1
|
Teng R, Sun J, Nie Y, Li A, Liu X, Sun W, An B, Ma C, Liu S, Li W. An ultra-thin and highly efficient electromagnetic interference shielding composite paper with hydrophobic and antibacterial properties. Int J Biol Macromol 2023; 253:127510. [PMID: 37865363 DOI: 10.1016/j.ijbiomac.2023.127510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Facing the increasing electromagnetic interference (EMI) pollution in the living environment, it is a new trend to explore an efficient EMI shielding material with facile fabrication and a wide range of application scenarios. A hydrophobic composite paper composed of silver nanowires (AgNWs) and kapok microfibers cellulose (MFC) was modified by methyl trimethoxy silane (MTMS) through a simple method. As a result, the composite paper has a good EMI shielding effectiveness (EMI SE) of 61.7 dB with electrical conductivity of 695.41 S/cm. The modification of MTMS improved the thermal stability performance of composite paper, which also increased its water contact angle to 113°. The free silver ions (Ag+) released from AgNWs can kill surrounding microbial bacteria, endowing the composite paper with good antibacterial property. Water resistance and antibacterial property enable MTMS/AgNWs/MFC composite paper to cope with complex application environments.
Collapse
Affiliation(s)
- Rui Teng
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jiaming Sun
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yuxia Nie
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Anqi Li
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xue Liu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenye Sun
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Bang An
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Wei L, Lin S, Yue Z, Zhang L, Ding T. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106120. [PMID: 37531678 DOI: 10.1016/j.marenvres.2023.106120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Toxicity of silver nanoparticles (AgNPs) at environmentally relevant concentrations has been received an increasing attention, and their influence on the bioavailability of personal care products has been seldom studied. Here, the toxicity of AgNPs in typical diatom Navicula sp. was explored, and their influence on the bioavailability of typical personal care products such as triclosan (TCS) and galaxolide (HHCB) was also investigated. The underlying toxicity mechanisms were explored using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Low concentrations of AgNPs (10 and 50 μg L-1) induced no observable responses of Navicula sp., in terms of growth rate, chlorophyll contents, and malondialdehyde accumulation. Furthermore, low doses of AgNPs could attenuate TCS or HHCB toxicity to Navicula sp., which was mainly attributed to the reduced oxidative stress. Metabolomics revealed that the disruption of DNA or RNA synthesis and instability of cytokinin-like substances may be also the reasons for the toxicity of AgNPs and TCS to Navicula sp. The damaged algal photosynthesis exposed to HHCB may be recovered by AgNPs, and the presence of signal chemicals (dehydrophytosphingosine and cardamonin) also showed a recovered algal growth. These results emphasize the potential of metabolomics to reveal toxicity mechanism, providing a new perspective on the aquatic risk assessment of nanoparticles and emerging organic pollutants.
Collapse
Affiliation(s)
- Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Lin
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiman Yue
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Kumar S, Masurkar P, Sravani B, Bag D, Sharma KR, Singh P, Korra T, Meena M, Swapnil P, Rajput VD, Minkina T. A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:54. [DOI: 10.1007/s11051-023-05708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
4
|
Hee CW, Shing WL, Chi CK. Effect of Lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Wang X, Luo H, Zheng W, Wang X, Xiao H, Zheng Z. Effects of Polydopamine Microspheres Loaded with Silver Nanoparticles on Lolium multiflorum: Bigger Size, Less Toxic. TOXICS 2021; 9:toxics9070151. [PMID: 34209749 PMCID: PMC8309745 DOI: 10.3390/toxics9070151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The rapid development of nanotechnology and its widespread use have given rise to serious concerns over the potential adverse impacts of nanomaterials on the Earth’s ecosystems. Among all the nanomaterials, silver nanoparticles (AgNPs) are one of the most extensively used nanomaterials due to their excellent antibacterial property. However, the toxic mechanism of AgNPs in nature is still unclear. One of the questions under debate is whether the toxicity is associated with the size of AgNPs or the silver ions released from AgNPs. In our previous study, a sub-micron hybrid sphere system with polydopamine-stabilized AgNPs (Ag@PDS) was synthesized through a facile and green method, exhibiting superior antibacterial properties. The current study aims to explore the unique toxicity profile of this hybrid sphere system by studying its effect on germination and early growth of Lolium multiflorum, with AgNO3 and 15 nm AgNPs as a comparison. The results showed the seed germination was insensitive/less sensitive to all three reagents; however, vegetative growth was more sensitive. Specifically, when the Ag concentration was lower than 40 mg/L, Ag@PDS almost had no adverse effects on the root and shoot growth of Lolium multiflorum seeds. By contrast, when treated with AgNO3 at a lower Ag concentration of 5 mg/L, the plant growth was inhibited significantly, and was reduced more in the case of AgNP treatment at the same Ag concentration. As the exposures of Ag@PDS, AgNO3, and AgNPs increased, so did the Ag content in the root and shoot. In general, Ag@PDS was proven to be a potential useful hybrid material that retains antibacterial property with light phytotoxicity.
Collapse
Affiliation(s)
- Xinrui Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Hongyong Luo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Weihua Zheng
- Serionix, Inc. 60 Hazelwood Dr., Champaign, IL 61820, USA;
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Haijun Xiao
- Central Hospital of Fengxian District, South Hospital of the Sixth People’s Hospital, Shanghai 201499, China
- Correspondence: (H.X.); (Z.Z.)
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
- Correspondence: (H.X.); (Z.Z.)
| |
Collapse
|
6
|
Zhao Z, Xu L, Wang Y, Li B, Zhang W, Li X. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15032-15042. [PMID: 33222069 DOI: 10.1007/s11356-020-11714-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag-NPs) are widely used in daily life and inevitably discharged into the aquatic environment, causing increasingly serious pollution. Research on the toxicity of Ag-NPs is still in infancy, little information is available on the relationships between oxidative stress and antioxidant, as well as damaging degrees of Ag-NPs to cellular structural components of Chlamydomonas reinhardtii (C. reinhardtiii). In the present study, we revealed the toxicity mechanism of C. reinhardtii under Ag-NPs stress using flow cytometry (FCM), metabolic methods, and transmission electron microscopy. The results showed that the chloroplasts were damaged and the synthesis of photosynthetic pigments was inhibited under Ag-NPs stress, which inhibited the growth of C. reinhardtii. Meanwhile, Ag-NPs also caused C. reinhardtii to produce excessive reactive oxygen species (ROS), increased malondialdehyde content and changed the permeability of cell membrane, resulting in the acceleration of internalization of Ag-NPs. The decrease of cell size and intracellular chlorophyll autofluorescence was observed with FCM. To deal with the induced excessive ROS that could lead to lethal and irreversible structure damage, C. reinhardtii activated antioxidant enzymes including superoxide dismutase and peroxidase. This study provides new information for better understanding the potential toxicity risks of Ag-NPs in the aquatic environment.
