
9
|
Singh S, Kumar R, Payra S, Singh SK. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 2023; 15:e44359. [PMID: 37779744 PMCID: PMC10539991 DOI: 10.7759/cureus.44359] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
Artificial intelligence (AI) has transformed pharmacological research through machine learning, deep learning, and natural language processing. These advancements have greatly influenced drug discovery, development, and precision medicine. AI algorithms analyze vast biomedical data identifying potential drug targets, predicting efficacy, and optimizing lead compounds. AI has diverse applications in pharmacological research, including target identification, drug repurposing, virtual screening, de novo drug design, toxicity prediction, and personalized medicine. AI improves patient selection, trial design, and real-time data analysis in clinical trials, leading to enhanced safety and efficacy outcomes. Post-marketing surveillance utilizes AI-based systems to monitor adverse events, detect drug interactions, and support pharmacovigilance efforts. Machine learning models extract patterns from complex datasets, enabling accurate predictions and informed decision-making, thus accelerating drug discovery. Deep learning, specifically convolutional neural networks (CNN), excels in image analysis, aiding biomarker identification and optimizing drug formulation. Natural language processing facilitates the mining and analysis of scientific literature, unlocking valuable insights and information. However, the adoption of AI in pharmacological research raises ethical considerations. Ensuring data privacy and security, addressing algorithm bias and transparency, obtaining informed consent, and maintaining human oversight in decision-making are crucial ethical concerns. The responsible deployment of AI necessitates robust frameworks and regulations. The future of AI in pharmacological research is promising, with integration with emerging technologies like genomics, proteomics, and metabolomics offering the potential for personalized medicine and targeted therapies. Collaboration among academia, industry, and regulatory bodies is essential for the ethical implementation of AI in drug discovery and development. Continuous research and development in AI techniques and comprehensive training programs will empower scientists and healthcare professionals to fully exploit AI's potential, leading to improved patient outcomes and innovative pharmacological interventions.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Rajesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Shuvasree Payra
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Sunil K Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| |
Collapse
|
10
|
Akiyama S, Saku N, Miyata S, Ite K, Nonaka H, Toyoda M, Kamiya A, Kiyono T, Kimura T, Kasahara M, Umezawa A. Drug metabolic activity as a selection factor for pluripotent stem cell-derived hepatic progenitor cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:155-178. [PMID: 37678970 DOI: 10.1016/bs.pmbts.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As a metabolic organ, the liver plays a variety of roles, including detoxification. It has been difficult to obtain stable supplies of hepatocytes for transplantation and for accurate hepatotoxicity determination in drug discovery research. Human pluripotent stem cells, capable of unlimited self-renewal, may be a promising source of hepatocytes. In order to develop a stable supply of embryonic stem cell (ESC)-derived hepatocytes, we have purified human ESC-derived hepatic progenitor cells with exposure to cytocidal puromycin by using their ability to metabolize drugs. Hepatic progenitor cells stably proliferated at least 220-fold over 120 days, maintaining hepatic progenitor cell-like properties. High drug-metabolizing hepatic progenitor cells can be matured into liver cells by suppressing hepatic proliferative signals. The method we developed enables the isolation and proliferation of functional hepatic progenitors from human ESCs, thereby providing a stable supply of high-quality cell resources at high efficiency. Cells produced by this method may facilitate cell therapy for hepatic diseases and reliable drug discovery research.
Collapse
Affiliation(s)
- Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Miyagi, Japan
| | - Noriaki Saku
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Shoko Miyata
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kenta Ite
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Hidenori Nonaka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Research team for Aging Science (Vascular Medicine), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Mureo Kasahara
- Department of Pathology, National Center for Child Health and Development Hospital, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
| |
Collapse
|
11
|
Halder AK, Mitra S, Cordeiro MNDS. Designing multi-target drugs for the treatment of major depressive disorder. Expert Opin Drug Discov 2023; 18:643-658. [PMID: 37183604 DOI: 10.1080/17460441.2023.2214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Major depressive disorders (MDD) pose major health burdens globally. Currently available medications have their limitations due to serious adverse effects, long latency periods as well as resistance. Considering the highly complicated pathological nature of this disorder, it has been suggested that multitarget drugs or multi-target-directed ligands (MTDLs) may provide long-term therapeutic solutions for the treatment of MDD. AREAS COVERED In the current review, recent lead design and lead modification strategies have been covered. Important investigations reported in the last ten years (2013-2022) for the pre-clinical development of MTDLs (through synthetic medicinal chemistry and biological evaluation) for the treatment of MDD were discussed as case studies to focus on the recent design strategies. The discussions are categorized based on the pharmacological targets. On the basis of these important case studies, the challenges involved in different design strategies were discussed in detail. EXPERT OPINION Even though large variations were observed in the selection of pharmacological targets, some potential biological targets (NMDA, melatonin receptors) are required to be explored extensively for the design of MTDLs. Similarly, apart from structure activity relationship (SAR), in silico techniques such as multitasking cheminformatic modelling, molecular dynamics simulation and virtual screening should be exploited to a greater extent.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Soumya Mitra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Li L, Zang Q, Li X, Zhu Y, Wen S, He J, Zhang R, Abliz Z. Spatiotemporal pharmacometabolomics based on ambient mass spectrometry imaging to evaluate the metabolism and hepatotoxicity of amiodarone in HepG2 spheroids. J Pharm Anal 2023; 13:483-493. [PMID: 37305784 PMCID: PMC10257197 DOI: 10.1016/j.jpha.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Three-dimensional (3D) cell spheroid models combined with mass spectrometry imaging (MSI) enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions. Herein, airflow-assisted desorption electrospray ionization-MSI (AFADESI-MSI) was coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone (AMI). High-coverage imaging of >1100 endogenous metabolites in hepatocyte spheroids was achieved using AFADESI-MSI. Following AMI treatment at different times, 15 metabolites of AMI involved in N-desethylation, hydroxylation, deiodination, and desaturation metabolic reactions were identified, and according to their spatiotemporal dynamics features, the metabolic pathways of AMI were proposed. Subsequently, the temporal and spatial changes in metabolic disturbance within spheroids caused by drug exposure were obtained via metabolomic analysis. The main dysregulated metabolic pathways included arachidonic acid and glycerophospholipid metabolism, providing considerable evidence for the mechanism of AMI hepatotoxicity. In addition, a biomarker group of eight fatty acids was selected that provided improved indication of cell viability and could characterize the hepatotoxicity of AMI. The combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal information for drugs, drug metabolites, and endogenous metabolites after AMI treatment, providing an effective tool for in vitro drug hepatotoxicity evaluation.
