1
|
Prakash V, Ansari MI, Chauhan SS, Parthasarathi R, Anbumani S. Embryonal exposure to 4-methylbenzylidene camphor induces reproduction impairment in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110051. [PMID: 39413942 DOI: 10.1016/j.cbpc.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
This study investigated how early exposure to xenobiotics can lead to disease in adulthood, which is challenging for toxicologists. We employed a 'cradle to grave' approach using zebrafish (Danio rerio) embryos exposed to 4-methylbenzylidene camphor (4-MBC), a commonly used organic UV filter. Molecular docking and simulation studies confirmed the predictive toxicity and stable interaction of 4-MBC with androgen and estrogen receptors, with binding energies of -9.28 and -9.01 kcal/mol, respectively. Exposure to 4-MBC at 5, 50, and 500 μg/L concentrations resulted in significantly altered transcriptional and translational responses of ar, esr1, and vtg1 genes in embryos at 120 h post-fertilization (hpf). The exposure induced a non-monotonic dose-response pattern (NMDR), a characteristic feature of endocrine-disrupting chemicals. Additionally, a significant decrease in fertilization was observed in adults. Although fecundity was not affected in inter- and intra-breeding performances, developmental deformities were observed in F1 progenies with impaired survival at 10 days post-fertilization. The findings of this study show that embryonic exposure to 4-MBC is likely to induce reproductive and transgenerational toxicity in D. rerio and exhibit endocrine disruption in aquatic non-target organisms. This work is the first to elucidate the low-level long-term effects of 4-MBC from the embryonic stage to adulthood.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shwetha Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Cuccaro A, De Marchi L, Pirone A, Monni G, Meucci V, Lazzarini G, Fumagalli G, Oliva M, Miragliotta V, Freitas R, Pretti C. Interplay of UV-filter pollution and temperature rise scenarios on Mytilus galloprovincialis health: Unveiling sperm quality and adult physiology, biochemistry, and histology insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124930. [PMID: 39260551 DOI: 10.1016/j.envpol.2024.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Addressing the impacts of emerging contaminants within the context of climate change is crucial for understanding ecosystem health decline. Among these, the organic UV-filters 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) are widely used in cosmetics and personal care products. Their unique physico-chemical properties, along with their growing commercialization and consumption, have made them ubiquitous in aquatic environments through both direct and indirect releases, raising significant concerns about their potential threats to inhabiting biota. Additionally, increasing surface water temperatures exacerbate ecological risks, making it imperative to understand the implications for non-target species at different biological levels. This study investigated the short- and long-term effects of UV-filters 4-MBC or BP-3, at ecologically relevant concentrations, combined with current and predicted warming scenarios, on the performance and male reproductive health of Mytilus galloprovincialis mussel populations. Using biomarkers across sub-cellular, cellular, tissue, and individual levels, the study revealed significant physiological and biochemical impairments in both sperm cells and adults exposed to UV-filters. Temperature emerged as the primary driver influencing mussel responses and modulating the impacts of 4-MBC/BP-3, emphasizing their sensitivity to temperatures outside the optimal range and interactive effects between stressors. Specifically, sperm motility declined with increasing UV-filter concentrations, while temperature alone influenced ROS production, leading to compromised mitochondrial activity and DNA damage in the presence of combined stressors, indicative of potential reproductive impairments. Adults exhibited high UV-filter bioconcentration potential in whole tissues, compromised physiological status, morphophysiological changes in digestive glands, oxidative stress, and alterations in metabolic capacity, antioxidant defences, and biotransformation mechanisms, correlating with UV-filter exposure and temperature increase. Among the UV-filters tested, 4-MBC was the most detrimental, especially when combined with warming. Overall, this study underscores the vulnerability of M. galloprovincialis to cumulative stressors and highlights the importance of employing a multi-biomarker approach to assess and mitigate the impacts of stressors on coastal ecosystems.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy.
| |
Collapse
|
3
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Yu Q, Wang G, Shao Z, Sun Y, Yang Z. Changes in life history parameters and expression of key genes of Brachionus plicatilis exposed to a combination of organic and inorganic ultraviolet filters. CHEMOSPHERE 2024; 358:142213. [PMID: 38697570 DOI: 10.1016/j.chemosphere.2024.142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.
Collapse
Affiliation(s)
- Qingqing Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gongyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhihao Shao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
5
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Piska K, Kocot N, Żelaszczyk D, Krupa A, Wójcik-Pszczoła K, Marona H, Pękala E. In vitro safety evaluation of (6-methoxy-9-oxo-9 H-xanthen-2-yl)methyl ( E)-3-(2,4-dimethoxyphenyl)acrylate (K-116) - the novel potential UV filter designed by means of a double chromophore strategy. Xenobiotica 2024; 54:266-278. [PMID: 38819995 DOI: 10.1080/00498254.2024.2363332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
The use of topical photoprotection is necessary to reduce adverse effects caused by excessive exposure to ultraviolet radiation. Despite the high standards set for UV filters, many of them may contribute to the occurrence of adverse effects. The newly synthesised compound K-116, the (E)-cinnamoyl xanthone derivative, could be an alternative. We conducted extended in vitro safety evaluation of compound K-116. The research included assessment of irritation potential on skin tissue, evaluation of penetration through the epidermis, and assessment of phototoxicity, and mutagenicity. Additionally, the eco-safety of compound K-116 was evaluated, including an examination of its degradation pathway in the Cunninghamella echinulata model, as well as in silico simulation of the toxicity of both the parent compound and its degradation products. The research showed that compound K-116 tested in future application conditions is deprived of skin irritant potential additionally it does not penetrate through the epidermis. Results showed that K-116 concentrate is not phototoxic and not mutagenic. The eco-safety studies showed that it undergoes biodegradation in 27% in Cunninghamella echinulata model. The parent compound and formed metabolite are less toxic than reference UV filters (octinoxate and octocrylene).