Collapse
Affiliation(s)
- Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Limei Xu
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bihan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Xiaochen Li
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
7
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
8
|
Kleiven M, Macken A, Oughton DH. Growth inhibition in Raphidocelis subcapita - Evidence of nanospecific toxicity of silver nanoparticles. CHEMOSPHERE 2019; 221:785-792. [PMID: 30684776 DOI: 10.1016/j.chemosphere.2019.01.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Silver, known for its antibacterial properties and for its toxicity to aquatic organisms, is one of the most frequently used nanomaterials and silver nanoparticles can be found in a range of consumer products as well as medical applications. The present study investigated the toxicity of three different silver nanomaterials (Mesosilver (M-Ag), NM300K and NM302) and AgNO3, in the algae Raphidocelis subcapitata. Exposures in the low μg L-1 range were combined with characterization of exposure media to determine whether differences in toxicity could be linked to changes in Ag speciation and/or any nanospecific mechanisms. All tested Ag compounds, except the NM302, reduced growth in the following order AgNO3 ≥ M-Ag > NM300K > NM302 with 50% effect concentrations of 7.09 (3.83-10.52), 9.7 (range not calculated) and 24.18 (15.66-98.16) μg L-1, for AgNO3, Mesosilver and NM300K, respectively. Characterization of exposure media showed that both concentration and time influenced the speciation and stability of Ag in algal test media, regardless of Ag source, and also affected the toxicity to R. subcapitata. In both AgNO3 and Mesosilver exposure the toxicity was correlated with the presence of dissolved Ag species (<10 kDa), however levels of dissolved Ag were too low to account for the observed Mesosilver effects, indicating a nanospecific contribution. Nanospecific toxicity was also observed for NM300K after 24 h of exposure, however the algal population recovered over time, probably due to changes in exposure caused by aggregation of the nanoparticles.
Collapse
Affiliation(s)
- Merethe Kleiven
- Norwegian University of Life Sciences, Center for Environmental Radioactivity, NMBU, P.O.Box 5003, 1432 Ås, Norway.
| | - Ailbhe Macken
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Deborah H Oughton
- Norwegian University of Life Sciences, Center for Environmental Radioactivity, NMBU, P.O.Box 5003, 1432 Ås, Norway.
| |
Collapse
|
9
|
Johari SA, Sarkheil M, Behzadi Tayemeh M, Veisi S. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO 3) in halophilic microalgae, Dunaliella salina. CHEMOSPHERE 2018; 209:156-162. [PMID: 29929121 DOI: 10.1016/j.chemosphere.2018.06.098] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO3) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC50) of AgNPs and AgNO3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO3 based on IC50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO3 inhibited the growth of D. salina at different saltwater medium.
Collapse
Affiliation(s)
- Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Behzadi Tayemeh
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Iran
| | - Shakila Veisi
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
10
|
Zhang W, Xiao B, Fang T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. CHEMOSPHERE 2018; 191:324-334. [PMID: 29045933 DOI: 10.1016/j.chemosphere.2017.10.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (Ag NPs) have been inevitably introduced into ecological environment during their extensive applications in daily human life. Thermodynamically, Ag NPs are unstable and transform into other species under various aqueous conditions. Ag NPs and their transformation products pose potential threats to environment and humans. However, the complex environmental conditions and transformations of Ag NPs complicate their human health and environmental risk assessment. To bridge the knowledge gap, four essential environmental transformations, oxidative dissolution, sulfidation, chlorination and photoreduction, of Ag NPs are reviewed herein. The mechanism, morphology and size change, as well as the toxicity of Ag NPs during these transformations under certain aqueous conditions are detailed. In particular, these environmental transformations have shown strong correlations that are discussed. The transformation, fate, bioavailability, morphology and toxicity of Ag NPs are critical factors and should be considered in a complete human health and environmental risk assessment of Ag NPs. The fluctuation of these factors in the realistic environment is also vital and should be considered.
Collapse
Affiliation(s)
- Weicheng Zhang
- Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bangding Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Yung MMN, Fougères PA, Leung YH, Liu F, Djurišić AB, Giesy JP, Leung KMY. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci Rep 2017; 7:15909. [PMID: 29162907 PMCID: PMC5698420 DOI: 10.1038/s41598-017-15988-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/02/2017] [Indexed: 01/25/2023] Open
Abstract
Because of wide applications of surface-modified zinc oxide nanoparticles (ZnO-NPs) in commercial sunscreens and their easiness of being released into water, concerns have been raised over their potential effects on aquatic organisms. This study compared physicochemical properties of silane-coated and uncoated ZnO-NPs to elucidate their toxic potencies toward three freshwater and three marine microalgae. Surfaces of ZnO-NPs (20 nm) were modified by coating with 3-aminopropyltrimethoxysilane (A-ZnO-NPs) that provides the particles with a more hydrophilic surface, or dodecyltrichlorosilane (D-ZnO-NPs) that turns the particles to hydrophobic. Uncoated ZnO-NPs formed larger aggregates and released more Zn2+ than did either of the two coated ZnO-NPs. The three nanoparticles formed larger aggregates but released less Zn2+ at pH 8 than at pH 7. Although sensitivities varied among algal species, A-ZnO-NPs and uncoated ZnO-NPs were more potent at inhibiting growth of algal cells than were D-ZnO-NPs after 96-h exposure to ZnO, uncoated ZnO-NPs, each of the coated ZnO-NPs or ZnSO4 at 10 concentrations ranging from 0.1 to 100 mg/L. The marine diatom Thalassiosira pseudonana exposed to ZnO-NPs, A-ZnO-NPs or D-ZnO-NPs resulted in differential expressions of genes, suggesting that each of the coatings resulted in ZnO-NPs acting through different mechanisms of toxic action.
Collapse
Affiliation(s)
- Mana M N Yung
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Paul-Antoine Fougères
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China.,Université de Bordeaux, Bordeaux, France
| | - Yu Hang Leung
- Department of Physics, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Fangzhou Liu
- Department of Physics, the University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - John P Giesy
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China. .,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Martín-Betancor K, Aguado S, Rodea-Palomares I, Tamayo-Belda M, Leganés F, Rosal R, Fernández-Piñas F. Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:547-555. [PMID: 28395270 DOI: 10.1016/j.scitotenv.2017.03.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 05/23/2023]
Abstract
In the present study, the biocidal activity of three different metal organic frameworks (MOFs) based on Co (Co-SIM1), Zn (Zn-SIM1) and Ag (Ag-TAZ) has been evaluated towards one green alga and two cyanobacteria. These organisms are present in fresh- and seawater and take part in the early stages of the biofouling process. The biocidal activity of these materials was evaluated by measuring chlorophyll a concentration and by inhibition zone testing. After 24h of exposure the three different MOFs caused >50% of chlorophyll a concentration inhibition towards both cyanobacteria, however, although the green alga presented a great sensitivity for Ag-TAZ (reaching 90% of chlorophyll a concentration inhibition), it was much more resistant to the rest of MOFs. Bioavailability of these metals was studied using ICP-MS, the chemical speciation program Visual MINTEQ, and a heavy metal bioreporter bioanalytical tool. We have elucidated that the biocidal activity presented by these MOFs was due to the dissolved metals released from them and more exactly, it depended on the bioavailability presented by these metal ions, which was closely related with the free ion concentration. This article highlights the potential use of different MOFs as biocidal material towards photosynthetic organisms and reveals important differences in the sensitivity between these organisms that should be taken into account in order to increase the biocidal spectrum of these materials.
Collapse
Affiliation(s)
- Keila Martín-Betancor
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Aguado
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Ismael Rodea-Palomares
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Tamayo-Belda
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | | |
Collapse
|
13
|
Seo SB, Dananjaya SHS, Nikapitiya C, Park BK, Gooneratne R, Kim TY, Lee J, Kim CH, De Zoysa M. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2017; 68:536-545. [PMID: 28757200 DOI: 10.1016/j.fsi.2017.07.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish.