Collapse
Affiliation(s)
- Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinzhu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shanjing Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
13
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
14
|
Tupertsev B, Osipenko S, Kireev A, Nikolaev E, Kostyukevich Y. Simple In Vitro 18O Labeling for Improved Mass Spectrometry-Based Drug Metabolites Identification: Deep Drug Metabolism Study. Int J Mol Sci 2023; 24:ijms24054569. [PMID: 36902002 PMCID: PMC10002766 DOI: 10.3390/ijms24054569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The identification of drug metabolites formed with different in vitro systems by HPLC-MS is a standard step in preclinical research. In vitro systems allow modeling of real metabolic pathways of a drug candidate. Despite the emergence of various software and databases, identification of compounds is still a complex task. Measurement of the accurate mass, correlation of chromatographic retention times and fragmentation spectra are often insufficient for identification of compounds especially in the absence of reference materials. Metabolites can "slip under the nose", since it is often not possible to reliably confirm that a signal belongs to a metabolite and not to other compounds in complex systems. Isotope labeling has proved to be a tool that aids in small molecule identification. The introduction of heavy isotopes is done with isotope exchange reactions or with complicated synthetic schemes. Here, we present an approach based on the biocatalytic insertion of oxygen-18 isotope under the action of liver microsomes enzymes in the presence of 18O2. Using the local anesthetic bupivacaine as an example, more than 20 previously unknown metabolites were reliably discovered and annotated in the absence of the reference materials. In combination with high-resolution mass spectrometry and modern methods of mass spectrometric metabolism data processing, we demonstrated the ability of the proposed approach to increase the degree of confidence in interpretating metabolism data.
Collapse
Affiliation(s)
- Boris Tupertsev
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
- Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Institutskiy per., 9, Dolgoprudny, 141701 Moscow, Russia
| | - Sergey Osipenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Albert Kireev
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Eugene Nikolaev
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Yury Kostyukevich
- Center of Molecular and Cellular Biology (CMCB), Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
- Correspondence:
| |
Collapse
|
15
|
Ramya Sucharitha E, Kumar Nukala S, Swamy Thirukovela N, Palabindela R, Sreerama R, Narsimha S. Synthesis and Biological Evaluation of Benzo[d] thiazolyl‐Sulfonyl‐Benzo[4,5]isothiazolo [2,3‐c][1,2,3] triazole Derivatives as EGFR Targeting Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- E. Ramya Sucharitha
- Department of Chemistry Chaitanya (Deemed to be University) Hanumakonda, Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University) Hanumakonda, Telangana India
| | | | | | - Rakesh Sreerama
- Department of Chemistry Chaitanya (Deemed to be University) Hanumakonda, Telangana India
| | - Sirassu Narsimha
- Department of Chemistry Chaitanya (Deemed to be University) Hanumakonda, Telangana India
| |
Collapse
|
16
|
Shreedhar Reddy T, Rai S, Kumar Koppula S. One‐Pot Synthesis of Isatin‐Pyrazole Hybrids as VEGFR‐2 Inhibitors and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T. Shreedhar Reddy
- Department of Chemistry GITAM Deemed to be University, Hyderabad campus, Rudraram, Sangareddy Hyderabad 502329 Telangana India
- Medicinal Chemistry Division Aragen Life Sciences Pvt. Ltd., IDA Nachram Hyderabad 500076 India
| | - Sanjay Rai
- Medicinal Chemistry Division Aragen Life Sciences Pvt. Ltd., IDA Nachram Hyderabad 500076 India
| | - Shiva Kumar Koppula
- Department of Chemistry GITAM Deemed to be University, Hyderabad campus, Rudraram, Sangareddy Hyderabad 502329 Telangana India
| |
Collapse
|
17
|
Wright PSR, Briggs KA, Thomas R, Smith GF, Maglennon G, Mikulskis P, Chapman M, Greene N, Phillips BU, Bender A. Statistical analysis of preclinical inter-species concordance of histopathological findings in the eTOX database. Regul Toxicol Pharmacol 2023; 138:105308. [PMID: 36481279 DOI: 10.1016/j.yrtph.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Preclinical inter-species concordance can increase the predictivity of observations to the clinic, potentially reducing drug attrition caused by unforeseen adverse events. We quantified inter-species concordance of histopathological findings and target organ toxicities across four preclinical species in the eTOX database using likelihood ratios (LRs). This was done whilst only comparing findings between studies with similar compound exposure (Δ|Cmax| ≤ 1 log-unit), repeat-dosing duration, and animals of the same sex. We discovered 24 previously unreported significant inter-species associations between histopathological findings encoded by the HPATH ontology. More associations with strong positive concordance (33% LR+ > 10) relative to strong negative concordance (12.5% LR- < 0.1) were identified. Of the top 10 most positively concordant associations, 60% were computed between different histopathological findings indicating potential differences in inter-species pathogenesis. We also observed low inter-species target organ toxicity concordance. For example, liver toxicity concordance in short-term studies between female rats and dogs observed an average LR+ of 1.84, and an average LR- of 0.73. This was corroborated by similarly low concordance between rodents and non-rodents for 75 candidate drugs in AstraZeneca. This work provides new statistically significant associations between preclinical species, but finds that concordance is rare, particularly between the absence of findings.
Collapse
Affiliation(s)
- Peter S R Wright
- University of Cambridge, Centre for Molecular Science Informatics, Department of Chemistry, Cambridge, United Kingdom.
| | | | | | - Graham F Smith
- AstraZeneca, Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, Cambridge, United Kingdom
| | - Gareth Maglennon
- AstraZeneca, Oncology Pathology, Clinical Pharmacology and Safety Sciences, R&D, Melbourn, United Kingdom
| | - Paulius Mikulskis
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, Gothenburg, Sweden
| | - Melissa Chapman
- AstraZeneca, Toxicology, Clinical Pharmacology and Safety Sciences, R&D, Melbourn, United Kingdom
| | - Nigel Greene
- AstraZeneca, Data Science and Artificial Intelligence, Clinical Pharmacology and Safety Sciences, R&D, Boston, MA, USA
| | - Benjamin U Phillips
- AstraZeneca, Data Sciences and Quantitative Biology, Discovery Sciences, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Andreas Bender
- University of Cambridge, Centre for Molecular Science Informatics, Department of Chemistry, Cambridge, United Kingdom.
