1
|
Zicarelli G, Impellitteri F, Faggio C, Blahova J, Riesova B, Hesova R, Lakdawala P. Appraisal of a synthetic preservative, Quaternium - 15, effect on three model organisms: new insight on environmental risks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107138. [PMID: 39488148 DOI: 10.1016/j.aquatox.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
After the COVID-19 pandemic, the use of quaternary ammonium compounds increased exponentially due to their efficacy as antimicrobials, stabilizers and disinfectants. Among these, Quaternium-15 is a preservative used in the formulation of a variety of personal care products. The increased use of this substance and the resulting persistence in wastewater treatment systems, which are unable to completely remove the Quaternium-15 from the water, is of increasing environmental concern. Using embryotoxicity analyses, this study aimed to investigate the effects of exposure to Quaternium-15 on non-target species and the resulting risks to the environment. Embryotoxicity endpoints such as mortality, hatching, presence of malformations, altered heartbeat and animal length were used to assess the effects on three model organisms (Cyprinus carpio, Danio rerio, Xenopus laevis) were evaluated during a 96-hour exposure to six different concentrations of Quaternium-15 (1, 5, 10, 15, 20 and 25 mg/L). The results obtained from the analyses highlighted: significant mortality for all three model organisms in the highest concentrations tested in which all the embryos died after 96 hpf, a delay in hatching of C. carpio and D. rerio compared to the control group, the insurgence of malformations in all the model organisms chosen and a significant decrease in heartbeat rate for the fish models. Each of these observations underlies the negative interaction between the Quaternium-15 and aquatic organisms making necessary further investigation to prevent damage to ecosystems and non-target species.
Collapse
Affiliation(s)
- Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
2
|
Ghosh S, Bhattacharya R, Pal S, Saha NC. Benzalkonium chloride induced acute toxicity and its multifaceted implications on growth, hematological metrics, biochemical profiles, and stress-responsive biomarkers in tilapia (Oreochromis mossambicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52147-52170. [PMID: 39141265 DOI: 10.1007/s11356-024-34595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the toxic effects of benzalkonium chloride (BAC) on Oreochromis mossambicus, a freshwater fish species. Probit analysis was used to determine the lethal concentration (LC50) of BAC for different exposure periods (24, 48, 72, and 96 h). The viability of fish exposed to BAC was assessed using the general threshold survival models (GUTS) and confirmed with relevant datasets to evaluate model accuracy. Experimental groups of fish were exposed to BAC concentrations equivalent to 10% and 20% of the 96-h LC50 for 45 days. The study revealed significant alterations in various parameters during sublethal BAC exposure. These effects included decreased specific growth rate (SGR), red blood cell count (RBC), hemoglobin (Hb) concentration, hematocrit (Ht) value, plasma protein, and albumin levels, as well as acetylcholinesterase (AChE) activities in both gills and liver. Additionally, an increase in gastrosomatic index (GSI), feed conversion ratio (FCR), plasma glucose and creatinine concentrations, alanine aminotransferase (ALT), aspartate aminotransferase (AST) enzymatic activities, catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were observed in the exposed fish's gills and liver. Furthermore, the study found that glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels initially increased and then decreased in both gills and liver after exposure to BAC. Correlation matrix analysis, multivariate multiple regression (MMR), canonical correspondence analysis (CCA), integrated biomarker response (IBR), and biomarker response index (BRI) were utilized to assess the impact of BAC on fish, highlighting significant effects on multiple biomarkers in O. mossambicus following surfactant exposure. Thus, the study provides valuable insights into the toxic effects of BAC on this fish species, emphasizing the importance of monitoring such pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shruti Ghosh
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Sarmila Pal
- Department of Zoology, Hooghly Mohsin College, Hooghly, Chinsurah, West Bengal, India
| | - Nimai Chandra Saha
- Undergraduate and Postgraduate Department of Zoology, Bidhannagar College (Govt.), Salt Lake, Kolkata, 700064, West Bengal, India.
| |
Collapse
|
3
|
Filice M, Caferro A, Amelio D, Impellitteri F, Iovine MA, Porretti M, Faggio C, Gattuso A, Cerra MC, Imbrogno S. The effects of ACE inhibitor Enalapril on Mytilus galloprovincialis: Insights into morphological and functional responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107014. [PMID: 38954870 DOI: 10.1016/j.aquatox.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
In the last decades, pharmaceuticals have emerged as a new class of environmental contaminants. Antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, are of special concern due to their increased consumption over the past years. However, the available data on their putative effects on the health of aquatic animals, as well as the possible interaction with biological systems are still poorly understood. This study analysed whether and to which extent the exposure to Enalapril, an ACE inhibitor commonly used for treating hypertension and heart failure, may induce morpho-functional alterations in the mussel Mytilus galloprovincialis, a sentinel organism of water pollution. By mainly focusing on the digestive gland (DG), a target tissue used for analysing the effects of xenobiotics in mussels, the effects of 10-days exposure to 0.6 ng/L (E1) and 600 ng/L (E2) of Enalapril were investigated in terms of cell viability and volume regulation, morphology, oxidative stress, and stress protein expression and localization. Results indicated that exposure to Enalapril compromised the capacity of DG cells from the E2 group to regulate volume by limiting the ability to return to the original volume after hypoosmotic stress. This occurred without significant effects on DG cell viability. Enalapril unaffected also haemocytes viability, although an increased infiltration of haemocytes was histologically observed in DG from both groups, suggestive of an immune response. No changes were observed in the two experimental groups on expression and tissue localization of heat shock proteins 70 (HSPs70) and HSP90, and on the levels of oxidative biomarkers. Our results showed that, in M. galloprovincialis the exposure to Enalapril did not influence the oxidative status, as well as the expression and localization of stress-related proteins, while it activated an immune response and compromised the cell ability to face osmotic changes, with potential consequences on animal performance.
Collapse
Affiliation(s)
- Mariacristina Filice
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Alessia Caferro
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Daniela Amelio
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | | | - Maria Assunta Iovine
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Miriam Porretti
- Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy; Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alfonsina Gattuso
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Sandra Imbrogno
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| |
Collapse
|
4
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
5
|
Zhang J, Wang N, Zhang Z, Gao Y, Dong J, Gao X, Yuan H, Li X. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116568. [PMID: 38850693 DOI: 10.1016/j.ecoenv.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| | - Ning Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaofei Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Huatao Yuan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| |
Collapse
|
6
|
Xu JM, Gao WR, Liang P, Cai GH, Yang HL, Lin JB, Sun YZ. Pleurotus eryngii root waste and soybean meal co-fermented protein improved the growth, immunity, liver and intestinal health of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109551. [PMID: 38599363 DOI: 10.1016/j.fsi.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-β) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.
Collapse
Affiliation(s)
- Jian-Ming Xu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wen-Rong Gao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ping Liang
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350000, China
| | - Guo-He Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jian-Bin Lin
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350000, China.
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
7
|
Romero-Freire A, De Marchi L, Freitas R, Velo A, Babarro JMF, Cobelo-García A. Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106882. [PMID: 38442506 DOI: 10.1016/j.aquatox.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.
Collapse
Affiliation(s)
- A Romero-Freire
- Department of Soil Science and Agriculture Chemistry, University of Granada (UGR), Granada, Spain; Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| | - L De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal; Department of Veterinary, University of Pisa, Via Derna 1 56126 Pisa, Italy
| | - R Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - A Velo
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - J M F Babarro
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - A Cobelo-García
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| |
Collapse
|
8
|
Impellitteri F, Riolo K, Multisanti CR, Zicarelli G, Piccione G, Faggio C, Giannetto A. Evaluating quaternium-15 effects on Mytilus galloprovincialis: New insights on physiological and cellular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170568. [PMID: 38309339 DOI: 10.1016/j.scitotenv.2024.170568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Among personal care products, quaternium-15 is prominently featured as a preservative in items such as shampoos, soaps, shaving products, and cosmetics. The widespread use of these products in people's daily routines contributes to quaternium-15 release into aquatic ecosystems. In this context, the primary aim of the study was to assess the physiological and cellular responses of the digestive gland and gills in Mytilus galloprovincialis to quaternium-15 exposure. Cell viability and the ability of digestive gland cells to regulate their volume were evaluated. Additionally, the expression of the genes involved in oxidative stress response was assessed to further substantiate the compound's harmful effects. Results indicated a significant decrease in both the viability of digestive gland cells and their RVD (regulatory volume decrease) capacity when exposed to a hypotonic solution. Furthermore, impairment of digestive gland cell function was corroborated by the modulation of oxidative stress-related gene expression, including SOD, Cat, as well as Hsp70 and CYP4Y1. Similar gene expression alterations were observed in the gills, reflecting impaired functionality in this vital organ as well. In summary, the outcomes of the study provide conclusive evidence of the toxicity of quaternium-15. This underscores the urgent need to further investigate the toxicological effects of this contaminant on aquatic ecosystems and emphasises the necessity of limiting the use of products containing quaternium-15.