Collapse
Affiliation(s)
- Seung Beom Seo
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bae Keun Park
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, New Zealand
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
14
|
You J, Song Y, Park C, Jang K, Na S. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier. NANOTECHNOLOGY 2017; 28:245501. [PMID: 28404982 DOI: 10.1088/1361-6528/aa6d16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a 'MAIS' (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Schiavo S, Duroudier N, Bilbao E, Mikolaczyk M, Schäfer J, Cajaraville MP, Manzo S. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:45-53. [PMID: 27751687 DOI: 10.1016/j.scitotenv.2016.10.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/23/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
In the last years, applications for silver nanoparticles (Ag NPs) continue to increase together with the concerns about their potential input and hazards in aquatic ecosystems, where microalgae are key organisms. The aim of the present study was to assess the relative sensitivity of three marine microalgae species with differences in cell wall composition/structure exposed to Poly N-vinyl-2-pirrolidone/Polyethyleneimine (PVP/PEI) coated 5nm Ag NPs and uncoated 47nm Ag NP. As limited attention has been paid to the role of coating agents in NP toxicity, the effect of PVP/PEI alone was also evaluated. After 72h in artificial seawater, 47nm Ag NPs formed around 1400nm size aggregates while PVP/PEI coated 5nm Ag NPs reached around 90nm. Ag+ release in seawater was around 3% for 47nm Ag NPs and 30% for PVP/PEI coated 5nm Ag NPs. PVP/PEI coated 5nm Ag NP aggregates entrapped the algal cells in a network of heteroaggregates, while uncoated 47nm Ag NPs interacted to a lesser extent with algae. The concentration of PVP/PEI coated 5nm Ag NPs that exerted the median effect (EC50) on algae growth pointed out differences in algae sensitivity: T. suecica was about 10 times more sensitive than I. galbana and P. tricornutum. Further, the coating agent alone was as toxic to algae as PVP/PEI coated 5nm Ag NPs, suggesting that presence of the coating agent was the main driver of toxicity of coated NPs. Uncoated 47nm Ag NPs instead, showed similar toxicity towards algae although P. tricornutum was slightly less sensitive than T. suecica and I. galbana, which agrees with the presence of a resistant silicified cell wall in the diatom. The present work demonstrates differences in sensitivity of three marine microalgae, possibly related to their cell surface and size characteristics.
Collapse
Affiliation(s)
- S Schiavo
- Enea CR Portici, P. le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - N Duroudier
- Dep. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
| | - E Bilbao
- Dep. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
| | - M Mikolaczyk
- University of Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - J Schäfer
- University of Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - M P Cajaraville
- Dep. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
| | - S Manzo
- Enea CR Portici, P. le E. Fermi, 1, 80055 Portici, Naples, Italy.
| |
Collapse
|
16
|
McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:231-246. [PMID: 27744152 DOI: 10.1016/j.scitotenv.2016.10.041] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 05/25/2023]
Abstract
The environmental impact of silver nanoparticles (AgNP) has become a topic of interest recently, this is due to the fact that AgNPs have been included in numerous consumer products including textiles, medical products, domestic appliances, food containers, cosmetics, paints and nano-functionalised plastics. The production, use and disposal of these AgNP containing products are potential routes for environmental exposure. These concerns have led to a number of studies investigating the release of particles from nano-functionalised products, the detection of the particles in the aquatic environment and the potential environmental toxicology of these AgNPs to aquatic organisms. The overall aim of this review is to examine methods for the capture and detection of AgNPs, potential toxicity and transmission routes in the aquatic environment.
Collapse
Affiliation(s)
- E McGillicuddy
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - I Murray
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - S Kavanagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - L Morrison
- Earth and Ocean Sciences, National University of Ireland Galway, Galway, Ireland
| | - A Fogarty
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - M Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P Dockery
- Discipline of Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - M Prendergast
- Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - N Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
González AG, Fernández-Rojo L, Leflaive J, Pokrovsky OS, Rols JL. Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag +: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22136-22150. [PMID: 27543131 DOI: 10.1007/s11356-016-7259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Although the industrial use of nanoparticles has increased over the past decade, the knowledge about their interaction with benthic phototrophic microorganisms in the environment is still limited. This study aims to characterize the toxic effect of ionic Ag+ and Ag nanoparticles (citrate-coated silver nanoparticles, AgNPs) in a wide concentration range (from 1 to 1000 μg L-1) and duration of exposure (2, 5 and 14 days) on three biofilm-forming benthic microorganisms: diatom Nitzschia palea, green algae Uronema confervicolum and cyanobacteria Leptolyngbya sp. Ag+ has a significant effect on the growth of all three species at low concentrations (1-10 μg L-1), whereas the inhibitory effect of AgNPs was only observed at 1000 μg L-1 and solely after 2 days of exposure. The inhibitory effect of both Ag+ and AgNPs decreased in the course of the experiments from 2 to 14 days, which can be explained by the progressive excretion of the exopolysaccharides and dissolved organic carbon by the microorganisms, thus allowing them to alleviate the toxic effects of aqueous silver. The lower impact of AgNPs on cells compared to Ag+ can be explained in terms of availability, internalization, reactive oxygen species production, dissolved silver concentration and agglomeration of AgNPs. The duration of exposure to Ag+ and AgNPs stress is a fundamental parameter controlling the bioaccumulation and detoxification in benthic phototrophic microorganisms.
Collapse
Affiliation(s)
- A G González
- Université de Toulouse, UPS, INP; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062, Toulouse, France.
- CNRS; EcoLab, 31062, Toulouse, France.
- GET (Géosciences Environnement Toulouse) UMR 5563 CNRS, 14 Avenue Edouard Belin, 31400, Toulouse, France.
