1
|
Hou D, Yu J, Gao S, Wang X, Dong J, Qian Z, Sun C. The mitigating effects and mechanisms of Bacillus cereus on chronic cadmium poisoning in Litopenaeus vannamei based on histopathological, transcriptomic, and metabolomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116891. [PMID: 39153280 DOI: 10.1016/j.ecoenv.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Shrimp are non-negligible victims of cadmium (Cd) contamination, and there is still a lack of strategies for mitigating Cd toxicity in shrimp. Bacillus cereus, with its significant heavy metal (HM) tolerance and chelating effects, is a representative beneficial bacterium to be investigated for mitigating the toxicity of Cd exposure. This study revealed the effects and potential mechanisms of B. cereus in mitigating chronic Cd toxicity in shrimp by analyzing growth performance, hepatopancreatic Cd accumulation, pathology, as well as comprehensive hepatopancreatic transcriptomics and metabolomics in Litopenaeus vannamei. The results showed that shrimp's growth inhibition, hepatopancreatic Cd accumulation and physiological structure damage in B. cereus+chronic Cd group were effectively alleviated compared with the chronic Cd treatment group. The pathways related to amino acid metabolism, glycolipid metabolism, immune response, and antioxidant stress were significantly activated in the B. cereus+chronic Cd group, including glycolysis, pentose phosphate pathway, oxidative phosphorylation, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids pathways. The key differentially expressed genes (e.g., macrophage migration inhibitory factor, glycine cleavage system H protein, glycine dehydrogenase, phosphoglucomutase-2, asparaginase, ATP synthase subunit, cytochrome c, and 4-hydroxyphenylpyruvate dioxygenase) and metabolites (e.g., L-leucine, D-ribose, gluconic acid, 6-Phosphogluconic acid, sedoheptulose 7-phosphate, 1-Kestose, glyceric acid, arachidic acid, prostaglandins, 12-Keto-tetrahydro-leukotriene B4, and gamma-glutamylcysteine) associated with the above pathways were significantly altered. This study demonstrated that B. cereus is an effective mitigator for the treatment of chronic Cd poisoning in shrimp. B. cereus may play a role in alleviating the toxicity of Cd by enhancing the antioxidant performance, immune defense ability, metabolic stability, and energy demand regulation of shrimp. The study provides reference materials for the study of B. cereus in alleviating Cd toxicity of shrimp and broadens the application of probiotics in treating HM toxicity.
Collapse
Affiliation(s)
- Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
2
|
Hu J, Wang WX. Cadmium impacts on calcium mineralization of zebrafish skeletal development and behavioral impairment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107033. [PMID: 39084117 DOI: 10.1016/j.aquatox.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.
Collapse
Affiliation(s)
- Jingyi Hu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Cong J. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107010. [PMID: 38917645 DOI: 10.1016/j.aquatox.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
With the continuous development of the modern social economy, rubber has been widely used in our daily life. Tire and road wear particles (TRWPs) are generated by friction between tires and the road surface during the processes of driving, acceleration, and braking. TRWPs can be divided into three main components according to their source: tire tread, brake wear, and road wear. Due to urban runoff, TRWPs flow with rainwater into the aquatic environment and influence the surrounding aquatic organisms. As an emerging contaminant, TRWPs with the characteristics of small particles and strong toxicity have been given more attention recently. Here, we summarized the existing knowledge of the physical and chemical properties of TRWPs, the pathways of TRWPs into the water body, and the exposure routes of TRWPs. Furthermore, we introduced the biological effects of TRWPs involved in size, concentration, and shape, as well as key toxic compounds involved in heavy metals, polycyclic aromatic hydrocarbons (PAHs), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and benzothiazole on aquatic organisms, and attempted to find the relevant factors influencing the toxic effects of TRWPs. In the context of existing policies that ignore pollution from TRWPs emissions in the aquatic environment, we also proposed measures to mitigate the impact of TRWPs in the future, as well as an outlook for TRWPs research.
Collapse
Affiliation(s)
- Tianyu Zhao
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Yun Zhang
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qianqian Song
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qingxuan Meng
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Siyu Zhou
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Jing Cong
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China.
| |
Collapse
|
4
|
Zhao J, Huang G, Fu Y, Lou Z, Yu H, Wang W, Mao D. Exposure to atrazine stimulates progesterone secretion and induces oxidative stress, inflammation, and apoptosis in the ovary of pseudopregnant rats. CHEMOSPHERE 2024; 356:141906. [PMID: 38583534 DOI: 10.1016/j.chemosphere.2024.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Atrazine (ATR) is one of the most commonly used herbicides worldwide. As an endocrine disruptor, it causes ovarian dysfunction, but the mechanism is unclear. We hypothesized that ATR could affect ovarian steroidogenesis, oxidative stress, inflammation, and apoptosis. In the current study, rats aged 28 days were treated with PMSG and HCG to obtain amounts of corpora lutea. Then, rats were injected with ATR (50 mg/kg/day) or saline (0.9%) for 7 days. Sera were collected to detect biochemical indices and progesterone (P4) level, ovaries were collected for antioxidant status, HE, qPCR, and WB analysis. Results showed that ATR exposure affected growth performance as well as serum TP, GLB, and ALB levels, increased serum P4 level and ovarian mRNA and protein levels of StAR, CYP11A1, and HSD3B. ATR treatment increased ovarian mRNA and protein levels of CREB but not PKA expression. ATR treatment increased ovarian mRNA abundances of Nrf-2 and Nqo1, MDA level, and decreased SOD, GST, and T-AOC levels. ATR exposure increased the mRNA abundances of pro-inflammatory cytokines including Tnf-α, Il-1β, Il-6, Il-18, and Inos. ATR exposure increased the mRNA and protein level of Caspase 3 and the ratio of BAX/BCL-2. In conclusion, NRF-2/NQO1 signaling pathway and CREB might be involved in the regulation of ATR in luteal steroidogenesis, oxidative stress, inflammation, and apoptosis in rat ovary.
Collapse
Affiliation(s)
- Jie Zhao
- Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Yuting Fu
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangbo Lou
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Dagan Mao
- Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Geng Q, Zou L, Liu H, Guo M, Li F, Liu X, Qin H, Wang X, Tan Z. Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171358. [PMID: 38438024 DOI: 10.1016/j.scitotenv.2024.171358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and Perfluorooctane sulfonate (PFOS) are emerging contaminants which coexist in marine environments, posing significant risks to ecosystems and human health. The behavior of these contaminants in the presence of dissolved organic matter (DOM), specifically the co-contamination of TBBPA and PFOS, is not well understood. The bioaccumulation, distribution, elimination, and toxic effects of TBBPA and PFOS on thick-shell mussels (Mytilus unguiculatus V.), with the absence and presence of humic acid (HA), a typical DOM, were studied. The results showed that the uptake of TBBPA decreased and the uptake of PFOS increased when exposed to 1 mg/L HA. However, at higher concentrations of HA (5 and 25 mg/L), the opposite effect was observed. Combined exposure to HA, TBBPA, and PFOS resulted in oxidative stress in the digestive gland, with the severity of stress dependent on exposure time and HA dose. Histological analysis revealed a positive correlation between HA concentration and tissue damage caused by TBBPA and PFOS. This study provides insights into the influence of HA on the bioaccumulation-elimination patterns and toxicity of TBBPA and PFOS in marine bivalves, offering valuable data for ecological and health risk assessments of combined pollutants in aquatic environments rich in DOM.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hong Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangxiang Liu
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xu Wang
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China; Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Jian M, Chen X, Liu S, Liu Y, Liu Y, Wang Q, Tu W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F-53B in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170948. [PMID: 38365036 DOI: 10.1016/j.scitotenv.2024.170948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) can adsorb and desorb organic pollutants, which may alter their biotoxicities. Although the toxicity of perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) to organisms has been reported, the comparative study of their combined toxic effects with MPs on aquatic organisms is limited. In this study, adult female zebrafish were exposed to 10 μg/L PFOS/F-53B and 50 μg/L MPs alone or in combination for 14 days to investigate their single and combined toxicities. The results showed that the presence of MPs reduced the concentration of freely dissolved PFOS and F-53B in the exposure solution but did not affect their bioaccumulation in the zebrafish liver and gut. The combined exposure to PFOS and MPs had the greatest impact on liver oxidative stress, immunoinflammatory, and energy metabolism disorders. 16S rRNA gene sequencing analysis revealed that the combined exposure to F-53B and MPs had the greatest impact on gut microbiota. Functional enrichment analysis predicted that the alternations in the gut microbiome could interfere with signaling pathways related to immune and energy metabolic processes. Moreover, significant correlations were observed between changes in gut microbiota and immune and energy metabolism indicators, highlighting the role of gut microbiota in host health. Together, our findings demonstrate that combined exposure to PFOS/F-53B and MPs exacerbates liver immunotoxicity and disturbances in energy metabolism in adult zebrafish compared to single exposure, potentially through dysregulation of gut microbiota.