Collapse
Affiliation(s)
- Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Saha S, Saha S, Mistri A, Saha NC. Antioxidant enzyme activity and pathophysiological consequences in the sludge worm Tubifex tubifex under acute and sub-lethal exposures to the fungicide Tilt ®. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105738. [PMID: 38225085 DOI: 10.1016/j.pestbp.2023.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to evaluate the effects of propiconazole on the tubificid segmented worm, Tubifex tubifex. The animals were exposed to various concentrations of propiconazole for 96 h to assess the acute effect of this fungicide and for subacute level animals were exposed for 14 days with 10% and 20% of the 96 h LC50 value (0.211 and 0.422 mg/l, respectively). The 96 h LC50 value was determined to be 2.110 mg/l, and sublethal propiconazole concentrations caused significant changes in the oxidative stress enzymes. When compared to control organisms, superoxide dismutase (SOD) and catalase (CAT) activity first decreases and then significantly increases on days 7 and 14. However, GST activity decreases and MDA concentration rises in a concentration- and time-dependent manner throughout the exposure period. In addition, the impacts of propiconazole on Tubifex tubifex were characterized and depicted using a correlation matrix and an integrated biomarker response (IBR) assessment. These findings suggest that exposure to this fungicide distorts the survivability and behavioral response in Tubifex tubifex at the acute level. In addition, it modulates changes in oxidative stress enzymes at the sublethal level. Furthermore, the species sensitivity distribution curve indicates that this tubificid worm has a high risk of survival in the presence of the fungicide propiconazole in aquatic ecosystems.
Collapse
Affiliation(s)
- Subhajit Saha
- Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Arup Mistri
- Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Nimai Chandra Saha
- Post Graduate Department of Zoology, Bidhannagar College, Sector 1, Bidhannagar, Kolkata, West Bengal 700064, India.
| |
Collapse
|
11
|
Singh S, Nebapure SM, Taria S, Sagar D, Subramanian S. Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities. Sci Rep 2023; 13:16497. [PMID: 37779157 PMCID: PMC10543590 DOI: 10.1038/s41598-023-43681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Resistance to phosphine is widely reported in several stored product insect pests globally. However, knowledge of its prevalence and the association of antioxidant enzymes with phosphine resistance is limited. Herein, we assessed the levels of phosphine susceptibility and estimated the antioxidant enzyme activities viz., superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT) in selected Indian populations of red flour beetle Tribolium castaneum (Herbst). Dose-response probit assays revealed that the LC50 values ranged from 0.038 to 1.277 mg L-1 showing 2.11 to 70.94-fold resistance to phosphine compared to susceptible check. Activities of antioxidant enzymes varied significantly between the T. castaneum populations following phosphine exposure. The magnitude of SOD activity ranged from 8.77 to18.82 U mg-1 protein, while, the activities of POX and CAT varied between 52.42 and 408.32 and 61.11 to 247.49 µM H2O2 reduced min-1 mg-1 of protein, respectively. The correlation analysis revealed a significant positive association of SOD (r = 0.89) and POX (r = 0.98) with increased resistance ratio, while the CAT (r = - 0.98) is negatively linked with resistance to phosphine. A principal component analysis identified phosphine resistance was closely associated with POX and SOD activities but was unrelated to the CAT activity. Our results throw light on the varied association of antioxidant enzyme activities in response to phosphine fumigation in field populations of T. castaneum. Further studies on the biochemical and molecular basis of phosphine stress in insects may help to devise suitable strategies to safeguard storage commodities and ensure a sustainable environment.
Collapse
Affiliation(s)
- Satyapriya Singh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suresh M Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sukumar Taria
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
12
|
Shiry N, Derakhshesh N, Alavinia SJ, Pouladi M, Falco F, Faggio C. Anodonta cygnea, a freshwater swan mussel, exposed to diazinon: toxicity thresholds in behaviour and physiology. Vet Res Commun 2023; 47:1303-1319. [PMID: 36763184 DOI: 10.1007/s11259-023-10078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Swan mussels (Anodonta cygnea) have been suggested as suitable bioindicators for the presence of pollutants in the environment. Application of the physiological and behavioral markers in these sessile species can be beneficial for environmental monitoring. The present study aimed to investigate the relationship between the behavioral disorders of movement and siphoning associated with the inhibition of tissue Acetylcholinesterase (AChE). For experiments, overally 120 bivalves of Anodonta cygnea (mean total length 80.33 ± 6.7 mm) were transported from the agricultural drains and canals in Sari county (Mazandaran Province, Iran) to our laboratory. First, the LC50-96 h of diazinon was estimated according to the Organization for Economic Co-operation and Development (OECD 1992) guideline with static water conditions. The sub-lethal toxicity pesticide experiments were conducted on the basis of the lowest observed effect concentration (LOEC) and the maximum acceptable toxicant concentration (MATC). The LC50-96 h, LOEC, and MATC values of diazinon were 85.2, 42.1, and 8.5 mg L- 1, respectively. Based on the observations of mussels' movement, the burrowing and displacement decreased with the concentration of toxicant in water. Moreover, the presence of diazinon in water and its exposure to experimental animals significantly reduces their siphoning rate. The RDA showed that the AChE activity had a higher correlation with the siphoning behavior than the movement behavior. The comparison of enzyme activity at different exposure and recovery times showed that there was a significant difference among the groups affected by the consumed pesticide (p = 0.001, between contrasts). The most remarkable morphometric characteristic was the siphon opening that was inversely correlated with the enzymatic activity. Studies in bioethics might benefit from paying attention to these traits that are directly related to the level of toxicity and behavioral adaptations required for animal survival.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Negin Derakhshesh
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Pouladi
- Iran Fisheries Organization, Administration of Bushehr Province, Bushehr, Iran
| | - Francesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
13
|
Abidli S, Zaidi S, Ben Younes R, Lahbib Y, Trigui El Menif N. Impact of polyethylene microplastics on the clam Ruditapes decussatus (Mollusca: Bivalvia): examination of filtration rate, growth, and immunomodulation. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:746-755. [PMID: 37460906 DOI: 10.1007/s10646-023-02683-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The present study was conducted to assess, for the first time, the effects of a 14 days experimental exposure to polyethylene (PE) based MPs (40-48 µm) on the clam Ruditapes decussatus. Clams were exposed to three different concentrations of MPs in controlled laboratory conditions: 10 µg/L (low), 100 µg/L (medium), and 1000 µg/L (high). The effects of MPs were assessed using a multi-marker approach, including the filtration rate, growth, and the integrity of immune cells (such as haemocyte numbers, viability, and lysosomal membrane destabilization). The results revealed that as the concentration of PE-MPs increased, the filtration rate decreased, indicating that PE-MPs hindered the clams' ability to filter water. Furthermore, there was a noticeable decrease in the overall weight of the clams, particularly in the group exposed to 1000 µg/L. This decrease could be attributed to the impairment of their nutrient filtration function. In terms of immune system biomarkers, exposure to PE-MPs led to immune system disruption, characterized by a significant increase in the number of haemocytic cells, especially in the group exposed to the high concentration. Additionally, there was a notable reduction in the viability of haemocytes, resulting in the destabilization of their lysosomal membranes, particularly in the groups exposed to medium and high PE-MPs concentrations. The findings of this study indicate that the sensitivity of hemolymph parameter changes and filtration rate in R. decussatus exposed to PE-MPs (100 and 1000 µg/L), surpasses that of growth performance and can serve as reliable indicators to assess habitat conditions and contaminant levels.
Collapse
Affiliation(s)
- Sami Abidli
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia.
| | - Salha Zaidi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Ridha Ben Younes
- University of Carthage, Faculty of Sciences of Bizerte, Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, 7021, Zarzouna, Bizerte, Tunisia
| | - Youssef Lahbib
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Najoua Trigui El Menif
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| |
Collapse
|
14
|
Multisanti CR, Riolo K, Impellitteri F, Chebbi I, Faggio C, Giannetto A. Short-term in vitro exposure of Pinctada imbricata's haemocytes to Quaternium-15: exploring physiological and cellular responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104198. [PMID: 37391050 DOI: 10.1016/j.etap.2023.104198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Since the 2000s, the pearl oyster Pinctada imbricata (Röding, 1798) has become established along the transitional waterways of the "Capo Peloro Lagoon" natural reserve, where it is now abundant due to its adaptability to different hydrological, climatic, environmental, and pollution conditions. This study aims to evaluate haemocyte immune-mediated responses in vitro to quaternium-15, a common pollutant in aquatic ecosystems. Cell viability and phagocytosis activity decreased when exposed to 0.1 or 1mg/L of quaternium-15. Moreover, decreasing phagocytosis was confirmed by gene expression modulation of actin, involved in cytoskeleton rearrangement. Effects on oxidative stress-related genes were also assessed (Cat, MnSod, Zn/CuSod, GPx). The qPCR data revealed alterations in antioxidant responses through gene dose- and time-dependent modulation. This study presents insights into the physiological responses and cellular mechanisms of P. imbricata haemocytes to environmental stressors, indicating that this species is useful as a novel bioindicator for future toxicological studies.