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Kocot
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Song Z, Li B, Chen L. Occurrence, Distribution, and Trophic Transfer of Pharmaceuticals and Personal Care Products in the Bohai Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21823-21834. [PMID: 38078887 DOI: 10.1021/acs.est.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihua Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Cuccaro A, Freitas R, De Marchi L, Monni G, Meucci V, Oliva M, Fumagalli G, Pretti C. Multi-biomarker approach for the (eco)toxicity of UV-filter environmental pollution on the Mediterranean mussel Mytilus galloprovincialis in a multiple stressor context. The case of 4-MBC under salinity shifts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122490. [PMID: 37660774 DOI: 10.1016/j.envpol.2023.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Marine-coastal ecosystems are rapidly transforming because of climate change (CC). At the same time, the impacts of emerging organic contaminants (i.e., organic UV-filters) on these ecosystems are intensifying. In the Mediterranean, the consequences of these disturbances are occurring at a fast pace making this area a potential sentinel site to be investigated. While singular effects of organic UV-filters or CC-related factors on marine biota have been relatively described, their combined impact is still largely unknown. Thus, the objective of this study was to assess the long-term responses of the Mediterranean mussel Mytilus galloprovincialis towards anticipated salinity changes (decreases-S20 or increases-S40) when exposed to environmentally relevant concentrations of the UV-filter 4-methylbenzylidene camphor (4-MBC). An integrated multi-biomarker approach was applied, featuring general and oxidative stress, antioxidant and biotransformation enzyme capacity, energy metabolism, genotoxicity, and neurotoxicity biomarkers. Results showed that both projected salinities, considered separately, exerted non-negligible impacts on mussels' health status, with greater biological impairments found at S 40. Combining both stressors resulted in an evident increase in mussels' susceptibility to the UV-filter, which exacerbated the toxicity of 4-MBC. The dominant influence of salinity in the climate change-contaminant interaction played a crucial role in this outcome. The most severe scenario occurred when S 20 was combined with 4-MBC. In this situation, mussels exhibited a decrease in filtration rate, metabolic capacity and deployment of energy reserves increased, with an upregulation of biotransformation and inhibition of antioxidant enzyme activities. This exposure also led to the observation of cellular and DNA damage, as well as an increase in AChE activity. Furthermore, salinity-dependent bioaccumulation patterns were evaluated revealing that the lowest values in contaminated mussels are found at S 20. Overall, the present findings provide evidence that projected CC/pollutant scenarios may represent high risks for mussels' populations, with global relevant implications for the ecosystem level.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy.
| |
Collapse
|
8
|
Zhang Y, Xie D, Lin Q, Zhou X. Seawater warming intensifies nickel toxicity to a marine copepod: a multigenerational perspective. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106730. [PMID: 37862730 DOI: 10.1016/j.aquatox.2023.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Due to human activities, marine organisms are frequently co-stressed with nickel (Ni) pollution and seawater warming; nevertheless, very scarce information is known about their interaction in marine biota under a multigenerational scenario. Here, after verifying the interaction of Ni and warming via a 48-h acute test, we conducted a multigenerational experiment (F0-F2), in which the marine copepod Tigriopus japonicus was exposed to Ni at environmentally realistic concentrations (0, 2, and 20 µg/L) under ambient (22℃) and predicted seawater warming (26℃) conditions. Ni accumulation and the important life history traits were analyzed for each generation. Results showed that Ni exposure caused Ni bioaccumulation and thus compromised the survivorship and egg production of T. japonicus. In particular, seawater warming significantly increased Ni accumulation, thus intensifying the negative effects of Ni on its survivorship and development. Overall, this study suggests that Ni multigenerational exposure even at environmentally realistic concentrations could produce a significant impact on marine copepod's health, and this impact would be intensified under the projected seawater warming, providing a mechanistic understanding of the interaction between warming and Ni pollution in marine organisms from a multigenerational perspective.
Collapse
Affiliation(s)
- Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qingxian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Xian H, Li Z, Ye R, Dai M, Feng Y, Bai R, Guo J, Yan X, Yang X, Chen D, Huang Z. 4-Methylbenzylidene camphor triggers estrogenic effects via the brain-liver-gonad axis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122260. [PMID: 37506809 DOI: 10.1016/j.envpol.2023.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC), an emerging contaminant, is a widely-used ultraviolet (UV) filter incorporated into cosmetics because it protects the skin from UV rays and counters photo-oxidation. Despite the well-established estrogenic activity of 4-MBC, the link between this activity and its effects on neurobehavior and the liver remains unknown. Thus, we exposed zebrafish larvae to environmentally relevant concentrations of 4-MBC with 1.39, 4.17, 12.5 and 15.4 μg/mL from 3 to 5 days postfertilization. We found that 4-MBC produced an estrogenic effect by intensifying fluorescence in the transgenic zebrafish, which was counteracted by co-exposure with estrogen receptor antagonist. 4-MBC-upregulated estrogen receptor alpha (erα) mRNA, and an interaction between 4-MBC and ERα suggested ERα's involvement in the 4-MBC-induced estrogenic activity. RNA sequencing unearthed 4-MBC-triggered responses in estrogen stimulus and lipid metabolism. Additionally, 4-MBC-induced hypoactivity and behavioral phenotypes were dependent on the estrogen receptor (ER) pathway. This may have been associated with the disruption of acetylcholinesterase and acetylcholine activities. As a result, 4-MBC increased vitellogenin expression and caused lipid accumulation in the liver of zebrafish larvae. Collectively, this is the first study to report 4-MBC-caused estrogenic effects through the brain-liver-gonad axis. It provides novel insight into how 4-MBC perturbs the brain and liver development.
Collapse
Affiliation(s)
- Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Zhang Y, Liu J, Jing C, Lu G, Jiang R, Zheng X, He C, Ji W. Life history traits of low-toxicity alternative bisphenol S on Daphnia magna with short breeding cycles: A multigenerational study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114682. [PMID: 36842276 DOI: 10.1016/j.ecoenv.2023.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Due to relatively lower toxicity, bisphenol S (BPS) has become an alternative to previously used bisphenol A. Nevertheless, the occurrence of BPS and its ecological impact have recently attracted increasing attentions because the toxicology effect of BPS with life cycle or multigenerational exposure on aquatic organisms remains questionable. Herein, Daphnia magna (D. magna) multigenerational bioassays spanning four generations (F0-F3) and single-generation recovery (F1 and F3) in clean water were used to investigate the ecotoxicology of variable chronic BPS exposure. For both assays, four kinds of life-history traits (i.e., survival, reproduction, growth and ecological behavior) were examined for each generation. After an 18-day exposure under concentration of 200 μg/L, the survival rate of D. magna was less than 15 % for the F2 generation, whereas all died for the F3 generation. With continuous exposure of four generations of D. magna at environmentally relevant concentrations of BPS (2 μg/L), inhibition of growth and development, prolonged sexual maturity, decreased offspring production and decreased swimming activity were observed for the F3 generation. In particular, it is difficult for D. magna to return to its normal level through a single-generation recovery in clean water in terms of reproductive function, ecological behavior and population health. Hence, multi-generational exposure to low concentrations of BPS can have adverse effects on population health of aquatic organisms with short breeding cycles, highlighting the necessity to assess the ecotoxicology of chronic BPS exposure for public health.