Collapse
Affiliation(s)
- Minfei Jian
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xi Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yingxin Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Li Y, Li H, Zhang R, Bing X. Toxicity of antimony to Daphnia magna: Influence of environmental factors, development of biotic ligand approach and biochemical response at environmental relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132738. [PMID: 37832444 DOI: 10.1016/j.jhazmat.2023.132738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Acute toxicity of antimony pentavalent to neonatal Daphnia magna and the influence of water quality parameters were investigated, and enzymatic activities of organisms at environmentally relevant levels of antimony were determined. EC50 values of antimony to neonatal D. magna were 90.3 and 63.8 mg/L at 24 and 48 h of exposure, respectively. Dissolved organic matter (FA and HA) and cation (Ca2+, Mg2+ or Na+) had significant protective effects on D. magna against antimony toxicity. With increasing pH in the range from 7.4 to 8.5, increase of EC50 were observed due to the competition of OH- on biotic ligands. Based on the biotic ligand model (BLM) concept, stability constants for the binding of Sb(OH)6- and OH- to the biotic ligand were estimated, and the Log [Formula: see text] - and LogKXOH- were 3.137 and 2.859, respectively. Moreover, antimony exposure in low concentrations significantly increased MDA levels and maybe exert oxidative stress to the organisms. Antimony can also induce toxicity in D. magna by affecting oxidative stress and neurotransmitter systems. The relatively comprehensive toxicological data can contribute to the toxicity prediction and ecological risk assessments of antimony.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China.
| | - Xiaojie Bing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
8
|
Zhang X, Chen X, Gao L, Zhang HT, Li J, Ye Y, Zhu QL, Zheng JL, Yan X. Transgenerational effects of microplastics on Nrf2 signaling, GH/IGF, and HPI axis in marine medaka Oryzias melastigma under different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167170. [PMID: 37730060 DOI: 10.1016/j.scitotenv.2023.167170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Little information is available on the toxicity of microplastics (MPs) under different salinities in aquatic organisms. Consequently, the effects of larvae exposure to 180 μg/L MPs with 5.0 μm diameter on growth, antioxidant capacity and stress response were investigated in exposed F1 larvae and unexposed F2 larvae in marine medaka Oryzias melastigma at 5 ‰ and 25 ‰ salinities. Poor growth performance of F1 and F2 larvae and F1 adult fish was merely found under high salinity, as well as changes in the growth hormone/insulin-like growth factor-I (GH/IGF). Although malondialdehyde (MDA) content and antioxidant capacity remained constant in F1 larvae under high salinity, MPs increased MDA content and reduced antioxidant capacity in F2 larvae. Contrarily, MDA and antioxidant capacity increased in F1 and F2 larvae under low salinity. The mRNA expression levels of genes in the NF-E2-related factor 2 (Nrf2) pathway were dysregulated. Cortisol levels in the whole body increased in F1 larvae and recovered to the control level under low salinity while cortisol levels declined in F1 larvae and increased in F2 larvae under high salinity, which was related to the transcriptional regulation of the hypothalamus-pituitary-interrenal (HPI) axis genes. To summary, the present study determined the toxic effects of MPs on growth, antioxidant capacity, and stress response by disturbing Nrf2, HPI, and GH/IGF signaling in exposed larvae and unexposed offspring of marine medaka in a salinity-dependent manner. For the first time, our results highlight the interference effects of salinity on MPs toxicity in fish.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
9
|
Li Z, Han C, Wang Z, Li Z, Ruan L, Lin H, Zhou C. Black soldier fly pulp in the diet of golden pompano: Effect on growth performance, liver antioxidant and intestinal health. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109156. [PMID: 37827247 DOI: 10.1016/j.fsi.2023.109156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Black soldier fly (Hermetia illucens) has been widely researched as a protein source for fish meal replacement in aquaculture, but few studies have focused on its potential as a feed additive for growth and immune enhancement. We conducted a 56-day culture experiment to determine the impact of feed addition of black soldier fly pulp (BSFP, with 86.2% small peptides in dry basis) on growth performance, plasma biochemistry, liver antioxidant levels, intestinal immunity, digestion and microbiota of juvenile golden pompano (Trachinotus ovatus, 5.63 ± 0.02 g). BSFP was added to the basal diet at 0%, 1%, 3%, 5%, 7% and 9% (named Control, BSFP-1, BSFP-3, BSFP-5, BSFP-7, BSFP-9), respectively. BSFP increased the weight gain rate, specific growth rate, protein efficiency ratio and reduced the feed conversion rate of juvenile T. ovatus, the optimal growth performance was reached at BSFP-1, after which a negative feedback phenomenon was observed. Low levels of BSFP upregulated the expression of hepatic antioxidant, intestinal tight junctions, anti-inflammatory related genes and enhanced antioxidant, immune and intestinal digestive enzyme activities, which simultaneously reduced hepatic malondialdehyde and plasma aspartate transaminase and alanine aminotransferase concentrations. However, at BSFP-7, catalase activity was significantly reduced, while NF-κB p65 and pro-inflammatory cytokines transcription was significantly enhanced (P < 0.05). The results suggest that high doses of BSFP addition may damage fish health by inhibiting small peptide uptake, decreasing the activity of antioxidant enzyme and activating the canonical NF-κB pathway. Conversely, low doses of BSFP enhanced intestinal tight junction protein transcription, digestive enzyme activity and immune performance, inhibited pathogenic microbiota, while enhancing liver antioxidant capacity, which was associated with activated Nrf2-Keap1 pathway and suppressed NF-κB pathway, showing its potential as a feed additive to aquafeeds.
Collapse
Affiliation(s)
- Zuzhe Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chengzong Han
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanzhan Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhenyu Li
- Guangdong Green Coral Bio-Technology Co., Ltd, Dongguan, 523000, China
| | - Leshan Ruan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, 572019, China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, 572019, China.
| |
Collapse
|
10
|
Liu M, Yi S, Yu H, Zhang T, Dong F, Zhu L. Underlying Mechanisms for the Sex- and Chemical-Specific Hepatotoxicity of Perfluoroalkyl Phosphinic Acids in Common Carp ( Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14515-14525. [PMID: 37728733 DOI: 10.1021/acs.est.3c04964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The hepatotoxicities of perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been extensively investigated, while little is known about the sex-specific differences. In this study, common carp were exposed to the emerging perfluoroalkyl phosphinic acids (6:6 and 8:8 PFPiAs) for 14 days to disclose sex-specific hepatotoxicity. Apparent hepatotoxicity, including cell necrosis, apoptosis, and steatosis, was observed in both male and female carp liver. The observed hepatocyte steatosis was predominantly attributed to the dysregulation of hepatic lipid metabolism but was based on sex-specific mechanisms. It was manifested as inhibited oxidative decomposition of fatty acids (FAs) in the female liver, whereas it enhanced the uptake of FAs into the male liver, both of which led to excessive lipid accumulation. Untargeted lipidomics validated that the metabolism pathways of FA, sphingolipid, glycerolipid, and glycerophospholipid were disrupted by both compounds, leading to the generation of reactive oxygen species and oxidative stress. The oxidative stress further evolved into inflammation, manifested as promoted expression of proinflammatory cytokines and repressed expression of anti-inflammatory cytokines. Consistently, all of the changes were more noticeable in male carp, suggesting that male fish were more susceptible to PFPiA disruption. 8:8 PFPiA was less accumulated but caused stronger hepatotoxicity than 6:6 PFPiA, possibly because of the stronger binding capacity of 8:8 PFPiA to nuclear transcription factors mediating lipid metabolism and inflammation. The findings of this study highlight the significance of sex- and chemical-dependent bioaccumulation and the toxicity of PFASs in organisms.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Zhuo MQ, Chen X, Gao L, Zhang HT, Zhu QL, Zheng JL, Liu Y. Early life stage exposure to cadmium and zinc within hour affected GH/IGF axis, Nrf2 signaling and HPI axis in unexposed offspring of marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106628. [PMID: 37451186 DOI: 10.1016/j.aquatox.2023.106628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Information on transgenerational effects of cadmium (Cd) and zinc (Zn) within hour of exposure is scarce. To the end, larvae of marine medaka Oryzias melastigma at 0 day-post-hatching (dph) were subjected to LC50 for 96-h of Cd or Zn for 0.5 and 6 h, and then transferred into clear water for 95 days until the generation of offspring larvae at 25 dph. Growth, antioxidant capacity and stress response in offspring larvae were examined. Exposure to Zn for 0.5 h or Cd for 0.5 h and 6 h promoted growth performance and reduced total antioxidant capacity (TAC) and activities of superoxide dismutase (SOD) and catalase (CAT). Malondialdehyde (MDA) and cortisol levels declined in larvae following Zn exposure for 0.5 h, whereas Cd exposure increased MDA content and did not affect cortisol levels. These physiological changes could be partially explained by transcription of genes in the hormone/insulin-like growth factor-I (GH/IGF) axis, NF-E2-related factor 2 (Nrf2) signaling, and hypothalamus-pituitary-interrenal (HPI) axis. For example, Zn exposure for 0.5 h up-regulated genes encoding growth hormone (gh) and insulin-like growth factor binding protein (igfbp1) and down-regulated mRNA levels of nrf2, Kelch-like-ECH-associated protein 1 gene (keap1a), keap1b, sod1, mineralocorticoid receptor (mr), corticotropin-releasing hormone receptor (crhr1), corticotropin-releasing hormone binding protein (crhbp), cytochrome P450 (cyp11a1, cyp17a1) and hydroxysteroid dehydrogenase (hsd3b1). Cd exposure for 0.5 and 6 h up-regulated growth hormone release hormone (ghrh) and igfbp1, down-regulated nrf2 and keap1a, and did not affect mRNA levels of HPI axis genes. Taken together, this study demonstrated that short-term metal exposure during larvae phase had positive and negative effects on offspring even after a long recovery.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Chen