| |
Collapse
|
18
|
Passannante R, Gómez-Vallejo V, Sagartzazu-Aizpurua M, Vignau Arsuaga L, Marco-Moreno P, Aldanondo G, Vallejo-Illarramendi A, Aguiar P, Cossío U, Martín A, Bergare J, Kingston L, Elmore CS, Morcillo MA, Ferrón P, Aizpurua JM, Llop J. Pharmacokinetic Evaluation of New Drugs Using a Multi-Labelling Approach and PET Imaging: Application to a Drug Candidate with Potential Application in Neuromuscular Disorders. Biomedicines 2023; 11:biomedicines11020253. [PMID: 36830793 PMCID: PMC9953224 DOI: 10.3390/biomedicines11020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The determination of pharmacokinetic properties of new chemical entities is a key step in the process of drug development. Positron emission tomography (PET) is an ideal technique to obtain both biodistribution and pharmacokinetic parameters of new compounds over a wide range of chemical modalities. Here, we use a multi-radionuclide/multi-position labelling approach to investigate distribution, elimination, and metabolism of a triazole-based FKBP12 ligand (AHK2) with potential application in neuromuscular disorders. METHODS Target engagement and stabilizing capacity of the drug candidate (AHK2) towards FKBP12-RyR was evaluated using competitive ligand binding and proximity ligation assays, respectively. Subsequently, AHK2 was labelled either with the positron emitter carbon-11 (11C) via 11C-methylation to yield both [11C]AHK2.1 and [11C]AHK2.2, or by palladium-catalysed reduction of the corresponding 5-iodotriazole derivative using 3H gas to yield [3H]AHK2. Metabolism was first investigated in vitro using liver microsomes. PET imaging studies in rats after intravenous (IV) administration at different doses (1 µg/Kg and 5 mg/Kg) were combined with determination of arterial blood time-activity curves (TACs) and analysis of plasma samples by high performance liquid chromatography (HPLC) to quantify radioactive metabolites. Arterial TACs were obtained in continuous mode by using an in-house developed system that enables extracorporeal blood circulation and continuous measurement of radioactivity in the blood. Pharmacokinetic parameters were determined by non-compartmental modelling of the TACs. RESULTS In vitro studies indicate that AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. [11C]AHK2.1, [11C]AHK2.2 and [3H]AHK2 could be obtained in overall non-decay corrected radiochemical yields of 14 ± 2%, 15 ± 2% and 0.05%, respectively. Molar activities were 60-110 GBq/µmol, 68-122 GBq/µmol and 0.4-0.5 GBq/μmol, respectively. In vitro results showed that oxidation of the thioether group into sulfoxide, demethylation of the CH3O-Ar residue and demethylation of -N(CH3)2 were the main metabolic pathways. Fast metabolism was observed in vivo. Pharmacokinetic parameters obtained from metabolite-corrected arterial blood TACs showed a short half-life (12.6 ± 3.3 min). Dynamic PET imaging showed elimination via urine when [11C]AHK2.2 was administered, probably reflecting the biodistribution of [11C]methanol as the major metabolite. Contrarily, accumulation in the gastrointestinal track was observed after administration of [11C]AKH2.1. CONCLUSIONS AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. Studies performed with the 3H- and 11C-labelled FKBP12/RyR stabilizer AHK2 confirm fast blood clearance, linear pharmacokinetics and rapid metabolism involving oxidation of the sulfide and amine moieties and oxidative demethylation of the CH3-O-Ar and tertiary amine groups as the main pathways. PET studies suggest that knowledge about metabolic pathways is paramount to interpret images.
Collapse
Affiliation(s)
- Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
| | | | - Laura Vignau Arsuaga
- Departamento de Química Orgánica-I, UPV/EHU-University of the Basque Country, 20018 San Sebastián, Spain
| | - Pablo Marco-Moreno
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Garazi Aldanondo
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- Deusto Physical TherapIker, Physical Therapy Department, Faculty of Health Sciences, University of Deusto, 20012 San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neuromuscular Diseases, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- Group of Neuroscience, Department of Pediatrics, Hospital Donostia, UPV/EHU, 20014 San Sebastián, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, IDIS, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
| | - Abraham Martín
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Laboratory of Neuroimaging and Biomarkers of Inflammation, Achucarro Basque Center for Neuroscience, Science Park UPV/EHU, Sede Building B, Sarriena, 48940 Leioa, Spain
| | - Jonas Bergare
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Charles S. Elmore
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | | | - Pablo Ferrón
- Miramoon Pharma S.L., Avda Tolosa-72, 20018 San Sebastián, Spain
| | - Jesus M. Aizpurua
- Departamento de Química Orgánica-I, UPV/EHU-University of the Basque Country, 20018 San Sebastián, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
- Correspondence:
| |
Collapse
|
19
|
Peng W, Li Z, Cai D, Yi X, Yue Jeff Zhang J, Zhong G, Ouyang H, Feng Y, Yang S. Gender differences pharmacokinetics, bioavailability, hepatic metabolism and metabolism studies of Pinnatifolone A, a sesquiterpenoid compound, in rats by LC-MS/MS and UHPLC-Q-TOF-MS/MS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154544. [PMID: 36610155 DOI: 10.1016/j.phymed.2022.154544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pinnatifolone A is a typical sesquiterpenoid and the primary active ingredient of Syringa oblata Lindl., has potent anti-inflammatory activity. However, Pinnatifolone A pharmacokinetic and metabolites analysis investigations in male and female rats, as well as its in vitro stability in male and female rat liver microsomes, have not been evaluated and compared. PURPOSE To investigate preclinical pharmacokinetic and metabolite in both genders, confirm gender differences, and provide usable information for the development of clinical applications. METHODS A quick, precise, and sensitive LC-MS/MS method was created and effectively used to determine the pharmacokinetics of oral (140 mg/kg) and intravenous (6.3 mg/kg) Pinnatifolone A in male and female rats, in vitro Pinnatifolone A elimination studies in male and female rat liver microsomes. Following that, a UHPLC-Q-TOF-MS/MS technique was established to identify the metabolic profiles of Pinnatifolone A obtained from rat plasma and excreta. RESULTS In the current study, we established for the first time an LC-MS/MS method for the quantitation of Pinnatifolone A with acceptable linearity and selectivity, recovery and matrix effect, accuracy and precision. The absolute oral bioavailability of Pinnatifolone A was approximately 30.36% in female rats, the clearance (CL) was 20.99±3.33 l/h/kg in female rats and 472.37±437.31 l/h/kg in male rats. This difference in rat genders may pertain to the sex-specific expression of hepatic enzymes as demonstrated in the metabolic stability evaluation in the present research; the male rats exhibited higher CLint(mic) (158.83±9.57 μl/min/mg protein) than female rats (76.47±7.90 μl/min/mg protein) liver microsomes, indicating higher Pinnatifolone A clearance in male rats. Twenty-four metabolites were detected and identified in female and male rats; N-acetylcysteine conjugation metabolite was the most abundant metabolites in both rat feces and urine. Furthermore, male and female rats had significantly different levels of the N-acetylcysteine conjugation metabolite. Hydrogenation metabolite was particular to female rats both in rat fecal and urine. Glucuronide conjugation metabolite was the predominant metabolite in rat plasma, and its amount in female rats was double that of male rats. CONCLUSIONS The present research is the first to report the preclinical pharmacokinetics and metabolites of Pinnatifolone A in male and female rats, confirming the gender-based differences. The findings provide a comprehensive overview for further understanding of the pharmacokinetic and metabolic characteristics of Pinnatifolone A and serve as a guide for its future development and utilization.