Collapse
Affiliation(s)
- Yixuan Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Chenyang Jing
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiqiang Zheng
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Anhui Academy of Ecological and Environmental Sciences, Key Laboratory of Wastewater Treatment Technology in Anhui Province, Hefei 230061, China
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
11
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
12
|
Wang D, Yang G, Ru S, Zhang Z, Li Y, Wang J. Herbicide prometryn adversely affects the development and reproduction of Tigriopus japonicus by disturbing the ecdysone signal pathway and chitin metabolic pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106378. [PMID: 36571890 DOI: 10.1016/j.aquatox.2022.106378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Prometryn, a widely used triazine herbicide in agriculture and aquaculture, has been commonly detected in marine environments, but its effects on the marine copepod are unknown. In this study, marine copepod Tigriopus japonicus was chronically exposed to environmentally relevant concentrations of prometryn to investigate its impacts and potential mechanism of action. The results showed that 0.5, 5, and 50 μg/L prometryn delayed the first spawning time and hatching time, reduced the fecundity, and inhibited the population growth rate. Moreover, exposure to 0.5, 5 and 50 μg/L prometryn decreased food ingestion, the content of C and N elements, nutrient accumulation and body size, but increased the content of 20-hydroxyecdysone (20E). Transcriptome analysis showed that 50 μg/L prometryn down-regulated 1431 genes, which were mainly enriched in lysosome pathway and chitin binding and cuticle construction process. The results of qRT-PCR showed that the expression of key genes involved in juvenile hormone synthesis and chitin metabolic pathways were also inhibited after prometryn exposure. Molecular docking revealed that prometryn could bind to ecdysone receptor (EcR) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), components of the ecdysteroid nuclear receptor complex. Therefore, environmental relevant prometryn delayed the molting and development of T. japonicus by disrupting the ecdysone signal pathway and chitin metabolic pathway through binding to EcR and UAP. This study provides new insights into toxic effects and molecular mechanisms of prometryn on marine copepods.
Collapse
Affiliation(s)
- Dong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Guangxin Yang
- Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
13
|
Dong F, Zheng M, Wang H, Jing C, He J, Liu S, Zhang W, Hu F. Comparative transcriptome analysis reveals immunotoxicology induced by three organic UV filters in Manila clam (Ruditapes philippinarum). MARINE POLLUTION BULLETIN 2022; 185:114313. [PMID: 36327937 DOI: 10.1016/j.marpolbul.2022.114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
15
|
Cuccaro A, De Marchi L, Oliva M, Battaglia F, Meucci V, Fumagalli G, Freitas R, Pretti C. Ecotoxicological effects of the UV-filter 4-MBC on sperms and adults of the mussel Mytilus galloprovincialis. ENVIRONMENTAL RESEARCH 2022; 213:113739. [PMID: 35750122 DOI: 10.1016/j.envres.2022.113739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Present in an increasing number of products, UV-filters are continuously discharged into aquatic environments. Despite potential risks for inhabiting organisms are recognized, the effects of UV-filter 4-methylbenzylidenecamphor (4-MBC) on marine invertebrates are poorly investigated. By combining in vitro/in vivo exposures through a multi-biomarker approach on sperms and adults, the present study evaluated how 4-MBC affect the mussel species Mytilus galloprovincialis, providing ecologically relevant information on organisms' responses. From the obtained results, considering mortality as endpoint, sperms revealed a greater sensitivity (EC50:347 μg/L) than adults (EC50: not calculable). From an ecotoxicological perspective, this resulted in a derived threshold concentration (LOEC) of 100 μg/L and 72 μg/L, respectively. Effects at the cell/molecular level were provided by general redox-status imbalance and oxidative stress. Sperms showed functional and structural impairments, hyperactivation and DNA damage, while adults showed physiological, metabolic/energetic dysfunctions, DNA damage and activation of oxidative and biotransformation enzymes. High 4-MBC bioaccumulation was also observed in exposed mussels (BCFs:14.0-32.0 L/kg). These findings suggest that 4-MBC may impair fitness and survival of the broadcast spawning mussel M. galloprovincialis, affecting reproduction success and population growth.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Lucia De Marchi
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giorgia Fumagalli
- Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy.
| |
Collapse
|
16
|
Cuccaro A, De Marchi L, Oliva M, Monni G, Miragliotta V, Fumagalli G, Freitas R, Pretti C. The influence of salinity on the toxicity of chemical UV-filters to sperms of the free-spawning mussel Mytilus galloprovincialis (Lamark, 1819). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106263. [PMID: 35939883 DOI: 10.1016/j.aquatox.2022.106263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Marine-coastal systems have been increasingly exposed to multiple stressors, including anthropogenic pollution and variations of Climate Change (CC) related factors, whose coexistence could create associated environmental and ecotoxicological risks. Among emergent stressors, 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) UV-filters are compounds widely used in increasing consumer products, resulting in their ubiquity in aquatic environments and possible pressing challenges on gamete susceptibility. Since most marine invertebrates reproduce by external fertilization, after spawning, gametes may be exposed to several pressures, affecting reproductive success and outcome. The present study focuses on the spermiotoxicity of the environmentally relevant UV-filters 4-MBC and BP-3 combined with salinity shifts, as potential modulators of their harmful effects. For this, Mytilus galloprovincialis male gametes were exposed in vitro to environmentally relevant and slightly higher concentrations (1, 10 and 100 µg/L) of 4-MBC or BP-3 under three different salinities (S 20, 30 and 40). Sperm quality endpoints associated with oxidative status, viability, motility, kinetics, and genotoxicity were evaluated. Similarities and differences in sperm responses among all conditions were highlighted by principal coordinates analysis (PCO). Results showed that salinity acting alone posed greater sperms impairments at the lowest (20) and highest (40) tested levels. When salinity acts as a co-varying stressor, salinity-dominant interactive effects resulted evident, especially for 4-MBC at S 40 and BP-3 at S 20. These findings were pointed out as the worst exposure conditions for M. galloprovincialis sperms, since caused major toxicological effects in terms of: (I) oxidative stress, sperm structural impairments, motility and kinetic alterations in 4-MBC-exposed sperms; (II) DNA damage, compromised mitochondrial activity and hyperactivation in BP-3-exposed ones. Overall, it stands out that salinity influences UV-filter toxicological pathways and, thereby, the potential environmental risk of these contaminants on M. galloprovincialis male gametes, especially in an expected salinity stress scenario.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy.