Collapse
Affiliation(s)
- Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168, Messina, Italy.
| | - Imen Chebbi
- Laboratory of Biodiversity and Aquatic Ecosystems, Faculty of Science, University of Sfax, BP, 3038, Tunisia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| |
Collapse
|
15
|
Tresnakova N, Impellitteri F, Famulari S, Porretti M, Filice M, Caferro A, Savoca S, D Iglio C, Imbrogno S, Albergamo A, Vazzana I, Stara A, Di Bella G, Velisek J, Faggio C. Fitness assessment of Mytilus galloprovincialis Lamarck, 1819 after exposure to herbicide metabolite propachlor ESA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121878. [PMID: 37236591 DOI: 10.1016/j.envpol.2023.121878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 μg.L-1 (E1) and its 10x fold multiply 35 μg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Science, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Claudio D Iglio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129, Palermo, Italy.
| | - Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
16
|
Jaouani R, Roman C, Decaix J, Lagarde F, Châtel A. Effect of aging of microplastics on gene expression levels of the marine mussel Mytilus edulis: Comparison in vitro/in vivo exposures. MARINE POLLUTION BULLETIN 2023; 189:114767. [PMID: 36870134 DOI: 10.1016/j.marpolbul.2023.114767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
In the present study, effects of aging MPs of polyethylene (PE) were investigated in the marine mussel Mytilus edulis, commonly used as bioindicator of aquatic ecosystem, using both in vitro and in vivo exposures, using concentrations found in marine waters (0.008, 10 and 100 μg.L-1). Changes in gene expression levels implicated in detoxification, immune system, cytoskeletton and cell cycle control were evaluated by quantitative RT-qPCR. Results demonstrated differential expression levels depending upon the state of plastic degradation (aged vs non-aged) and way of exposure (vitro vs vivo). This study highlighted the interest of using molecular biomarkers based on analysis of gene expression pattern in an ecotoxicological context that gives indication of relative slight changes between tested conditions as compared to other biochemical approaches (e.g. enzymatic activities). In addition, in vitro analysis could be used to generate large amount of data as regards to the toxicological effects of MPs.
Collapse
Affiliation(s)
- Rihab Jaouani
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France; Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Coraline Roman
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Justine Decaix
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Fabienne Lagarde
- Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Amélie Châtel
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France.
| |
Collapse
|
17
|
Mohapatra S, Yutao L, Goh SG, Ng C, Luhua Y, Tran NH, Gin KYH. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130393. [PMID: 36455328 PMCID: PMC9663149 DOI: 10.1016/j.jhazmat.2022.130393] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 05/25/2023]
Abstract
Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
18
|
Tresnakova N, Famulari S, Zicarelli G, Impellitteri F, Pagano M, Presti G, Filice M, Caferro A, Gulotta E, Salvatore G, Sandova M, Vazzana I, Imbrogno S, Capillo G, Savoca S, Velisek J, Faggio C. Multi-characteristic toxicity of enantioselective chiral fungicide tebuconazole to a model organism Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160874. [PMID: 36521610 DOI: 10.1016/j.scitotenv.2022.160874] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
The survey of available scientific literature shows a lack of data on the chronic effects of tebuconazole (TEB) on non-target aquatic organisms. Therefore, this study evaluates toxicity (10 and 20 days) of two considered concentrations 2 ng/L (E1) and 2 μg/L (E2) of TEB to bioindicator species Mytilus galloprovincialis. To this end, the TEB concentrations measured in soft mussel tissues showed a time-dependent increasing trend. The viability of haemocyte and digestive gland (DG) cells was higher than 95 % during the experiment. However, DG cells lost the ability to regulate their volume in both groups after 20-d. The E1 treatment increased Cl- and Na+ levels, and E2 decreased Na+ levels in the haemolymph. In addition, levels of superoxide dismutase (SOD) activity and oxidatively modified protein (OMP) increased after 10- and 20-d in both treatments. Histopathological findings showed abnormalities in the E2, e.g., haemocyte infiltration, hypertrophy, and hyperplasia in gills and DG. This study reveals the potential risks of TEB usage in the model organism M. galloprovincialis, primarily via bioaccumulation of TEB in food web links, and improves knowledge about its comprehensive toxicity.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giorgia Zicarelli
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Presti
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Eleonora Gulotta
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Guiliano Salvatore
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi, Italy
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Serena Savoca
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy; Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
19
|
Zhang J, Yu M, Zhang Z, Zhang M, Gao Y, Dong J, Zhou C, Li X. Integrating regular and transcriptomic analyses reveal resistance mechanisms in Corbicula fluminea (Müller, 1774) in response to toxic Microcystis aeruginosa exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114553. [PMID: 36680989 DOI: 10.1016/j.ecoenv.2023.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The frequent occurrence of cyanobacterial blooms (CYBs) caused by toxic Microcystis aeruginosa poses a great threat to aquatic organisms. Although freshwater benthic bivalves have proven to be capable of uptake high levels of microcystins (MCs) due to their filter-feeding habits, there is a paucity of information concerning their systemic resistance mechanisms to MCs. In this study, the resistance mechanisms in Corbicula fluminea (O. F. Müller, 1774) in response to the exposure of toxic M. aeruginosa were explored through transcriptional analysis combined with histopathological and biochemical phenotypic analysis. Toxic M. aeruginosa exposure caused dose-dependent histological damage in the hepatopancreas. The conjugation reaction catalyzed by glutathione S-transferases was vulnerable to being activated by high concentrations of M. aeruginosa (10 ×105 cells mL-1). Additionally, reactive oxygen species scavenging processes mediated by superoxide dismutase and catalase were active in the initial stage of toxic M. aeruginosa exposure. The results of the integrated biomarker response index suggested that the biotransformation and antioxidant defense system in C. fluminea could be continuously activated after acute exposure to the high concentration of toxic M. aeruginosa. The eggNOG and GO analysis of the differentially expressed genes (DEGs) indicated that DEGs were significantly enriched in transporter activity, oxidant detoxification and response to oxidative stress categories, which were consistent with the alterations of biochemical indices. Besides, DEGs were significantly annotated in a few KEGG pathways involved in biotransformation (oxidation, cooxidation and conjugation) and immunoreaction (lysosome and phagosome responses), which could be responsible for the tolerance of C. fluminea to toxic M. aeruginosa. These findings improve our understanding of potential resistance mechanisms of freshwater bivalves to MCs.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chuanjiang Zhou
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Yuan M, Faggio C, Perugini M, Aliko V, Wang Y. Editorial: Pharmaceuticals, personal care products and endocrine disrupting chemicals: The physiological consequences of exposure to pollutants in aquatic animals. Front Physiol 2023; 14:1145052. [PMID: 36793416 PMCID: PMC9923101 DOI: 10.3389/fphys.2023.1145052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China,*Correspondence: Mingzhe Yuan, ; Youji Wang,
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China,*Correspondence: Mingzhe Yuan, ; Youji Wang,
| |
Collapse
|
21
|
Febrer-Serra M, Lassnig N, Colomar V, Picó G, Tejada S, Sureda A, Pinya S. Oxidative stress and behavioral responses of moorish geckos (Tarentola mauritanica) submitted to the presence of an introduced potential predator (Hemorrhois hippocrepis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158864. [PMID: 36169021 DOI: 10.1016/j.scitotenv.2022.158864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stressful situations induce an increase in the production of reactive oxygen species (ROS) which can lead to molecular damage and alteration of cell function. The introduction of new potential predators induces physiological stress in native fauna. However, behavioral responses have been reported in preys, demonstrating an induction of the defenses against alien species. Behavioral and antioxidant enzyme responses in the moorish gecko, Tarentola mauritanica, against the invasive predator horseshoe whip snake (Hemorrhois hippocrepis) were assessed. Behavior was recorded and a tissue sample from the tail was collected after placing the gecko in a terrarium with previous absence or presence of the snake in 'Control' and 'H. hippocrepis' groups, respectively. Fifteen behavioral variables were examined, including tongue flick (TF) and locomotion patterns. Antioxidant enzyme activities -catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR)-, and the levels of reduced (GSH) and oxidized glutathione (GSSG), glutathione/glutathione disulfide ratio (GSH/GSSG) and malondialdehyde (MDA) concentrations were measured in the tissue sampled. Geckos exposed to the snake's odor showed a higher number of TF, longer amounts of time remaining motionless or moving in slow motion and they spent less time on the ground in comparison to the 'Control' group. The presence of the snake produced a significant increase in the activities of CAT, SOD and GR and a decrease in the GSH/GSSG ratio in T. mauritanica individuals exposed to the snake's scent. Thus, both behavioral responses and oxidative stress biomarkers clearly showed that T. mauritanica is able to recognize H. hippocrepis as a potential predator, despite being a recently introduced snake at the Balearic Islands.