Collapse
Affiliation(s)
- Wanqian Peng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Zhiqiang Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Dingji Cai
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Xiaocui Yi
- Nanchang Aubrak Therapeutis Co., Ltd, No. 688 North Aixihu Road, Nanchang 330096, PR China
| | - Ji Yue Jeff Zhang
- Nanchang Aubrak Therapeutis Co., Ltd, No. 688 North Aixihu Road, Nanchang 330096, PR China
| | - Guoyue Zhong
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Shilin Yang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| |
Collapse
|
20
|
Mamidala A, Bokkala K, Thirukovela NS, Sirassu N, Bandari S, Nukala SK. Synthesis of Quinoline‐Morpholine‐Coupled 1,2,3‐Triazole Hybrids as
In vitro
EGFR inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202203763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annapurna Mamidala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
- Telangana Social Welfare Residential Degree and PG College for Women, Mahendrahills Hyderabad Telangana India
| | - Karthik Bokkala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
- Department of Chemistry Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar Hyderabad Telangana India
| | | | - Narsimha Sirassu
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| | - Srinivas Bandari
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| |
Collapse
|
21
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
22
|
Simvastatin: In Vitro Metabolic Profiling of a Potent Competitive HMG-CoA Reductase Inhibitor. SEPARATIONS 2022. [DOI: 10.3390/separations9120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Simvastatin (SV) is a semisynthetic derivative of lovastatin (LV), which is biosynthetically produced from the fungus Aspergillus terreus and has a high log p value (log p = 4.39)and thus high hepatic extraction and high efficacy in controlling cholesterol synthesis. The current study was undertaken to investigate the metabolic profile of SV using various mass spectrometry (MS) platforms. Metabolic profiling was studied in in vitro models, rat liver microsomes (RLMs), and isolated perfused rat liver hepatocytes (RLHs) using both ion trap and triple quadruple LC–MS/MS systems. A total of 29 metabolites were identified. Among them, three types of SV-related phase-I metabolites, namely exomethylene simvastatin acid (exomethylene SVA), monohydroxy SVA, and dihydrodiol SVA, were identified as new in RLMs. No phase-II metabolites were identified while incubating with RLHs.
Collapse
|
23
|
In Vivo Sustained Release of the Retrograde Transport Inhibitor Retro-2.1 Formulated in a Thermosensitive Hydrogel. Int J Mol Sci 2022; 23:ijms232314611. [PMID: 36498939 PMCID: PMC9735573 DOI: 10.3390/ijms232314611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
A recently developed inhibitor of retrograde transport, namely Retro-2.1, proved to be a potent and broad-spectrum lead in vitro against intracellular pathogens, such as toxins, parasites, intracellular bacteria and viruses. To circumvent its low aqueous solubility, a formulation in poly(ethylene glycol)-block-poly(D,L)lactide micelle nanoparticles was developed. This formulation enabled the study of the pharmacokinetic parameters of Retro-2.1 in mice following intravenous and intraperitoneal injections, revealing a short blood circulation time, with an elimination half-life of 5 and 6.7 h, respectively. To explain the poor pharmacokinetic parameters, the metabolic stability of Retro-2.1 was studied in vitro and in vivo, revealing fast cytochrome-P-450-mediated metabolism into a less potent hydroxylated analogue. Subcutaneous injection of Retro-2.1 formulated in a biocompatible and bioresorbable polymer-based thermosensitive hydrogel allowed for sustained release of the drug, with an elimination half-life of 19 h, and better control of its metabolism. This study provides a guideline on how to administer this promising lead in vivo in order to study its efficacy.
Collapse
|
24
|
Mazzari ALDA, Lacerda MG, Milton FA, Mulin Montechiari Machado JA, Sinoti SBP, Toullec AS, Rodrigues PM, Neves FDAR, Simeoni LA, Silveira D, Prieto JM. In vitro effects of European and Latin-American medicinal plants in CYP3A4 gene expression, glutathione levels, and P-glycoprotein activity. Front Pharmacol 2022; 13:826395. [PMID: 36278236 PMCID: PMC9579425 DOI: 10.3389/fphar.2022.826395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 μg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris, M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (−48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study.
Collapse
Affiliation(s)
| | | | - Flora Aparecida Milton
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | - Francisco de Assis Rocha Neves
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | | | - Dâmaris Silveira
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | - Jose Maria Prieto
- School of Pharmacy, University College London, London, United Kingdom
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| |
Collapse
|
25
|
Knoche L, Lisec J, Koch M. Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9349. [PMID: 35781351 DOI: 10.1002/rcm.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). METHODS Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. RESULTS The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+ ; 2Na+ K+ ; NaNH4 + ; KNH4 + ). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+ -complexes, we identified LM-TPs as K+ -complexes. CONCLUSION We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS.
Collapse
Affiliation(s)
- Lisa Knoche
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Matthias Koch
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
26
|
Esposito S, Orsatti L, Pucci V. Subcutaneous Catabolism of Peptide Therapeutics: Bioanalytical Approaches and ADME Considerations. Xenobiotica 2022; 52:828-839. [PMID: 36039395 DOI: 10.1080/00498254.2022.2119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Many peptide drugs such as insulin and glucagon-like peptide (GLP-1) analogues are successfully administered subcutaneously (SC). Following SC injection, peptides may undergo catabolism in the SC compartment before entering systemic circulation, which could compromise their bioavailability and in turn affect their efficacy.This review will discuss how both technology and strategy have evolved over the past years to further elucidate peptide SC catabolism.Modern bioanalytical technologies (particularly liquid chromatography-high-resolution mass spectrometry) and bioinformatics platforms for data mining has prompted the development of in silico, in vitro and in vivo tools for characterizing peptide SC catabolism to rapidly address proteolytic liabilities and, ultimately, guide the design of peptides with improved SC bioavailability.More predictive models able to recapitulate the interplay between SC catabolism and other factors driving SC absorption are highly desirable to improve in vitro/in vivo correlations.We envision the routine incorporation of in vitro and in vivo SC catabolism studies in ADME screening funnels to develop more effective peptide drugs for SC delivery.