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Yifan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
12
|
Banaee M, Beitsayah A, Prokić MD, Petrović TG, Zeidi A, Faggio C. Effects of cadmium chloride and biofertilizer (Bacilar) on biochemical parameters of freshwater fish, Alburnus mossulensis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109614. [PMID: 36940894 DOI: 10.1016/j.cbpc.2023.109614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Fish in wild are often faced with various types of xenobiotics, that may display synergistic or antagonistic effects. In this study, we aim to examine how exposure to agrochemical compound (Bacilar) and cadmium (CdCl2) alone and in combination affect biochemical parameters (lactate dehydrogenase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, alanine aminotransferase; creatine phosphokinase (CKP), cholinesterase) and oxidative stress (total antioxidant capacity, catalase, malondialdehyde and protein carbonyl concentrations) of freshwater fish Alburnus mossulensis. Fish were exposed to two concentrations of Bacilar (0.3, and 0.6 mL L-1) and to 1 mg L-1 cadmium chloride alone and in combination for 21 days. Results showed that fish accumulate Cd in their body, with the highest rate in individuals exposed to Cd in combination with Bacilar. Both xenobiotics in fish liver induced the activation of liver enzymes suggesting hepatotoxic effects, with the greatest impact in co-exposed groups. A significant decrease in the hepatocyte's total antioxidant capacity indicates the collapse of the antioxidant defense in fish exposed to Cd and Bacilar. A decrease in the antioxidant biomarkers was followed by increased oxidative damage of lipids and proteins. We also reported altered function in the muscle of individuals exposed to Bacilar and Cd seen as decreased activities in CKP and butyrylcholinesterase. Overall, our results point to the toxicity of both Bacilar and Cd on fish but also to their synergistic effects on Cd bioaccumulation, oxidative stress, and liver and muscle damage. This study highlights the need for evaluating the use of agrochemicals and their possible additive effects on non-target organisms.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno, d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
13
|
Asupatri UR. Effects of Zinc Supplementation in Mitigating the Harmful Effects of Chronic Cadmium Exposure in a Zebrafish Model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104158. [PMID: 37236493 DOI: 10.1016/j.etap.2023.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to living organisms, including humans. But the dietary zinc (Zn) supplements play critical role in minimizing or preventing Cd poisoning, without any side effects. The underlying mechanisms, however, have not been thoroughly investigated. Therefore, in this study, we investigated the use of Zn as a protection against Cd toxicity in zebrafish models. The obtained results confirmed the levels of antioxidant enzymes and supported the synergistic effects of Zn in reducing Cd toxicity. The lipid, carbohydrate, and protein concentrations in the liver tissue have also been negatively impacted by Cd; however, treatment with Zn has lessened these adverse effects. Furthermore, the level of 8-hydroxy-2' -deoxyguanosine (8-OHdG), caspase-3 also confirms the protective effects of Zn in reducing DNA damage caused by Cd. The results of this study demonstrate that a Zn supplement can lessen the harmful effects of Cd in zebrafish model.
Collapse
Affiliation(s)
- Usha Rani Asupatri
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517 502, India.
| |
Collapse
|
14
|
Zhang J, Ren Z, Chen M. Immunotoxicity and Transcriptome Analyses of Zebrafish ( Danio rerio) Embryos Exposed to 6:2 FTSA. TOXICS 2023; 11:toxics11050459. [PMID: 37235273 DOI: 10.3390/toxics11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
As a new alternative to perfluorooctane sulfonic acid (PFOS), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) has been widely produced and used in recent years, and its concentration and frequency of detection in the aquatic environment and aquatic organisms are increasing. However, studies of its toxicity in aquatic biological systems are alarmingly scarce, and the relevant toxicological information needs to be improved. In this study, we investigated AB wild-type zebrafish (Danio rerio) embryos subjected to acute 6:2 FTSA exposure for immunotoxicity using immunoassays and transcriptomics. Immune indexes showed significant decreases in SOD and LZM activities, but no significant change in NO content. Other indexes (TNOS, iNOS, ACP, AKP activities, and MDA, IL-1β, TNF-α, NF-κB, TLR4 content) all showed significant increases. These results indicated that 6:2 FTSA induced oxidative stress and inflammatory responses in zebrafish embryos and exhibited immunotoxicity. Consistently, transcriptomics showed that genes involved in the MAPK, TLR and NOD-like receptor signaling pathways (hsp70, hsp701, stat1b, irf3, cxcl8b, map3k8, il1b, tnfa and nfkb) were significantly upregulated after 6:2 FTSA exposure, suggesting that 6:2 FTSA might induce immunotoxicity in zebrafish embryos through the TLR/NOD-MAPK pathway. The results of this study indicate that the safety of 6:2 FTSA should be examined further.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
15
|
Xu Y, Gui Y, Zhi D, Pi J, Liu X, Xiang J, Li D, Li J. Protective effects of calcium against cadmium-induced toxicity in juvenile grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114972. [PMID: 37141681 DOI: 10.1016/j.ecoenv.2023.114972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one of the dominant metal pollutants present in the aquatic environment that affects ion homeostasis, oxidative stress (OS) and immune responses of aquatic organisms. Given the physicochemical similarities between Cd2+ and calcium (Ca2+) ions, their antagonism may facilitate the mitigation of Cd-induced toxicity. To better understand the role of Ca in protecting against Cd-induced toxicity in teleosts, juvenile grass carp were exposed to Cd (measured concentration 3 μg/L) and a gradient of Ca concentrations (measured concentration 1.5 mg/L, 2.5 mg/L, 3.0 mg/L, and 3.5 mg/L in the control (CTL) group, low calcium (LCA) group, medium calcium (MCA) group, and high calcium (HCA) group, respectively) for 30 days. Inductively coupled plasma mass spectrometry (ICP-MS) data analyses showed that simultaneous exposure to Ca impaired the accumulation of Cd in all tested tissues. Besides, Ca addition maintained the plasma ion (Na+, K+, Cl-) homeostasis, alleviated Cd-induced oxidative stress (OS), and regulated the activities and transcriptional levels of ATPase. Furthermore, transcriptional heatmap analysis demonstrated that several indicator genes for OS and calcium signaling pathway were found to be significantly modulated by Ca addition. This work delineates a protective effect of Ca against Cd-induced toxicity in grass carp, providing new insight into the possible solutions to Cd pollution issues in aquaculture industry.
Collapse
Affiliation(s)
- Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Yuting Gui
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Applied Technology University, Changde 415100, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jie Pi
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Applied Technology University, Changde 415100, China
| | - Xinhua Liu
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Jianguo Xiang
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Deliang Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Li D, Yang C, Xu X, Li S, Luo G, Zhang C, Wang Z, Sun D, Cheng J, Zhang Q. Low dosage fluorine ameliorates the bioaccumulation, hepatorenal dysfunction and oxidative stress, and gut microbiota perturbation of cadmium in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121375. [PMID: 36863438 DOI: 10.1016/j.envpol.2023.121375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Many "hot spot" geographic areas around the world with soils and crops co-polluted with cadmium (Cd) and fluorine (F), two of the most representative pollutants in the environment. However, it still exists argumentative on the dose-effect relationship between F and Cd so far. To explore this, a rat model was established to evaluate the effects of F on Cd-mediated bioaccumulation, hepatorenal dysfunction and oxidative stress, and the disorder of intestinal microbiota as well. 30 healthy rats were randomly assigned to Control group (C group), Cd 1 mg/kg (Cd group), Cd 1 mg/kg and F 15 mg/kg (L group), Cd 1 mg/kg and F 45 mg/kg (M group), and Cd 1 mg/kg and F 75 mg/kg (H group) for 12 weeks by gavage. Our results showed that Cd exposure could accumulate in organs, cause hepatorenal function damage and oxidative stress, and disorder of gut microflora. However, different dosages of F showed various effects on Cd-induced damages in liver, kidney, and intestine, and only the low supplement of F showed a consistent trend. After low supplement of F, Cd levels were declined by 31.29% for liver, 18.31% for kidney, and 2.89% for colon, respectively. The serum aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and N-acetyl-β-glucosaminidase (NAG) were significantly reduced (p < 0.01); The activity of superoxide dismutase (SOD) was elevated and mRNA expression level of NAD(P)H quinone oxidoreductase 1 (NQO1) was decreased in the liver and kidney (p < 0.05). Moreover, low F dosage up-regulated the abundance of Lactobacillus from 15.56% to 28.73% and the 6.23% of F/B ratio was declined to 3.70%. Collectively, this highlights that low dosage of F might be a potential strategy to ameliorate the hazardous effects by Cd-exposed in the environment.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Chaolian Yang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiaomei Xu
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Shanghang Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Guofei Luo
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Cheng Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Zelan Wang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Dali Sun
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Qinghai Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
17
|
Baihetiyaer B, Jiang N, Li X, He B, Wang J, Fan X, Sun H, Yin X. Oxidative stress and gene expression induced by biodegradable microplastics and imidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121285. [PMID: 36796666 DOI: 10.1016/j.envpol.2023.121285] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.