Collapse
Affiliation(s)
- Maria Febrer-Serra
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| | - Nil Lassnig
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain
| | - Víctor Colomar
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Gabriela Picó
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Silvia Tejada
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain.
| | - Antoni Sureda
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| |
Collapse
|
22
|
Santos KPED, Ferreira Silva I, Mano-Sousa BJ, Duarte-Almeida JM, Castro WVD, Azambuja Ribeiro RIMD, Santos HB, Thomé RG. Abamectin promotes behavior changes and liver injury in zebrafish. CHEMOSPHERE 2023; 311:136941. [PMID: 36272627 DOI: 10.1016/j.chemosphere.2022.136941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The indiscriminate use of pesticides is a worldwide concern due to the environment contamination since it can cause deleterious effects to non-target organisms including the fishes. The effects of abamectin, a pesticide from the avermectin family, were evaluated in adult zebrafish (Danio rerio) after exposure to a commercial formula commonly used in Brazil. The animals were submitted to acute (96 h) and to a short-term chronic exposure (15 days) of distinct concentrations of abamectin. LC50 was determined and a histological study followed by an immunohistochemistry analysis for P-gp and HSP70 identification were performed on livers of the animals submitted to the acute and chronic treatment, respectively. Moreover, behavior patterns were observed daily in both trials. A LC50 value of 105.68 μg/L was determined. The histological analysis revealed a morphological alteration of the hepatocytes, glycogen accumulation, degeneration, and disorganization of the cytoplasm, and a pyknotic, irregular, and laterally located nuclei. The immunohistochemistry for HSP70 and P-gp showed strong staining in the hepatocytes of the control groups and progressive decrease as the concentration of abamectin increased. Changes were observed in body posture, movement around the aquarium, opercular activity, body color and search for food in the groups treated with abamectin. The results presented suggest that abamectin can affect the behavioral pattern of the animals, promote morphological changes, and decrease the expression of HSP70 and P-gp in zebrafish liver.
Collapse
Affiliation(s)
- Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Isabella Ferreira Silva
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Brayan Jonas Mano-Sousa
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Joaquim Maurício Duarte-Almeida
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Whocely Victor de Castro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório Central Analítica, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Patologia Experimental, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Hélio Batista Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Garai P, Banerjee P, Sharma P, Chatterjee A, Bhattacharya R, Saha NC. Mechanistic insights to lactic and formic acid toxicity on benthic oligochaete worm Tubifex tubifex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87319-87333. [PMID: 35802337 DOI: 10.1007/s11356-022-21361-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Lactic and formic acid are two commonly found monocarboxylic organic acids. Lactic acid is discharged into the water bodies as acidic industrial effluent from the food, cosmetic, chemical, and pharmaceutical industries, whereas formic acid is discharged from various paper, leather tanning, and textile processing industries. The present study investigated the toxicity of both organic acids upon the benthic oligochaete worm Tubifex tubifex. The 96-h median lethal concentration (LC50) values for lactic and formic acid are determined as 143.81 mg/l and 57.99 mg/l respectively. The effects of two sublethal concentrations (10% and 30% of 96 h LC50) of these acids on differential expression of oxidative stress enzymes are investigated. The comparative analysis of acute toxicity demonstrates that formic acid exposure is more detrimental to T. tubifex than lactic acid. The in silico structural analysis predicts that formic acid can interact with cytochrome c oxidase of the electron transport system and thereby inhibits its functionality and induces reactive oxygen species production. Integrated biomarker response (IBR) analysis illustrates that overall oxidative stress of formic acid to T. tubifex is significantly higher than that of lactic acid, which supports the structural analysis. It is concluded from this study that toxicokinetic-toxicodynamic and species sensitivity distributions studies are helpful for ecological risk management of environmental toxicants.
Collapse
Affiliation(s)
- Pramita Garai
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Priyajit Banerjee
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Pramita Sharma
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Arnab Chatterjee
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Ritwick Bhattacharya
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
24
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
25
|
Muthukumaravel K, Priyadharshini M, Kanagavalli V, Vasanthi N, Ahmed MS, Musthafa MS, Shukla S, Khan R, Rajagopal R, Chang SW, Ravindran B. Impact of sublethal phenol in freshwater fish Labeo rohita on biochemical and haematological parameters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:10. [PMID: 36269455 DOI: 10.1007/s10661-022-10554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.
Collapse
Affiliation(s)
- Kannayiram Muthukumaravel
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tamil Nadu, 614 701, Adirampattinam, India
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, P.G & Research, Chennai, Tamil Nadu, 600 014, India
| | | | - Natarajan Vasanthi
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tamil Nadu, 614 701, Adirampattinam, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, P.G & Research, Chennai, Tamil Nadu, 600 014, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, P.G & Research, Chennai, Tamil Nadu, 600 014, India.
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India
| | - Rajinikanth Rajagopal
- Shrebrooke Research and Development Center, Agriculture and Agri- Food Canada, 2000 College street, Sherbrooke, QC, J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Gyeonggi-do, Suwon-Si, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Gyeonggi-do, Suwon-Si, 16227, South Korea.
- Department of Medical Biotechnology and Integrative Physiological, Institute of Biotechnology, Saveetha school of Engineering, Saveetha Institute of Medical and technical sciences, Thandalam, Tamilnadu, Chennai-602 105, India.
| |
Collapse
|
26
|
Han X, Xu X, Yu T, Li M, Liu Y, Lai J, Mao H, Hu C, Wang S. Diflubenzuron Induces Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2022; 23:11932. [PMID: 36233243 PMCID: PMC9570284 DOI: 10.3390/ijms231911932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diflubenzuron is an insecticide that serves as a chitin inhibitor to restrict the growth of many harmful larvae, including mosquito larvae, cotton bollworm and flies. The residue of diflubenzuron is often detected in aquaculture, but its potential toxicity to aquatic organisms is still obscure. In this study, zebrafish embryos (from 6 h to 96 h post-fertilization, hpf) were exposed to different concentrations of diflubenzuron (0, 0.5, 1.5, 2.5, 3.5 and 4.5 mg/L), and the morphologic changes, mortality rate, hatchability rate and average heart rate were calculated. Diflubenzuron exposure increased the distance between the venous sinus and bulbar artery (SV-BA), inhibited proliferation of myocardial cells and damaged vascular development. In addition, diflubenzuron exposure also induced contents of reactive oxygen species (ROS) and malondialdehyde (MDA) and inhibited the activity of antioxidants, including SOD (superoxide dismutase) and CAT (catalase). Moreover, acridine orange (AO) staining showed that diflubenzuron exposure increased the apoptotic cells in the heart. Q-PCR also indicated that diflubenzuron exposure promoted the expression of apoptosis-related genes (bax, bcl2, p53, caspase3 and caspase9). However, the expression of some heart-related genes were inhibited. The oxidative stress-induced apoptosis damaged the cardiac development of zebrafish embryos. Therefore, diflubenzuron exposure induced severe cardiotoxicity in zebrafish embryos. The results contribute to a more comprehensive understanding of the safety use of diflubenzuron.
Collapse
Affiliation(s)
- Xue Han
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Yu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingli Lai
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
27
|
Gopi N, Iswarya A, Vijayakumar S, Jayanthi S, Nor SAM, Velusamy P, Vaseeharan B. Protective effects of dietary supplementation of probiotic Bacillus licheniformis Dahb1 against ammonia induced immunotoxicity and oxidative stress in Oreochromis mossambicus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109379. [PMID: 35609808 DOI: 10.1016/j.cbpc.2022.109379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
Abstract
The goal of this study was to assess the efficacy of probiotics in mitigating ammonia-induced toxicity in fish. Fish were divided into four groups: control, only probiotic, only ammonia, and combined ammonia + probiotic. For 8 weeks, the Oreochromis mossambicus were exposed to waterborne ammonia at 1.0 mg L-1 and/or dietary Bacillus licheniformis Dahb1 at 107 cfu g-1. After the 4th and 8th weeks, the fish were evaluated for growth performance, enzymatic and non-enzymatic antioxidant activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) reduced glutathione (GSH), neurotoxicity (acetylcholinesterase - AChE), non-specific immune responses (lysozyme (LYZ), myeloperoxidase (MPO), reactive nitrogen and oxygen species (RNS and ROS) and oxidative stress effects (lipid peroxidation (LPO), DNA damage)). Our results showed that in the absence of waterborne ammonia exposure, B. licheniformis Dahb1 significantly improved growth performance, enzymatic and non-enzymatic antioxidant capacity, AChE activity, non-specific immune response and decreased oxidative stress effect. Ammonia exposure resulted in significantly lower growth performance, reduced enzymatic and non-enzymatic antioxidant ability, decreased AChE activity, decreased non-specific immune response and increased oxidative stress effect. When O. mossambicus were exposed to ammonia, supplementation with B. licheniformis Dahb1 in the diet significantly increased survival, indicating that it may have a significant protective effect against ammonia toxicity by enhancing enzymatic and non-enzymatic antioxidant ability, activity of AChE, non-specific immune response and reduced oxidative stress effect. According to our findings, diet supplementation of B. licheniformis Dahb1 (107 cfu g-1) has the potential to combat ammonia toxicity in O. mossambicus.