| | - L Fernández-Rojo
- Université de Toulouse, UPS, INP; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062, Toulouse, France
- CNRS; EcoLab, 31062, Toulouse, France
- GET (Géosciences Environnement Toulouse) UMR 5563 CNRS, 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - J Leflaive
- Université de Toulouse, UPS, INP; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062, Toulouse, France
- CNRS; EcoLab, 31062, Toulouse, France
| | - O S Pokrovsky
- GET (Géosciences Environnement Toulouse) UMR 5563 CNRS, 14 Avenue Edouard Belin, 31400, Toulouse, France
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
- Institute of Ecological Problems of the North, 23 Nab. Severnoi Dviny, Arkhangelsk, Russia
| | - J-L Rols
- Université de Toulouse, UPS, INP; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062, Toulouse, France
- CNRS; EcoLab, 31062, Toulouse, France
| |
Collapse
|
18
|
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteomics 2016; 148:113-25. [PMID: 27469891 DOI: 10.1016/j.jprot.2016.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED Silver nanoparticles (Ag-NPs) are excessively used as antibacterial agents; however, environmental interaction specifically with the plants remain uncertain. To study the size-dependent effects of Ag-NPs on soybean under flooding, a proteomic technique was used. Morphological analysis revealed that treatment with Ag-NPs of 15nm promoted soybean growth under flooding compared to 2 and 50-80nm. A total of 228 common proteins that significantly changed in abundance under flooding without and with Ag-NPs of 2, 15, and 50-80nm. Under varying sizes of Ag-NPs, number of protein synthesis related proteins decreased compared to flooding while number of amino acid synthesis related proteins were increased under Ag-NPs of 15nm. Hierarchical clustering identified the ribosomal proteins that increased under Ag-NPs of 15nm while decreased under other sizes. In silico protein-protein interaction indicated the beta ketoacyl reducatse 1 as the most interacted protein under Ag-NPs of 15nm while least interacted under other sizes. The beta ketoacyl reductase 1 was up-regulated under Ag-NPs of 15nm while its enzyme activity was decreased. These results suggest that the different sizes of Ag-NPs might affect the soybean growth under flooding by regulating the proteins related to amino acid synthesis and wax formation. BIOLOGICAL SIGNIFICANCE This study highlighted the response of soybean proteins towards varying sizes of Ag NPs under flooding stress using gel-free proteomic technique. The Ag NPs of 15nm improved the length of root including hypocotyl of soybean. The proteins related to protein metabolism, cell division/organization, and amino acid metabolism were differentially changed under the varying sizes of Ag NPs. The protein synthesis-related proteins were decreased while amino acid metabolism-related proteins were increased under varying sizes of Ag NPs. The ribosomal proteins were increased under Ag NPs of 15nm. The beta ketoacyl reductase 1 was identified as the most interacted protein under varying sizes of Ag NPs. The mRNA expression level of beta ketoacyl reductase was up-regulated under Ag NPs of 15nm while its activity was decreased. These results suggest that the Ag NPs of 15nm improved the soybean growth under flooding stress by increasing the proteins related to amino acid synthesis and waxes formation.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
19
|
Garg S, Rong H, Miller CJ, Waite TD. Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3890-3896. [PMID: 26986484 DOI: 10.1021/acs.est.6b00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The kinetics of oxidative dissolution of silver nanoparticles (AgNPs) by chlorine is investigated in this work, with results showing that AgNPs are oxidized in the presence of chlorine at a much faster rate than observed in the presence of dioxygen and/or hydrogen peroxide. The oxidation of AgNPs by chlorine occurs in air-saturated solution in stoichiometric amounts with 2 mol of AgNPs oxidized for each mole of chlorine added. Dioxygen plays an important role in OCl(-)-mediated AgNP oxidation, especially at lower OCl(-) concentrations, with the mechanism shifting from stoichiometric oxidation of AgNPs by OCl(-) in the presence of dioxygen to catalytic removal of OCl(-) by AgNPs in the absence of dioxygen. These results suggest that the presence of chlorine will mitigate AgNP toxicity by forming less-reactive AgCl(s) following AgNP oxidation, although the disinfection efficiency of OCl(-) may not be significantly impacted by the presence of AgNPs because a chlorine-containing species is formed on OCl(-) decay that has significant oxidizing capacity. Our results further suggest that the antibacterial efficacy of nanosilver particles embedded on fabrics may be negated when treated with detergents containing strong oxidants, such as chlorine.
Collapse
Affiliation(s)
- Shikha Garg
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Hongyan Rong
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Syed S. Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 50:234-256. [PMID: 26926782 DOI: 10.1016/j.wasman.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The demand of silver is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high grade silver ores are retreating. However, there exist large stashes of low and lean grade silver ores that are yet to be exploited. The main impression of this work was to draw attention to the most advance technologies in silver recovery and recycling from various sources. The state of the art in recovery of silver from different sources by hydrometallurgical and bio-metallurgical processing and varieties of leaching, cementing, reducing agents, peeling, electro-coagulants, adsorbents, electro-dialysis, solvent extraction, ion exchange resins and bio sorbents are highlighted in this article. It is shown that the major economic driver for recycling of depleted sources is for the recovery of silver. In order to develop an nature-friendly technique for the recovery of silver from diverse sources, a critical comparison of existing technologies is analyzed for both economic viability and environmental impact was made in this amendment and silver ion toxicity is highlighted.
Collapse
Affiliation(s)
- S Syed
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| |
Collapse
|
21
|
Leonardo T, Farhi E, Pouget S, Motellier S, Boisson AM, Banerjee D, Rébeillé F, den Auwer C, Rivasseau C. Silver Accumulation in the Green Microalga Coccomyxa actinabiotis: Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:359-367. [PMID: 26606242 DOI: 10.1021/acs.est.5b03306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgae are good candidates for toxic metal remediation biotechnologies. This study explores the cellular processes implemented by the green microalga Coccomyxa actinabiotis to take up and cope with silver over the concentration range of 10(-7) to 10(-2) M Ag(+). Understanding these processes enables us to assess the potential of this microalga for applications for bioremediation. Silver in situ speciation and localization were investigated using X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. Silver toxicity was evaluated by monitoring microalgal growth and photochemical parameters. Different accumulation mechanisms were brought out depending on silver concentration. At low micromolar concentration, microalgae fixed all silver initially present in solution, trapping it inside the cells into the cytosol, mainly as unreduced Ag(I) bound with molecules containing sulfur. Silver was efficiently detoxified. When concentration increased, silver spread throughout the cell and particularly entered the chloroplast, where it damaged the photosystem. Most silver was reduced to Ag(0) and aggregated to form crystalline silver nanoparticles of face-centered cubic structure with a mean size of 10 nm. An additional minor interaction of silver with molecules containing sulfur indicated the concomitant existence of the mechanism observed at low concentration or nanoparticle capping. Nanoparticles were observed in chloroplasts, in mitochondria, on the plasma membrane, on cytosolic membrane structures, and in vacuoles. Above 10(-4) M Ag(+), damages were irreversible, and photosynthesis and growth were definitely inhibited. However, high silver amounts remained confined inside microalgae, showing their potential for the bioremediation of contaminated water.
Collapse
Affiliation(s)
- Thomas Leonardo
- CEA, DSV, Laboratoire de Physiologie Cellulaire Végétale , 17 rue des Martyrs, 38054 Grenoble, France
- CNRS, UMR5168 , 17 rue des Martyrs, 38054 Grenoble, France
- Université Grenoble Alpes , 17 rue des Martyrs, 38000 Grenoble, France
- INRA , 17 rue des Martyrs, 38054 Grenoble, France
- Institut Laue Langevin , 71 rue des Martyrs, 38042 Grenoble, France
| | - Emmanuel Farhi
- Institut Laue Langevin , 71 rue des Martyrs, 38042 Grenoble, France
| | - Stéphanie Pouget
- CEA, Institut Nanosciences et Cryogénie , 17 rue des Martyrs, 38054 Grenoble, France
| | - Sylvie Motellier
- CEA, DRT, LITEN, Laboratoire de Nanocaractérisation et Nanosécurité , 17 rue des Martyrs, 38054 Grenoble, France
| | - Anne-Marie Boisson
- CEA, DSV, Laboratoire de Physiologie Cellulaire Végétale , 17 rue des Martyrs, 38054 Grenoble, France
- CNRS, UMR5168 , 17 rue des Martyrs, 38054 Grenoble, France
- Université Grenoble Alpes , 17 rue des Martyrs, 38000 Grenoble, France
- INRA , 17 rue des Martyrs, 38054 Grenoble, France
| | - Dipanjan Banerjee
- Dutch-Belgian Beamline (DUBBLE), ESRF - European Synchrotron Radiation Facility, CS 40220 , 71 rue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- CEA, DSV, Laboratoire de Physiologie Cellulaire Végétale , 17 rue des Martyrs, 38054 Grenoble, France
- CNRS, UMR5168 , 17 rue des Martyrs, 38054 Grenoble, France
- Université Grenoble Alpes , 17 rue des Martyrs, 38000 Grenoble, France
- INRA , 17 rue des Martyrs, 38054 Grenoble, France
| | - Christophe den Auwer
- Institut de Chimie de Nice, UMR7272, Université Nice Sophia Antipolis , 06108 Nice, France
| | - Corinne Rivasseau
- CEA, DSV, Laboratoire de Physiologie Cellulaire Végétale , 17 rue des Martyrs, 38054 Grenoble, France
- CNRS, UMR5168 , 17 rue des Martyrs, 38054 Grenoble, France
- Université Grenoble Alpes , 17 rue des Martyrs, 38000 Grenoble, France
- INRA , 17 rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
22
|
Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:788-795. [PMID: 26322966 DOI: 10.1016/j.jhazmat.2015.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.