Collapse
Affiliation(s)
- Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Bo He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China.
| |
Collapse
|
18
|
Lin Y, Yu J, Wang M, Wu L. Toxicity of single and combined 4-epianhydrotetracycline and cadmium at environmentally relevant concentrations on the zebrafish embryos (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120543. [PMID: 36341832 DOI: 10.1016/j.envpol.2022.120543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The combined pollution of antibiotics and heavy metals has attracted a worldwide attention in the recent years. 4-epianhydrotetracycline (EATC) is the major degradation product of tetracycline (TC), which has been detected frequently in environment and its concentration is even higher than TC under some circumstances. Cadmium (Cd) is a common heavy metal contaminant and has highly toxic to organisms, plants and humans even at low doses. In the present study, zebrafish (Danio rerio) embryo toxicity test was performed to investigate the single and combined effects of EATC and Cd on aquatic organisms. Exposure to EATC and Cd at environmentally relevant concentrations had a series of hazardous impacts on the embryonic development, including lethality, hatching rate, heart rate and teratogenic effects. Compared to the contaminant existed alone, combined pollution produced stronger toxicity, which appeared as the decreasing of heart rate and hatching rate, and the increasing of malformation of zebrafish embryos. After 96 h exposure, the reactive oxygen species (ROS) levels in zebrafish embryos were increased significantly, revealing that EATC-Cd co-exposure resulted in potential oxidative stress-induced damage. Acridine orange (AO) staining showed that combined exposure resulted in stronger cell apoptosis. The potential health risks of the combined pollution of EATC and Cd should be paid more attention to higher level vertebrates and humans.
Collapse
Affiliation(s)
- Yinxuan Lin
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Jiao Yu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Meng Wang
- College of Biology and Environmental Science, Jishou University, Jishou, 416000, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Wang M, Wang WX. Meeting Zn Needs during Medaka Eye Development: Nanoscale Visualization of Retina by Expansion Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15780-15790. [PMID: 36266765 DOI: 10.1021/acs.est.2c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fish eyes require high Zn levels to support their early development. Although numerous studies have been conducted on the nutritional and toxic effects of Zn on the eye, the Zn requirement for retinal cell development is still debatable. Moreover, due to the complexity of the retinal structure, it is difficult to clearly visualize each retinal layer and accurately separate cell morphology in vivo by conventional methods. In the present study, we for the first time have achieved nanoscale imaging of retinal anatomy affected by dietary and waterborne Zn exposure by novel expansion microscopy. We demonstrated that the fish retina showed different developmental strategies in response to dietary and aqueous Zn exposures. Excess dietary Zn produced toxicity to retinal photoreceptor cells, resulting in a reduction in cell number and cell area, and this toxicity became severe with biological development. In contrast, waterborne Zn in the natural environment probably failed to meet the Zn requirements of retinal development. Overall, our results indicated that during early development, the Zn requirement of the fish eyes was sensitive, and oversupplementation led to impaired photoreceptor cell development. Our study has provided new perspectives using the powerful and novel expansion microscopy technique in toxicity assessment, enabling ultra-clear visualization of small but complex organ development.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
21
|
Huang J, Liu Y, Wang Q, Yi J, Lai H, Sun L, Mennigen JA, Tu W. Concentration-dependent toxicokinetics of novel PFOS alternatives and their chronic combined toxicity in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156388. [PMID: 35654180 DOI: 10.1016/j.scitotenv.2022.156388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The increasing use of perfluorooctanesulfonate (PFOS) alternatives has led to their release into the aquatic environment. This study sought to determine the effects of exposure concentration on the toxicokinetics of PFOS and its alternatives, including perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS) in adult zebrafish by exposure to mixtures of the five per- and polyfluoroalkyl substances (PFAS) at 1, 10, and 100 ng/mL for 28-day, followed by a 14-day depuration. PFAS predominantly accumulated in the blood and liver, and the bioconcentration factor (BCF) decreased in the order of F-53B > PFOS > OBS ≫ PFHxS > PFBS in whole-fish homogenates. The uptake rate constants and BCF of the short-chain PFAS (≤C6) positively correlated with increasing exposure concentration, while the long-chain PFAS (≥C8) exhibited a pattern of first increasing and then decreasing. A consistent increase in the elimination rate constants of short- and long-chain PFAS was observed with increasing exposure concentration. All PFAS form tight conformations with ZSA and ZL-FABP via hydrogen bonding as revealed by molecular docking analysis. Furthermore, chronic combined exposure to PFAS induced the occurrence of vacuolation and oxidative stress in the zebrafish liver. Our findings uniquely inform the concentration-dependent bioconcentration potential and health risks to aquatic organisms of these PFOS alternatives in the environment.
Collapse
Affiliation(s)
- Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jianfeng Yi
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Guo W, Gao B, Zhang X, Ren Q, Xie D, Liang J, Li H, Wang X, Zhang Y, Liu S, Nie G. Distinct responses from triglyceride and cholesterol metabolism in common carp (Cyprinus carpio) upon environmental cadmium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106239. [PMID: 35863253 DOI: 10.1016/j.aquatox.2022.106239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to high persistence and bioavailability, Cadmium (Cd) is one of the most prevalent environmental contaminants, posing an elevating threat to the ecosystems. It has been evidenced that high-dose Cd elicits deleterious effects on aquatic organisms, but the potential toxicities of Cd at environmentally relevant concentrations remains underappreciated. In this study, we used common carp to investigate how environmental Cd exposure affects triglyceride (TG) and cholesterol metabolism and underlying mechanisms. The data indicated that Cd resulted in the shift of TG from the liver to blood and the movement of cholesterol in the opposite direction, ultimately giving rise to the storage of crude lipid in liver and muscle, especially hepatic cholesterol retention. Cholesterol, instead of TG, became the principal cause during the progression of hepatic lipid accumulation. Mechanistic investigations at transcriptional and translational levels further substantiated that Cd blocked hepatic biosynthesis of TG and enhanced TG efflux out of the liver and fatty acid β-oxidation, which collectively led to the compromised TG metabolism in the liver and accelerated TG export to the serum. Additionally, strengthened synthesis, retarded export and oxidation of cholesterol detailed the hepatic prominent cholesterol retention. Taken together, our results demonstrated that environmental exposure to Cd perturbed lipid metabolism through triggering distinct responses from hepatic TG and cholesterol homeostasis. These indicated that environmental factors (such as waterborne Cd) could be a potential contributor to the prevalence of non-alcoholic fatty-liver disease in aquaculture and more efforts should be devoted to the ecological risk assessment of pollutants under environmental scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beibei Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
23
|
Zheng JL, Zhu QL, Hu XC, Parsons D, Lawson R, Hogstrand C. Transgenerational effects of zinc in zebrafish following early life stage exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154443. [PMID: 35278549 DOI: 10.1016/j.scitotenv.2022.154443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Although toxic effects of zinc (Zn) have been well established in the different developmental stages in fish, long-lasting effects of Zn exposure during embryonic development have not been explored. Exposure to an environmentally relevant Zn concentration of 10 μM (650 μg/L) during the first five days after fertilization did not affect survival, body weight, malformations or overall hatching success of F0 and F1 larvae. Zn exposure did, however, result in delayed hatching in both the F0 and F1 generations and caused significant changes in homeostasis of Zn and selenium (Se) in F0 and F1 fish. This was especially pronounced when F1 embryos from Zn-exposed parents were treated with 30 μM (2000 μg/L) Zn. In the F0 generation, skewed sex ratio towards males and changes in homeostasis of Zn, Se and manganese (Mn) in the brain, gill, liver and gonad of adult fish were also observed. These changes were associated with altered expression of Zn- and Mn-regulatory genes and sex differentiation genes in F0 and F1 fish. The present study suggests that fish may carry memory from embryo-larval Zn exposure into adulthood and further to the next generation. The present study shows that ecotoxicological risk of an exposure to Zn during embryo-larval development may persist long after recovery and may also manifest in the F1 generation.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Xiu-Chuan Hu
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Douglas Parsons
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Rebecca Lawson
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK.
| |
Collapse
|
24
|
Zhong L, Peng W, Liu C, Gao L, Chen D, Duan X. IPPD-induced growth inhibition and its mechanism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113614. [PMID: 35567929 DOI: 10.1016/j.ecoenv.2022.113614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
N-isopropyl-N-phenyl-1,4-phenylenediamine (IPPD) is used as a ubiquitous antioxidant worldwide, it is an additive in tire rubber easily discharged into the surrounding environment. At present, there is no study concerning the subacute toxicity of IPPD on fish. We used zebrafish embryos (2 h post-fertilization) exposed to IPPD for 5 days at concentrations of 0, 0.0012, 0.0120 and 0.1200 mg/L to investigate its toxic effects of embryonic development, disruption of growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axis. The results showed that IPPD exposure decreased hatchability, weakened movement ability, reduced body length, and caused multiple types of deformities in zebrafish embryos. The expression of genes involved to GH/IGF and HPT axis were altered after exposure to IPPD in zebrafish larvae. Meanwhile, exposure to IPPD significantly decreased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) contents in larvae, which indicated that HPT axis was in a disturbed state. Moreover, treatment of IPPD decreased the enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as levels of glutathione (GSH). While the contents of malondialdehyde (MDA) were elevated after exposure to IPPD. The present study thus demonstrated that IPPD induced oxidative stress, caused developmental toxicity and disrupted the GH/IGF and HPT axis of zebrafish, which could be responsible for developmental impairment and growth inhibition.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weijuan Peng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Gao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Daqing Chen
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
25
|
Loro VL, Wood CM. The roles of calcium and salinity in protecting against physiological symptoms of waterborne zinc toxicity in the euryhaline killifish (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109422. [DOI: 10.1016/j.cbpc.2022.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
26
|
Taslima K, Al-Emran M, Rahman MS, Hasan J, Ferdous Z, Rohani MF, Shahjahan M. Impacts of heavy metals on early development, growth and reproduction of fish - A review. Toxicol Rep 2022; 9:858-868. [PMID: 36561955 PMCID: PMC9764183 DOI: 10.1016/j.toxrep.2022.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Heavy metals pollution causes a threat to the aquatic environment and to its inhabitants when their concentrations exceed safe limits. Heavy metals cause toxicity in fish due to their non-biodegradable properties and their long persistence in the environment. This review investigated the effects of heavy metals on early development, growth and reproduction of fish. Fish embryos/larvae and each developmental stage of embryo respond differently to the intoxication and vary from species to species, types of metals and their mode of actions, concentration of heavy metals and their exposure time. Many of the heavy metals are considered as essential nutrient elements that positively improve the growth and feed utilization of fishes but upon crossing the maximum tolerable limit these metals cause not only a hazard to fish health but also to human consumers and the disruption of ecological systems. Reduced gonadosomatic index (GSI), fecundity, hatching rate, fertilization success, abnormal shape of reproductive organs, and finally failure of reproduction in fish have been attributed to heavy metal toxicity. In summary, this review sheds light on the manipulation of fish physiology by heavy metals and seeks to raise sensitivity to the prevention and control of aquatic environmental contamination, particularly from heavy metals.