| |
Collapse
|
17
|
Cuccaro A, Freitas R, De Marchi L, Oliva M, Pretti C. UV-filters in marine environments: a review of research trends, meta-analysis, and ecotoxicological impacts of 4-methylbenzylidene-camphor and benzophenone-3 on marine invertebrate communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64370-64391. [PMID: 35852751 DOI: 10.1007/s11356-022-21913-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The potential adverse effects of UV-filter pollution in marine environments have been the focus of research in recent years. This systematic review aims to determine the extent of this emerging problem, both quantitatively and qualitatively, combining temporal and science mapping analyses to explore the development of the field of UV-filters in the marine environment (from 1990 to 2021), and to outline new research frontiers. The temporal trend analysis revealed an exponential growth of published studies over the last decade (70% since 2016), confirming the emerging role of this topic in environmental science. The meta-analysis determined that 4-methylbenzylidene-camphor (4-MBC) and benzophenone-3 (BP-3) are top-priority environmental pollutants due to their increasing usage and, in turn, a frequent occurrence in marine ecosystems. This meta-analysis determined the focus on these two contaminants for this review. A critical discussion of the applications, regulatory aspects, and environmental occurrences of these selected compounds was provided. The present study also focused on the most recent (2015-2021) field and laboratory studies investigating the ecotoxicological impacts of 4-MBC and BP-3 on marine invertebrates. This review highlights the need for more research efforts to fill the knowledge gaps on the realistic effects these compounds may have when considered individually, in combination, or as subsequent exposures. Overall, this review aims to establish guidelines for further studies to understand the effect of UV-filters on marine ecosystems and marine invertebrate communities.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy.
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| |
Collapse
|
18
|
Cadena-Aizaga MI, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. Occurrence and environmental hazard of organic UV filters in seawater and wastewater from Gran Canaria Island (Canary Islands, Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118843. [PMID: 35051548 DOI: 10.1016/j.envpol.2022.118843] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Organic ultraviolet (UV) filters are used in personal care products, but they are also added to industrial products and are constantly released to the environment. This study analyses the occurrence of 8 widely used organic UV filters in seawater from three beaches on the Gran Canaria Island (Spain) and in three wastewater treatment plants (WWTPs) by taking samples from influents and effluents. It also discusses the target compounds' post-treatment removal efficiencies. Sampling was carried out for 6 months and analytes were extracted by solid phase extraction with Sep-pak C18 cartridges. They were determined by ultra-high performance liquid chromatography coupled to mass spectrometry in tandem. The potential environmental hazard associated with the found concentrations was also assessed for marine organisms. Different target compounds were detected on the analysed beaches and in the wastewater. Benzophenone-3 (BP3) was the most recurrent compound in the seawater samples (frequency detection of 83%) and also in wastewater influents and effluents (measured in all the samples). However, the highest concentrations for seawater (172 μg L-1) and influent wastewater (208 μg L-1) corresponded to octocrylene, while methylene bis-benzotriazolyltetramethylbutylphenol was the compound most concentrated in secondary treatment effluent (34.0 μg L-1) and BP3 in tertiary treatment effluent (8.07 μg L-1). All the analysed samples showed that at least one target UV filter was present. Regarding the removal efficiencies of these compounds in the studied WWTPs, consistent differences between the target compounds were observed in influent concentration terms, where the average removal rates were higher than 50% for most of the compounds. Conventional treatment is unable to completely remove many studied compounds, while tertiary treatment acts as an additional elimination for some of them. An environmental hazard quotient above 1 was found for octocrylene, benzophenone-3 and 4-methylbenzylidene camphor, which indicates a potential high hazard for living species if these compounds are present.
Collapse
Affiliation(s)
- M Isabel Cadena-Aizaga
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Agawin NSR, Sunyer-Caldú A, Díaz-Cruz MS, Frank-Comas A, García-Márquez MG, Tovar-Sánchez A. Mediterranean seagrass Posidonia oceanica accumulates sunscreen UV filters. MARINE POLLUTION BULLETIN 2022; 176:113417. [PMID: 35152115 DOI: 10.1016/j.marpolbul.2022.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Certain ultra-violet filter (UVF) components of solar creams have negative impacts on coral reefs and have been prohibited in international tourism destinations (i.e., Hawaii, Florida, and Palau) to protect coral reefs. In the Mediterranean coasts which are also hotspots of international tourism and where endemic seagrass Posidonia oceanica forms extensive meadows, the accumulation of UVF components have not been studied. We report for the first time, that the rhizomes of P. oceanica internally accumulated UVFs BP3, BP4, AVO, 4MBC and MeBZT and the paraben preservative MePB. The components BP4 and MePB occurred in higher concentrations reaching up to 129 ng g-1 dw and 512 ng g-1 dw, respectively. This work emphasizes the need for more experimental studies on the effects of UVFs on seagrasses and check if we should follow suit to prohibit certain UVFs to protect this species as what has been done in other regions to protect corals.
Collapse
Affiliation(s)
- Nona S R Agawin
- Marine Ecology and Systematics, Biology Department, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain.
| | - Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aida Frank-Comas
- Marine Ecology and Systematics, Biology Department, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain
| | | | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
20
|
Ecotoxicological Evaluation of Sunscreens on Marine Plankton. COSMETICS 2022. [DOI: 10.3390/cosmetics9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, a large number of sunscreens have emerged to protect our skin. Most of them are made up of simple or compound aromatic structures, which can pose a threat to marine ecosystems. In order to understand their effects on the marine environment, different ecotoxicological bioassays were carried out using planktonic organisms from three phyla and two different trophic levels: larvae of the sea urchin Paracentrotus lividus, the copepod Acartia tonsa, and the microalga Tisochrysis lutea. The aim of these tests was to expose these organisms to leachates from eight sunscreen formulations. All of them showed a great variability in toxicity on the different plankton organisms. The highest toxicity level was found for cream number 4 when tested on sea urchin, exhibiting an EC50 = 122.4 mg/L. The toxicity of the UV filter 2-phenyl-5-benzimidazolesulfonic acid, exclusively present in that cream, was evaluated in sea urchin, where an EC10 = 699.6 mg/L was obtained under light exposure. According to our results, all tested creams become nontoxic to plankton upon 30,000-fold dilution in seawater; thus, only local effects are expected. This study highlights the need to understand the toxic effects generated by solar protection products, as well as their ingredients, on marine organisms.