Collapse
Affiliation(s)
- Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004,Tamil Nadu, India
| | - Arokiadhas Iswarya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004,Tamil Nadu, India; Department of Poultry and Aquaculture, Agricultural Research Organization, 7528809 Rishon, Letziyon, Israel
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004,Tamil Nadu, India; Marine College, Shandong University, Weihai 264209, PR China
| | - Sangily Jayanthi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004,Tamil Nadu, India
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Palaniyandi Velusamy
- Research & Development Wing, Sree Balaji Medical College and Hospital (SBMCH)- Bharath Institute of Higher Education and Research (BIHER), Chennai 600 044, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004,Tamil Nadu, India.
| |
Collapse
|
28
|
Zicarelli G, Multisanti CR, Falco F, Faggio C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103923. [PMID: 35772612 DOI: 10.1016/j.etap.2022.103923] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Personal care products (PCPs) are part of the large and growing family of emerging contaminants (ECs). Many daily products such as sunscreens, toothpaste, make-up products, perfume, and others, fall under this definition, and their use is increasing exponentially. Furthermore, the degradation of some components of these products is limited. Indeed, they are able to easily reach and accumulate in aquatic systems, representing a new class of contaminants. Moreover, due to their chemical properties, they can interfere at different biological levels, and for this reason, they need to be thoroughly investigated. We have reviewed the literature on PCPs, with a special focus on the adverse effects on the freshwater zebrafish (Danio rerio). The aim of this work is to provide a careful assessment of the toxicity of these compounds, in order to raise awareness for more conscious and responsible use.
Collapse
Affiliation(s)
- Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Francesca Falco
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR), Mazara del Vallo, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| |
Collapse
|
29
|
Pagano M, Savoca S, Impellitteri F, Albano M, Capillo G, Faggio C. Toxicological Evaluation of Acetylsalicylic Acid in Non-Target Organisms: Chronic Exposure on Mytilus galloprovincialis (Lamarck, 1819). Front Physiol 2022; 13:920952. [PMID: 35899021 PMCID: PMC9309544 DOI: 10.3389/fphys.2022.920952] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmaceuticals are now considered to be established contaminants, and their presence in water poses a real risk not only to the marine ecosystem, as they may adversely affect non-target organisms that are exposed to them, but also indirectly to humans. This is particularly true for the model organism considered in this work, Mytilus galloprovincialis (Lamarck, 1819), a suspensivore and bioaccumulating organism that enters the human food chain. Among the most commonly used over-the-counter medicines, anti-inflammatory drugs certainly feature prominently, with acetylsalicylic acid (ASA) at the top. In this work, M. galloprovincialis specimens were exposed to two concentrations of ASA (10 and 100 μg/L) for 10 and 20 days to evaluate possible alterations in the decrease in regulatory volume (RVD) in digestive gland cells and cell viability of both these cells and hemocytes. In addition, the histopathological condition index of the gills and digestive gland was evaluated. The data obtained showed that chronic exposure to ASA did not alter the cell viability of hemocytes and digestive gland cells but alters the physiological mechanisms of volume regulation in the digestive gland and, in addition, a time-dose reaction to ASA in the gills and digestive gland showing numerous alterations such as lipofuscin deposits and hemocyte infiltration was found. These results confirm the potential toxicity to the marine biota, highlighting the necessity to deepen the knowledge regarding the link between over-the-counter pharmaceuticals and non-target organisms.
Collapse
Affiliation(s)
- M. Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - S. Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Messina, Italy
| | - F. Impellitteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - M. Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - G. Capillo
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Messina, Italy
- Department of Veterinary Sciences, Polo Universitario Dell’Annunziata, University of Messina, Messina, Italy
| | - C. Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- *Correspondence: C. Faggio,
| |
Collapse
|
30
|
Curpan AS, Impellitteri F, Plavan G, Ciobica A, Faggio C. Review: Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109302. [PMID: 35202823 DOI: 10.1016/j.cbpc.2022.109302] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
The level of pollution becomes more and more of a pressuring matter for humankind at a worldwide level. Often the focus is on the effects that we can directly and see such as decreased air quality and higher than normal temperatures and weather, but the effects we cannot see are frequently overlooked. For at least the past decade increasing importance has been given towards the effects of pollution of living animals or non-target organisms and plants. For this purpose, one model animal that surfaced is the purpose, one model animal surfaced is Mytilus galloprovincialis. As all mussels, this species is capable of bio-accumulating important quantities of different xenobiotics such as pesticides, paints, medicines, heavy metals, industrial compounds, and even compounds marketed as antioxidants and antivirals. Their toxic effects can be assessed through their impact on oxidative stress, lysosomal membrane stability, and cell viability through trypan blue exclusion test and neutral red retention assay techniques. The purpose of this paper is to highlight the benefits of using M. galloprovincialis as an animal model for toxicological assays of various classes of xenobiotics by bringing to light the studies that have approached the matter.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Federica Impellitteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy..
| |
Collapse
|
31
|
Evaluating local strains of soybean and corn cultivars in the diets of Nile tilapia ( Oreochromis niloticus): growth and insulin-like growth factor 1, intestinal health, and inflammation features. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Recently, the high cost of aquafeed affected fish farming feasibility in some countries, including Egypt. The imported soybean meal and corn ingredients consume a large amount of the hard currency, thereby increasing feed prices. Thus, the current study investigated the different sources of soybean and corn on the performances of Nile tilapia. Fish fed with the diet I (based on Egyptian soybean meal cultivar and cornmeal cultivar) or diet II (based on imported soybean meal cultivar and cornmeal cultivar) in a 90-day feeding trial. The results showed no marked effects on the growth performance, protein efficacy ratio, and FCR in the case of fish-fed diet I or diet II. No histological alterations were observed in the skeletal muscle, hepatopancreas, spleen, and intestines, while the diet I-fed group showed normal architecture of the above-listed organs. The expression of liver and muscle IGF-1 showed no changes in fish-fed diet I or diet II. No diet-related variations were observed in IL-1β expression in the spleen but increased regulation in the liver of the diet II group compared to the diet I group. Furthermore, significant upregulation of SOD and HSP70 genes were seen in the spleen and liver of the diet II-fed group. We conclude that the inclusion of the Egyptian soybean meal cultivar and cornmeal cultivar (diet I) did not reduce the growth performance and immune-related genes compared with the imported soybean meal cultivar and cornmeal cultivar (diet II).
Collapse
|
32
|
Dar OI, Aslam R, Sharma S, Jia AQ, Kaur A, Faggio C. Biomolecular alterations in the early life stages of four food fish following acute exposure of Triclosan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103820. [PMID: 35123018 DOI: 10.1016/j.etap.2022.103820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We investigated the effect of acute concentrations of triclosan (TCS; 96 h exposure and 10d post exposure) on the free amino acid, primary (SDS-PAGE) and secondary (FT-IR) structure of proteins in the embryos/larvae of Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala. A concentration dependent increase in free amino acids, upregulation of polypeptides (100 and 70 kDa in C. carpio, C. idella and L. rohita, 55, 45, 36 kda in C. idella and L. rohita and 22 kDa in all the fish) and a decline in percent area of all the selected peaks of the FT-IR spectra was observed after exposure and recovery period. The decline in percent area was greatest for L. rohita at peak 1080 - 1088 cm-1 (-75.99%) after exposure and at peak 2854 - 2855 cm-1 (-53.59%) after recovery. Curve fitting analysis revealed a decrease in α-helices and increase in β-sheets in all fish after exposure and recovery period. The results suggest that TCS elicits alterations in biomolecules of fish embryos.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Italy.
| |
Collapse
|
33
|
Ecotoxicological Effects of Silver Nanoparticles (Ag-NPs) on Parturition Time, Survival Rate, Reproductive Success and Blood Parameters of Adult Common Molly (Poecilia sphenops) and Their Larvae. WATER 2022. [DOI: 10.3390/w14020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) can display toxicological effects on aquatic organisms. This study investigates ecotoxicological effects of Ag-NPs on reproductive and blood parameters of adult common molly (Poecilia sphenops) and their larvae. During the LC50 96 h test, female fish were exposed to concentrations of 0, 5, 15, 25, 35, 45 and 60 mg L−1 of Ag-NPs, while larvae were exposed to 0, 3, 5, 10 and 15 mg L−1. Finally, we aim to evaluate the effects of 0, 5, 10 and 15 mg L−1 of Ag-NPs on parturition time, reproductive success and hematological parameters of the mature fish exposed to sub-lethal concentration during a 62-day period. We also evaluated the survival rate of larvae. The results show a positive correlation between mortality rate and Ag-NP concentration. Values for LC50 96 h in adult fish and larvae were 26.85 mg L−1 and 6.22 mg L−1, respectively. A lack of parturition and reproductive success were seen in fish that underwent chronic exposure to Ag-NPs (15 mg L−1). The results show that RBC, WBC and hematocrit were significantly decreased in fish exposed to Ag-NPs. In addition, the serum concentrations of total protein, albumin, cholesterol and triglycerides were significantly increased in fish submitted to Ag-NPs (concentrations of 5–15). In conclusion, submitting a fish to higher concentration than 10 mg L−1 has adverse effects on reproductive system and blood parameters.