Collapse
Affiliation(s)
- Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zannatul Ferdous
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
27
|
Chen X, Peng LB, Wang D, Zhu QL, Zheng JL. Combined effects of polystyrene microplastics and cadmium on oxidative stress, apoptosis, and GH/IGF axis in zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152514. [PMID: 34968615 DOI: 10.1016/j.scitotenv.2021.152514] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The toxicological interactions of microplastics (MPs) and heavy metals have been paid much attention in aquatic organism. The mechanisms are not fully clear, particularly in fish early life stages. To the end, zebrafish embryos were exposed to 500 μg/L MPs, 5 μg/L cadmium (Cd), and their combination for 30 days. Body weight, adsorption characteristics of Cd onto MPs, Cd accumulation, oxidative stress, apoptosis, and growth hormone/insulin-like growth factor-I (GH/IGF) axis were examined. Exposure to MPs and Cd alone reduced body weight, which was aggravated by co-exposure. An increase in reactive oxygen species (ROS) levels was observed in larvae exposed to Cd or MPs + Cd, suggesting an induction of oxidative stress. Lipid peroxidation levels were not affected by exposure to MPs and Cd alone but dramatically enhanced by co-exposure, which may be explained by the reduction of total antioxidant capacity (TAOC) and activity levels of Mn-superoxide dismutase (Mn-SOD) and catalase (CAT) after co-exposure. Increased apoptotic cells were observed in the vertebral body of larvae exposed to Cd, the esophagus of larvae exposed to MPs, and both organs of larvae exposed to MPs + Cd, which was further confirmed by changes in the activities of Caspase-3, Caspase-8 and Caspase-9. PCR array on the transcription of genes related to growth, oxidative stress and apoptosis was examined, showing that the combined exposure resulted in greater magnitude of changes than MPs and Cd alone. The results indicate that MPs can enhance the negative effects of Cd on growth, oxidative damage and apoptosis in early life stages of zebrafish. However, the adsorption of Cd onto MPs was not observed and the combined exposure did not increase the Cd content in larvae compared to the single Cd exposure, implying that vector role of MPs in Cd uptake is negligible.
Collapse
Affiliation(s)
- Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
28
|
Song P, Jiang N, Zhang K, Li X, Li N, Zhang Y, Wang Q, Wang J. Ecotoxicological evaluation of zebrafish liver (Danio rerio) induced by dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128027. [PMID: 34906872 DOI: 10.1016/j.jhazmat.2021.128027] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dibutyl phthalate (DBP), one of the most commonly applied plasticizers, has been frequently detected in the aquatic environment, posing potential risks to aquatic organisms. Currently, reports about the toxicity of zebrafish liver with DBP exposure are rare, and the toxic mechanism is still not clear. In this study, zebrafish (Danio rerio) were used to explore the ecotoxicological effects of DBP from the physiological, biochemical, genetic, and molecular levels. The results showed oxidative stress, lipid peroxidation, and DNA damage occurred in zebrafish liver according to changes in antioxidant enzymes, MDA and 8-OHdG content. AchE activity was always active, and negatively correlated with the DBP concentration. The expression of Cu/Zn-sod and gpx genes were similar to that of antioxidant enzymes from 7 to 21 days, while in the end, the inconsistent result appeared due to the time lag effect in protein modification, gene transcription and translation. Besides, the mRNA abundance of Caspase-3 and p53 were upregulated, showing a "dose-response" relationship. The integrated biomarker reaction indicated that the effects of exposure time on zebrafish liver was 14th day> 28th day> 7th day> 21th day. These results are of great significance to evaluate the toxicological effects and explore the toxic mechanism of DBP on aquatic organisms.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Kaiqu Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Youai Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
29
|
Peng W, Liu C, Chen D, Duan X, Zhong L. Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) affects the growth and development of zebrafish embryos/larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113221. [PMID: 35085887 DOI: 10.1016/j.ecoenv.2022.113221] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is used as a ubiquitous rubber antioxidant worldwide and has been shown to be potentially toxic to aquatic organisms. In this study, zebrafish embryos were exposed to 6PPD for five days starting at two hours post-fertilization at concentrations of 0, 0.0022, 0.022, and 0.22 mg/L to investigate its effects on embryonic development, the growth hormone/insulin-like growth factor (GH/IGF) axis, and the hypothalamic-pituitary-thyroid (HPT) axis. The results showed that the 96 h LC50 of 6PPD was 2.2 mg/L. 6PPD exposure decreased hatchability, lowered autonomous movement, reduced body length in zebrafish embryos and caused deformities. The hormones levels and the expression of genes related to GH/IGF and HPT axis were altered after exposure to 6PPD in zebrafish larvae. These results indicated that the GH/IGF and HPT axis was disturbed. Moreover, treatment of 6PPD produced oxidative stress in zebrafish embryos. Overall, the present study thus demonstrated that exposure to 0.22 mg/L 6PPD caused developmental toxicity and disrupted the GH/IGF and HPT axis of zebrafish, which could be responsible for developmental impairment and growth inhibition.
Collapse
Affiliation(s)
- Weijuan Peng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daqing Chen
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
30
|
Zheng JL, Chen X, Peng LB, Wang D, Zhu QL, Li J, Han T. Particles rather than released Zn 2+ from ZnO nanoparticles aggravate microplastics toxicity in early stages of exposed zebrafish and their unexposed offspring. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127589. [PMID: 34740155 DOI: 10.1016/j.jhazmat.2021.127589] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge on the interaction between microplastics (MPs) and zinc oxide nanoparticles (ZnO NPs) is limited. Here, we investigated effects of embryo-larvae exposure to 500 μg/L polystyrene MPs (5 µm), 1200 μg/L ZnO NPs (< 100 nm), 500 μg/L dissolved Zn2+ from ZnSO4, and the mixtures of MPs and ZnO NPs or ZnSO4 on exposed F0 larvae and unexposed F1 larvae. Consequently, ZnO particles adhered to MPs surfaces rather than Zn2+, and increased Zn transport into larvae. Growth inhibition, oxidative stress, apoptosis, and disturbance of growth hormone and insulin-like growth factor (GH/IGF) axis were induced by MPs and ZnO NPs alone, which were further aggravated by their co-exposure in F0 larvae. MPs + ZnO increased apoptotic cells in the gill and esophagus compared with MPs and ZnO NPs alone. Reduced growth and antioxidant capacity and down-regulated GH/IGF axis were merely observed in F1 larvae from F0 parents exposed to MPs + ZnO. Contrary to ZnO NPs, dissolved Zn2+ reversed MPs toxicity, suggesting the protective role of Zn2+ may be not enough to ameliorate thfie negative effects of ZnO particles. To summarize, we found that particles rather than released Zn2+ from ZnO nanoparticles amplified MPs toxicity in early stages of exposed zebrafish and their unexposed offspring.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tao Han
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
31
|
Kang X, Li D, Zhao X, Lv Y, Chen X, Song X, Liu X, Chen C, Cao X. Long-Term Exposure to Phenanthrene Induced Gene Expressions and Enzyme Activities of Cyprinus carpio below the Safe Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042129. [PMID: 35206316 PMCID: PMC8872569 DOI: 10.3390/ijerph19042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Phenanthrene (PHE) is a typical compound biomagnified in the food chain which endangers human health and generally accumulates from marine life. It has been listed as one of the 16 priority PAHs evaluated in toxicology. In order to evaluate the changes of CYP1A GST mRNA expression and EROD GST enzyme activity in carp exposed to lower than safe concentrations of PHE. Long-term exposure of carp to PHE at lower than safe concentrations for up to 25 days. The mRNA expression level and cytochrome P450 (CYP1A/EROD (7-Ethoxylesorufin O-deethylase)) and glutathione S-transferase (GST) activity were measured in carp liver and brain tissue. The results showed that PHE stress induced low-concentration induction and high-concentration inhibition of CYP1A expression and EROD enzyme activity in the liver and brain of carp. In both two organs, GST enzyme activity was also induced. However, the expression of GST mRNA was first induced and then inhibited, after the 15th day. These results indicate that long-term exposure to PHE at lower than safe concentrations still poses a potential threat to carp’s oxidase system and gene expression.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Yanfeng Lv
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiangyu Liu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
- Correspondence: ; Tel.: +86-21-6779-2550
| |
Collapse
|
32
|
Hu W, Zhu QL, Zheng JL, Wen ZY. Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106023. [PMID: 34798301 DOI: 10.1016/j.aquatox.2021.106023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The present study identified that exposure to 5, 10, and 20 µg/L Cd for 48 days reduced growth, increased Cd accumulation and levels of reactive oxygen species (ROS) and lipid peroxidation, and induced ER stress and cellular apoptosis in the liver in a dose-dependent manner. However, the survival rate was not affected by Cd. The increased production of ROS might result from reduced catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD) activities, which might trigger ER stress pathways and subsequently induce apoptotic responses, ultimately leading to growth inhibition. Transcriptomic analyses indicated that the differentially expressed genes (DEGs) involved in metabolic pathways were significantly enriched and dysregulated by Cd, suggesting that metabolic disturbances may contribute to Cd toxicity. However, there were increases in glutathione peroxidase (GPX) activity, protein levels of metallothioneins (MTs) and heat shock protein 70 (HSP70), and mRNA levels of sod1, cat, gpx, mt2, and hsp70. Furthermore, DEGs related to ribosome, protein processing in the ER, and protein export pathways were significantly enriched and up-regulated by Cd. These increases may be compensatory responses following oxidative stress, ER stress, and apoptosis to resist negative effects. Taken together, we demonstrated that environmentally relevant levels of Cd induced adaptive responses with compensatory mechanisms in fish, which may help to maintain fish survival at the cost of growth.