Collapse
Affiliation(s)
- Casey L Doolette
- School of Agriculture Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia.
| | - Michael J McLaughlin
- School of Agriculture Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia; CSIRO Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Advanced Materials Transformational Capability Platform-Nanosafety, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia.
| | - Jason K Kirby
- CSIRO Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Advanced Materials Transformational Capability Platform-Nanosafety, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia.
| | - Divina A Navarro
- CSIRO Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Advanced Materials Transformational Capability Platform-Nanosafety, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia.
| |
Collapse
|
23
|
Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. MARINE ENVIRONMENTAL RESEARCH 2015; 111:60-73. [PMID: 26002248 DOI: 10.1016/j.marenvres.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field.
Collapse
Affiliation(s)
- Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Sara Pérez
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
24
|
Navarro E, Wagner B, Odzak N, Sigg L, Behra R. Effects of Differently Coated Silver Nanoparticles on the Photosynthesis of Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8041-7. [PMID: 26018638 DOI: 10.1021/acs.est.5b01089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Various factors have been invoked to explain the toxicity of silver nanoparticles (AgNP) to microorganisms including particle size and the nature of stabilizing coatings as well as the amount of dissolved silver occurring in AgNP suspensions. In this study we have assessed the effects of nine differently coated AgNP (chitosan, lactate, polyvinylpyrrolidone, polyethelene glycol, gelatin, sodium dodecylbenzenesulfonate, citrate, dexpanthenol, and carbonate) and AgNO3 on the photosynthesis of the freshwater algae Chlamydomonas reinhardtii. We have thus examined how AgNP effects on algae relate to particle size, measured dissolved silver (Agd), and bioavailable silver (Agbioav). Agbioav was indirectly estimated in toxicity experiments by cysteine-silver complexation at the EC50. The EC50 calculated as a function of measured Agd concentrations showed for some coatings values similar to that of dissolved Ag, whereas other coated AgNP displayed lower EC50 values. In all cases, excess cysteine completely prevented effects on photosynthetic yield, confirming the role of Agd as a cause of the observed effect on the photosynthesis. Toxicity was related neither to particle size nor to the coatings. For all differently coated AgNP suspensions, the EC50 values calculated as a function of Agbioav were comparable to the value of AgNO3. Depending on the coatings Agbioav was comparable to or higher than measured Agd.
Collapse
Affiliation(s)
- Enrique Navarro
- †CSIC, Pyrenean Institute of Ecology, Avenida Montañana 1005, Apartado 13034, 50059 Zaragoza, Spain
| | - Bettina Wagner
- ‡Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| | - Niksa Odzak
- ‡Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| | - Laura Sigg
- ‡Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| | - Renata Behra
- ‡Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
25
|
Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. ENVIRONMENTAL RESEARCH 2015; 136:253-263. [PMID: 25460644 DOI: 10.1016/j.envres.2014.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 μg/ml) exposure, these neural cells had obviously increased IL-1β secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-β (Aβ) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aβ deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Lun Hsiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chu-Fang Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
26
|
Futra D, Heng LY, Surif S, Ahmad A, Ling TL. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. SENSORS (BASEL, SWITZERLAND) 2014; 14:23248-68. [PMID: 25490588 PMCID: PMC4299061 DOI: 10.3390/s141223248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
Collapse
Affiliation(s)
- Dedi Futra
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Salmijah Surif
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Asmat Ahmad
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| | - Tan Ling Ling
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), LESTARI, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia.
| |
Collapse
|
27
|
Ribeiro F, Gallego-Urrea JA, Goodhead RM, Van Gestel CAM, Moger J, Soares AMVM, Loureiro S. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution. Nanotoxicology 2014; 9:686-95. [PMID: 25307070 DOI: 10.3109/17435390.2014.963724] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Raphidocelis subcapitata is a freshwater algae species that constitutes the basis of many aquatic trophic chains. In this study, R. subcapitata was used as a model species to investigate the kinetics of uptake and elimination of silver nanoparticles (AgNP) in comparison to silver nitrate (AgNO3) with particular focus on the Ag sized-fractions in solution. AgNP used in this study were provided in a suspension of 1 mg Ag/l, with an initial size of 3-8 nm and coated with an alkane material. Algae was exposed for 48 h to both AgNP and AgNO3 and sampled at different time points to determine their internal Ag concentration over time. Samples were collected and separated into different sized fractions: total (Agtot), water column Ag (Agwater), small particulate Ag (Agsmall.part.) and dissolved Ag (Agdis). At AgNO3 exposures algae reached higher bioconcentration factor (BCF) and lower elimination rate constants than at AgNP exposures, meaning that Ag is more readily taken up by algae in its dissolved form than in its small particulate form, however slowly eliminated. When modelling the kinetics based on the Agdis fraction, a higher BCF was found. This supports our hypothesis that Ag would be internalised by algae only in its dissolved form. In addition, algae images obtained by Coherent Anti-stokes Raman Scattering (CARS) microscopy demonstrated large aggregates of nanoparticles external to the algae cells with no evidence of its internalisation, thus providing a strong suggestion that these AgNP were not able to penetrate the cells and Ag accumulation happens through the uptake of Ag ions.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- Department of Biology & CESAM, University of Aveiro , Aveiro , Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
De Schamphelaere KAC, Nys C, Janssen CR. Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:348-359. [PMID: 25089923 DOI: 10.1016/j.aquatox.2014.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Scientifically sound risk assessment and derivation of environmental quality standards for lead (Pb) in the freshwater environment are hampered by insufficient data on chronic toxicity and bioavailability to unicellular green algae. Here, we first performed comparative chronic (72-h) toxicity tests with three algal species in medium at pH 6, containing 4 mg fulvic acid (FA)/L and containing organic phosphorous (P), i.e. glycerol-2-phosphate, instead of PO4(3-) to prevent lead-phosphate mineral precipitation. Pseudokirchneriella subcapitata was 4-fold more sensitive to Pb than Chlorella kesslerii, with Chlamydomonas reinhardtii in the middle. The influence of medium physico-chemistry was therefore investigated in detail with P. subcapitata. In synthetic test media, higher concentrations of fulvic acid or lower pH protected against toxicity of (filtered) Pb to P. subcapitata, while effects of increased Ca or Mg on Pb toxicity were less clear. When toxicity was expressed on a free Pb(2+) ion activity basis, a log-linear, 260-fold increase of toxicity was observed between pH 6.0 and 7.6. Effects of fulvic acid were calculated to be much more limited (1.9-fold) and were probably even non-existent (depending on the affinity constant for Pb binding to fulvic acid that was used for calculating speciation). A relatively simple bioavailability model, consisting of a log-linear pH effect on Pb(2+) ion toxicity linked to the geochemical speciation model Visual Minteq (with the default NICA-Donnan description of metal and proton binding to fulvic acid), provided relatively accurate toxicity predictions. While toxicity of (filtered) Pb varied 13.7-fold across 14 different test media (including four Pb-spiked natural waters) with widely varying physico-chemistry (72h-EC50s between 26.6 and 364 μg/L), this bioavailability model displayed mean and maximum prediction errors of only 1.4 and 2.2-fold, respectively, thus indicating the potential usefulness of this bioavailability model to reduce uncertainty in site-specific risk assessment. A model-based comparison with other species indicated that the sensitivity difference between P. subcapitata and two of the most chronically Pb-sensitive aquatic invertebrates (the crustacean Ceriodaphnia dubia and the snail Lymnaea stagnalis) is strongly pH dependent, with P. subcapitata becoming the most sensitive of the three at pH > 7.4. This indicates that inter-species differences in Pb bioavailability relationships should be accounted for in risk assessment and in the derivation of water quality criteria or environmental quality standards for Pb. The chronic toxicity data with three algae species and the bioavailability model presented here will help to provide a stronger scientific basis for evaluating ecological effects of Pb in the freshwater environment.