Collapse
|
21
|
Prakash V, Jain V, Chauhan SS, Parthasarathi R, Roy SK, Anbumani S. Developmental toxicity assessment of 4-MBC in Danio rerio embryo-larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149920. [PMID: 34509837 DOI: 10.1016/j.scitotenv.2021.149920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Enormous production of cosmetic products and its indiscriminate use tends to discharge into the aquatic environment and might threaten non-target organisms inhabiting aquatic ecosystems. In the present study, developmental toxicity of 4-methylbenzylidene camphor (4-MBC), a widely used organic UV filter in personal care products has been evaluated using zebrafish embryo-larval stages. Waterborne exposure induced developmental toxicity and deduced 2.71 mg/L as 96 h LC50 whereas embryos exposed to sub-lethal concentrations (50 and 500 μg/L) caused a significant delay in hatching rate, heart rate, reduced larval length, and restricted hatchlings motility besides the axial curvature. Chronic exposure to 10 dpf resulted in significant decrease in SOD activity at 500 μg/L with no changes in CAT level besides a significant increase in GST enzyme at 5 μg/L concentration in 5 dpf sampled larvae. However, all the three enzymes were significantly elevated in 10 dpf larvae indicating differential oxidative stress during the stages of development. Similar trend is noticed for acetylcholine esterase enzyme activity. A concentration dependent increase in malondialdehyde content was noted in larvae sampled at 5 and 10 dpf. In addition, multixenobiotic resistance (MXR) activity inhibition, and elevated oxidative tissue damage were noticed at 5 dpf with no significant changes in 10 dpf larvae. Furthermore, immunoblot analysis confirms 4-MBC induced apoptosis in zebrafish larvae with promoted cleaved Caspase-3, Bax and inhibited Bcl-2 proteins expression. Subsequently, docking studies revealed the binding potential of 4-MBC to zebrafish Abcb4 and CYP450 8A1 proteins with the binding energy of -8.1 and -8.5 kcal/mol representing target proteins interaction and toxicity potentiation. Our results showed that 4-MBC exposure triggers oxidative stress at sub-lethal concentrations leading to apoptosis, deformities and locomotion perturbations in developing zebrafish.This is first of its kind in systematically demonstrating developmental toxicity of 4-MBC and the information shall be used for aquatic toxicity risk assessment.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Shih CY, Wang YH, Chen YJ, Chen HA, Lin AYC. Enhanced sorption of the UV filter 4-methylbenzylidene camphor on aged PET microplastics from both experimental and theoretical perspectives. RSC Adv 2021; 11:32494-32504. [PMID: 35495538 PMCID: PMC9042197 DOI: 10.1039/d1ra05013c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, the morphology and sorption behavior of polyethylene terephthalate (PET) microplastics during the aging process are investigated. To clarify the sorption mechanism of aged PET microplastics, the common sunblock 4-methylbenzylidene camphor (4-MBC) was chosen as the target contaminant, and UV irradiation was used for the laboratory aging simulation. The results show that oxygen-containing functional groups (carboxylic, carbonyl, ketone and hydroxyl groups) increase on the surface of aged PET microplastics. Based on density functional theory (DFT) simulations, the camphor part of 4-MBC acts as a hydrogen bond acceptor, whereas the carboxylic group on aged PET microplastics acts as a hydrogen bond donor. The formation of hydrogen bonding causes increased sorption of 4-MBC on aged PET microplastics. The sorption capacity increased from 5 to 11 μg g-1 for 50 ppb 4-MBC with 100 mg PET microplastics after a five-day aging process. Other environmental factors that affect sorption were also identified; a higher pH value and the presence of salinity reduced the amount of sorption. The sorption of virgin PET ranged from 8.0 to 3.4 μg g-1 and the sorption of aged PET ranged from 22 to 5 μg g-1 at pH 4 to 10. In the presence of salinity (10% seawater), the virgin PET sorption dropped to 2.1 μg g-1 while the aged PET sorption dropped to 4 μg g-1. A similar phenomenon was also observed in the sorption behavior under natural sunlight (the sorption of PET increased from 0.4 to 0.8 μg g-1 after 6 months of aging). The potential risk to ecosystems of aged PET microplastics under prolonged sunlight exposure in the natural environment could be greater than that predicted for virgin microplastics.
Collapse
Affiliation(s)
- Chun-Yu Shih
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Yu-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Yi-Ju Chen
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology 1, Sec. 3, Zhong-Xiao E. Rd. Taipei 106 Taiwan Republic of China
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University 71-Chou-Shan Road Taipei 106 Taiwan Republic of China +886-2-3366-4386
| |
Collapse
|
23
|
Zhang J, Pei ZT, Zhao YN, Zhang M, Zhang LL, Wang WQ, Wu JY, Yu R, Sun LW. Mutagenicity evaluation to UV filters of benzophenone-6, benzophenone-8, and 4-methylbenzylidene camphor by Ames test. PLoS One 2021; 16:e0255504. [PMID: 34473729 PMCID: PMC8412341 DOI: 10.1371/journal.pone.0255504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Benzophenone (BPs) and 4-Methylbenzylidene Camphor are used as ultraviolet (UV) filters to protect the skin and hair in personal care products. The discharging of the three chemicals may endanger the receiving water ecosystem. In the present study, the mutagenicity of BP-6, BP-8, and 4-Methylbenzylidene Camphor was tested using the Salmonella typhimurium reverse mutation test (Ames test) in the system with and without rat liver microsomal preparations (S9). Four S.typhimurium strains, TA97, TA98, TA100, and TA102 were employed in the Ames tests. The mutagenicity was detected from all three chemicals. The addition of S9 increased the mutation ratios of three chemicals to four strains, except BP-6 to TA100 strain and 4-MBC to TA97 and TA98 strain. In the mixed experiment, all positive effects were detected in the absence of S9. However, the results all became negative in the presence of S9. For the mixture of BP-6 and 4-MBC, positive results were detected on four tester strains except for the TA100 strain. For the mixture of BP-6, BP-8, and 4-MBC, positive results were detected on four strains. The mixture test results showed antagonism in mutagenicity for the mixture of BP-6 and 4-MBC to TA98 and TA100 strains and the mixture of BP-6, BP-8, and 4-MBC to TA100 and TA102 strains.