Collapse
|
27
|
Chang M, Shi S, Liu H, Tu J, Yan Z, Ding S. Extraction, characterization, and in vivo antitumor activity of a novel polysaccharide from Coriandrum sativum L. J Food Biochem 2022; 46:e14323. [PMID: 35867013 DOI: 10.1111/jfbc.14323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
A novel polysaccharide was extracted from Coriandrum sativum L. at a yield of 4.56 ± 0.17% (n = 3). The extraction was optimized using response surface methodology: powder-to-liquid ratio 1:21 g/ml, extraction time 188 min, temperature 81°C, and three replicate extractions. The purified polysaccharide had an average molecular weight of 1.30 × 106 Da and was composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid in molar ratios of 1.52: 8.14: 20.85: 1: 2.42 with α-L-Araf-(1→, →6)-β-D-Galp-(1→, →4)-α-GalpA-(1→ and →2, 4)-α-Rhap-(1→). In vivo tests demonstrated that the polysaccharide suppressed H22 tumor growth in mice and protected the immune organs. Annexin V-FITC/PI, PI, and JC-1 staining showed that the primary mechanism of tumor inhibition was the induction of apoptosis and S-phase arrest with apoptosis achieved via a mitochondrial pathway. PRACTICAL APPLICATIONS: Coriandrum sativum L. is used as a culinary spice but its medicinal value has also been widely recognized. A novel polysaccharide was extracted from this herbaceous plant and its structure and bioactivity were investigated. This high-molecular-weight polysaccharide exhibited antitumor effects against H22 cells in mice and had potential to be developed as an anti-liver cancer medicine and functional food supplement.
Collapse
Affiliation(s)
- Mengli Chang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuyuan Shi
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huiping Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jianqiu Tu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiqian Yan
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suyun Ding
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
28
|
Damoiseaux D, Li W, Martínez-Chávez A, Beijnen JH, Schinkel AH, Huitema ADR, Dorlo TPC. Predictiveness of the Human-CYP3A4-Transgenic Mouse Model (Cyp3aXAV) for Human Drug Exposure of CYP3A4-Metabolized Drugs. Pharmaceuticals (Basel) 2022; 15:ph15070860. [PMID: 35890158 PMCID: PMC9322370 DOI: 10.3390/ph15070860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
The extrapolation of drug exposure between species remains a challenging step in drug development, contributing to the low success rate of drug approval. As a consequence, extrapolation of toxicology from animal models to humans to evaluate safe, first-in-human (FIH) doses requires high safety margins. We hypothesized that a human-CYP3A4-expressing transgenic (Cyp3aXAV) mouse is a more predictive model for human drug exposure of CYP3A4-metabolized small-molecule drugs. Population pharmacokinetic models based on wild-type (WT) and Cyp3aXAV mouse pharmacokinetic data of oral lorlatinib, brigatinib, ribociclib and fisogatinib were allometrically scaled and compared to human exposure. Extrapolation of the Cyp3aXAV mouse model closely predicted the observed human exposure for lorlatinib and brigatinib with a 1.1-fold and 1.0-fold difference, respectively, compared to a 2.1-fold and 1.9-fold deviation for WT-based extrapolations of lorlatinib and brigatinib, respectively. For ribociclib, the extrapolated WT mouse model gave better predictions with a 1.0-fold deviation compared to a 0.3-fold deviation for the extrapolated Cyp3aXAV mouse model. Due to the lack of a human population pharmacokinetic model for fisogatinib, only median maximum concentration ratios were calculated, resulting in ratios of 1.0 and 0.6 for WT and Cyp3aXAV mice extrapolations, respectively. The more accurate predictions of human exposure in preclinical research based on the Cyp3aXAV mouse model can ultimately result in FIH doses associated with improved safety and efficacy and in higher success rates in drug development.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (D.D.); (J.H.B.); (A.D.R.H.)
| | - Wenlong Li
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (W.L.); (A.M.-C.); (A.H.S.)
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (W.L.); (A.M.-C.); (A.H.S.)
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (D.D.); (J.H.B.); (A.D.R.H.)
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alfred H. Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (W.L.); (A.M.-C.); (A.H.S.)
| | - Alwin D. R. Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (D.D.); (J.H.B.); (A.D.R.H.)
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (D.D.); (J.H.B.); (A.D.R.H.)
- Correspondence:
| |
Collapse
|
29
|
Liu L, Hobohm L, Bredendiek F, Froschauer A, Zierau O, Parr MK, Keiler AM. Medaka embryos as a model for metabolism of anabolic steroids. Arch Toxicol 2022; 96:1963-1974. [PMID: 35352155 PMCID: PMC9151555 DOI: 10.1007/s00204-022-03284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
In anti-doping science, the knowledge of drug metabolism is a prerequisite to identify analytical targets for the detection of misused prohibited substances. As the most obvious way to study xenobiotic metabolism, the administration to human volunteers, faces ethical concerns, there is a need for model systems. In the present study, we investigated whether Oryzias latipes (medaka) embryos might be an alternative, non-animal test model to study human-like metabolism. In the present study, we exposed medaka embryos at the morula stage to the anabolic steroid metandienone (10 µM or 50 µM) for a period of 2 or 8 days. According to the fish embryo toxicity test (OECD test), we assessed the developmental status of the embryos. We further investigated metandienone metabolites by high-performance liquid chromatography- and gas chromatography-mass spectrometry. Medaka embryos produced three mono-hydroxylated and one reduced metabolite known from human biotransformation. Developmental malformations were observed for the exposition to 50 µM metandienone, while a significant elevation of the heart beat was also present in those individuals exposed to the lower dose for 8 days. The present study demonstrates that the medaka embryo represents a promising model to study human-like metabolism. Moreover, the judgement of developmental parameters of the fish embryos enables for the simultaneous assessment of toxicity.
Collapse
Affiliation(s)
- Lingyu Liu
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Leonie Hobohm
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Felix Bredendiek
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
- Core Facility BiosupraMol, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alexander Froschauer
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Oliver Zierau
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Annekathrin M Keiler
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.