Collapse
Affiliation(s)
- K A C De Schamphelaere
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| | - C Nys
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| | - C R Janssen
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| |
Collapse
|
29
|
Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A. Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal 2014; 2014:641759. [PMID: 25202734 PMCID: PMC4150468 DOI: 10.1155/2014/641759] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022] Open
Abstract
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
Collapse
Affiliation(s)
- Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Samira Bagheri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University Malaya, IPS Building, 50603 Kuala Lumpur, Malaysia
| | | | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | | | - Ali Baghdadi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Dong B, Ho N, Ogden KL, Arnold RG. Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 103:45-53. [PMID: 24565931 DOI: 10.1016/j.ecoenv.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Meaningful use of biofuels for transportation depends on utilization of water from non-traditional, non-potable resources. Here it is hypothesized that (i) reclaimed wastewater or nutrient-rich side streams derived from municipal wastewater treatment are suitable for that purpose and (ii) use of those waters for algal growth can promote water quality through nutrient management. Experiments showed that metals levels in municipal wastewaters are unlikely to inhibit algal growth and lipid production, at least by metals tolerant microalgae like Nannochloropsis salina. Cells grew without inhibition in treated municipal wastewater or centrate derived from wastewater treatment at additions up to 75 percent v/v in their normal growth medium minus nitrogen and phosphorus. Although wastewater provides a suitable nutrient source for algal growth, not enough municipal wastewater is available to support a meaningful biofuels industry without efficient water recycling and nutrient recovery/reuse from spent algae.
Collapse
Affiliation(s)
- Bingfeng Dong
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721, United States.
| | - Nam Ho
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721, United States
| | - Kimberly L Ogden
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721, United States
| | - Robert G Arnold
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721, United States
| |
Collapse
|
31
|
Boenigk J, Beisser D, Zimmermann S, Bock C, Jakobi J, Grabner D, Großmann L, Rahmann S, Barcikowski S, Sures B. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS One 2014; 9:e95340. [PMID: 24755991 PMCID: PMC3995725 DOI: 10.1371/journal.pone.0095340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs) with significant differential expression with a false discovery rate (FDR) <0.05 between the control (KO) and AgNO3 (NO3) groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.
Collapse
Affiliation(s)
- Jens Boenigk
- Biodiversity and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Daniela Beisser
- Genome Informatics, Institute of Human Genetics, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Sonja Zimmermann
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Christina Bock
- Biodiversity and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany
| | - Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Lars Großmann
- Biodiversity and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A 2014; 111:3490-5. [PMID: 24550482 DOI: 10.1073/pnas.1319388111] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding mechanistic and cellular events underlying a toxicological outcome allows the prediction of impact of environmental stressors to organisms living in different habitats. A systems-based approach aids in characterizing molecular events, and thereby the cellular pathways that have been perturbed. However, mapping only adverse outcomes of a toxicant falls short of describing the stress or adaptive response that is mounted to maintain homeostasis on perturbations and may confer resistance to the toxic insult. Silver is a potential threat to aquatic organisms because of the increasing use of silver-based nanomaterials, which release free silver ions. The effects of silver were investigated at the transcriptome, proteome, and cellular levels of Chlamydomonas reinhardtii. The cells instigate a fast transcriptome and proteome response, including perturbations in copper transport system and detoxification mechanisms. Silver causes an initial toxic insult, which leads to a plummeting of ATP and photosynthesis and damage because of oxidative stress. In response, the cells mount a defense response to combat oxidative stress and to eliminate silver via efflux transporters. From the analysis of the perturbations of the cell's functions, we derived a detailed mechanistic understanding of temporal dynamics of toxicity and adaptive response pathways for C. reinhardtii exposed to silver.
Collapse
|
33
|
Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escuredo K, Rainieri S. Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 2014; 34:562-75. [PMID: 24395442 DOI: 10.1002/jat.2975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/22/2013] [Accepted: 11/15/2013] [Indexed: 01/28/2023]
Abstract
A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.
Collapse
Affiliation(s)
- Maider Olasagasti
- AZTI-Tecnalia, Food Research Division, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:232-241. [PMID: 23895786 DOI: 10.1016/j.scitotenv.2013.06.101] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 05/29/2023]
Abstract
Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO₃ by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO₃ and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- Department of Biology & CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leclerc S, Wilkinson KJ. Bioaccumulation of Nanosilver by Chlamydomonas reinhardtii-nanoparticle or the free ion? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:358-64. [PMID: 24320028 DOI: 10.1021/es404037z] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The bioavailability of a small silver nanoparticle (nAg; nominal size of 5 nm with a polyacrylate coating) by the green alga C. reinhardtii was investigated in order to assess the contributions of Ag(+) and nAg to cellular internalization. Upon exposure to nAg, Ag biouptake exceeded what was predicted based upon measured Ag(+) concentrations. Indeed, although Ag biouptake was greatly reduced when excess cysteine was added to the nAg, it was nonetheless significantly above control levels. For both exposures to nAg and Ag(+), expression levels of the Copper Transport Protein 2 (CTR2) indicated that Ag biouptake could be attributed to the internalization of Ag(+). Exposure to Ag(+) or nAg increased CTR2 expression, even when cysteine was present with the nAg. Darkfield microscopy coupled with hyperspectral imagery showed that the presence of silver nanoparticles inside the cells was more likely due to the rereduction of Ag(+) than to the internalization of nAg. The weight of evidence indicated that nAg increased Ag biouptake by locally increasing the surface concentrations of Ag(+).
Collapse
Affiliation(s)
- Simon Leclerc
- Biophysical Environmental Chemistry Group Department of Chemistry, University of Montreal , C.P. 6128 Succursale Centre-ville, Montreal H3C 3J7, Canada
| | | |
Collapse
|
36
|
Oukarroum A, Gaudreault MH, Pirastru L, Popovic R. Alleviation of silver toxicity by calcium chloride (CaCl2) in Lemna gibba L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:235-239. [PMID: 23974355 DOI: 10.1016/j.plaphy.2013.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The toxicity effects of silver (Ag) and the protective role of calcium chloride (CaCl2) was studied in Lemna gibba L. (L. gibba) plants. Silver speciation showed that silver toxicity in L. gibba culture medium can be attributed to free ionic Ag(+) concentration. Frond abscission, intracellular reactive oxygen species (ROS) formation and intracellular uptake of Ag(+) were investigated when L. gibba plants were exposed to AgNO3 concentrations (0.5, 1, 5, and 10 μM) supplemented or not by 10 μM CaCl2. An increase in frond abscission, intracellular ROS and intracellular uptake of Ag(+) were detected in L. gibba plants for all tested concentrations of AgNO3 after 24 h treatment. However, addition of 10 μM CaCl2 to the L. gibba culture medium reduced the toxic effects of Ag by decreasing silver uptake into the plant and intracellular ROS formation. The results suggest that Ag-induced toxicity was attributed to Ag(+) accumulation and chloride was able to protect L. gibba plants against Ag toxicity by formation of complexes with Ag and then alleviation of the metal induced oxidative stress.