Collapse
|
34
|
Mamdouh S, Mohamed AS, Mohamed HA, Fahmy WS. The Effect of Zinc Concentration on Physiological, Immunological, and Histological Changes in Crayfish (Procambarus clarkii) as Bio-indicator for Environment Quality Criteria. Biol Trace Elem Res 2022; 200:375-384. [PMID: 33641053 DOI: 10.1007/s12011-021-02653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
The release of heavy metals to the environment increased dramatically with industrialization and rapid economic development, and they have accumulated in aquatic organisms. The current study aimed toe valuate the physiological, immunological, and histological changes of crayfish (Procambarus clarkii) as bio-indicator for water quality. Crayfishes of the filed study group were collected from a polluted area (Rosetta branch, Egypt), where the highest concentration for heavy metals in water was for zinc (Zn). Besides the field study group, other crayfishes were exposed to different doses of ZnSO4 (0, 203, and 406 mg L-g) corresponding to Zn concentration (0, 46.03, and 92.06 mg L-1) respectively in aquariums for consecutive 4 days. Heavy metal concentrations in field water sample were arranged as follows: Zn > Fe> Pb > Cu and Mn > Ni > Co > Cd. The result revealed that Zn bioaccumulation increases significantly with the increase of water Zn concentration among the tested groups compared to the control group, where the highest bioaccumulation in all studied tissues (hepatopancreas, gills, and muscles) was observed in the field group and Zn high-dose group. Also, there was a significant increase in the levels of hemolymph uric acid, urea, creatinine, glucose, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Their highest concentrations were observed in the Zn high-dose group and the field group, while the levels of total protein, albumin, and cholesterol showed a significant decrease among the tested groups as compared with the control group. Their determined lowest concentrations were in the Zn high-dose group and field group. Among tested groups, total hemocytes and granulated hemocytes decreased significantly while hyaline hemocytes increased as compared with the control group. Histological damages were observed in hepatopancreas, gills, and muscles in the field and Zn groups. The present study showed that exposure to Zn caused physiological and histological changes in Procambarus clarkia. We assumed that Procambarus clarkia could be used as a sensitive bioindicator for monitoring water quality criteria.
Collapse
Affiliation(s)
- Samar Mamdouh
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
35
|
Gopi N, Rekha R, Vijayakumar S, Liu G, Monserrat JM, Faggio C, Nor SAM, Vaseeharan B. Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109161. [PMID: 34375731 DOI: 10.1016/j.cbpc.2021.109161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/01/2022]
Abstract
Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 μg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.
Collapse
Affiliation(s)
- Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India; Marine College, Shandong University, Weihai 264209, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - José Maria Monserrat
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Aquacultura, Rio Grande, RS, Brazil
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
36
|
Munkongwongsiri N, Thepmanee O, Lertsiri K, Vanichviriyakit R, Itsathitphaisarn O, Sritunyalucksana K. False mussels (Mytilopsis leucophaeata) can be mechanical carriers of the shrimp microsporidian Enterocytozoon hepatopenaei (EHP). J Invertebr Pathol 2021; 187:107690. [PMID: 34793819 DOI: 10.1016/j.jip.2021.107690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Enterocytozoon hepatopenaei (EHP) is an obligate intracellular parasite causing hepatopancreatic microsporidiosis (HPM) in cultivated shrimp in Asian countries. One strategy to control EHP is to identify and eliminate biological reservoir(s) in shrimp ponds. Several marine and brackish-water organisms, including false mussels (Mytilopsis) have been reported to test positive for EHP using the PCR method. Thus, we tested Thai false mussel Mytilopsis leucophaeata collected from the 6 ponds with EHP-infected shrimp for the presence of EHP using SWP-PCR. Results revealed the sampled mussels from all 6 ponds were PCR positive. Subsequent bioassays were carried out to study EHP transmission between mussels and shrimp. Firstly, the naïve mussels were cohabitated with EHP-infected shrimp and all mussels were SWP-PCR positive at day 20 post cohabitation. One batch of such PCR-positive mussels was transferred for cohabitation with naïve shrimp and 37.5% EHP-positive shrimp were observed within 10 days. Tissue analysis of the SWP-PCR-positive mussels using light microscopy, in situ hybridization technique and electron microscopy did not confirm EHP infection. In summary, there was no evidence demonstrating that Mytilopsis leucophaeata was itself infected with EHP. However, the false mussels were apparently capable of carrying infectious spores for some period after ingestion and serving as a mechanical or passive carrier. The results support previous reports warning of the danger of feeding living or fresh bivalves to broodstock shrimp in hatcheries or shrimp in rearing ponds without prior heating or freezing.
Collapse
Affiliation(s)
- Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd, Bangkok 10400, Thailand
| | - Orawan Thepmanee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanokwan Lertsiri
- Aquatic Animal Health Research Team (AQHT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd, Bangkok 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand; Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.
| |
Collapse
|
37
|
Stara A, Pagano M, Albano M, Savoca S, Di Bella G, Albergamo A, Koutkova Z, Sandova M, Velisek J, Fabrello J, Matozzo V, Faggio C. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117892. [PMID: 34385134 DOI: 10.1016/j.envpol.2021.117892] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 05/24/2023]
Abstract
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L-1) and 100 times higher than environmental (450 μg L-1) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L-1). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g-1 in the soft tissues of sentinels exposed for 20 days to 450 μg L-1 thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Serena Savoca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Zuzana Koutkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
38
|
Sharma S, Dar OI, Singh K, Kaur A, Faggio C. Triclosan elicited biochemical and transcriptomic alterations in Labeo rohita larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103748. [PMID: 34534692 DOI: 10.1016/j.etap.2021.103748] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In the current study, Triclosan (TCS, a commonly used antimicrobial agent) induced alterations in biochemical parameters and gene expression were recorded in the larvae of Labeo rohita after 96 h exposure and 10 days recovery period to find out health status biomarkers. 96 h exposure to 0.06, 0.067 and 0.097 mg/L TCS significantly declined the levels of glucose, triglycerides, urea and uric acid and activity of alkaline phosphatase (ALP), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). There was a non-significant decline in the levels of cholesterol and total protein but albumin and total bilirubin showed no change. After 10 days of recovery period, trend was opposite for glucose, urea and ALP only. Decline in the expression of trypsin and pancreatic amylase and elevation in creatine kinase during exposure to TCS showed a reverse trend after recovery period. However, concentration dependent elevation of chymotrypsin persisted till the end of recovery period. Principal Component Analysis (PCA) showed association of total protein, ALP, GOT, creatine kinase and pancreatic amylase with PC1 after exposure as well as recovery period. Therefore, these can be considered as important biomolecules for identification of health status of TCS stressed fish.
Collapse
Affiliation(s)
- Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
39
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
40
|
Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. Microplastic intake and enzymatic responses in Mytilus galloprovincialis reared at the vicinities of an aquaculture station. CHEMOSPHERE 2021; 280:130575. [PMID: 33957472 DOI: 10.1016/j.chemosphere.2021.130575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a potential source of microplastics (MPs) that could be strong stressors for marine organisms. In this study, we evaluated the effects of MPs derived from aquaculture in antioxidant defences and oxidative stress markers in gills of Mytilus galloprovincialis. Mussels were distributed in three areas with different impacts: inside aquaculture cages, Control 1 (located inside Andratx harbour) and Control 2 (located in a no-anthropized area). Samples were obtained along three different time periods in May (T0), July (T60) and in September (T120). At each sampling period, mussels' biometric measurements were taken, and tissue samples were kept frozen for biochemical determinations and to determine the intake of MPs. An increase in MPs intake was detected throughout the study, and this increase was significantly higher in samples from the aquaculture cages. Similarly, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase) were significantly higher in samples from cages at T120. Additionally, a similar tendency was observed in glutathione-s-transferase, with a higher activity in the aquaculture cages at T60 and T120. Malondialdehyde and carbonyl protein derivates as a marker of oxidative damage were also measured and samples from aquaculture cages presented higher oxidative stress markers, mainly in T120. In conclusion, living in environments exposed to aquaculture activities at sea may imply a higher intake of MPs which in turn might cause an antioxidant response in M. galloprovincialis which is not enough to avoid oxidative damage.