Collapse
Affiliation(s)
- Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, China
| |
Collapse
|
33
|
Zheng JL, Peng LB, Xia LP, Li J, Zhu QL. Effects of continuous and intermittent cadmium exposure on HPGL axis, GH/IGF axis and circadian rhythm signaling and their consequences on reproduction in female zebrafish: Biomarkers independent of exposure regimes. CHEMOSPHERE 2021; 282:130879. [PMID: 34087554 DOI: 10.1016/j.chemosphere.2021.130879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Typical biomarkers of cadmium (Cd) pollution have well been confirmed in fish from continuous exposure pattern. However, in a natural environment, fish may be exposed to Cd intermittently. In this study, juvenile female zebrafish were exposed for 48 days to 10 μg/L Cd continuously, 20 μg/L for 1 day in every 2 days or 30 μg/L for 1 day in every 3 days. The toxic effects were evaluated using 8 various physiological and biochemical endpoints like specific growth rate (SGR), 17β-estradiol (E2) and vitellogenin (VTG) concentrations in plasma, reproductive parameters (gonadosomatic index (GSI), egg-laying amount, spawning percentage, and hatching and mortality rate of embryos). Transcription of 59 genes related to hypothalamic-pituitary-gonadal-liver (HPGL) axis, circadian rhythm signaling and insulin-like growth factor (IGF) system was examined. SGR, spawning percentage, E2 and VTG levels declined in fish exposed to 10 and 20 μg/L Cd but remained relatively stable in fish exposed to 30 μg/L Cd. Exposure to 10, 20 and 30 μg/L Cd significantly reduced GSI, hatching rate and mortality rate. Similarly, mRNA expression of 27 genes were sensitive to both continuous and intermittent Cd exposure. Among these genes, expression levels of 10 genes had more than 5-fold increase or decrease, including mRNA levels of vtg1, vtg2, vtg3, esr1, igf2a, igf2b, igfbp5b, nr1d1, gnrh3 and gnrhr4. The most sensitive molecular biomarker was vtg3 expression with 1500-3100 fold increase in the liver. The present study, for the first time, provides effective candidate biomarkers for Cd, which are independent of exposure regimes.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Li-Ping Xia
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiji Li
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
34
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
35
|
Puar P, Naderi M, Niyogi S, Kwong RWM. Using zebrafish as a model to assess the individual and combined effects of sub-lethal waterborne and dietary zinc exposure during development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117377. [PMID: 34062438 DOI: 10.1016/j.envpol.2021.117377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The present research used zebrafish (5-28 days post-fertilization; dpf) as a model organism to investigate the effects of chronic exposure to environmentally relevant sub-lethal concentrations of waterborne (261 μg/L) and dietary zinc (Zn) (1500 mg Zn/kg dw), either independently or simultaneously, during development. The results showed that whole body contents of Zn were increased in all Zn treatment groups, with the highest accumulation of Zn observed in larvae simultaneously exposed to elevated waterborne and dietary Zn. In addition, exposure to elevated levels of Zn, either through the water or the diet, led to a decrease in whole body calcium (Ca) contents at 28 dpf. The findings also suggested that exposure to elevated levels of Zn resulted in a significant reduction in whole body manganese (Mn) contents. More importantly, the magnitude of decrease in Mn contents by Zn exposure was markedly higher than that in Ca and appeared to mirror the increases in whole body Zn accumulation. These results indicate that Mn regulation is more sensitive than Ca to disruption by Zn exposure in developing fish. Further examination of the Zrt-Irt-Like Protein (ZIP) family of transporters using droplet digital PCR technologies revealed that several zip transporters exhibited temporal and exposure route-specific changes following Zn exposure. In particular, the level of zip4 was influenced by Zn exposure regardless of the exposure routes, while changes in zip7 and zip8 levels were predominantly driven by waterborne exposure. Overall, our findings demonstrated that zebrafish during the developmental periods are sensitive to elevated levels of Zn seen in the environment, particularly following co-exposures to waterborne and dietary Zn. Future toxicological assessment of elevated Zn exposure should consider both the exposure routes and the life stages of fish.
Collapse
Affiliation(s)
- Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Mohammad Naderi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
36
|
Trombini C, Kazakova J, Montilla-López A, Fernández-Cisnal R, Hampel M, Fernández-Torres R, Bello-López MÁ, Abril N, Blasco J. Assessment of pharmaceutical mixture (ibuprofen, ciprofloxacin and flumequine) effects to the crayfish Procambarus clarkii: A multilevel analysis (biochemical, transcriptional and proteomic approaches). ENVIRONMENTAL RESEARCH 2021; 200:111396. [PMID: 34062201 DOI: 10.1016/j.envres.2021.111396] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 μg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Alejandro Montilla-López
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
37
|
Castaldo G, Nguyễn T, Town RM, Bervoets L, Blust R, De Boeck G. Common carp exposed to binary mixtures of Cd(II) and Zn(II): A study on metal bioaccumulation and ion-homeostasis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105875. [PMID: 34098373 DOI: 10.1016/j.aquatox.2021.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The aquatic environment receives a wide variety of contaminants that interact with each other, influencing their mutual toxicity. Therefore, studies of mixtures are needed to fully understand their deleterious effects on aquatic organisms. In the present experiment, we aimed to assess the effects of Cd and Zn mixtures in common carp during a one-week exposure. The used nominal waterborne metal levels were 0.02, 0.05 and 0.10 µM for Cd and 3, 7.5 and 15 µM for Zn. Our results showed on the one hand a fast Cd increase and on the other hand a delayed Zn accumulation. In the mixture scenario an inhibition of Cd accumulation due to Zn was marked in the liver but temporary in the gills. For Zn, the delayed accumulation gives an indication of the efficient homeostasis of this essential metal. Between the different mixtures, a stimulation of Zn accumulation by Cd rather than an inhibition was seen in the highest metal mixtures. However, when compared to an earlier single Zn exposure, a reduced Zn accumulation was observed. Metallothionein gene expression was quickly activated in the analysed tissues suggesting that the organism promptly responded to the stressful situation. Finally, the metal mixture did not alter tissue electrolyte levels.