Collapse
Affiliation(s)
- Jing Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Zhou-Tao Pei
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Ya-Ni Zhao
- Water Pollution Control and Ecological Restoration Engineering Laboratory of Xizang, School of Information Engineering, Xizang Minzu University, Xianyang, China
| | - Meng Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Li-Ling Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Wen-Qiang Wang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Jing-Ya Wu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Ran Yu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Li-Wei Sun
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
Sub-lethal Camphor Exposure Triggers Oxidative Stress, Cardiotoxicity, and Cardiac Physiology Alterations in Zebrafish Embryos. Cardiovasc Toxicol 2021; 21:901-913. [PMID: 34339023 DOI: 10.1007/s12012-021-09682-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
Camphor is a terpene ketone with aromatic and volatile properties in nature derived from the bark of Cinnamomum camphora or synthesized from turpentine. Camphor exhibits various biological properties such as anti-microbial, anti-viral, anti-coccidial, and anti-cancer. It is also used as a form of topical medication for skin irritation, joint pain, and as a relief for itching from insect bites. However, even though the high dose of camphor has been documented to be toxic/lethal in humans in different studies, camphor's developmental toxicity has not yet been explored, and its extensive mechanism of action is still unclear. In the present study, we aimed to assess the toxic effects of camphor in zebrafish embryos in the initial developmental stages. The obtained results demonstrated that a sub-lethal dose of camphor caused a decrease in hatching rate, body length, and substantial elevation in malformation rate on zebrafish embryos. On further observation, in the following time frame, curved body and pericardial edema of zebrafish were also observed. Furthermore, exposure to a sub-lethal dose of camphor was also able to trigger cardiotoxicity in zebrafish larvae. Later, on subsequent biochemical analysis, it was found that the antioxidant capacity inhibition and oxidative stress elevation that occurred after camphor exposure might be associated with the inhibition of total superoxide dismutase (SOD) activity and an increase in reactive oxygen species (ROS) and malondialdehyde (MDA) concentration. In addition, compared to the control group, several apoptotic cells in treated zebrafish were also found to be elevated. Finally, after further investigation on marker gene expressions, we conclude that the developmental toxicity of camphor exposure might be associated with apoptosis elevation and oxidative stress. Taken together, the current study provides a better understanding of the developmental toxicity of camphor on zebrafish, a promising alternative animal model to assess the developmental toxicity of chemical compounds.
Collapse
|
25
|
Lambert FN, Gracy HR, Gracy AJ, Yoon SH, Scott RW, Rincon DM, Vulpe CD. Effects of ultraviolet-filters on Daphnia magna development and endocrine-related gene expression. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105915. [PMID: 34329859 DOI: 10.1016/j.aquatox.2021.105915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV) filters are emerging contaminants of concern that are widely spread throughout the aquatic environment. Many organic UV filters are endocrine disrupting compounds (EDCs) in vertebrates. However, few studies have assessed their effects on invertebrates. Molting, or the shedding of the exoskeleton, may be affected by exposure to these compounds in Arthropods (the largest phylum of invertebrates). Molting is necessary for growth and development and is regulated by an arthropod specific endocrine system, the ecdysteroid pathway. Alterations of this process by EDCs can result in improper development, reduced growth, and even death. We investigated the sublethal effects of chronic exposure to three organic UV filters (4-methylbenzylidene camphor (4MBC), octylmethoxycinnamate (OMC), and benzophenone-3 (BP3) in a crustacean, Daphnia magna, with particular emphasis on molting and development. We demonstrate that 4MBC, OMC, and BP3 affect development and long-term health in neonates of exposed parents at concentrations of 130 µg/L, 75 µg/L, and 166 µg/L, respectively. Additionally, the expression of endocrine-related genes (including ultraspiracle protein, usp) are significantly altered by 4MBC and BP3 exposure, which may relate to their developmental toxicity.
Collapse
Affiliation(s)
- F N Lambert
- Center for Environmental and Human Toxicology, University of Florida.
| | - H R Gracy
- Center for Environmental and Human Toxicology, University of Florida
| | - A J Gracy
- Center for Environmental and Human Toxicology, University of Florida
| | - S H Yoon
- Center for Environmental and Human Toxicology, University of Florida
| | - R W Scott
- Center for Environmental and Human Toxicology, University of Florida
| | - D M Rincon
- Center for Environmental and Human Toxicology, University of Florida
| | - C D Vulpe
- Center for Environmental and Human Toxicology, University of Florida
| |
Collapse
|
26
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
27
|
Rodríguez-Romero A, Viguri JR, Calosi P. Acquiring an evolutionary perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142816. [PMID: 33092841 DOI: 10.1016/j.scitotenv.2020.142816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain.
| | - Javier R Viguri
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
28
|
Hong H, Wang J, Shi D. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105742. [PMID: 33460951 DOI: 10.1016/j.aquatox.2021.105742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Organic ultraviolet filters are widely used in personal care products. 4-methylbenzylidene camphor (4-MBC) is one of the most frequently used UV filters. Due to its widespread usage 4-MBC has been detected at high concentrations in offshore waters. Previous toxicological studies have suggested that 4-MBC might induce much higher toxicity in marine organisms than freshwater species. To explore the effects of salinity on 4-MBC toxicity, the marine copepod Tigriopus japonicus was used as the model species, as it plays an important role in marine ecosystems and can be adapted to a wide range of salinity conditions. T. japonicus were adapted to three different salinity conditions (i.e., 20, 30 and 40 ppt) prior to exposure to 0, 1, and 5 μg L-1 4-MBC for multiple generations (F0-F3). Results showed that environmentally relevant concentrations of 4-MBC had toxic effects on T. japonicus and therefore, can pose a significant risk to marine copepods in the natural environment. In addition, increasing salinity levels increased the lethal, developmental and reproductive toxicities of 4-MBC in T. japonicus. This was because that higher salinity levels increased the uptake rate constant and bioconcentration factor of 4-MBC and also further exacerbated the oxidative stress induced by exposure to 4-MBC in T. japonicus. Our study demonstrated that understanding how salinity affects the toxicity of 4-MBC is important for accurate assessment of the risk of 4-MBC in the aquatic environments.
Collapse
Affiliation(s)
- Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, 361102, China.
| | - Jiaxin Wang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
29
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
30
|
Sotão Neto BMT, Combi T, Taniguchi S, Albergaria-Barbosa ACR, Ramos RB, Figueira RCL, Montone RC. Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). MARINE POLLUTION BULLETIN 2020; 161:111818. [PMID: 33160119 DOI: 10.1016/j.marpolbul.2020.111818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and spatial distribution of persistent organic pollutants (POPs) and personal care products (PCPs) were investigated in surface sediments of Todos os Santos Bay. Samples were Soxhlet-extracted and analyzed by gas chromatography coupled with tandem mass spectrometry. Quantification limits (QL) ranged from 0.0025 ng g-1 for POPs to 0.25 ng g-1 for PCPs. Of the POPs studied, only PCBs and DDTs were detectable, with concentrations ranging from <QL to 4.66 ng g-1, with increased concentrations near urban and industrial areas. PCPs ranged from <QL to 27.5 ng g-1 and presented a homogeneous spatial distribution, probably related to the continuous inputs of these compounds from diffuse sources. Mean contaminant inventories ranged from 0.33 ± 0.23 ng cm-2 for DDTs to 8.3 ± 8.4 ng cm-2 for fragrances. To the best of our knowledge, this is the first study on the occurrence of UV filters in sediments from Brazilian coastal environments.