- Institute of Doping Analysis & Sports Biochemistry, Dresdner Str. 12, 01731, Kreischa, Germany.
| |
Collapse
|
30
|
Understanding drug-protein binding and ADME studies for DMPK. Bioanalysis 2022; 14:919-921. [PMID: 35703337 DOI: 10.4155/bio-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
32
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
33
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
34
|
de Castro Barbosa E, Alves TMA, Kohlhoff M, Jangola STG, Pires DEV, Figueiredo ACC, Alves ÉAR, Calzavara-Silva CE, Sobral M, Kroon EG, Rosa LH, Zani CL, de Oliveira JG. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol J 2022; 19:31. [PMID: 35193667 PMCID: PMC8861615 DOI: 10.1186/s12985-022-01751-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
Abstract
Background The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV).
Methods Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. Results We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-β-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. Conclusions Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01751-z.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Tânia Maria Almeida Alves
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Markus Kohlhoff
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Soraya Torres Gaze Jangola
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Douglas Eduardo Valente Pires
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Anna Carolina Cançado Figueiredo
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Érica Alessandra Rocha Alves
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Carlos Eduardo Calzavara-Silva
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Marcos Sobral
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco - Praça Dom Helvécio, 74, São João del-Rei, Minas Gerais, 36301-160, Brasil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Carlos Leomar Zani
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.
| | - Jaquelline Germano de Oliveira
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.
| |
Collapse
|
35
|
LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics (Basel) 2022; 11:antibiotics11020155. [PMID: 35203758 PMCID: PMC8868298 DOI: 10.3390/antibiotics11020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction.
Collapse
|
36
|
Identification of Common Liver Metabolites of the Natural Bioactive Compound Erinacine A, Purified from Hericium erinaceus Mycelium. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metabolite identification, in the early stage, for compound discovery is necessary to assess the knowledge for the pharmaceutical improvement of drug safety and efficacy. Even if the drug has been released into the market, identification and continuous evaluation of the metabolites are required to avoid the risk of post-marketing withdrawal. Hericium erinaceus (HE), a medicinal mushroom, has broadly documented nutraceutical benefits, including anti-oxidant, anti-tumor, anti-aging, hypolipidemic, and gastric mucosal protection effects. Recently, erinacine A has been reported as the main natural bioactive compound in the mycelium of HE for functional food development. In neurological studies, the consumption of enrinacine A enriched HE mycelium demonstrates its significant nutraceutical effects in Alzheimer’s disease, Parkinson’s disease, and ischemic stroke. For the first time, we explored the metabolic process of erinacine A molecule and identified its metabolites from the rat and human liver S9 fraction. Using a liquid chromatography/triple quadrupole mass spectrometer for quantitative analysis, we observed that 75.44% of erinacine A was metabolized within 60 min in rat, and 32.34% of erinacine A was metabolized within 120 min in human S9. Using an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to identify the metabolites of erinacine A, five common metabolites were identified, and their possible structures were evaluated. Understanding the metabolic process of erinacine A and establishing its metabolite profile database will help promote the nutraceutical application and discovery of related biomarkers in the future.
Collapse
|
37
|
Foster JR, Mowat V, Singh BP, Ingram–Ross JL, Bradley D. Animal Models in Toxicologic Research: Dog. HASCHEK AND ROUSSEAUX'S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2022:721-750. [DOI: 10.1016/b978-0-12-821044-4.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Englezakis A, Gozalpour E, Kamran M, Fenner K, Mele E, Coopman K. Development of a hollow fibre-based renal module for active transport studies. J Artif Organs 2021; 24:473-484. [PMID: 33751266 PMCID: PMC8571221 DOI: 10.1007/s10047-021-01260-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Understanding the active transport of substrates by the kidney in the renal proximal convoluted tubule is crucial for drug development and for studying kidney diseases. Currently, cell-based assays are applied for this this purpose, however, differences between assays and the body are common, indicating the importance of in vitro-in vivo discrepancies. Several studies have suggested that 3D cell cultures expose cells to a more physiological environments, thus, providing more accurate cell function results. To mimic the renal proximal tubule, we have developed a custom-made renal module (RM), containing a single polypropylene hollow fibre (Plasmaphan P1LX, 3M) that serves as a porous scaffold and compared to conventional Transwell cell-based bidirectional transport studies. In addition, a constant flow of media, exposed cells to a physiological shear stress of 0.2 dyne/cm2. MDCK-Mdr1a cells, overexpressing the rat Mdr1a (P-gp) transporter, were seeded onto the HF membrane surface coated with the basement membrane matrix Geltrex which facilitated cell adhesion and tight junction formation. Cells were then seeded into the HF lumen where attachment and tight junction formation were evaluated by fluorescence microscopy while epithelial barrier integrity under shear stress was shown to be achieved by day 7. qPCR results have shown significant changes in gene expression compared to cells grown on Transwells. Kidney injury marker such as KIM-1 and the hypoxia marker CA9 have been downregulated, while the CD133 (Prominin-1) microvilli marker has shown a fivefold upregulation. Furthermore, the renal transporter P-gp expression has been downregulated by 50%. Finally, bidirectional assays have shown that cells grown in the RM were able to reabsorb albumin with a higher efficiency compared to Transwell cell cultures while efflux of the P-gp-specific substrates Hoechst and Rhodamine 123 was decreased. These results further support the effect of the microenvironment and fluidic shear stress on cell function and gene expression. This can serve as the basis for the development of a microphysiological renal model for drug transport studies.
Collapse
Affiliation(s)
- Alexandros Englezakis
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Elnaz Gozalpour
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK
| | - Mohammed Kamran
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Katherine Fenner
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough, UK
| | - Karen Coopman
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
39
|
Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, Wilson LL, Scouller B, Alder AF, Kruegel AC, Ansonoff M, Varadi A, Eans SO, Hunkele A, Allaoa A, Kalra S, Xu J, Pan YX, Pintar J, Kivell BM, Pasternak GW, Cameron MD, McLaughlin JP, Sames D, Majumdar S. Oxidative Metabolism as a Modulator of Kratom's Biological Actions. J Med Chem 2021; 64:16553-16572. [PMID: 34783240 DOI: 10.1021/acs.jmedchem.1c01111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Xiaohai Li
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lisa L Wilson
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Brittany Scouller
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Amy F Alder
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew C Kruegel
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Andras Varadi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Sanjay Kalra
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Jin Xu
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Bronwyn M Kivell
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Michael D Cameron
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
40
|
Pantaleão SQ, Fernandes PO, Gonçalves JE, Maltarollo VG, Honorio KM. Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. ChemMedChem 2021; 17:e202100542. [PMID: 34655454 DOI: 10.1002/cmdc.202100542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Indexed: 12/11/2022]
Abstract
This review presents the main aspects related to pharmacokinetic properties, which are essential for the efficacy and safety of drugs. This topic is very important because the analysis of pharmacokinetic aspects in the initial design stages of drug candidates can increase the chances of success for the entire process. In this scenario, experimental and in silico techniques have been widely used. Due to the difficulties encountered with the use of some experimental tests to determine pharmacokinetic properties, several in silico tools have been developed and have shown promising results. Therefore, in this review, we address the main free tools/servers that have been used in this area, as well as some cases of application. Finally, we present some studies that employ a multidisciplinary approach with synergy between in silico, in vitro, and in vivo techniques to assess ADME properties of bioactive substances, achieving successful results in drug discovery and design.