Collapse
Affiliation(s)
- X Capo
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - M Rubio
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Solomando
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
41
|
Hardi EH, Saptiani G, Nugroho RA, Rahman F, Sulistyawati S, Rahayu W, Supriansyah A, Kusuma IW. Boesenbergia pandurata application in Goldfish ( Cyprinus carpio) Feed to Enhancing Fish Growth, Immunity System, and Resistance to Bacterial Infection. F1000Res 2021; 10:766. [PMID: 34950453 PMCID: PMC8667009 DOI: 10.12688/f1000research.52889.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 04/05/2024] Open
Abstract
Background: This study investigated how the inclusion of Boesenbergia pandurata extract (BPE) in goldfish feed affects fish growth, immunity, and resistance to infection by Aeromonas hydrophila and Pseudomonas fluorescens. Methods: Four fish feeds, were prepared by adding BPE at the concentrations of 0 (control), 2, 4, and 6 g kg-1, respectively, and 120 goldfish (Cyprinus carpio; initial weight 5 g) were separated into 12 boxes and fed with specific pellets and examined thrice. The experiment lasted 12 weeks, beginning with the different feeds, fish growth was measured at Weeks 4 and 8 after the feeding period. Moreover, a challenge test with pathogen bacteria to assay disease resistance was administered at Week 8 after the feeding period, and the survival rate and relative percentage of survival were quantified at Week 12. Results: At Week 8, the goldfish that were fed BPE-containing feeds were significantly heavier than the fish that received the control feed (pellet without BPE), and the highest weight gain, reaching 72.44 g, was obtained with Pellet 3; accordingly, the specific growth rate after BPE treatment (5.7%) was higher than that after control treatment. Conversely, the feed conversion ratio in the control group, 2.03, was higher than the ratios in the BPE groups, which were decreased to 0.55-0.90. Lastly, BPE treatment consistently enhanced the immunity parameters of goldfish (relative to control treatment) at weeks 4 and 8, and following BPE treatment, the rate of resistance against bacterial infection, 68.3%-77.0%, was higher than that after control treatment. Conclusions: BPE addition in goldfish feed clearly produces a positive effect by enhancing fish growth, immunity, and resistance to infection by pathogenic bacteria, and 4 g kg-1 is the optimal BPE concentration in feed prepared for goldfish.
Collapse
Affiliation(s)
- Esti Handayani Hardi
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Gina Saptiani
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Rudi Agung Nugroho
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Department of Biology,Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda/East Kalimantan, Indonesia, Indonesia
| | - fadlul Rahman
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Sulistyawati Sulistyawati
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Widyaningsih Rahayu
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Ali Supriansyah
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Irawan Wijaya Kusuma
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| |
Collapse
|
42
|
Hardi EH, Saptiani G, Nugroho RA, Rahman F, Sulistyawati S, Rahayu W, Supriansyah A, Kusuma IW. Boesenbergia pandurata application in Goldfish ( Cyprinus carpio) Feed to Enhancing Fish Growth, Immunity System, and Resistance to Bacterial Infection. F1000Res 2021; 10:766. [PMID: 34950453 PMCID: PMC8667009 DOI: 10.12688/f1000research.52889.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background: This study investigated how the inclusion of Boesenbergia pandurata extract (BPE) in goldfish feed affects fish growth, immunity, and resistance to infection by Aeromonas hydrophila and Pseudomonas fluorescens. Methods: Four fish feeds, were prepared by adding BPE at the concentrations of 0 (control), 2, 4, and 6 g kg-1, respectively, and 120 goldfish (Cyprinus carpio; initial weight 5 g) were separated into 12 boxes and fed with specific pellets and examined thrice. The experiment lasted 12 weeks, beginning with the different feeds, fish growth was measured at Weeks 4 and 8 after the feeding period. Moreover, a challenge test with pathogen bacteria to assay disease resistance was administered at Week 8 after the feeding period, and the survival rate and relative percentage of survival were quantified at Week 12. Results: At Week 8, the goldfish that were fed BPE-containing feeds were significantly heavier than the fish that received the control feed (pellet without BPE), and the highest weight gain, reaching 72.44 g, was obtained with Pellet 3; accordingly, the specific growth rate after BPE treatment (5.7%) was higher than that after control treatment. Conversely, the feed conversion ratio in the control group, 2.03, was higher than the ratios in the BPE groups, which were decreased to 0.55-0.90. Lastly, BPE treatment consistently enhanced the immunity parameters of goldfish (relative to control treatment) at weeks 4 and 8, and following BPE treatment, the rate of resistance against bacterial infection, 68.3%-77.0%, was higher than that after control treatment. Conclusions: BPE addition in goldfish feed clearly produces a positive effect by enhancing fish growth, immunity, and resistance to infection by pathogenic bacteria, and 4 g kg-1 is the optimal BPE concentration in feed prepared for goldfish.
Collapse
Affiliation(s)
- Esti Handayani Hardi
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Gina Saptiani
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Rudi Agung Nugroho
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Department of Biology,Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda/East Kalimantan, Indonesia, Indonesia
| | - fadlul Rahman
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Sulistyawati Sulistyawati
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Widyaningsih Rahayu
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Ali Supriansyah
- Microbiology environmental Laboratory, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
| | - Irawan Wijaya Kusuma
- Research Center of Medicine and Cosmetic from Tropical Rainforest Resources PUI-PT OKTAL, Mulawarman University, Samarinda/East Kalimantan, Indonesia, 75123, Indonesia
- Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| |
Collapse
|
43
|
Yalsuyi AM, Hajimoradloo A, Ghorbani R, Jafari VA, Prokić MD, Faggio C. Behavior evaluation of rainbow trout (Oncorhynchus mykiss) following temperature and ammonia alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103648. [PMID: 33812012 DOI: 10.1016/j.etap.2021.103648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In the study, we assessed how acute changes in water temperature and dissolved ammonia concentration can affect the swimming behavior pattern of rainbow trout (Oncorhynchus mykiss). The behavior was analyzed in three different stages: 1) increase stage, (where temperature and ammonia concentration increase during this step, respectively); 2) unchanged stage, (where levels of both factors do not change during this stage); 3) reduction stage, (where ammonia concentration and temperature during this stage are reduced), respectively. The results showed that both factors significantly changed the swimming pattern of the rainbow trout. There were significant differences in swimming parameters (distance from the center, swimming speed, total movement and the average of angular changes of movement) of treated fish in the comparison between treatments, and with the control group. The changes in the swimming pattern of fish in response to physicochemical parameters of water were confirmed to be a good tool in ecotoxicological studies.
Collapse
Affiliation(s)
- Ahmad Mohamadi Yalsuyi
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Rasul Ghorbani
- Department of Aquatic production and Exploitation, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Vally-Allah Jafari
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S, Agata-Messina, Italy.
| |
Collapse
|
44
|
Magara G, Sangsawang A, Pastorino P, Bellezza Oddon S, Caldaroni B, Menconi V, Kovitvadhi U, Gasco L, Meloni D, Dörr AJM, Prearo M, Federici E, Elia AC. First insights into oxidative stress and theoretical environmental risk of Bronopol and Detarox® AP, two biocides claimed to be ecofriendly for a sustainable aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146375. [PMID: 34030372 DOI: 10.1016/j.scitotenv.2021.146375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Bronopol and Detarox® AP are broad spectrum antimicrobial biocides of growing interest for the aquaculture sector. While their effectiveness against aquatic pathogens has been demonstrated, toxicity data on wild or farmed species are still lacking, as is information on their potential environmental risk for aquatic ecosystems. With this study, we assessed the acute and sublethal toxicity of Bronopol and Detarox® AP in the freshwater bivalve Sinanodonta woodiana and their theoretical risk for aquatic ecosystem. The 96-h median lethal concentration (LC50) was determined using the acute toxicity test, while for the sublethal toxicity test the bivalves were exposed to two concentrations for 14 days of Bronopol (2.5 and 50 mg/L) and Detarox® AP (1.11 and 22.26 mg/L) followed by a 14-day withdrawal period. Biocide-mediated oxidative processes were investigated via a panel of oxidative stress biomarkers (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase). Theoretical environmental risk assessment of both biocides, with predicted concentration of no effect (PNEC), expected theoretical concentration (TEC) in the environment, and risk quotient (RQ) was performed. TEC was calculated using a model based on the size of the aquaculture facility and the receiving basin, the estimated quantity of biocide dissolved in water, and published data on biocide stability in water. Although the LC50 was higher for Bronopol (2440 mg/L) than for Detarox® AP (126 mg/L), fluctuations in oxidative stress biomarkers levels indicated that both biocides exert a slight oxidative pressure on S. woodiana. Theoretical environmental risk assessment suggested a muted risk with Detarox® AP and greater eco-sustainability compared to Bronopol.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Akkarasiri Sangsawang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University. Bangkok 10900, Thailand
| | - Paolo Pastorino
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy.