Collapse
Affiliation(s)
- Basílio M T Sotão Neto
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Tatiane Combi
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Ana C R Albergaria-Barbosa
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil
| | - Raissa B Ramos
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rosalinda C Montone
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| |
Collapse
|
31
|
Lai WWP, Chen KL, Lin AYC. Solar photodegradation of the UV filter 4-methylbenzylidene camphor in the presence of free chlorine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137860. [PMID: 32197163 DOI: 10.1016/j.scitotenv.2020.137860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
UV filters are essential ingredients in sunscreens and many personal care products. The coexposure of UV filters to solar photolysis and free chlorine (solar/free chlorine) is inevitable in outdoor swimming pools and many other aquatic matrices, and this study aims to investigate the degradation mechanism of one specific UV filter, 4-methylbenzylidene camphor (4MBC), under solar/free chlorine system. Under solar irradiation alone, 4MBC only undergoes isomerization from (E)- to (Z)-4MBC; however, in the solar/free chlorine system, 4MBC was significantly degraded, with a pseudo-first-order rate constant of 0.0137 s-1 (pH = 7). The effects of the initial free chlorine concentration, solution pH and water matrix (presence of dissolved organic matter, HCO3- and Cl-) were studied. The results revealed that reactive chlorine species (RCS) are the dominant species influencing 4MBC degradation via solar/free chlorine, while OH and O3 played minor roles. These species would likely react with the 4-methylstyrene moiety of 4MBC and subsequently lead to 4MBC degradation through hydroxylation, chlorine substitution, oxidation and demethylation. Nevertheless, the dramatic increase in acute toxicity (Microtox®) during solar/free chlorine degradation of 4MBC highlights the need to further explore the transformation byproducts as well as their associated risks to humans and the environment.
Collapse
Affiliation(s)
- Webber Wei-Po Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Kuen-Lin Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan; International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 106, Taiwan.
| |
Collapse
|
32
|
Liang M, Yan S, Chen R, Hong X, Zha J. 3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 249:126224. [PMID: 32088463 DOI: 10.1016/j.chemosphere.2020.126224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the toxic effects of 3-(4-Methylbenzylidene) camphor (4-MBC) at environmentally relevant concentrations on the reproduction and development of Japanese medaka (Oryzias latipes), adult paired medaka (F0) were exposed to 5, 50, and 500 μg/L 4-MBC for 28 d in the current study. The fecundity and fertility were significantly decreased at 500 μg/L 4-MBC (p < 0.05). Histological observations showed that spermatogenesis in F0 males was significantly inhibited at 50 and 500 μg/L 4-MBC, similar to the effects obtained with all treatments of plasma 11-ketotestosterone (p < 0.05). Moreover, the plasma vitellogenin and estradiol levels in F0 females were significantly increased at 5 μg/L 4-MBC (p < 0.05). All the transcripts of hypothalamic-pituitary-gonadal (HPG) axis-related genes tested in the brains and gonads of males were significantly increased at all treatments, similar to the effects obtained for erα, erβ and vtg in the livers and in contrast to those found for arα in the livers (p < 0.05). Equal numbers of embryos were exposed to tap water and 4-MBC solutions. Significantly increased times to hatching, decreased hatching rates and decreased body lengths at 14-day post-hatching (dph) were obtained at 500 μg/L 4-MBC treatment (p < 0.05). The cumulative death rates at 14 dph were significantly increased with all the treatments (p < 0.05). Therefore, our results showed that long-term exposure to 50 and 500 μg/L 4-MBC causes reproductive and developmental toxicity and thus provide new insight into antiandrogenicity and the mechanism of 4-MBC in Japanese medaka.
Collapse
Affiliation(s)
- Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
33
|
Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. TOXICS 2020; 8:toxics8020029. [PMID: 32290111 PMCID: PMC7357026 DOI: 10.3390/toxics8020029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM—but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15–90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.
Collapse
|
34
|
Bioaccumulation and Toxicological Effects of UV-Filters on Marine Species. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Popiół J, Piska K, Słoczyńska K, Bień A, Żelaszczyk D, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Marona H, Pękala E. Microbial biotransformation of some novel hydantoin derivatives: Perspectives for bioremediation of potential sunscreen agents. CHEMOSPHERE 2019; 234:108-115. [PMID: 31207416 DOI: 10.1016/j.chemosphere.2019.05.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Having identified novel hydantoin derivatives (compounds 1-5) demonstrating promising photoprotective capacity against UV radiation, and understainding the problem of the biotic and abiotic degradation of UV filters, the aim of the study was to evaluate their metabolic fate with the environmental fungus Cunninghamella echinulata. In parallel, compound 1 in vitro microsomal metabolic pattern was evaluated. Finally, in silico toxicity of test compounds and their biotransformation products was estimated, and parent compounds photostability was assessed. The study demonstrated the capacity for C. echinulata to metabolize 1-5, which were biotransformed to a greater extent than the standard UV filter. O-dealkylation of the side chains attached to the phenyl or hydantoin rings, and hydroxylation of the phenyl ring occurred during microbial transformation. O-dealkylation product was a unique metabolite observed in microsomal biotransformation of 1, being its intrinsic clearance in the medium category range. In silico study demonstrated that compounds 1-5 have low toxicity risk. Among the resulting metabolites, four can increase the risk of reproductive effects as shown by OSIRIS prediction. Noteworthy, all indicated metabolites belong to minor metabolites, except for compound 3 major metabolite. Moreover, the results of the photostability study showed that 1-5 were considered to be photostable. To sum up, the obtained in vitro biotransformation, photostability, and in silico toxicity results encourage further studies on hydantoin derivatives as potential UV photoprotective agents. The presented biotransformation profile of compounds 1-5 by C. echinulata suggests that these compounds may follow a similar biodegradation fate when released into the environment.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland; Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Anna Bień
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
36
|
Binet MT, Gissi F, Stone S, Trinh C, McKnight KS. Use of scanning and image recognition technology to semi-automate larval development assessment in toxicity tests with a tropical copepod. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:1-11. [PMID: 31055079 DOI: 10.1016/j.ecoenv.2019.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
There is a high demand for the development of reliable chronic toxicity tests using tropical marine species for subsequent use in tropical risk assessment. However, many chronic test endpoints can be laborious and time-consuming to assess, particularly if the endpoints require measurements of individuals (e.g. growth, size) or advanced taxonomic expertise (e.g. differentiating between larval development stages). In this study, we used scanning and image recognition (SIR) technology to develop and validate a chronic toxicity test with larvae of the tropical euryhaline copepod, Acartia sinjiensis. Optimisation steps are described, and included egg age, and effect of algal food type and salinity on toxicity. Comparisons were made between traditional endpoints measured using microscopy and those measured using SIR. Traditional endpoints of larval development ratio (LDR) and survival achieved using microscope examination and SIR were almost identical (R2 = 0.96-0.97). Additional endpoints made possible by SIR included larval development index (LDI; based on the number of animals at different stages of development), and a range of size measurements (e.g. surface area, perimeter and length) for individual animals and for total populations (i.e. a proxy for biomass). The SIR-derived endpoints were based on measurements that had concentration-dependant responses to tested toxicants (copper, nickel, ammonia), and were a sub-set of the full range of metrics provided by the software. Toxicity values based on SIR-measurements were similar to or more sensitive than the traditional LDR endpoint. SIR technology provides a major opportunity to improve and modernise larval development tests for a range for species, but comes at a cost of increased data size and complexity. Therefore, as a research tool, SIR has significant advantages over traditional microscope methods, but for routine toxicity testing, SIR incorporation into invertebrate toxicity testing will benefit from further improvements to the associated software and data management systems.