Collapse
Affiliation(s)
- Simone Q Pantaleão
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Kathia Maria Honorio
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Lu J, Liu J, Guo Y, Zhang Y, Xu Y, Wang X. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm Sin B 2021; 11:2973-2982. [PMID: 34745851 PMCID: PMC8551406 DOI: 10.1016/j.apsb.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
The 2020 Nobel Prize in Chemistry recognized CRISPR-Cas9, a super-selective and precise gene editing tool. CRISPR-Cas9 has an obvious advantage in editing multiple genes in the same cell, and presents great potential in disease treatment and animal model construction. In recent years, CRISPR-Cas9 has been used to establish a series of rat models of drug metabolism and pharmacokinetics (DMPK), such as Cyp, Abcb1, Oatp1b2 gene knockout rats. These new rat models are not only widely used in the study of drug metabolism, chemical toxicity, and carcinogenicity, but also promote the study of DMPK related mechanism, and further strengthen the relationship between drug metabolism and pharmacology/toxicology. This review systematically introduces the advantages and disadvantages of CRISPR-Cas9, summarizes the methods of establishing DMPK rat models, discusses the main challenges in this field, and proposes strategies to overcome these problems.
Collapse
Key Words
- AAV, adeno-associated virus
- ADMET, absorption, distribution, metabolism, excretion and toxicity
- Animal model
- BSEP, bile salt export pump
- CRISPR-Cas, clustered regularly interspaced short palindromic repeats-CRISPR-associated
- CRISPR-Cas9
- DDI, drug–drug interaction
- DMPK, drug metabolism and pharmacokinetics
- DSB, double-strand break
- Drug metabolism
- Gene editing
- HBV, hepatitis B virus
- HDR, homology directed repair
- HIV, human immunodeficiency virus
- HPV, human papillomaviruses
- KO, knockout
- NCBI, National Center for Biotechnology Information
- NHEJ, non-homologous end joining
- OATP1B, organic anion transporting polypeptides 1B
- OTS, off-target site
- PAM, protospacer-associated motif
- Pharmacokinetics
- RNP, ribonucleoprotein
- SD, Sprague–Dawley
- SREBP-2, sterol regulatory element-binding protein 2
- T7E I, T7 endonuclease I
- TALE, transcriptional activator-like effector
- TALEN, transcriptional activators like effector nucleases
- WT, wild-type
- ZFN, zinc finger nucleases
- crRNAs, CRISPR RNAs
- pre-crRNA, pre-CRISPR RNA
- sgRNA, single guide RNA
- tracRNA, trans-activating crRNA
Collapse
|
42
|
Novel oxazolones incorporated azo dye: Design, synthesis photophysical-DFT aspects and antimicrobial assessments with In-silico and In-vitro surveys. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
43
|
Gajula SNR, Nadimpalli N, Sonti R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab Rev 2021; 53:459-477. [PMID: 34406889 DOI: 10.1080/03602532.2021.1970178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of the metabolic stability of a new drug substance eliminated by biotransformation is essential for envisaging the pharmacokinetic parameters required for deciding drug dosing and frequency. Strategies aimed at modifying lead compounds may improve metabolic stability, thereby reducing the drug dosing frequency. Replacement of selective hydrogens with deuterium can effectively enhance the drug's metabolic stability by increasing the biological half-life. Further, cyclization, change in ring size, and chirality can substantially improve the metabolic stability of drugs. The microsomal t1/2 approach for measuring drug in vitro intrinsic clearance by automated LC-MS/MS offers sensitive high-throughput screens with reliable data. The obtained in vitro intrinsic clearance from metabolic stability data helps predict the drug's in vivo total clearance using different scaling factors and hepatic clearance models. This review summarizes all the recent approaches and technological advancements in metabolic stability studies for narrowing down the potential lead compounds in drug discovery. Further, we summarized the potential pitfalls and assumptions made during the in vivo intrinsic clearance estimation from in vitro intrinsic clearance.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nimisha Nadimpalli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
44
|
Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O’Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. J Infect Dis 2021; 224:S1-S21. [PMID: 34111271 PMCID: PMC8280938 DOI: 10.1093/infdis/jiab305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.