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Vasco Menconi
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy; Institute of Science of Food Production, National Research Council, Grugliasco (TO), Italy
| | - Daniela Meloni
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | | | - Marino Prearo
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
45
|
Perumal S, Gopal Samy MV, Subramanian D. Developmental toxicity, antioxidant, and marker enzyme assessment of swertiamarin in zebrafish (Danio rerio). J Biochem Mol Toxicol 2021; 35:e22843. [PMID: 34251064 DOI: 10.1002/jbt.22843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022]
Abstract
A secoiridoid glycoside called swertiamarin has been widely used as a herbal medicine for many decades. In particular, swertiamarin from the Enicostema axillare herb has been used as a multipurpose drug to treat innumerable health problems. As this medicine is consumed orally, its toxicity level should be determined. To examine the safety of this compound, toxicology work was done in zebrafish, and this is the first report to describe swertiamarin toxicity in zebrafish. Zebrafish embryos were used in this swertiamarin toxicity study, and morphological changes were observed. Further, the compound was also studied in adult zebrafish to determine the impact of the compound on the fish liver. Enzyme profiling with superoxide dismutase, glutathione peroxidase, catalase, reduced glutathione levels, glutathione S-transferase, lactate dehydrogenase, glutamic oxaloacetic transaminases, lipid peroxidation, Na+ /K+ -ATPase, and glutamic pyruvic transaminases) was evaluated (p ≤ 0.05). Results suggest that swertiamarin is a safe drug only at a low concentration (40 µM). This study also shows that even herbal medicinal compounds may be toxic to humans at higher dosages. Hence, irrespective of whether a drug is synthetic or natural, it needs to be tested for its toxicity before use in humans.
Collapse
Affiliation(s)
- Sasidharan Perumal
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Madhana V Gopal Samy
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
46
|
Chakraborty S, Ray M, Ray S. Bivalve haemocyte adhesion, aggregation and phagocytosis: A tool to reckon arsenic induced threats to freshwater ecosystem. FISH & SHELLFISH IMMUNOLOGY 2021; 114:229-237. [PMID: 33979692 DOI: 10.1016/j.fsi.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The freshwater aquifers of the Indo-Gangetic plains support rich biodiversity which is under the threat of arsenic contamination. The filter feeding bivalve mollusc Lamellidens marginalis is a sessile and sentinel resident of these freshwater habitats. In the present study, the classical cell behaviours of adhesion and aggregation were monitored in the circulating haemocytes of the freshwater bivalve under the exposure of sodium arsenite (NaAsO2) at sublethal concentrations in controlled laboratory conditions for a maximum time-span of sixteen days. The toxic metalloid significantly inhibited non-self adhesion, inter-haemocyte interactions and haemocyte aggregation in a dose and time dependent manner. The natural occurrence of the filopods on the haemocytes was significantly diminished in the bivalves exposed to the inorganic arsenite. Moreover, a significant fall in the kinetics of phagocytosis index and haemocyte adhesion was observed under the in vitro exposure to NaAsO2. Compromised non-self adhesion, cell-cell aggregation and phagocytosis of non-self particles by the bivalve haemocytes probably indicate susceptible immunological status of the bivalve. Such vulnerable immunity of the bivalve probably signifies the nature of imminent threat to the freshwater ecosystem as a whole under inorganic arsenite exposure. The findings would be helpful to design bivalve haemocyte based inexpensive biomonitoring tool to assess the health of freshwater ecosystem under potential arsenic threat.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Department of Zoology, Government General Degree College at Keshiary, Paschim Medinipur, PIN 721135, West Bengal, India
| | - Mitali Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, PIN 700019, West Bengal, India
| | - Sajal Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, PIN 700019, West Bengal, India.
| |
Collapse
|
47
|
Andreyeva AY, Gostyukhina OL, Kladchenko ES, Vodiasova EA, Chelebieva ES. Acute hypoxic exposure: Effect on hemocyte functional parameters and antioxidant potential in gills of the pacific oyster, Crassostrea gigas. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105389. [PMID: 34171591 DOI: 10.1016/j.marenvres.2021.105389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalve mollusks are frequently subjected to fluctuations of dissolved oxygen concentration in the environment which can represent a significant threat to bivalve antioxidant status. In this work the effects of hypoxia on hemocyte reactive oxygen species (ROS) production and level of mitochondrial potential as well as the activity and expression level of catalase (CAT) and superoxide dismutase (SOD) in gills of Crassostrea gigas were investigated after 24 h and 72 h exposure. 24 h hypoxia promoted an increase of mitochondrial membrane potential in agranulocytes and induced ROS accumulation in granulocytes. 72 h exposure substantially decreased hemocyte mitochondrial potential and intracellular ROS level in all hemocyte types. No significant changes in the activity of CAT in gills were observed following both 24 h and 72 h exposure periods compared to control. SOD activity in gills decreased after 72 h exposure to hypoxia but did not change under 24 h hypoxia. Significant up-regulation of SOD gene and no changes in expression level of CAT were observed in all experimental groups. The results indicate an overall shift in antioxidant status in gills and hemocytes of the Pacific oyster that may act as compensatory mechanisms to maintain redox homeostasis after a short-term (24 h) exposure and represent the occurrence of oxidative stress conditions at the end of 72 h hypoxia.
Collapse
Affiliation(s)
- A Y Andreyeva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - O L Gostyukhina
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Kladchenko
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E A Vodiasova
- Marine Biodiversity and Functional Genomics Laboratory, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Chelebieva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia.
| |
Collapse
|
48
|
Abidli S, Pinheiro M, Lahbib Y, Neuparth T, Santos MM, Trigui El Menif N. Effects of environmentally relevant levels of polyethylene microplastic on Mytilus galloprovincialis (Mollusca: Bivalvia): filtration rate and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26643-26652. [PMID: 33495949 DOI: 10.1007/s11356-021-12506-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 05/24/2023]
Abstract
The objective of the present study was to evaluate the potential toxic effects of polyethylene microplastics (PE-MPs) (40-48 μm) on the Mediterranean mussel Mytilus galloprovincialis in controlled laboratory conditions. The exposure was carried out for 14 days with three environmentally relevant PE-MPs concentrations of 1, 10, and 100 and a high concentration of 1000 μg/L. Effects of PE-MPs were assessed by evaluating the filtration rate (FR) after 7 and 14 days of exposure and by analyzing biochemical biomarkers of oxidative stress (catalase - CAT, glutathione S-transferase - GST, and the levels of lipid peroxidation - LPO) in the M. galloprovincialis digestive gland after 14 days of exposure. Results showed that M. galloprovincialis does not accumulate PE-MPs of 40-48 μm size in its whole tissues. The filtration rate was significantly reduced with the increase of PE-MPs concentrations. The biochemical biomarkers indicated that PE-MPs induced oxidative damage (LPO) at low concentrations (1 and 10 μg/L) with a significant reduction in females of 1000 μg/L treated group and inactivate antioxidative system (CAT and GST) in the digestive gland of both sexes at high concentrations (100 and 1000 μg/L). This study demonstrates that PE-MPs have biological effects on M. galloprovincialis at environmentally relevant concentrations thus brings new insights on the potential impacts of PE-MPs in marine bivalves.
Collapse
Affiliation(s)
- Sami Abidli
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Marlene Pinheiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Youssef Lahbib
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
49
|
Vieira HC, Rodrigues ACM, Pires SFS, Oliveira JMM, Rocha RJM, Soares AMVM, Bordalo MD. Ocean Warming May Enhance Biochemical Alterations Induced by an Invasive Seaweed Exudate in the Mussel Mytilus galloprovincialis. TOXICS 2021; 9:121. [PMID: 34071183 PMCID: PMC8229087 DOI: 10.3390/toxics9060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Ocean warming and biological invasions are among the most pervasive factors threatening coastal ecosystems with a potential to interact. Ongoing temperature rise may affect physiological and cellular mechanisms in marine organisms. Moreover, non-indigenous species spread has been a major challenge to biodiversity and ecosystem functions and services. The invasive red seaweed Asparagopsis armata has become successfully established in Europe. Its exudate has been considered deleterious to surrounding native species, but no information exists on its effect under forecasted temperature increase. This study evaluated the combined effects of temperature rise and A. armata exudate exposure on the native mussel Mytilus galloprovincialis. Oxidative stress, neurophysiological and metabolism related biomarkers were evaluated after a 96 h-exposure to exudate (0% and 2%) under present (20 °C) and warming (24 °C) temperature scenarios. Short-term exposure to A. armata exudate affected the oxidative stress status and neurophysiology of the mussels, with a tendency to an increasing toxic action under warming. Significant oxidative damage at protein level was observed in the digestive gland and muscle of individuals exposed simultaneously to the exudate and temperature rise. Thus, under a climate change scenario, it may be expected that prolonged exposure to the combined action of both stressors may compromise M. galloprovincialis fitness and survival.
Collapse
Affiliation(s)
- Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (J.M.M.O.); (R.J.M.R.); (A.M.V.M.S.); (M.D.B.)
| | | | | | | | | | | | | |
Collapse
|
50
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Acute toxicity and sublethal effects of sodium laureth sulfate on oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108998. [PMID: 33556537 DOI: 10.1016/j.cbpc.2021.108998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|