Collapse
Affiliation(s)
- Monique T Binet
- CSIRO Land and Water, New Illawarra Rd Lucas Heights, Australia.
| | - Francesca Gissi
- CSIRO Oceans and Atmosphere, New Illawarra Rd Lucas Heights, Australia
| | - Sarah Stone
- CSIRO Land and Water, New Illawarra Rd Lucas Heights, Australia
| | - Chloé Trinh
- AgroParisTech, 16 Rue Claude Bernard, 75231 Paris, France
| | | |
Collapse
|
37
|
Tarnawska M, Kafel A, Augustyniak M, Rost-Roszkowska M, Babczyńska A. Microevolution or wide tolerance? Level of stress proteins in the beet armyworm Spodoptera eqigua hübner (Lepidoptera: Noctuidae) exposed to cadmium for over 150 generations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:1-8. [PMID: 30980963 DOI: 10.1016/j.ecoenv.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate whether the cadmium tolerance developed in the beet armyworm Spodoptera exigua selected for over 150 generations may be related to synthesis of the stress proteins metallothioneins (Mts) and 70 kDa heat shock proteins (HSP70). To achieve this, six S. exigua strains (control, k), 150-generation Cd exposure strain (cd), and four 18-generation Cd exposure strains differing in Cd concentration (cd44, cd22, cd11, cd5) were reared. Stress protein level was measured in the midgut of the 5th larval stage after 1-6, 12 and 18 generations. Cd contents was measured in the pupae. Unlike Cd concentration, which depended on metal contents in food but was not generation-dependent, the pattern of Mts and HSP70 concentrations changed in experimental strains from generation to generation. Stress protein levels in the insects exposed to the highest Cd concentration (the same as in the 150-generation Cd exposure strain), initially higher than in the control strain, after the 12th generation did not differ from the level measured in the control strains. It seems therefore that stress proteins play a protective role in insects of lower tolerance to cadmium. The tolerance developed during multigenerational exposure probably relies on mechanisms other than Mt and HSP70 synthesis.
Collapse
Affiliation(s)
- Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40007, Katowice, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40007, Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Department of Histology and Animal Histology, University of Silesia, Bankowa 9, 40007, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40007, Katowice, Poland.
| |
Collapse
|
38
|
Tovar-Sánchez A, Sánchez-Quiles D, Rodríguez-Romero A. Massive coastal tourism influx to the Mediterranean Sea: The environmental risk of sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:316-321. [PMID: 30504030 DOI: 10.1016/j.scitotenv.2018.11.399] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 05/20/2023]
Abstract
The Mediterranean region is, by far, the leading tourism destination in the world, receiving more than 330 million tourists in 2016. This tourism is undertaken mostly for seaside holidays, and during the summer season concentrates between 46% and 69% of the total international arrivals; this is equivalent to a density of 2.9 tourists per meter of Mediterranean coast, or double this number taking into account the local/permanent population in addition. Previous studies have reported not only the presence of sunscreen in the various environmental compartments (water, sediments and biota) of the Mediterranean Sea (MS) and other regions, but also show that sunscreen products are toxic for marine biota and are accumulated and biomagnificated. Here, we highlight that the environmental risk of these chemicals is likely to be exacerbated in the MS due to the massive influx of tourists and its densely populated coasts, the basin's limited exchanges with the ocean, the high residence time of surface waters, and its oligotrophic waters.
Collapse
Affiliation(s)
- Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - David Sánchez-Quiles
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Araceli Rodríguez-Romero
- Green Engineering & Resources Research Group (GER), Department of Chemistry and Process & Resource, E.T.S.I.I.T. University of Cantabria, Avda. de los Castros, s/n., 39005 Santander, Spain
| |
Collapse
|
39
|
Zink A. Trends in the treatment and prevention of keratinocyte carcinoma (non-melanoma skin cancer). Curr Opin Pharmacol 2019; 46:19-23. [PMID: 30660857 DOI: 10.1016/j.coph.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
Keratinocyte carcinoma (KC), previously also known as non-melanoma skin cancer, is the most common malignancy worldwide. It comprises basal cell carcinoma, squamous cell carcinoma (SCC), and actinic keratoses as carcinoma in situ or precursors of SCC. With solar ultraviolet radiation being the main risk factor, several countries have accepted KC as an occupational disease of outdoor professions. The prevalence in these high-risk groups is substantial, but awareness and preventive behavior remains inadequate. Parallel to the development of improved treatments, such as daylight photodynamic therapy and PD1 inhibitors for progressive KC, target-oriented prevention strategies are requisite if the global burden of KC is to be lowered. Health-related communication, internet search analysis, and telemedicine could be the key to addressing this issue.
Collapse
Affiliation(s)
- Alexander Zink
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| |
Collapse
|