Collapse
Affiliation(s)
- Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Case Postal 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | | | | | | |
Collapse
|
37
|
Angel BM, Batley GE, Jarolimek CV, Rogers NJ. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. CHEMOSPHERE 2013; 93:359-365. [PMID: 23732009 DOI: 10.1016/j.chemosphere.2013.04.096] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater. In freshwater and seawater, citrate-coated AgNPs (Ag-Cit) had a faster rate of dissolution than PVP-coated AgNPs (Ag-PVP), while micron-sized silver exhibited the slowest dissolution rate. However, similar dissolved silver was measured for both AgNPs after 72h in freshwater (500-600μgL(-1)) and seawater (1300-1500μgL(-1)), with higher concentrations in seawater attributed to chloride complexation. When determined on a mass basis, the 72-h IC50 (inhibitory concentration giving 50% reduction in algal growth rate) for Pseudokirchneriella subcapitata and Phaeodactylum tricornutum and the 48-h LC50 for Ceriodaphnia dubia exposure to Ag(+) (1.1, 400 and 0.11μgL(-1), respectively), Ag-Cit (3.0, 2380 and 0.15μgL(-1), respectively) and Ag-PVP (19.5, 3690 and 2.0μgL(-1), respectively) varied widely, with toxicity in the order Ag(+)>Ag-Cit>Ag-PVP. Micron-sized silver treatments elicited much lower toxicity than ionic Ag(+) or AgNP to P. subcapitata. However, when related to the dissolved silver released from the nanoparticles the toxicities were similar to ionic silver treatments. The presence of natural organic matter stabilised the particles and reduced toxicity in freshwater. These results indicate that dissolved silver was responsible for the toxicity and highlight the need to account for matrix components such as chloride and organic matter in natural waters that influence AgNP fate and mitigate toxicity.
Collapse
Affiliation(s)
- Brad M Angel
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.
| | | | | | | |
Collapse
|
38
|
Martínez-Abad A, Sánchez G, Lagaron JM, Ocio MJ. Ligands affecting silver antimicrobial efficacy on Listeria monocytogenes and Salmonella enterica. Food Chem 2013; 139:281-8. [DOI: 10.1016/j.foodchem.2013.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/17/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022]
|
39
|
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 2013; 87:1181-200. [PMID: 23728526 PMCID: PMC3677982 DOI: 10.1007/s00204-013-1079-4] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
Abstract
Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Aquatic Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, 10 route de Suisse, 1290 Versoix, Switzerland
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
40
|
McTeer J, Dean AP, White KN, Pittman JK. Bioaccumulation of silver nanoparticles intoDaphnia magnafrom a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 2013; 8:305-16. [DOI: 10.3109/17435390.2013.778346] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Zhang S, Du C, Wang Z, Han X, Zhang K, Liu L. Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol In Vitro 2013; 27:739-44. [DOI: 10.1016/j.tiv.2012.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/23/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
42
|
Piccapietra F, Allué CG, Sigg L, Behra R. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7390-7397. [PMID: 22667990 DOI: 10.1021/es300734m] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intracellular silver accumulation ({Ag}(in)) upon exposure to carbonate coated silver nanoparticles (AgNP, 0.5-10 μM, average diameter 29 nm) and silver nitrate (20-500 nM) was examined in the wild type and in the cell wall free mutant of the green alga Chlamydomonas reinhardtii at pH 7.5. The {Ag}(in) was measured over time up to 1 h after a wash procedure to remove silver ions (Ag(+)) and AgNP from the algal cell surface. The {Ag}(in) increased with increasing exposure time and with increasing AgNP and AgNO(3) concentrations in the exposure media, reaching steady-state concentrations between 10(-5) and 10(-3) mol L(cell)(-1). According to estimated kinetic parameters, high Ag(+) bioconcentration factors were calculated (>10(3) L L(cell)(-1)). Higher accumulation rate constants were assessed in the cell wall free mutant, indicating a protective role of the cell wall in limiting Ag(+) uptake. The bioavailability of AgNP was calculated to be low in both strains relative to Ag(+), suggesting that AgNP internalization across the cell membrane was limited.
Collapse
Affiliation(s)
- Flavio Piccapietra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland
| | | | | | | |
Collapse
|
43
|
Choi CJ, Berges JA, Young EB. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. WATER RESEARCH 2012; 46:2615-2626. [PMID: 22406285 DOI: 10.1016/j.watres.2012.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/24/2012] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Chlorophyll a fluorescence of microalgae is a compelling indicator of toxicity of dissolved water contaminants, because it is easily measured and responds rapidly. While different chl a fluorescence parameters have been examined, most studies have focused on single species and/or a narrow range of toxins. We assessed the utility of one chl a fluorescence parameter, the maximum quantum yield of PSII (F(v)/F(m)), for detecting effects of nine environmental pollutants from a range of toxin classes on 5 commonly found freshwater algal species, as well as the USEPA model species, Pseudokirchneriella subcapitata. F(v)/F(m) declined rapidly over <20 min in response to low concentrations of photosynthesis-specific herbicides Diuron(®) and metribuzin (both <40 nM), atrazine (<460 nM) and terbuthylazine (<400 nM). However, F(v)/F(m) also responded rapidly and in a dose-dependent way to toxins glyphosate (<90 μM), and KCN (<1 mM) which have modes of action not specific to photosynthesis. F(v)/F(m) was insensitive to 30-40 μM insecticides methyl parathion, carbofuran and malathion. Algal species varied in their sensitivity to toxins. No single species was the most sensitive to all nine toxins, but for six toxins to which algal F(v)/F(m) responded significantly, the model species P. subcapitata was less sensitive than other taxa. In terms of suppression of F(v)/F(m) within 80 min, patterns of concentration-dependence differed among toxins; most showed Michaelis-Menten saturation kinetics, with half-saturation constant (K(m)) values for the PSII inhibitors ranging from 0.14 μM for Diuron(®) to 6.6 μM for terbuthylazine, compared with a K(m) of 330 μM for KCN. Percent suppression of F(v)/F(m) by glyphosate increased exponentially with concentration. F(v)/F(m) provides a sensitive and easily-measured parameter for rapid and cost-effective detection of effects of many dissolved toxins. Field-portable fluorometers will facilitate field testing, however distinct responses between different species may complicate net F(v)/F(m) signal from a community.