Collapse
Affiliation(s)
- Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James M Anderson
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Annaliesa Anderson
- Pfizer Vaccine Research and Development, Pfizer, Pearl River, New York, USA
| | - David Baker
- University of Washington, Seattle, Washington, USA
| | - Jay Bradner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sara Cherry
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark Denison
- Vanderbilt University, Nashville, Tennessee, USA
| | | | | | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | - Hilary Marston
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Stephanie Moore
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Jules O’Rear
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Celia A Schiffer
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Hugh D Smyth
- University of Texas at Austin, Austin, Texas, USA
| | | | - Marla Weetall
- PTC Therapeutics, Inc, South Plainfield, New Jersey, USA
| | - Sandra K Weller
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Richard Whitley
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Francis S Collins
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony J Conley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Belkadi A, Kenouche S, Melkemi N, Daoud I, Djebaili R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 2021. [DOI: 10.1007/s11224-021-01796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Zhang K, Wang M, Yao Y, Huang T, Liu F, Zhu C, Lin C. Pharmacokinetic study of seven bioactive components of Xiaoyan Lidan Formula in cholestatic and control rats using UPLC-MS/MS. Biomed Pharmacother 2021; 139:111523. [PMID: 33831838 DOI: 10.1016/j.biopha.2021.111523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
A rapid, sensitive, and reliable ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed to simultaneously determine the major bioactive components of Xiaoyan Lidan Formula (XYLDF) in rat plasma, using sulfamethoxazole as the internal standard (IS). The seven major bioactive components are andrographolide, dehydroandrographolide, enmein, 1-methoxicabony-β-carboline, 4,5-dimethoxy-canthin-6-one, 4-methoxy-5-hydroxy-canthin-6-one, and 1-hydroxymethyl-β-carboline. After pretreating by protein precipitation with methanol, separation was performed on a UPLC C18 column using gradient elution with a mobile phase consisting of acetonitrile and 0.1% formic acid at a flowing rate of 0.7 mL/min. Detection was performed on TSQ Quantum mass spectrometry set at the positive/negative ionization and multiple reaction monitoring (MRM) mode. The intra- and inter-day precision were less than 9.8%, whereas the intra- and inter-day accuracy were within ± 13.4%. The method was validated and applied to compare the pharmacokinetic profiles of the analytes in serum of Alpha-naphthylisothiocyanate (ANIT)-induced cholestasis and control rats after oral administration of XYLDF. The results showed remarkable differences in pharmacokinetic properties of the analytes between cholestatic (model) and control groups, thereby providing essential scientific information for better understanding of mechanism of XYLDF and a reference for its clinical applications.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Tao Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
47
|
Manier SK, Felske C, Zapp J, Eckstein N, Meyer MR. Studies on the In Vitro and In Vivo Metabolic Fate of the New Psychoactive Substance N-Ethyl-N-Propyltryptamine for Analytical Purposes. J Anal Toxicol 2021; 45:195-202. [PMID: 32507893 DOI: 10.1093/jat/bkaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Prerequisites for the reliable identification of substances in terms of forensic and clinical toxicology or doping control include knowledge about their metabolism and their excretion patterns in urine. N-Ethyl-N-propyltryptamine (N-ethyl-N-[2-(1H-indol-3-yl)ethyl]propan-1-amine, EPT) is an N,N-dialkylated tryptamine derivative, sold as new psychoactive substance, and supposed to act as a partial agonist at the 5-HT2A receptor. The aims of the presented study were to elucidate in vitro metabolites of EPT after incubations with pooled human liver S9 fraction (pS9) and in vivo metabolites excreted into rat urine. Finally, suitable analytical target compounds should be identified. Analysis of pS9 incubations using liquid chromatography-high-resolution tandem mass spectrometry revealed EPT metabolites formed after N-dealkylation as well as alkyl and aryl hydroxylation and formation of a hydroxy sulfate. Investigations using rat urine after oral dosing showed that the metabolic pathways of EPT shifted from in vitro hydroxylation of the alkyl amine group to an increased in vivo hydroxylation of the indole ring with several N-dealkyl metabolites. A glucuronic acid conjugate after hydroxylation of the indole ring was additionally found in vivo. The parent compound could not be detected in the rat urine samples. Therefore, analytical methods using mass spectrometry should include hydroxy-EPT and two hydroxy-EPT glucuronide isomers for reliable identification.
Collapse
Affiliation(s)
- Sascha K Manier
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany
| | - Christina Felske
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany.,Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, 66953 Pirmasens, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Niels Eckstein
- Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, 66953 Pirmasens, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany
| |
Collapse
|
48
|
Fayed EA, Bayoumi AH, Saleh AS, Ezz Al-Arab EM, Ammar YA. In vivo and in vitro anti-inflammatory, antipyretic and ulcerogenic activities of pyridone and chromenopyridone derivatives, physicochemical and pharmacokinetic studies. Bioorg Chem 2021; 109:104742. [PMID: 33647742 DOI: 10.1016/j.bioorg.2021.104742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
Throughout this study, we present the victorious synthesis of a novel class of 2(1H)-pyridone molecules, bearing a 4-hydroxyphenyl moiety through a one-pot reaction of 2-cyano-N-(4-hydroxyphenyl)acetamide with cyanoacetamide, acetylacetone or ethyl acetoacetate, and their corresponding aldehydes. In addition, the chromene moiety was introduced into the pyridine skeleton through the cyclization of the cyanoacetamide 2 with salicylaldehyde, followed by treatment with malononitrile, ethyl cyanoacetate, and cyanoacetamide, in order to improve their biological behaviour. Due to their anti-inflammatory, ulcerogenic, and antipyretic characters, the target molecules have undergone in-vitro and in-vivo examination, that display promising results. Moreover, in order to predict the physicochemical and ADME traits of all synthesized compounds and standard reference drugs, paracetamol and phenylbutazone, the in-silico prediction methodology was provided.
Collapse
Affiliation(s)
- Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11754, Egypt
| | - Aya S Saleh
- National Organization for Drug Control and Research, Cairo, Egypt
| | | | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11754, Egypt.
| |
Collapse
|
49
|
Punt A, Pinckaers N, Peijnenburg A, Louisse J. Development of a Web-Based Toolbox to Support Quantitative In-Vitro-to-In-Vivo Extrapolations (QIVIVE) within Nonanimal Testing Strategies. Chem Res Toxicol 2021; 34:460-472. [PMID: 33382582 PMCID: PMC7887804 DOI: 10.1021/acs.chemrestox.0c00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/25/2022]
Abstract
The goal of the present study was to develop an online web-based toolbox that contains generic physiologically based kinetic (PBK) models for rats and humans, including underlying calculation tools to predict plasma protein binding and tissue:plasma distribution, to be used for quantitative in-vitro-to-in-vivo extrapolations (QIVIVE). The PBK models within the toolbox allow first estimations of internal plasma and tissue concentrations of chemicals to be made, based on the logP and pKa of the chemicals and values for intestinal uptake and intrinsic hepatic clearance. As a case study, the toolbox was used to predict oral equivalent doses of in vitro ToxCast bioactivity data for the food additives methylparaben, propyl gallate, octyl gallate, and dodecyl gallate. These oral equivalent doses were subsequently compared with human exposure estimates, as a low tier assessment allowing prioritization for further assessment. The results revealed that daily intake levels of especially propyl gallate can lead to internal plasma concentrations that are close to in vitro biological effect concentrations, particularly with respect to the inhibition of human thyroid peroxidase (TPO). Estrogenic effects were not considered likely to be induced by the food additives, as daily exposure levels of the different compounds remained 2 orders of magnitude below the oral equivalent doses for in vitro estrogen receptor activation. Overall, the results of the study show how the toolbox, which is freely accessible through www.qivivetools.wur.nl, can be used to obtain initial internal dose estimates of chemicals and to prioritize chemicals for further assessment, based on the comparison of oral equivalent doses of in vitro biological activity data with human exposure levels.
Collapse
Affiliation(s)
- Ans Punt
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Nicole Pinckaers
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Jochem Louisse
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| |
Collapse
|
50
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|