Collapse
Affiliation(s)
- G Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - T Nguyễn
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - L Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - G De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
38
|
Luzio A, Parra S, Costa B, Santos D, Álvaro AR, Monteiro SM. Copper impair autophagy on zebrafish (Danio rerio) gill epithelium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103674. [PMID: 34029728 DOI: 10.1016/j.etap.2021.103674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an essential element for organism's metabolism, being controversially listed as a priority pollutant. Importantly, the toxicity of Cu has been linked to several cell death pathways. Thus, this study aimed to assess if macroautophagic pathways are triggered by Cu in zebrafish gill, the main target of waterborne pollutants. The electron microscopy findings indicated that Cu induced profound impacts on zebrafish gill structure and functions, being this tissue a biomarker sensitive enough to indicate early toxic effects. The findings also support a clear impairment of autophagy, througth the absence of phagossomes and the significant down-regulation mRNA transcript levels of microtubule-associated protein light chain 3 (LC3). The reduction of LC3 levels was often associated to an increase of apoptotic activation, indicating that the inhibition of macroautophagy triggers apoptosis in zebrafish gills. This study highlighted that the autophagic down-regulation might be affected through the activation of other cell death signaling pathway.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| | - S Parra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - B Costa
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - D Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504, Coimbra, Portugal
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| |
Collapse
|
39
|
Wang H, Pan L, Si L, Ji R, Cao Y. Effects of Nrf2-Keap1 signaling pathway on antioxidant defense system and oxidative damage in the clams Ruditapes philippinarum exposure to PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12906-w. [PMID: 33638075 DOI: 10.1007/s11356-021-12906-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant defense system which can maintain the oxidation balance in the cell. In our previous study, we first cloned the Nrf2 gene in clams and preliminarily explored the role of the Nrf2 at the transcription level. In this study, RNA interference (RNAi) technology was used to interfere with the expression of Nrf2 after being exposed to benzo(a)pyrene (BaP) for 5 days to verify the role of Nrf2 in the antioxidant defense system. Besides, we examined the mRNA expression and enzyme activities of antioxidases and the oxidative damage. The positive correlations between the Nrf2 with the mRNA expression and the enzyme activities of antioxidases indicated that Nrf2 was required for the induction of these antioxidant genes. Additionally, the mRNA expression and the enzyme activities of the glutathione peroxidase (GPx) in the Nrf2-dsRNA group were significantly higher than those in the control groups on the fifth day, indicating that the GPx is more sensitive to oxidative stress. Moreover, the oxidative damage in the RpNrf2-dsRNA group was markedly increased than control groups, indicating that Nrf2 transcriptional regulation may play an essential role in defending against oxidative damage. This study provides a foundation for further research on the mechanism of detoxification and antioxidation of polycyclic aromatic hydrocarbons (PAHs) in the clams at the transcription level and the protein level.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
40
|
Xu K, Zhang Y, Huang Y, Wang J. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143730. [PMID: 33277007 DOI: 10.1016/j.scitotenv.2020.143730] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 05/12/2023]
Abstract
The toxicology of microplastics in combination with other pollutants has attracted widespread attention. In this study, zebrafish were exposed to 3 mg/L polystyrene microplastic, 0.2 mg/L phenanthrene, and a combination of both. Zebrafish microplastic uptake, phenanthrene accumulation, antioxidant-associated enzyme activity and related gene expression, immune-associated gene expression, and the gut microflora were measured after 12 and 24 days of exposure. Phenanthrene and microplastic accumulation increased with exposure time and was also greater in the combined exposure group than in the single exposure group. Combined analysis of antioxidant enzyme activity and immune and antioxidant-related genes shows that exposure alone causes oxidative stress in zebrafish, ultimately increasing immunity and the expression of oxidative stress genes, while combined exposure exacerbates these changes. Fusobacteria decreased and Proteobacteria and Bacteroidetes increased in the three exposure groups of gut microorganisms. Overall, our study demonstrates that microplastics enhance the toxicity of phenanthrene and that the two have a synergistic effect.
Collapse
Affiliation(s)
- Kaihang Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yindan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
41
|
Li J, Zhang Y, Wang X, Walk ST, Wang G. Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms. Front Microbiol 2021; 12:617050. [PMID: 33584619 PMCID: PMC7876068 DOI: 10.3389/fmicb.2021.617050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Antimony (Sb)-resistant bacteria have potential applications in the remediation of Sb-contaminated sites. However, the effect of Sb(III) exposure on whole-cell metabolic change has not been studied. Herein, we combined untargeted metabolomics with a previous proteomics dataset and confirmatory gene transcription analysis to identify metabolic responses to Sb(III) exposure in Agrobacterium tumefaciens GW4. Dynamic changes in metabolism between control and Sb(III)-exposed groups were clearly shown. KEGG pathway analysis suggested that with Sb(III) exposure: (1) the branching pathway of gluconeogenesis is down-regulated, resulting in the up-regulation of pentose phosphate pathway to provide precursors of anabolism and NADPH; (2) glycerophospholipid and arachidonic acid metabolisms are down-regulated, resulting in more acetyl-CoA entry into the TCA cycle and increased capacity to produce energy and macromolecular synthesis; (3) nucleotide and fatty acid synthesis pathways are all increased perhaps to protect cells from DNA and lipid peroxidation; (4) nicotinate metabolism increases which likely leads to increased production of co-enzymes (e.g., NAD+ and NADP+) for the maintenance of cellular redox and Sb(III) oxidation. Expectedly, the total NADP+/NADPH content, total glutathione, and reduced glutathione contents were all increased after Sb(III) exposure in strain GW4, which contribute to maintaining the reduced state of the cytoplasm. Our results provide novel information regarding global bacterial responses to Sb(III) exposure from a single gene level to the entire metabolome and provide specific hypotheses regarding the metabolic change to be addressed in future research.
Collapse
Affiliation(s)
- Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuxiao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Li H, Xu W, Wu L, Dong B, Jin J, Han D, Zhu X, Yang Y, Liu H, Xie S. Differential regulation of endoplasmic reticulum stress-induced autophagy and apoptosis in two strains of gibel carp (Carassius gibelio) exposed to acute waterborne cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105721. [PMID: 33373863 DOI: 10.1016/j.aquatox.2020.105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Previous studies illustrated that gibel carp F strain displays better lipid mobilization and antioxidant ability and compared to the A strain. We therefore hypothesized that the F strain would exhibit superior defense to cadmium exposure. Comparative studies were conducted between A and F strains using plasma stress biomarkers, histological observations, and analysis of hepatic molecular events to examine exposure to waterborne Cd (11.9 mg L-1) for 48 h and 96 h. Waterborne Cd exposure stimulated stress response and hepatic metallothionein mRNA induction in both gibel carp strains confirming exposure. Antioxidant responses were stimulated to counteract Cd toxicity, suggested by the upregulation of mRNA levels of genes associated with nuclear factor erythroid 2-related factor 2 (nrf2) signaling. Cd exposure induced endoplasmic reticulum (ER) stress, meanwhile, branches of genes in unfolded protein response (UPR) were activated. Slight time-dependent effects were implied by greater ER stress, UPR, and apoptosis signals with the duration of Cd exposure. Genotype-specific effects were identified, revealing that the F strain showed greater stress at 96 h exposure and higher antioxidant response compared to the A strain, as indicated by the mRNA levels of genes in nrf2 signaling. ER stress and UPR were also stronger in the F strain after Cd exposure. In contrast, the A strain showed higher autophagy and apoptosis response compared to the F strain. Collectively, combined autophagy and apoptosis were triggered under ER stress, which might serve as defense strategies in both gibel carp strains. The F strain showed greater antioxidant detoxification response and UPR to mitigate Cd toxicity, whereas excessive ER stress contributed to higher autophagy and apoptosis in the A strain. The present study uncovered the differential regulation and defense strategies in fish strains exposed to metal exposure.
Collapse
Affiliation(s)
- Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
43
|
Chen D, Zhang J, Chen YP. Ecotoxicity assessment of a molybdenum mining effluent using acute lethal, oxidative stress, and osmoregulatory endpoints in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5137-5148. [PMID: 32959318 DOI: 10.1007/s11356-020-10841-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the ecotoxicity of raw mining effluent from the largest molybdenum (Mo) open-pit mine in the Qinling mountains, China, and the treated effluent with neutralization and coagulation/adsorption processes, using zebrafish (Danio rerio). The results showed the following: (1) the mining effluent is acid mine drainage (AMD) and is highly toxic to zebrafish with a 96-h median lethal concentration (LC50) of 3.80% (volume percentage) of the raw effluent; (2) sublethal concentrations of the raw effluent (1/50, 1/10, and 1/2 96-h LC50) induced oxidative stress and osmoregulatory impairment, as reflected by the alterations in activities of superoxide dismutase and catalase and contents of malondialdehyde, and inhibition of Na+, K+-ATPase activity in gills and muscle after 28 days of sub-chronic exposure when compared with the unexposed group; and (3) the treatment of the raw effluent with neutralizer (NaOH) and adsorbent activated carbon reduced the acute lethal effect of raw effluent. The used endpoints including acute lethal and biochemical parameters related to oxidative stress and osmoregulatory impairment in zebrafish are cost-effective for toxicity assessment of AMD like the studied Mo mining effluent. Mining effluent management strategies extended by these results, i.e., the restriction of discharging raw and diluted effluent to adjacent waterways and the introduction of bio-monitoring system across all mining drainages in this area, were also proposed and discussed.