Collapse
Affiliation(s)
- Chang Jae Choi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | |
Collapse
|
44
|
Chen Z, Campbell PGC, Fortin C. Silver Binding by Humic Acid as Determined by Equilibrium Ion-Exchange and Dialysis. J Phys Chem A 2012; 116:6532-9. [DOI: 10.1021/jp212403r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongzhi Chen
- Institut national de la recherche scientifique, Centre
Eau Terre Environnement, 490 de la Couronne, Québec,
Canada, G1K 9A9
| | - Peter G. C. Campbell
- Institut national de la recherche scientifique, Centre
Eau Terre Environnement, 490 de la Couronne, Québec,
Canada, G1K 9A9
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre
Eau Terre Environnement, 490 de la Couronne, Québec,
Canada, G1K 9A9
| |
Collapse
|
45
|
Hendrickson OD, Safenkova IV, Zherdev AV, Dzantiev BB, Popov VO. Methods of detection and identification of manufactured nanoparticles. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350911060066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.09.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 2010; 5:e15196. [PMID: 21203552 PMCID: PMC3008680 DOI: 10.1371/journal.pone.0015196] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022] Open
Abstract
The behavior and toxicity of silver engineered nanoparticles (Ag-ENs) to the mixotrophic freshwater alga Ochromonas danica were examined in the present study to determine whether any other mechanisms are involved in their algal toxicity besides Ag+ liberation outside the cells. Despite their good dispersability, the Ag-ENs were found to continuously aggregate and dissolve rapidly. When the initial nanoparticle concentration was lower than 10 µM, the total dissolved Ag+ concentration ([Ag+]T) in the suspending media reached its maximum after 1 d and then decreased suggesting that Ag+ release might be limited by the nanoparticle surface area under these conditions. Furthermore, Ag-EN dissolution extent remarkably increased in the presence of glutathione. In the Ag-EN toxicity experiment, glutathione was also used to eliminate the indirect effects of Ag+ that was released. However, remarkable toxicity was still observed although the free Ag+ concentration in the media was orders of magnitude lower than the non-observed effect concentration of Ag+ itself. Such inhibitive effects were mitigated when more glutathione was added, but could never be completely eliminated. Most importantly, we demonstrate, for the first time, that Ag-ENs can be taken in and accumulated inside the algal cells, where they exerted their toxic effects. Therefore, nanoparticle internalization may be an alternative pathway through which algal growth can be influenced.
Collapse
Affiliation(s)
- Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
48
|
Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:151-9. [PMID: 20060176 DOI: 10.1016/j.aquatox.2009.12.012] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/02/2009] [Accepted: 12/12/2009] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) may induce deleterious effects in aquatic life on environmental release. The hepatotoxicity of AgNPs was assessed in the liver of adult zebrafish, with the aim of studying the roles of oxidative damage and apoptosis. Zebrafish were exposed to an AgNP solution in which free Ag+ ions were absent at the time of treatment. However, the metal-sensitive metallothionein 2 (MT2) mRNA was induced in the liver tissues of AgNP-treated zebrafish, suggesting that Ag+ ions were released from AgNPs after treatment. It is also possible that MT2 mRNA was induced in the liver tissues by AgNP-generated free radicals. A number of cellular alterations including disruption of hepatic cell cords and apoptotic changes were observed in histological analysis of the liver tissues. The levels of malondialdehyde, a byproduct of cellular lipid peroxidation, and total glutathione were increased in the tissues after treatment with AgNPs. The mRNA levels of the oxyradical-scavenging enzymes catalase and glutathione peroxidase 1a were reduced in the tissues. AgNP treatment induced DNA damage, as demonstrated by analysis with the double-strand break marker γ-H2AX and the expression of p53 protein in liver tissues. In addition, the p53-related pro-apoptotic genes Bax, Noxa, and p21 were upregulated after treatment with AgNPs. These data suggest that oxidative stress and apoptosis are associated with AgNP toxicity in the liver of adult zebrafish.
Collapse
Affiliation(s)
- Ji Eun Choi
- College of Veterinary Medicine, Seoul National University, 599 Gwanak, Gwanak, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Blamey FPC, Kopittke PM, Wehr JB, Kinraide TB, Menzies NW. Rhizotoxic effects of silver in cowpea seedlings. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2072-2078. [PMID: 20821665 DOI: 10.1002/etc.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Silver (Ag) is highly toxic to aquatic organisms, including algae, invertebrate animals, and fish, but little information exists on Ag rhizotoxicity in higher plants. In two solution culture experiments with approximately 1,000 microM Ca(NO3)2 and 5 microM H3BO3 (pH 5.4), 20 to 80% of added Ag (< or =2 microM) was lost from solution within approximately 30 min, with a further decrease after 48 h root growth. Using measured Ag concentrations at the start of the experiments, the median effective concentration (EC50) for root elongation rate of cowpea (Vigna unguiculata [L.] Walp. cv. Caloona) was 0.010 microM Ag in the first 4 h of exposure (0.021 microM in the first 8 h). This demonstrates that Ag (as Ag+) is rapidly rhizotoxic to cowpea seedlings at concentrations similar to those that are toxic to freshwater biota. Rupturing of rhizodermal and outer cortical layers was evident after 48 h with 0.13 to 0.57 microM Ag initially in solution, being most severe at 0.13 or 0.25 microM Ag. An additional experiment showed that ruptures were first evident after 20 h exposure to 0.17 microM Ag, with increased severity of rupturing over time. The rhizotoxic effects of Ag are similar to those of some other trace metals (e.g., Cu, Al, La) that bind strongly to hard ligands and weakly to soft ligands. The similarity of rupturing effects, despite the difference in strong binding to soft ligands by Ag and to hard ligands by the other metals, suggests a distinctive metabolic effect of Ag that binds only weakly to hard ligands.
Collapse
Affiliation(s)
- F Pax C Blamey
- School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
50
|
Tappin AD, Barriada JL, Braungardt CB, Evans EH, Patey MD, Achterberg EP. Dissolved silver in European estuarine and coastal waters. WATER RESEARCH 2010; 44:4204-4216. [PMID: 20557920 DOI: 10.1016/j.watres.2010.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 02/19/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
Silver is one of the most toxic elements for the marine microbial and invertebrate community. However, little is known about the distribution and behaviour of dissolved silver in marine systems. This paper reports data on dissolved and sediment-associated silver in European estuaries and coastal waters which have been impacted to different extents by past and present anthropogenic inputs. This is the first extended dataset for dissolved silver in European marine waters. Lowest dissolved silver concentrations were observed in the Gullmar Fjord, Sweden (8.9 +/- 2.9 pM; x +/- 1sigma), the Tamar Estuary, UK (9.7 +/- 6.2 pM), the Fal Estuary, UK (20.6 +/- 8.3 pM), and the Adriatic Sea (21.2 +/- 6.8 pM). Enhanced silver concentrations were observed in Atlantic coastal waters receiving untreated sewage effluent from the city of A Corũna, Spain (243 +/- 195 pM), and in the mine-impacted Restronguet Creek, UK (91 +/- 71 pM). Anthropogenic wastewater inputs were a source of dissolved silver in the regions studied, with the exception of the Gullmar Fjord. Remobilisation of dissolved silver from historically contaminated sediments, resulting from acid mine drainage or sewage inputs, provided an additional source of dissolved silver to the estuaries. The ranges in the log particle-water partition coefficient (K(d)) values of 5-6 were similar for the Tamar and Mero estuaries and agreed with reported values for other estuaries. These high K(d) values indicate the particle reactive nature of silver with oxic sediments. In contrast, low K(d) values (1.4-2.7) were observed in the Fal system, which may have been due to enhanced benthic inputs of dissolved silver coupled to limited scavenging of silver on to sediments rich in Fe oxide.
Collapse
Affiliation(s)
- Alan D Tappin
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | | | | | | | | | | |
Collapse
|