Collapse
Affiliation(s)
- Dong Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
44
|
Castaldo G, Delahaut V, Slootmaekers B, Bervoets L, Town RM, Blust R, De Boeck G. A comparative study on the effects of three different metals (Cu, Zn and Cd) at similar toxicity levels in common carp,
Cyprinus carpio. J Appl Toxicol 2020; 41:1400-1413. [DOI: 10.1002/jat.4131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanni Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Vyshal Delahaut
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Bart Slootmaekers
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| |
Collapse
|
45
|
Dai Z, Cheng J, Bao L, Zhu X, Li H, Chen X, Zhang Y, Zhang J, Chu W, Pan Y, Huang H. Exposure to waterborne cadmium induce oxidative stress, autophagy and mitochondrial dysfunction in the liver of Procypris merus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111051. [PMID: 32763565 DOI: 10.1016/j.ecoenv.2020.111051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The present study was performed to determine the effect of waterborne cadmium (Cd) exposure on oxidative stress, autophagy and mitochondrial dysfunction, and to explore the mechanism of Cd-induced liver damage in freshwater teleost Procypris merus. To this end, P. merus were exposed to waterborne 0, 0.25 and 0.5 mg/L Cd for 30 days (equal to 0, 2.22 and 4.45 μmol Cd/l). The waterborne Cd exposure significantly increased hepatic Cd accumulation and impaired histological structure of the liver of P. merus. both low and high-dose waterborne Cd exposure induced oxidative stress in the liver of P. merus, through increases Malondialdehyde (MDA) and reactive oxide species (ROS) accumulation in the liver. The Cd-induced oxidative stress in liver may result from reduction of enzyme activities (superoxide dismutases (SOD), catalases (CAT), GSH-S-transferases (GST)) and transcriptional expression of antioxidant related genes (gpx1, gpx2, cata, gsta1, sod1). Furthermore, the present study showed that waterborne Cd exposure decreased the transcriptional factor (nrf2) expression, which might lead to the down-regulation of antioxidant gene expression. Transmission electron microscopy (TEM) observations demonstrated that waterborne Cd exposure induced autophagy in the liver of P. merus. Gene expression analysis showed that waterborne Cd exposure also induced mRNA expression of a set of genes (beclin1, ulk1, atg5, lc3a, atg4b, atg9a, and p62) involved in the autophagy process, indicating that the influence of Cd on autophagy involved transcription regulation of autophagy gene expression. Waterborne Cd exposure induced a sharp decrease in ATP content in the liver of P. merus. In addition, the expression of mitochondrial function genes (sdha, cox4i1, cox1, atp5f1, and mt-cyb) are significantly decreased in the liver of P. merus in Cd treated groups, manifesting the suppression of Cd on mitochondrial energy metabolism. Taken together, our experiments demonstrate that waterborne Cd exposure induced oxidative stress, autophagy and mitochondrial dysfunction in the liver of P. merus. These results may contribute to the understanding of mechanisms that hepatotoxicity of Cd in teleost.
Collapse
Affiliation(s)
- Zhenyan Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, Hunan, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, PR China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Lingsheng Bao
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Honghui Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Xiao Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Yu Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, PR China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410022, Hunan, PR China.
| | - Huang Huang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, PR China.
| |
Collapse
|
46
|
Puar P, Niyogi S, Kwong RWM. Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following sublethal waterborne zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105524. [PMID: 32610223 DOI: 10.1016/j.aquatox.2020.105524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In the present research, the effects of exposure to a sublethal concentration of zinc (Zn) on metal and ion homeostasis, and the regulation and the localization of various Zn transporters (i.e., the Zrt-Irt Like Protein (ZIP) family of Zn transporters), were investigated in zebrafish (Danio rerio) during early development. Exposure to an elevated level of Zn [4 μM (high) vs. 0.25 μM (control)] from 0 day post-fertilization (dpf) resulted in a significant increase in the whole body content of Zn at 5 dpf. A transient decrease in the whole body calcium (Ca) level was observed in 3 dpf larvae exposed to high Zn. Similarly, whole body nickel (Ni) and copper (Cu) contents were also reduced in 3 dpf larvae exposed to high Zn. Importantly, the magnitude of reduction in whole body Ni and Cu contents following Zn exposure was markedly higher than that in Ca content, suggesting that internal Ni and Cu balance were likely more sensitive to Zn exposure in developing zebrafish. Exposure to high Zn altered the mRNA expression levels of specific zip transporters, with an increase in zip1 (at 3 dpf) and zip8 (at 5 dpf), and a decrease in zip4 (at 5 dpf). The expression levels of most zip transporters tended to decrease from 3 dpf to 5 dpf with the exception of zip4 and zip8. Results from in situ hybridization revealed that several zip transporters exhibited distinct spatial distribution (e.g., zip8 in the intestinal tract, zip14 in the pronephric tubules). Overall, our findings suggested that exposure to sublethal concentrations of Zn disrupts the homeostasis of essential metals during early development and that different ZIP transporters may play unique roles in regulating Zn homeostasis in various organs in developing zebrafish.
Collapse
Affiliation(s)
- Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
47
|
Xie J, He X, Fang H, Liao S, Liu Y, Tian L, Niu J. Identification of heme oxygenase-1 from golden pompano (Trachinotus ovatus) and response of Nrf2/HO-1 signaling pathway to copper-induced oxidative stress. CHEMOSPHERE 2020; 253:126654. [PMID: 32464761 DOI: 10.1016/j.chemosphere.2020.126654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Heme oxygenase-1(HO-1) is a stress-inducible enzyme that mediates antioxidative and cytoprotective effects to maintain cellular redox homeostasis. In the present study, the full sequence of HO-1 was cloned from golden pompano(Trachinotus ovatus) by RT-PCR and RACE-PCR. The full cDNA sequence of HO-1 was 1349 bp in length which comprised of a 726 bp open reading frame (ORF) preceded by 262 bp 5'-untranslated region (UTR), and followed by a 360 bp 3'UTR, encoding 241 amino acid residues. Phylogenetic analysis revealed that HO-1 showed highest similarity to that of Takifugu rubripes. Tissue distribution analysis showed that the expression level of HO-1 was relatively high in heart, liver and spleen. A trial was conducted to investigate the response of Nrf2/HO-1 signaling pathway to oxidative stress induced by copper. The results showed that mRNA expression of NF-E2-related nuclear factor2 (Nrf2), Kelch-like-ECH-associated protein1 (keap1), superoxide dismutase (SOD), catalase (CAT), HO-1, NAD(P)H quinone oxidoreductase 1 (NQO1) and Glutathione peroxidase (GSH-PX) all significantly increased in copper treated group than that in the control group. This work provides new insight into the molecular mechanism underlying the Nrf2/HO-1 pathway in oxidative response in T. ovatus.
Collapse
Affiliation(s)
- Jiajun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanshu He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Haohang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shiyu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yongjian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Lixia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
48
|
Zhu QL, Bao J, Liu J, Zheng JL. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105492. [PMID: 32361487 DOI: 10.1016/j.aquatox.2020.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we tested the hypothesis that high salinity acclimatization can mitigate cadmium (Cd) toxicity in the microalga Dunaliella salina. To this end, microalgal cells were subjected to high salinity (60 g/L) for 12 weeks until the growth rate remained stable between generations and were then exposed to 2.5 mg/L of Cd for 4 days. Acute Cd toxicity impaired cell growth by increasing Cd bioaccumulation and lipid peroxidation, which reduced cellular pigment, total protein, and glutathione content. It also significantly weakened photosynthetic efficiency and total antioxidant capacity. However, acclimatization to high salinity alleviated these negative effects under Cd stress. To understand the potential mechanisms behind this phenomenon, 12 cDNA libraries from control, Cd-exposed (Cd), high salinity-acclimated (Salinity), and high salinity-acclimated with Cd exposure (Salinity + Cd) cells were derived using RNA sequencing. A total of 2019, 1799, 2150 and 1256 differentially expressed genes (DEGs) were identified from sample groups Salinity / Control, Cd / Control, Salinity + Cd / Control, and Salinity + Cd / Cd, respectively. Some of these DEGs were significantly enriched in ribosome, photosynthesis, stress defense, and photosynthesis-antenna proteins. Among these genes, 82 ribosomal genes were up-regulated in Salinity / Control (corrected P = 3.8 × 10-28), while 81 were down-regulated in Cd / Control (corrected P = 1.1 × 10-24). Moreover, high salinity acclimatization up-regulated 8 photosynthesis genes and 18 stress defense genes compared with the control. Additionally, 3 photosynthesis genes, 11 stress defense genes and 11 genes encoding light harvesting proteins were up-regulated by high salinity acclimatization under Cd exposure. Overall, high salinity acclimatization mitigated Cd toxicity, possibly by up-regulating the transcription of photosynthesis, stress defense, and ribosomal genes. These results provide new insights on cross-tolerance in microalgae.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jingjing Bao
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China
| | - Jianhua Liu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
49
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
50
|
Pilehvar A, Cordery KI, Town RM, Blust R. The synergistic toxicity of Cd(II) and Cu(II) to zebrafish (Danio rerio): Effect of water hardness. CHEMOSPHERE 2020; 247:125942. [PMID: 32069721 DOI: 10.1016/j.chemosphere.2020.125942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have evaluated the interactive toxicity of Cu(II) and Cd(II) in water with different hardness levels using adult zebrafish (Danio rerio). Zebrafish were exposed to Cd(II) (0.2-22 μM) or Cu(II) (0.1-8 μM) in single or binary exposures in very soft, moderately hard or very hard water. The whole body burdens of Cd(II) and Cu(II) reflect the net effect of biouptake and elimination, mortality was the indicator of toxicity, and whole body major ion content was measured to assess ion regulatory functions. Cu(II) was found to be more toxic than Cd(II) for zebrafish, and Cu(II) and Cd(II) exhibited a significant synergistic effect. The toxicity of metal ions increased upon decreasing the ionic strength of the exposure medium, probably due to elevated competition between metal ions with other cations in hard water and increased activity of Ca2+ pathways in soft water treatments. Whole body metal accumulation and the accumulation rate of both Cu and Cd increased as the metal ion concentration in the exposure medium increased. Nevertheless, neither parameter explained the observed synergistic effect on mortality. Finally, we observed a significant loss of whole body Na+ in fish which died during the metal exposure compared to surviving fish, irrespective of exposure conditions. Such an effect was not observed for other major cations (K+, Ca2+ and Mg2+). This observation suggests that, under the applied exposure conditions, survival was correlated to the capacity of the organism to maintain Na+ homeostasis.
Collapse
Affiliation(s)
- Ali Pilehvar
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Katherine I Cordery
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|